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Abstract. An economic nonlinear model predictive controller (ENMPC) is formulated for a
wind turbine-battery hybrid generation system. The controller aims to maximize the operational
profit of the generator by balancing between generated wind power and turbine tower fatigue
as well as battery cyclic fatigue. Other than the tower fore-aft fatigue, tower side-side fatigue is
also considered to assess impact on overall economic performance. A moving horizon estimator
(MHE) is formulated to provide meaningful initialization to the ENMPC in presence of plant
model mismatch.The formulated controller utilizes the parametric online rainflow counting
(PORFC) approach for direct cyclic fatigue cost minimization within ENMPC. The closed-
loop simulation shows significantly higher profit compared to a realistic base-case scenario and
relatively higher profit compared to another economic controller.

1. Introduction
Large scale grid integration of wind power has the potential to drive the transition towards a
cleaner energy system. However, wind power is inherently characterized by generation variability
and uncertainty. One emerging approach involves hybridizing the wind energy systems with
energy storage systems such as batteries. Conventionally, such a hybrid generation system aims
to maximize the wind power capture while using battery to compensate for uncertainty and
variability of generated wind power, abiding to the grid requirements at the same time. However,
operating such a system in closed loop with an economically optimal controller can allow profit-
optimal operation, by balancing between the generated revenues and system costs (such as
fatigue damage of components or other operational expenses). Fatigue damage corresponds
to damage of an energy unit during its operation phase and results in reduction of overall
operational life of the unit. For a wind turbine, damage refers to the structural fatigue in the
turbine components such as tower, blades, drive-train, and others. Out of these, tower fatigue
damage is of critical importance, as it not only serves as a crucial design driver but also has
significant impact on operational expenses of the turbine [1, 2]. For a battery storage unit,
fatigue damage corresponds to the permanent capacity loss due to application of charging and
discharging cycles [3]. These damages result in significant economic cost to the plant owner.

A dynamic economic optimization of wind and battery based hybrid system is seldom
witnessed in the literature. In [4] and [5], only the battery damage is considered within
an optimal control framework, where the damage evaluation approach is simplified and a
simultaneous optimization of damage cost and revenue for accurate economic evaluation is
missing. In [6], an MPC based supervisory controller has been formulated which, while
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maximizing the dispatchable power of the hybrid system, focuses on damping the turbine shaft
twist to alleviate shaft fatigue and reducing the battery charge throughput to minimize battery
cyclic capacity loss. However, the MPC utilizes a simplified wind turbine model consisting only
of the generator degree of freedom and an overly simplified battery model representing only
the state of charge dynamics. To the best of our knowledge, for a hybrid generation system, a
direct and accurate minimization of wind turbine and battery cyclic fatigue damage and their
simultaneous economic balancing against revenue within optimal control framework is presented
for the first time in our previous work [7]. However, in [7], a low-fidelity wind turbine model with
only six states is considered. Also, tower fatigue damage evaluation includes only tower fore-
aft oscillations. In that work, no consideration is given to the tower side-side dynamics as the
reduced fore-aft oscillation might appear as increased side-side oscillations. Moreover, perfect
measurement of all the hybrid system model states, including tower tip fore-aft displacement
and velocity, is assumed.

The objective of this work is to extend the simplified formulation presented in [7] towards a
more complex and realistic setup. The novelty of this work lies in formulating the economic
nonlinear MPC (ENMPC) for a hybrid generation system comprising of high-fidelity wind
turbine and battery models. The impact of plant model mismatch on closed-loop controller
performance is assessed and addressed, as the controller utilizes a reduced order model with fewer
degrees of freedom than the plant model. A moving horizon estimator (MHE) is additionally
formulated to provide initial value estimates to ENMPC for the internal model states that could
not be directly measured on a real plant. The closed-loop formulation is extended to take into
consideration not just tower fore-aft dynamics but also tower side-side dynamics. This is to
evaluate the impact of optimal control actions on side-side dynamics and contribution of side-
side dynamics on overall closed-loop economic performance. Furthermore, the performance of
the formulated economic controller is evaluated against a realistic base-case scenario and another
standard controller employing state-of-the-art indirect fatigue minimization strategy.

2. Cyclic fatigue damage minimization in MPC framework
An accurate evaluation of fatigue within the MPC framework is imperative for optimal economic
balancing. The Rainflow counting (RFC) algorithm is the most widely used approach for
evaluating fatigue damage [8]. This includes identifying the reversals (extrema) in the given
cyclic stress trajectory, to obtain the number of cycles and corresponding cycle characteristics,
such as cycle mean, weight, and amplitude. A detailed account of calculating cyclic damage
for wind turbine tower root stress and for battery is presented in [7, 9, 10]. The standard
RFC approach calculates, for given stress samples σ(k), the total damage due to both half- and
full-cycles, and then discards all the stress samples [11]. Residue refers to those stress samples
that have resulted in a half(open)-cycle and are thus not part of a full(closed)-cycle yet [11].
Understanding the impact of Residue stress samples σresidue(k) on the resulting cyclic damage
is of the utmost importance as these samples, in future, have the possibility to form an open
cycle with higher cycle amplitude having higher cyclic damage. As a consequence, an improper
consideration of stress history can lead to the under-evaluation of the resulting cyclic fatigue
damage. To this extent, a one step time discrete RFC algorithm, explained in detail in [10],
is utilized, where residue samples from the past are stored and merged with incoming stress
sample prior to Rainflow analysis. The impact of residue in improving closed-loop economic
performance has also been shown in [7], where a stress history-aware controller performs better
than a blinded controller (unaware of the stress history).

The standard cyclic fatigue evaluation using the RFC algorithm can not be directly used for
cyclic fatigue minimization within the MPC framework. This is because the implementation of
RFC contains algorithmic branches and loops which results in discontinuous output behavior.
As a result, the calculation of sensitivities required for numerical optimization is not possible. An
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example implementation in MATLAB has been analyzed in [9], where the inherent algorithmic
loops have been highlighted clearly. Moreover, as cyclic damage is a long term effect [9], this
requires storing and properly accounting for the impact of stress histories within the MPC
framework.

The aforementioned challenges of direct implementation of RFC in MPC are overcome by
utilizing the concept of Parameteric Online RFC (PORFC). This includes externalizing the
damage evaluation step from the MPC optimization step by performing an online Rainflow
analysis based on a stress history (Residue) to generate time-varying parameters. Here, all the
discontinuous parts of the cyclic damage estimation procedure are performed in a pre-processing
step before each execution of the MPC optimization step. In order to have the externalized cyclic
fatigue evaluation on the same stress profile as MPC, the pre-processing step has to start with
a predictive forward simulation using the controller internal model

ẋ(t) = Fh(x(t),u(t),d(t)), (1)

with the same sampling time Tctrl, and horizon length Thorizon as MPC. Here, x(t), u(t), and d(t)
represent continuous system states, control variables, and external disturbance respectively, and
function Fh(.) represents the mapping of ordinary differential equations governing the continuous
dynamics of the system. The PORFC concept has been explained in detail in our previous work
[10]. The output of the pre-processing PORFC approach is the time-varying cycle mean σPORFC

m,c1/2

and cycle weight parameters σPORFC
w,c1/2 :

pPORFC =
(
σPORFC

m,c1 , σPORFC
m,c2 , σPORFC

w,c1 , σPORFC
w,c2

)
, (2)

which is defined as a piece-wise constant function over the control intervals of the prediction
horizon. Although a stress sample is not allocated uniquely to one identified cycle, it can
at maximum be part of two cycles [12]. Hence, the Rainflow algorithm provides one or two
mean stress values per extremum. These mean stress values are considered as optimization- or
tracking-goals for the current MPC-step.

In the objective function of the MPC, the PORFC parameters pPORFC are used to time-
continuously calculate the cyclic damage over the horizon and accumulate it via integration.
Consequently, the cyclic damage term of PORFC is defined by a time-integral over two cost
terms, where each represents one potential cycle-contribution of a stress sample [10]. The rate
of cyclic damage

ḊPORFC
cyc (t) =

d∆DPORFC
cyc

(
σ(t),pPORFC(t)

)
dt

=

1

Tctrl

2∑
c=1

DPORFC
cyc,c

(
σ(t), σPORFC

m,c (t), σPORFC
w,c (t)

)
. (3)

can thus be used to formulate cyclic damage minimization objectives for the optimal control
problem.

3. Optimal control problem formulation
An ENMPC utilizes an internal model of the plant (refer to Eq. (1)) to predict the system
states over a future horizon. These predictions are used to calculate economically optimal
control variables by optimizing a chosen realistic and meaningful economic objective function
(maximizing profit by balancing between revenue and costs). The optimization problem, in
addition to the system state and input constraints, should also ensure that the total generation of
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the hybrid plant matches a reference power, which is particularly essential in tracking the varying
power demanded by the electricity grid. Since the controller internal model has fewer degrees of
freedom compared to the plant model, not all relevant system dynamics is captured using the
internal model, resulting in incorrect economic objective values within the MPC optimization.
The controller internal model is initialized using the currently measured states x̃ as initial states
x0. However, not all system states of the controller internal model of the wind turbine can
actually be measured directly on a real plant. As a consequence, a Moving Horizon Estimator
(MHE) is additionally formulated to provide initial value estimates xest to the ENMPC internal
model, using the available measurements x̃ from the high-fidelity plant model.

3.1. Controller-internal model description
3.1.1. Wind turbine dynamics A reduced order model of the NREL 5 MW wind turbine has
been considered in this work. This section summarizes the modeling approach which has been
presented in detail in [13]. The incident wind Vw induces an aerodynamic torque TQ in the rotor
shaft and a thrust force FT on the rotor. The aerodynamic torque directly couples with the
drive-train dynamics

Jrω̇ = TQ − Tg, (4)

where Jr, ω, and Tg represent the rotor moment of inertia, rotor angular velocity, and generator
torque referred to the rotor shaft side, respectively. The aerodynamic thrust force FT coupled
with the drive-train dynamics excite oscillations in the tower. These can be quantified by using
the tower tip deflection in the horizontal (fore-aft) direction dTFA , having dynamics

d̈TFA =
1

a1
(FTFA − a2ḋTFA − a3dTFA), (5)

resulting in cyclic stresses σ(t)FA at the tower root. Here, FTFA represents the horizontal
component of the impinging thrust force FT . The turbine model has two control variables: the
rate of change of the generator torque Ṫg and the blade pitch actuator set-point βc with blade
dynamics

β̈b = −a4β̇b − a5(βb − βc). (6)

Here, βb represents the collective blade pitch angle and the parameters a1 through a5 are fixed
model parameters representing turbine properties [13]. Non-linearity in the model originates
from TQ(ω, βb, (Vw − ḋTFA)) and FTFA(ω, βb, (Vw − ḋTFA)), which are computed offline at
stationary operating points using the OpenFAST wind turbine simulator.

3.1.2. Battery dynamics An electrical equivalent circuit model of a 1MW/1MWh Li-ion battery
has been considered in this work. This section summarizes the modeling approach which is
presented in detail in [10]. The battery model consists of three sub-models: electrical, thermal,
and degradation. For a given control variable PB, denoting battery power, the electrical sub-
model captures the battery current I(t) dynamics and the state of charge SOC(t) dynamics

˙SOC = − I
Q
. (7)

Here, Q represents the maximum charge capacity of the battery at a given time. Q always
decreases over time and usage because of the permanent loss in the capacity of the battery over
time (calendric damage Qcal), calculated using

Q̇cal = f1(SOC)f2(T )
√
t. (8)
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Furthermore, it also decreases over charging and discharging operations (cyclic damage Qcyc),
calculated by applying the one-step time discrete RFC algorithm (refer to Sect. 2) over SOC
samples. The functions f1(SOC) and f2(T ) denote the dependency of the state of charge SOC
and battery temperature T on the calendric capacity loss. The battery thermal model captures
the evolution of battery temperature T (t) dynamics

Ṫ =
1

CH
(I2Rint − CR(T − Tambient)), (9)

based on a lumped heat capacitance model [14], where CR and CH denote cooling rate and heat
capacity respectively. Here, Tambient denotes the ambient temperature which is considered to be
fixed at 298.15 K.

3.1.3. Hybrid system model The reduced-order wind turbine and battery based hybrid system
model, as shown in Eq. (1), consists of ten system states x = (xWT,xB) and three control
input variables u = (βc, Ṫg, PB). Out of these, six states correspond to the wind turbine

dynamics xWT = (ω, dTFA , ḋTFA , βb, β̇b, Tg), and four states denote the battery dynamics
xB = (T, SOC,Qcal, Qcyc). The wind speed Vw is considered as a disturbance input to the
model d = (Vw). In the present work, the turbine is assumed to receive perfect foresight of the
incoming rotor-equivalent wind speed from a Light Detection and Ranging (LiDAR) sensor.

3.2. Plant model
The 5MW NREL OpenFAST wind turbine simulator is utilized in this work as the plant model.
The OpenFAST simulator (including pitch and torque actuators but excluding yaw mechanism),
contains 33 system states (8 tower states, 6 states for each of the three blades, 2 states for drive-
shaft torsion, 2 states for rotor rotation, 2 states for collective blade pitch actuation, and 1 state
for generator torque actuation) [15]. On the contrary, the ENMPC internal model consists only
of 6 wind turbine specific states (refer to Sect. 3.1). Moreover, some of the states of the internal
model can not be measured directly on a real plant. For example, the tower tip deflection dTFA
and velocity ḋTFA for fore-aft oscillations can not be measured on a real turbine using standard
sensors.

The battery plant model is similar to the battery internal model without few modeling
approximations (refer to [7] and [10] for details).

3.3. MPC optimization problem
The economic optimization problem is formulated as

min
u,s
−(JWT

generation)2 + (JWT
towerfatigue)

2 + (JBcyclicloss)
2 +

∫ tend

t0

(103s2
1 + 106s2

2)dt (10a)

subject to
ẋ = Fh(x,u,d) (10b)

xaug ≤ xaug ≤ xaug (10c)

u ≤ u ≤ u (10d)

s ≤ s ≤ s (10e)
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ηgenωTg + PB + s2 = P griddemand. (10f)

The problem is solved in an online MPC fashion for the hybrid system model described in
Sect. 3.1. Here the interval t ∈ [t0, tend] denotes the prediction horizon Thorizon of MPC.
The optimization variables are the control variables u = (βb, Ṫg, PB) and the slack variables
s = (s1, s2).

The purpose of introducing slack variables is to achieve recursive feasibility of the MPC
optimization problem in the presence of model uncertainties and system perturbations [16].
In the present formulation, the state variable ω and the wind turbine electrical power
output ωTg are augmented using the bounded slack variables s1 and s2, respectively, as
suggested in [16]. The augmented system states xaug can be represented as xaug = (ω +

s1, dTFA , ḋTFA , βb, β̇b, Tg, T, SOC).
The optimization objective aims to maximize the generated profit and has the components

described in the following.

Maximizing wind power generation: The wind power generation is maximized by considering
the aerodynamic power capture

JWT
generation = wP

∫ tend

t0

(ω(t)TQ(ω, βb, (Vw − ḋTFA)))dt, (11)

where wP denotes the revenue rate for providing electricity to the grid. It should be noted that
even though the revenue is accrued based on the overall electrical power generation, in this work
the aerodynamic power is maximized. This is to avoid the greedy extraction of rotor kinetic
energy by MPC (referred to as turnpike effect in [16]).

Minimizing wind turbine tower fatigue: The tower cyclic fatigue damage JWT
towerfatigue, because

of tower root fore-aft cyclic stress σFA, is minimized by a direct penalization of fatigue cost
using a continuous estimation of fatigue cost rate via the PORFC approach (refer to Eq. 3 and
for details check [9])

JWT
towerfatigue =

∫ tend

t0

(JPORFCcyc,σFA
)dt,

JPORFCcyc,σFA
=

1

Tctrl

2∑
c=1

JPORFC
cyc,c,σFA

(σFA(t), σPORFC
FAm,c (t), σPORFC

FAw,c (t)). (12)

In addition to the direct fatigue penalization approach, an indirect fatigue penalization
approach using tower-tip velocity (TTVP) has also been formulated as a reference

JWT
towerfatigue = wTTV Pfatigue

∫ tend

t0

1

2ThorizonPWT
g,max

mT (ḋTFA)2dt, (13)

to evaluate the performance of PORFC for accurate tower fatigue minimization inside the MPC
framework. Here, the TTVP approach has been implemented as a quadratic penalization of
kinetic energy of lumped tower mass mT given as mT (ḋTFA)2, averaged over the MPC prediction
horizon Thorizon. An additional division by the wind turbine rated power PWT

g,max is used for
scaling, which is beneficial for optimization. The use of indirect fatigue penalization is quite
common in the literature [17, 18], where a damage-related value rather than the actual damage
is penalized. Consequently, the penalization weight term wTTV Pfatigue has to be carefully chosen, as
the indirect fatigue term has different units than revenue generated due to harvested energy.
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Minimizing battery cyclic fatigue: The battery cyclic fatigue damage JBcyclicloss is minimized by
a direct penalization of fatigue cost using a continuous estimation of fatigue cost rate via the
PORFC approach (refer to Eq. (3) and for details check [9])

JBcyclicloss = wB

∫ tend

t0

(QPORFCcyc,SOC)dt,

QPORFCcyc,SOC =
1

Tctrl

2∑
c=1

QPORFC
cyc,c,SOC

(
SOC(t), SOCPORFC

m,c (t), SOCPORFC
w,c (t)

)
, (14)

where the weight factor wB represents the unit replacement cost of the battery [10].
Finally, the ENMPC optimization problem is subjected to the system dynamics of the hybrid

plant, as shown in Eq. (10b), to the inequality constraints on augmented states, as shown in Eq.
(10c), to the box constraints on control and slack variables, as shown in Eq. (10d) and (10e),
and to the power balance as equality constraint, as shown in Eq. (10f). Here in Eq. (10f), the
term ηgenωTg represents the electrical power output of wind turbine, where ηgen is the generator
efficiency.

3.4. MHE optimization problem
The MHE formulation described in this section is based on [19]. MHE utilizes the system
information from the wind turbine plant over a finite past duration (specified using the MHE
horizon length Thorizon,est) to calculate the initial state estimates xest(t0) for the current ENMPC
step. The MHE optimization problem aims to minimize the deviation of the current estimated
output yest from the measurement values ymeas, the deviation of the current state estimates xest
from the previous state estimates xest,prev (to ensure smoother estimator output over consecutive
MHE steps), and the noise variable ν̄ [20, 21].

The objective function is given as

min
ν̄

∫ t0

t0−Thorizon,est
(||yest − ymeas||2Wmeas

+ ||xest − xest,prev||2Wprev
+ ||ν̄||2Wν̄

)dt, (15)

where yest = (xest, d̈TFA,est) and ymeas = (xmeas, d̈TFA,meas). The estimated tower fore-aft

acceleration d̈TFA,est is obtained using the nonlinear output equation shown in (5). The measured

tower fore-aft acceleration d̈TFA,meas is obtained from the real plant as a result of standard sensor
measurement. The measured tower-tip velocity and tip-deflection are obtained by numerical
integration of tip acceleration and velocity, respectively. The diagonal weighting matrices
Wmeas, Wprev, and Wν̄ are subject to tuning depending on the desired performance from
the estimator.

The optimization problem is only subjected to estimator system dynamics

ẋest = Fest(xest(t),dest(t)) + ν(t), (16)

where dest(t) = (Vw(t), βb(t), Ṫg(t)) are the disturbance input to the system, which are already
set by the ENMPC and are hence fixed for present MHE step. Here, xest represents the estimator
system states which are equivalent to the wind turbine system states xWT shown in Sect.
3.1. Moreover, Fest(·) represents the system of ordinary differential equations for wind turbine
dynamics shown in Sect. 3.1.1.

After the execution of an MHE step, the terminal state at the end of the MHE horizon
becomes the initial state at the beginning of the ENMPC prediction horizon xWT0 = xWT(t0) =
xest(t0).
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4. Simulation setup and results
The formulated economic nonlinear MPC-MHE problem is solved via the state-of-the-art
ACADOS framework [22], using the interior-point solver HPIPM for the underlying Quadratic
Programs (QP) in the Nonlinear Program (NLP). A single QP is solved per ENMPC step using
the multiple shooting approach with a newton step length of 1, and the Hessian matrix is
automatically convexified to address possible numerical issues due to the highly non-standard
formulation produced by PORFC [9]. The ENMPC and MHE horizon lengths Thorizon and
Thorizon,est are set to 4s each with a total of 20 discretization steps each, such that the sample
time Tctrl for both ENMPC and MHE is 200ms. The wind turbine plant model, based on
OpenFAST simulator, is sampled every 5ms. The optimal control inputs applied to the wind
turbine plant model are considered as piece-wise constant over Tctrl as Tctrl > 5ms. The battery
plant model is sampled at Tctrl. The hybrid plant measurements x̃ are obtained every Tctrl.

Fig. 1 shows the simulation output for the formulated ENMPC-MHE setup for closed-loop
operation of a high-fidelity wind turbine and battery based hybrid generation system. The input
wind speed is obtained using DLC 1.2 wind profile and the hybrid plant is subjected to a varying
power demand around the rated wind power generation. The formulated ENMPC using PORFC
is compared first with a base-case scenario similar to Eq. (10) but with the only difference in the
optimization objective which only focuses on maximizing power capture instead of maximizing
profit (as in Eq. (10)).

The net profit is calculated as the difference of revenue from wind power generation and costs
due to tower fatigue damage and battery capacity loss. The revenue is calculated as a product
of revenue rate wP and wind turbine electrical power output ηgenωTg. Although the formulated
ENMPC controller only minimizes tower fatigue due to tower fore-aft stress, the impact of control
actions on the tower side-side oscillations are also considered by evaluating the projected cost of
tower fatigue. First, the tower fore-aft σFA(t) and side-side oscillations σSS(t), obtained from
the plant model, are projected along all the azimuth directions of tower base, then the cost of
cyclic fatigue damage for each of these projections is evaluated to finally obtain the maximum
of these costs. This way, any possible increase/decrease in tower side-side stress oscillations due
to control actions aimed for minimizing tower fore-aft stress is taken into account. The cost of
cyclic fatigue damage for each of the projections for a given azimuth direction is obtained by first
performing RFC analysis on the projected stress trajectory, then applying Goodman equation
for mean stress correction, then obtaining damage cost of each stress cycle by the tower material
S-N curve and the component cost, and then applying Miner-Palmgren algorithm to sum up the
cost of individual cycles to finally obtain the total cost (refer [23] for detailed formulation). The
cost of battery damage is obtained by first performing RFC analysis on SOC(t), then applying
Woehler curve mapping to obtain equivalent damage per cycle, then summing up the damage
over all the identified cycle, and finally multiplying it with wB to obtain the total cost (refer
[10] for detailed formulation).

The simulation results show that the formulated ENMPC controller (shown as dark green
solid line in Fig. 1) performs economically better than the base-case scenario (shown as dark
blue solid line in Fig. 1). The enhanced economic performance is due to the fact that the
formulated controller manages to find the optimal operational spot, which balances the wind
turbine tower fatigue cost and revenue from power generation while utilizing the battery more.
The additional cost of battery damage (refer to Fig. 1.h) due to higher utilization (refer to Fig.
1.k) is smaller in magnitude than the reduction in wind turbine fatigue (refer to Fig. 1.g) due
to a significant reduction in the tower oscillation amplitudes (refer to Fig. 1.i and to Fig. 1.j).
Even though the revenue is slightly lower (refer to Fig. 1.f), the resultant cumulative profit
(refer to Fig. 1.e) is higher by 30% compared to the base-case scenario.

Additionally, the formulated ENMPC, which utilizes a direct fatigue penalization approach
(refer to Eq. (12)) using PORFC, is compared against a TTVP-based ENMPC which utilizes
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Figure 1: Simulation output for closed-loop economic control of a wind-battery hybrid system

the indirect fatigue penalization approach (refer to Eq. (13)). The tunable weight parameter
wTTV Pfatigue is obtained by running multiple closed-loop simulations to perform a parameter sweep
optimization corresponding to the maximal cumulative profit. The simulation output of ENMPC
using TTVP (shown as light green dash-dot line in Fig. 1) also performs economically better
than the base-case scenario, highlighting the importance of profit-maximizing operation of a
hybrid system instead of power-maximizing operation. Moreover, the importance of accurate
fatigue evaluation and direct fatigue penalization can be further seen as the ENMPC PORFC
controller performs economically better than the ENMPC TTVP controller (the former results
in approximately 7% more cumulative profit than the latter).

Although, for all three closed-loop simulation cases, the absolute power mismatch between
total hybrid system generation and demand (refer to Fig. 1.b) is non-zero, the mismatch
values are orders of magnitudes smaller than the reference power. Moreover, all three controller
formulations satisfy the system state and input constraints. For example, the generated electrical
power (refer Fig. 1.c) does not exceed the rated value of 5MW during the above rated wind
speed between 60s and 80s.

It should also be highlighted that both the PORFC ENMPC formulation and the TTVP
ENMPC formulation manage to reduce amplitudes of tower fore-aft as well as tower side-side
oscillations (refer to Fig. 1.j and to Fig. 1.i), even though in both formulations only tower fore-
aft fatigue is minimized (refer to Eq. (12) and to Eq. (13)). This shows that both the direct
and indirect penalization formulation of the sole tower fore-aft fatigue definitely does not result
in increased tower side-side fatigue. In a best case scenario, the fore-aft fatigue minimization
objective is in itself sufficient to reduce the tower side-side fatigue damage as well. Moreover,
for all the three formulated controllers, tower side-side fatigue cost contributes to less than 5%
of the total wind turbine tower fatigue cost. This implies that, even though it is important to
take tower side-side fatigue into account while evaluating total tower fatigue, this term does not
necessarily have to be an optimization objective for the economic control of the considered wind
turbine under the formulated inflow condition. A detailed validation of the impact of side-side
fatigue might be needed for a different setup. Furthermore, since the fore-aft objective function
has positive impact on side-side fatigue, also a side-side objective function could lead to benefits
for fore-aft fatigue, which will be tested in future work.
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Moreover, as both ENMPC and MHE are formulated using pre-compiled C code generated
by the ACADOS framework, both are individually real-time feasible. For the ENMPC and
MHE, sample times of 200ms have been set. The maximum computation times during the 120s
simulation duration were found to be 185ms and 150ms, respectively. Thus, for instance, by
moderate reductions of horizon lengths, also the combination of ENMPC and MHE could be
rendered real-time feasible. Strict real-time feasibility, however, has not been the focus of the
present work.

5. Conclusion
An ENMPC coupled with an MHE for closed-loop control of a hybrid wind-battery generation
system was formulated in this work. The ENMPC aimed to maximize generator profit, in the
presence of plant model mismatch, by balancing between revenue accrued due to wind power
generation and costs incurred due to wind turbine tower fatigue and battery cyclic fatigue
damages, while following a total power generation command. The discontinuous nature of the
standard RFC formulation within ENMPC was addressed using the parametric online RFC
approach, which externalizes the damage evaluation process from the ENMPC optimization
step and also takes into account the impact of stress histories. The MHE provided for the
initialization of states for the reduced order internal model of ENMPC, and estimated states
that could not be measured directly on a real plant.

The simulation results showed that the formulated parametric online RFC based ENMPC
results in significant profit gain against a realistic base-case scenario with suitable dynamic
performance, as well as constraint satisfaction. Moreover, the formulated controller also
performed economically better than another standard ENMPC. The impact of tower side-side
dynamics on overall economic performance was assessed. It was concluded that, although it is
important to consider side-side dynamics while evaluating tower fatigue, it does not necessarily
have to be an optimization objective. As next steps, the present formulation will be extended to
have a more holistic economic objective. This includes not only capturing the fatigue damage
of other components, such as blades, drive-train etc., but also having a more realistic profit
evaluation model, as the current profit formulation neglects effect of fatigue on O&M expenses
and considers only the cost due to tower fatigue. The future work will also include considering a
detailed setup of modern electricity grids and energy markets. Another considered extension of
this work is to evaluate and validate the impact of side-side fatigue damage under different wind
input conditions, particularly in the presence of horizontal wind shear or yaw misalignment.
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