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Abstract: Remote sensing image (RSI) scene classification aims to identify the semantic categories
of remote sensing images based on their contents. Owing to the strong learning capability of deep
convolutional neural networks (CNNs), RSI scene classification methods based on CNNs have drawn
much attention and achieved remarkable performance. However, such outstanding deep neural
networks are usually computationally expensive and time-consuming, making them impossible to
apply on resource-constrained edge devices, such as the embedded systems used on drones. To
tackle this problem, we introduce a novel pair-wise similarity knowledge distillation method, which
could reduce the model complexity while maintaining satisfactory accuracy, to obtain a compact
and efficient deep neural network for RSI scene classification. Different from the existing knowledge
distillation methods, we design a novel distillation loss to transfer the valuable discriminative
information, which could reduce the within-class variations and restrain the between-class similarity,
from the cumbersome model to the compact model. This method could obtain the compact student
model with higher performance compared with existing knowledge distillation methods in RSI scene
classification. To be specific, we distill the probability outputs between sample pairs with the same
label and match the probability outputs between the teacher and student models. Experiments on
three public benchmark datasets for RSI scene classification, i.e., AID, UCMerced, and NWPU-RESISC
datasets, verify that the proposed method could effectively distill the knowledge and result in a
higher performance.

Keywords: knowledge distillation; imaging science; scene classification; geosciences; convolutional
neural network

1. Introduction

The tremendous development of imaging science has significantly improved the
resolution and quality of images. For example, images derived from remote sensing
technology, which has seen huge improvements in recent years, are of high resolution and
quality. This has resulted in the requirement for researchers to investigate meaningful
aspects of remote sensing image processing. Among these aspects, remote sensing image
scene classification is a fundamental and crucial task for remote sensing image analysis
and applications such as geosciences, environment monitoring [1] and urban planning [2].
RSI scene classification proposes to correctly classify remote sensing samples with different
semantic classes. In the remote sensing community, RSI scene classification has been
studied by designing handcrafted features for the earlier years. However, these methods
perform poorly for complex scenes or massive data. In recent years, CNNs have been
extensively applied to extract more discriminative features of RSI and have achieved great
success [3–5]. However, these high-performance CNNs are usually designed with large
parameter sets and high complexity, which comes with a high computation cost and makes
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it impossible to be applied on edge-computing devices, such as the embedded systems
used on drones.

Some typical network compression techniques, such as network weight pruning [6],
low-rank decomposition [7], and knowledge distillation [8], have been proposed to reduce
the computational complexity and high storage requirement of CNNs. Different from
other methods, knowledge distillation (KD) does not directly compress the parameters
of the large network. It obtains a lightweight student network by transferring valuable
information from the complicated teacher network. To be specific, KD [8–10] aims to
obtain a lightweight student model with high accuracy. To this end, it transfers the dark
knowledge from the complicated teacher model to the student model. Thus, it is a natural
and effective method to obtain a lightweight deep neural network. It has been used to
address some practical applications such as remote sensing scene classification [11,12],
object detection from drone images [13], and compact cloud detection [14].

To obtain an outstanding and compact model for RSI scene classification, we aim
to distill the valuable knowledge from the complicated teacher model to the compact
student, as shown in Figure 1. However, RSI scene classification usually faces the challenge
of big intra-class variations and high inter-class similarities. Although the complicated
teacher model is powerful when applied to solve such challenges, the discriminative
information contained in the teacher model will be attenuated and even lost when applying
existing KD methods. Thus, existing KD methods can hardly obtain satisfactory results for
RSI scene classification. In other words, these methods lose some valuable discriminative
knowledge in the process of distillation. Although the complicated teacher model has strong
capabilities to classify scene images, such a powerful ability fails to distill information to the
compact student by existing KD methods. Thus, traditional KD loss cannot satisfactorily
transfer valuable knowledge to the compact student model for solving the challenge of big
intra-class variations and high inter-class similarities.

To efficiently train and obtain a compact student model with high performance, this
paper will design a pair-wise similarity knowledge distillation approach for RSI scene clas-
sification. To obtain a compact model with high performance for image scene classification,
we focus on transferring the valuable discriminative information from the cumbersome
model to the compact model. To be specific, we first distill the probability outputs of the
student model between sample pairs with the same label. We expect that similar samples
with the same label will produce similar incorrect outputs. This way, the within-class vari-
ations could be reduced. Second, we create virtual samples by mixup technology, which
represents the similarity correlation between samples with different labels. Then, we match
the probability outputs between the teacher model and the student model to restrain the
between-class similarity. Finally, we effectively distill the teacher model’s powerful ability,
which could reduce the within-class variations and restrain the between-class similarity, to
the student model. We summarize the main contributions as follows:

• We introduce a pair-wise similarity knowledge distillation approach to obtain a
lightweight model with high performance for RSI scene classification. It could effec-
tively distill the teacher model’s powerful ability to the student model, which could
reduce the intra-class variations and restrain the inter-class similarities;

• We employ the sample pairs and virtual samples as the training data. We reduce
the intra-class variations and restrain the inter-class similarities by forcing similar
incorrect outputs and matching the outputs, causing the student model to well absorb
the discriminative knowledge from the teacher model;

• We verify the proposed pair-wise similarity knowledge distillation framework on
AID, UCMerced and NWPU-RESISC datasets. The experimental results show that the
proposed approach can significantly improve the lightweight model’s performance in
terms of RSI scene classification.

The rest of this paper is organized as follows. In Section 2, traditional related methods
are reviewed. In Section 3, we introduce the pair-wise similarity knowledge distillation
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method. Furthermore, we present a detailed comparison in Section 4 and discuss our
findings in Section 5. Finally, we conclude this paper in Section 6.

church airport
(a)

bridge overpass
(b)

K
now

ledge

Teacher Model
Student Model

Distill Transfer

Dataset

Figure 1. The motivation of the proposed method. (a) Various building styles of churches and
different shapes of airports can be seen. (b) We observe that the images of the bridge seems similar
to those of the overpass. Unlike the complicated deep models, light models are unable to deal with
such challenges as (a) within-class diversity and (b) between-class similarity. We aim to obtain a
lightweight network by distilling valuable knowledge from the complicated network.

2. Related Work
2.1. Remote Sensing Image Scene Classification

RSI scene classification is a fundamental and important task for intelligent geosciences
observation. It can be widely used for some practical applications, such as image processing
for geosciences and urban planning. However, RSI scene classification is a difficult issue
due to large intra-class variations and high inter-class similarities in remote sensing datasets.
To solve these problems, a number of approaches have been introduced in the past decades.

In the early years, most of the RSI scene classification approaches were based on
hand-crafted features. Generally, these methods extract low-level hand-crafted features that
represent the images by some classical feature descriptor, such as scale-invariant feature
transformation (SIFT) [15] or the histogram of oriented gradients (HOG) [16]. However,
these methods have local characteristics and cannot directly represent the entire image.
Thus, some feature-encoding methods, including bag-of-visual-words (BoVW) [17], are
used to encode the obtained features for representing an entire scene image. Then, the
classifier [18,19] is trained using the encoded features for scene recognition. Afterwards,
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due to the limited representation capability of hand-crafted features, some unsupervised
learning methods [20–23] are used to extract features for scene classification.

Recently, CNNs [24,25] have achieved huge success in the computer vision community
due to their powerful feature representation. Therefore, CNNs have been extended to RSI
scene classification [3,5,26] and have achieved a dominant position in the field of RSI scene
classification. For example, Cheng et al. [3] introduced a metric learning regularization item
for optimizing the discriminative loss function. Hua et al. [27] introduced the relationship
network to predict label existences using label relationships.

Although CNN-based methods have achieved remarkable success in RSI classifica-
tion, such top-performing methods are computationally expensive and time-consuming.
It is not possible to deploy such complicated models on edge devices, such as drones.
Thus, some model compression methods are introduced to solve such problems. Chen
et al. [28] introduced the standard knowledge distillation [8] into RSI scene classification.
They boosted the compact model’s accuracy by matching the high-temperature softmax
outputs from the large model. However, they ignored and thus experienced a loss in the
valuable discriminative information for restraining the intra-class variations and inter-class
similarities in the process of distillation.

2.2. Knowledge Distillation

Although CNNs have top-performing results in various tasks [29], it is a challenging
task to deploy such complicated models into edge-computing devices. To tackle these
problems, CNN compression and acceleration [6,7] have been proposed for some real-time
applications on resource-constrained devices, such as drones. There are three mainstream
categories: network pruning [6], network quantization [30], and knowledge distillation [8].

Knowledge distillation is one of the most efficient and practical approaches among
these methods. The idea of transferring knowledge from an ensemble of models to a
compact model was proposed by Bucilua et al. [9]. Caruana et al. [31] further extended
the method by matching the output logits between the teacher and student models. The
process of knowledge distillation was first defined by Hinton et al. [8]. They introduced a
temperature hyper-parameter to soften the logits before softmax. Thus, the teacher model
could provide the softened outputs containing extra dark knowledge in the process of
distillation. Finally, the compact student model was trained by imitating the distribution of
the teacher model’s softened outputs.

Some recent works [32–34] extend KD by distilling different kinds of dark knowledge.
Unlike standard KD [8], they use the outputs from the intermediate layers, i.e., feature out-
puts instead of the probability outputs from the last layers, as dark knowledge. Moreover,
the relationships between different feature maps and data samples are explored as dark
knowledge [35,36].

For example, Park et al. [35] explored the relationships between image samples and
introduced a novel relational knowledge distillation (RKD) approach. Tung et al. [36]
fully utilized the similar activation of input pairs to achieve similarity-preserving (SP)
knowledge distillation. Peng et al. [37] employed the kernel approach to obtain the high
order correlation of images. Zhao et al. [38] proposed the gradual distillation of the student
network by a curriculum-learning strategy.

To the best of our knowledge, there are few works that have successfully applied
knowledge distillation for RSI scene classification. Due to the challenge of intra-class
variations and between-class similarities, existing KD methods cannot be efficiently used
for RSI scene classification. When distilling the information from the teacher model to
the student model using the existing methods, the valuable discriminative information
for within-class diversity and between-class similarity is easy to lose, which reduces the
accuracy of the student network. Thus, we customize a pair-wise similarity knowledge
distillation method for RSI scene classification.
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3. Materials and Methods

In this section, we will present the proposed pair-wise similarity knowledge distillation
for RSI scene classification. As shown in Figure 2, we distill the pair-wise knowledge to
the student model, which could restore the discriminative information for within-class
diversity and between-class similarity.

Shared
Weights
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airport

Pair 1

beach

beach
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Pair 3… …

X

X ’
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…

mixup
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Figure 2. The overall framework for our pair-wise similarity knowledge distillation.

3.1. The Standard Teacher–Student Distillation

We first introduce the standard knowledge distillation paradigm before presenting
our pair-wise similarity knowledge distillation for RSI scene classification. We define the
complicated teacher and compact student models as T and S, respectively. Furthermore, we
denote the initial training data consisting of tuples of input images and labels as (x, y) ∈ D.
Given an input xi, the output of the last fully connected layer is given as logits zi. The final
probability can be evaluated by a softmax function,

Pi =
exp(zi)

∑ exp(zi)
(1)
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Furthermore, Hinton et al. [8] introduced a temperature t to soften the probability and
employ the soft targets as dark knowledge, which contains more valuable information than
one-hot labels. The softened probability is as follows:

Pi =
exp(zi/t)

∑ exp(zi/t)
(2)

where a higher temperature t could produce a softer probability distribution over classes.
Then, they tried to match the soft targets between the teacher model and student model
using the Kullback–Leibler divergence loss,

LKD = t2KL(Pzt , Pzs) (3)

KL means the Kullback–Leibler divergence. Pzt and Pzs represent the soften probabilities
of the teacher and student networks. Thus, the student model will be trained under the
supervision of standard cross-entropy loss and knowledge distillation loss,

LStudent = (1− δ)LCE + δLKD (4)

where δ is a hyper-parameter to balance the above two items.

3.2. Pair-Wise Similarity Knowledge Distillation

The discriminative information for the within-class diversity and between-class simi-
larity is vital for RSI scene classification. Existing knowledge distillation methods ignore
such valuable knowledge when transferring the dark knowledge from the teacher to the
student. Thus, we design a pair-wise similarity knowledge distillation method for RSI
scene classification. It could efficiently distill the teacher model’s knowledge to the student
mode, for solving the within-class diversity and between-class similarity.

First, we randomly sample different data points with the same label in pairs. Then,
we feed the samples of data pairs to the student model, and expect the student networks
to produce similar incorrect predictions. In this way, we could reduce the within-class
variations of the student network. Formally, we define the input sample pair as (x, x′),
which has the same label y. We define the first loss function as follows:

LKD(x, x′, θ) = T2KL(P(y|x′; θ̃), P(y|x; θ)) (5)

where θ̃ is a fixed copy of the parameter θ. In the training phase, we only update the
parameter θ. KL means the Kullback–Leibler divergence. The standard KD method [8] also
needs to match two probability outputs. The difference is that we create two probability
outputs from the single student model by self-distillation.

Second, we create virtual samples by mixing two images with different labels. We
expect to capture and transfer the similarity correlation between samples with different
labels. To be specific, the virtual sample (x̂, ŷ) is produced by mixing two random samples
(xi, yi) and (xj, yj). The weighted linear interpolation is as follows:

x̂ = λxi + (1− λ)xj (6)

ŷ = λyi + (1− λ)yj (7)

where λ ∈ [0, 1] is the merging coefficient. It is randomly produced from the Beta(α, α)
distribution. As the two samples (xi, yi) and (xj, yj) should be equivalent, the sampling
probability needs to be between [0, 1]. The Beta(α, α) distribution meets this requirement.
Moreover, the Beta(α, α) distribution is flexible in order to obtain the diversified [0, 1]
probability distribution by adjusting the parameter α. Thus, when we adjust and choose
the value of α, we could randomly sample a probability value λ drawn from the Beta(α, α)
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distribution. Furthermore, y is the label of x, which is a convexed combination of the labels
from xi and xj. Therefore, the mix loss can be formulated as:

Lmix = λH(ysi , y) + (1− λ)H(ysj , y) + LKD(S(x, Pzt), T(x, Pzs)) (8)

where ysi and ysj are the predictive distribution of two mixed images, respectively. y is the
ground truth label. λ is a hyper-parameter controlling the mixed ratio of two images. H
denotes the standard cross-entropy loss. In this way, we could increase the between-class
variations by transferring the similarity information between classes.

In addition, we force the student model to learn the hard targets from the ground
truth labels using the standard cross-entropy loss, as in the original KD method. Here, we
introduce the total loss as follows:

Ltotal = αLKD + βLmix + γH(ys, y) (9)

Note that, unlike traditional KD methods, we employ the pair-wise regularization
loss to restore discriminative information, such as intra-class variations and inter-class
similarities, for RSI scene classification. To be specific, we force the student model to output
a similar incorrect probability distribution when feeding different images in a pair with the
same label. This is a benefit that allows the student model to solve within-class diversity.
Then, we employ the mixup technique to mix samples with different labels. Hence, the
student model tries to match the soft predictions from the teacher model containing the
inter-class information. Afterwards, the student model is able to solve the inter-class
similarity for remote sensing image scene classification.

3.3. Training Procedure

We first train the teacher model by the standard supervised learning strategy. Then,
we distill the student network using the proposed method by Equation (9). To be specific,
we first feed the sample pairs with the same label to the student model, which is trained
through self-distillation by Equation (5). Note that the paired samples are fed to the
student model, which has the parameters θ. The gradient is not propagated through θ̃,
which is a fixed copy of the student model. Different from the standard KD method,
we feed the sample pair to the single student model and make two probability outputs.
We force the student model to produce similar incorrect predictions. To be specific, P in
Equation (5) means the the predictive distribution by a softmax classifier. x and x′, are the
samples with the same label y. Thus, x and x′ produce two predictive distributions by P
in Equation (5). The predictive distribution contains the ground-truth prediction and the
incorrect predictions. We expect that the different samples (x and x′) with the same class
label (y) not only have the same ground-truth prediction but also have similar incorrect
predictions. Thus, we employ the Kullback–Leibler divergence to measure and control the
similarity of two probability distributions. When training converges, we obtain similar
incorrect predictions for the sample pair x and x′.

Second, we use the paired images with different labels to create virtual images by the
mixup technique. Thus, the information of different classes is mixed into the virtual images.
We feed the virtual samples to the teacher and student models, respectively, and force the
student model to mimic the predictive distributions from the teacher model by Equation (8).
Furthermore, the student model also matches the ground-truth label by a standard cross-
entropy loss. The whole training procedure with our total loss in Equation (9) is illustrated
in Algorithm 1.
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Algorithm 1 Pair-wise Similarity Knowledge Distillation

Input: Teacher network T, Student network S with the parameters θ, θ̃ is a fixed copy of
parameters θ, training samples X = {(xi, yi)

N
i=1}.

Output: parameters θ.
Initialize: T, S and the hyper-parameters.
Stage 1: Train the teacher model.

1: Repeated:
2: computingH(ytrue, Pzt).
3: updating parameters of T by gradient back-propagation.
4: Until: H(ytrue, Pzt) converged.

Stage 2: Distilling the student via pair-wise similarity KD.
1: Creating the Virtual Samples by Mixup.
2: Repeated:
3: feed data in pair to our framework.
4: computing Ltotal by Equation (9).
5: updating the parameters θ of student by gradient back-propagation.
6: Until: Ltotal converged.
7: Return the student’s parameters θ.

4. Results

We evaluate the effectiveness of our approach by conducting extensive experiments
on three popular RSI scene classification benchmark datasets: the NWPU-RESISC45
dataset [39], Arial Image dataset (AID) [40], and UC Merced Land-Use dataset [41]. We
implement the proposed method with Pytorch on NVIDIA 2080Ti GPUs.

4.1. Datasets

NWPU-RESISC45. The NWPU-RESISC45 dataset is currently the largest RSI scene classi-
fication dataset. It has 31,500 samples chosen from more than 100 countries and regions. It
contains 45 scene categories and each category has 700 samples with a size of 256× 256 pixels
in the RGB space. Each pixel has a spatial resolution ranging from 300 to 20 cm/pixel. It is a
challenging dataset due to the large inter-class similarities.
AID. The aerial image dataset (AID) comprises 10,000 images with 30 categories of scene samples.
Each category consists of approximately 200 to 400 images with a size of 600× 600 pixels in RGB
space. Each pixel has a spatial resolution ranging from 800 to 50 cm/pixel.
UC Merced Land-Use. The UC Merced Land-Use dataset has 2100 images and consists of
21 scene categories. Each category has 100 images with a size of 256× 256 pixels. Each pixel
has a spatial solution of 30 cm in the RGB color space.

We randomly sample some images from these three datasets, as shown in Figure 3. Qe
observe that some categories from these RSI datasets have high between-class similarities.
For example, the forest and sparse residential area (from the UC Merced Land-Use dataset
in the first line), and the stadium and playground (from the AID dataset in the second line).
This presents great challenges to the CNNs, especially the small and compact models with
low capability.

The general information is shown in Table 1. We present the information of these
remote sensing image scene classification datasets with an 80% training ratio. We randomly
split the dataset into an 80% training set and 20% testing set.
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Table 1. Different datasets for RSI scene classification with the 80% training ratio. We present the
detailed information of each dataset.

Dataset Resolution Size Categories Entire Dataset Train Subset Test Images

NWPU-RESISC45 0.2–3 m 256 × 256 45 31,500 25,200 6300
AID 0.5–8 m 600 × 600 30 10,000 8000 2000

UC Merced Land-Use 0.3 m 256 × 256 21 2100 1680 420

forest sparse
residential

intersection runway dense
residential

buildings

stadium playground center church mountain forest

airport bridge railway overpass lake river

Figure 3. We present some example samples from three RSI scene classification datasets. The images
in each row are UC Merced Land-Use, AID and NWPU-RESISC45, respectively. From these examples,
we could observe that some categories have very high between-class similarities. For example, the
forest and sparse residential area on the first line look very similar.

4.2. Experimental Settings.

Network architecture. In the following experiments, we employ the ResNet [42] as our
base architecture for the teacher and student networks. The ResNet series model achieves
the state-of-the-art performance by stacking the basic residual blocks. We employ ResNet-
101 as the teacher network and ResNet-34 as the student network. Note that, the residual
block is two layers deep in ResNet-34 and three layers deep in ResNet-101. The residual
block could greatly increase the depth and easily gain accuracy in remote sensing image
scene classification. For the NWPU-RESISC45 dataset, we employ the ResNet-101 as the
teacher network and the ResNet as the student network. For the other two datasets, we
adopt the ResNet-34/ResNet-18 as the teacher/student model pair.
Implementation details. We first conduct experiments on the NWPU-RESISC45 dataset,
which has 256× 256 RGB images. For the training phase, we adopt data augmentations
such as horizontal flips and random crops. The original testing data are used for the testing
phase. Due to the high number of scene images in the NWPU-RESISC45 dataset, we employ
ResNet-101 and ResNet-34 as the teacher model and student model, respectively. We set
the mini-batch as 32. We set the training epochs as 200 and initial learning rate as 0.1,
which is reduced by a factor of 0.1 on epoch 60, 120, and 160, respectively. We adopt the
stochastic gradient descent (SGD) with momentum 0.9. We set the hyper-parameter as
follows: α = 0.1, β = 1, T = 4.

For the AID and UC Merced Land-Use datasets, we use the same settings as above.
The difference is that ResNet-34 and ResNet-18 are adopted as the teacher model and
student model, respectively.
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5. Discussion

Evaluation Criteria. Overall accuracy (OA) aims to evaluate the performance of the classi-
fiers on the testing dataset. It is formulated as the number of correctly classified images
divided by the whole number of testing images. OA is the most used criterion for measur-
ing the effectivity of the methods for RSI scene classification. Thus, we also use the OA as
our evaluation criteria for all experiments. In addition, we also adopt the confusion matrix
table in the ablation study to show the detailed classification results, which visualizes the
accuracy of each class.
Performance Comparison. We verify the effectiveness of our proposed pair-wise simi-
larity knowledge distillation approach on three RSI scene classification datasets. For the
baselines, we employ several popular state-of-the-art methods for knowledge distillation.
To be specific, we compare our pair-wise similarity KD method with knowledge distilla-
tion (KD) [8], attention transfer (AT) [33], similarity-preserving (SP) [36], and relational
knowledge distillation (RKD) [35] for all RSI scene classification datasets.

We first evaluate our method on the NWPU-RESISC45 dataset, which is currently the
largest remote sensing image scene classification dataset. Thus, we employ ResNet-101
and ResNet-34 as our teacher model and student model, respectively, for this dataset. We
prepare the ResNet-101 teacher model by standard back-propagation training, which provides
94.772% classification accuracy with a 70% training ratio. Then, we train ResNet-34 as the
student model using the proposed method. Table 2 illustrates the OA of the proposed method
compared with several KD methods. Note that the baseline means the student model (ResNet-
34) was trained individually, providing 93.619% accuracy. The experimental results show
that the proposed approach achieves 95.069% accuracy with a 1.45% improvement over
the baseline. Moreover, our method achieves a notable improvement compared with the
state-of-the-art KD approaches. For example, the student model of our method achieves a
0.465% improvement compared with the standard KD method. Moreover, the same advantage
is also reflected in another experiment with an 80% training ratio. Thus, we conclude that
our method could effectively distill the valuable information from the teacher model to the
student model and enhance the generalization of the student model.

Table 2. Overall accuracy (%) on NWPU-RESISC45 dataset. The ResNet-101 is adopted as the teacher
network and ResNet-34 is employed as the student network. The baseline represents the standard
back-propagation for the student.

Dataset Training Ratio Baselines KD [8] AT [33] SP [36] RKD
[35]

WRD
[43] Ours Teacher

NWPU-RESISC45 70% 93.619 94.604 94.127 94.794 94.801 94.813 95.069 94.772
80% 94.021 94.576 94.924 95.313 95.297 95.301 95.673 95.394

AID 50% 91.100 91.208 91.302 91.381 91.394 91.328 91.571 91.360
80% 94.350 94.401 94.483 94.494 94.572 94.032 94.850 94.550

UC Merced Land-Use 50% 90.195 90.328 90.496 90.805 90.890 90.916 91.237 91.062
80% 93.095 93.409 93.380 94.076 94.340 94.091 94.903 94.524

Furthermore, we conduct experiments on the AID and UC Merced Land-Use datasets
to verify the effectiveness of our method. We employ the ResNet-34 as the teacher network
and the ResNet-18 as the student network for these two datasets. As can be seen from Table 2,
our method achieves 94.850% and 94.903% accuracy on the AID and UC Merced Land-Use
datasets with an 80% training ratio, respectively. It provides improvements of 0.5% and
1.494% compared with the baselines, which achieve 94.350% and 93.095% on the AID and UC
Merced Land-Use datasets, respectively. Interestingly, we find that the proposed approach
not only achieves a significant improvement compared with the baselines, but also surpasses
the teacher model. The reason is that the proposed distillation loss for RSI scene classification
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could efficiently transfer the teacher model’s valuable information, which is vital to solve the
challenge of large within-class diversity and high between-class similarity.

The training curves and confusion matrix. We present the student model’s testing
accuracy using different methods. It is trained on the NWPU-RESISC45 dataset with an
80% training ratio. As can be seen from Figure 4, we observe that our method (purple line)
achieves a significant improvement compared with the student model, trained individually
(blue line). Moreover, the proposed approach outperforms the traditional distillation loss
(yellow line), as shown in Figure 4.
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Figure 4. Testing accuracy on the NWPU-RESISC45 dataset, using different approaches. The training
ratio is set as 80%.

Then, we illustrate the confusion matrix to find the accuracy of each class. Note that
the white spaces stand for elements that are equal to zero. The value of each element (i, j)
represents the ratio of testing samples with label i but classified as class j to the total testing
images. Figures 5 and 6 show the confusion matrix of the corresponding experiments,
given in Table 2. As can be seen from Figure 5, the proposed approach achieves very high
accuracy in most categories, except harbor and snowberg. Note that it is also difficult for a
human expert to distinguish some of the misclassified images in such classes. Figure 6 also
shows the confusion matrix corresponding to the experiment with an 80% training ratio, as
given in Table 2. The categories with the lowest classification accuracies are center, resort,
and school, due to the fact that the teacher model also finds it difficult to correctly classify
these challenging classes.
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Figure 5. Confusion matrices produced by the proposed approach. We set the training ratio as 80%
on the NWPU-RESISC45 dataset.

Ablation Study

Visualization. To demonstrate the effectiveness of the proposed method, we further
visualize the features extracted from our method using the t-SNE algorithm [44]. We
employ the t-SNE algorithm to embed high-dimensional features into two-dimensional
space. It is convenient for us to measure the superiority of our approach by inspecting the
derived clusters from the outputs of t-SNE.

To be specific, we randomly sample 11 scenes from the NWPU-RESISC45 dataset and
embed them from the high-dimensional space into the two-dimensional space. We visualize
the feature representation both with and without the proposed distillation loss function. As
can be seen from Figure 7, (a) is the standard back-propagation training manner (ResNet-34
is trained individually), (b) is the method [8] based on the traditional distillation loss, and (c)
is our pair-wise similarity KD method. We visualize the high-dimensional features by the t-
SNE algorithm to measure whether the large within-class diversity and high between-class
similarity are effectively reduced or not. Compared with (a) the student model, trained
individually, and (b) the method based on traditional distillation loss, we can observe that in
our method the cluster with the same category becomes closer, while clusters with different



Remote Sens. 2022, 14, 2483 13 of 17

categories become much separable. This means that the large within-class diversity and
high between-class similarity are effectively reduced.
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Figure 6. Confusion matrices produced by the proposed approach. We set the training ratio as 80%
on the AID dataset.

(a) (c)(b)

Figure 7. The 2D scatter diagram from the t-SNE algorithm on the NWPU-RESISC45 dataset with an
80% training ratio. (a) The student model, trained individually. (b) The student model, trained based
on traditional distillation loss. (c) Our proposed method.
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Trade-off between compression ratio and accuracy. We present the FLOPs and Params
of the model in Table 3. We find that the proposed approach not only obtains a 0.279%
improvement compared with the teacher model, but also achieves a ×2.03 compression
rate. Thus, we obtain an efficient and compact student model for RSI scene classification.

Table 3. Experiments on the NWPU-RESISC45 dataset with an 80% training ratio. ResNet-101
and ResNet-34 are adopted as the teacher model and student model, respectively. We repeat the
experiments with 5 different seeds and compute the median of 5 runs as the overall accuracy (%).
The standard deviation over 5 runs is reported. FLOPs means the floating point operations, in units
of 108 FLOPs. Params means the model size (107 M).

Method Model FLOPs Params NWPU-RESISC45

Student ResNet-34 36.64 2.18 94.021 ± 0.27
KD ResNet-34 36.64 2.18 94.576 ± 0.32
AT ResNet-34 36.64 2.18 94.024 ± 0.16
SP ResNet-34 36.64 2.18 95.313 ± 0.22

RKD ResNet-34 36.64 2.18 95.297 ± 0.66
Ours ResNet-34 36.64 2.18 95.673 ± 0.28

Teacher Resnet-101 78.01 4.44 95.394 ± 0.21

Multiple model series for comparison. Table 4 summarizes the teacher and student net-
works’ configuration. In addition to the ResNet series models, we use multiple models
for comparison to further illustrate the generalization ability of the method. For the
NWPU-RESISC45 dataset, we employ the Wide Residual Network (WRN) as the network
architecture. Furthermore, WRN-40-1/WRN-16-1 is used for the teacher/student combina-
tion. For the UC Merced Land-Use dataset, we employ the VGG as the network architecture.
VGG-13/VGG-8 is used for the teacher/student combination. As can be seen from Table 5,
the proposed approach achieves 96.05% and 94.86% performances on these two datasets,
respectively. It can also verify the generalization ability of the method.

Table 4. The network configurations for the teacher and student models in our experiments.

Layer Type Output Size ResNet-34 ResNet-101

Conv1 112× 112 7× 7, 64, stride 2 7× 7, 64, stride 2

Conv2 56× 56
[

3× 3, 64
3× 3, 64

]
×3

[ 1× 1, 64
3× 3, 64
1× 1, 256

]
×3

Conv3 28× 28
[

3× 3, 128
3× 3, 128

]
×4

[ 1× 1, 128
3× 3, 128
1× 1, 512

]
×4

Conv4 14× 14
[

3× 3, 256
3× 3, 256

]
×6

[ 1× 1, 256
3× 3, 256

1× 1, 1024

]
×23

Conv5 7× 7
[

3× 3, 512
3× 3, 512

]
×3

[ 1× 1, 512
3× 3, 512
1× 1, 2048

]
×3

1× 1 average pool, 1000-d fc, softmax
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Table 5. Overall accuracy (%) on the NWPU-RESISC45 and UC Merced Land-Use datasets. We
employ different model series for comparison. WRN-40-1/WRN-16-1 is used for the teacher/student
combination on the NWPU-RESISC45 dataset. Furthermore, VGG-13/VGG-8 is used for the
teacher/student combination on the UC Merced Land-Use dataset. The most recent methods are
compared in our experiments. The best result in each experiment is shown in bold.

Dataset Model (S/T) Training
Ratio Baseline KD [8] AT [33] SP [36] RKD [35] Ours Teacher

NWPU-RESISC45 WRN-16-1
WRN-40-1

80% 94.41 94.81 94.97 94.91 95.03 96.05 95.67

UC Merced
Land-Use

VGG-8
VGG-13

80% 93.58 93.84 93.93 94.05 93.98 94.86 94.45

Impact of hyper-parameters on the training. Table 6 illustrates the impact of hyper-
parameters α, β, and γ on the training process. We conduct the experiments on the
NWPU-RESISC45 dataset. We employ ResNet-101 as the teacher network and ResNet-34
as the student network. The default values of α, β, and γ are 0.1, 1, and 0.8, respectively. In
case of α ∈ (0.01, 0.3), the other two hyper-parameters maintain their default values. We
observed that the large value of α causes the overall accuracy to deteriorate rapidly. Overall,
the OA is insensitive when the hyper-parameters change within an appropriate range.

Table 6. Impact of hyper-parameters α, β, and γ on the NWPU-RESISC45 dataset. We adopt ResNet-
101 as the teacher network and ResNet-34 as the student network.

Hyper-parameter α
0.01 0.05 0.1 0.2 0.3

Overall Accuracy (%) 93.962 94.187 95.673 93.143 90.067

Hyper-parameter β
0.1 0.5 1 1.25 1.5

Overall Accuracy (%) 91.087 93.269 95.673 93.641 92.013

Hyper-parameter γ
0.1 0.5 0.8 1 1.5

Overall Accuracy (%) 90.187 92.732 95.673 92.450 91.813

6. Conclusions

In this work, we introduce a pair-wise similarity knowledge distillation approach for
RSI scene classification. The purpose is to obtain an efficient and compact model, which can
be easily deployed on edge-computing devices for RSI scene classification. The proposed
distillation loss could address the challenge of large intra-class variations and high inter-
class similarities for a lightweight network by distilling more discriminative knowledge
from the teacher network. Specifically, the proposed distillation loss involves two main
terms, i.e., (1) training the student to produce similar incorrect outputs by self-distillation to
reduce the intra-class variations, and (2) restraining the inter-class similarities by matching
the outputs between the teacher and student model. We conduct comprehensive experi-
ments on three popular RSI scene classification datasets, and compare our approach with
the state-of-the-art KD approaches. The experimental results clearly verify the effectiveness
of the proposed approach.
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