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Zusammenfassung

CNN erreichen höchste Leistungen bei Computer-Vision-Anwendungen wie Bildklassifizierung,
semantische Segmentierung und Objekterkennung. Die verbesserte Leistung dieser Netze geht
jedoch auf Kosten der Größe des Modells und der Komplexität der Berechnungen. Eine ef-
fiziente Verarbeitung dieser Netze ist von entscheidender Bedeutung, um ihren Einsatz auf rechen-
und speicherbeschränkten Zielhardwareplattformen zu ermöglichen. Mit Hilfe von Kompres-
sionsverfahren wie Pruning und Quantisierung können wir den Rechen- und Speicherbedarf
der CNN-Inferenz reduzieren. Wir nutzen Hardware-Modelle und Scheduling-Schemata zur
Abschätzung der Ausführung, um Suchalgorithmen Rückmeldung zu geben, die effiziente Kom-
pressionskonfigurationen bestimmen. Wir modellieren speziell einen CNN-Beschleuniger auf
Basis eines Spatial Arrays und nutzen die auf Reinforcement Learning basierende Exploration, um
hardwarebewusste Pruning-Konfigurationen abzuleiten. Bestehende Suchalgorithmen, die Kom-
pressionskonfigurationen ableiten, erfordern ein vortrainiertes Modell in Fließkommazahlen und
einen hohen Rechenaufwand aufgrund der iterativen Feinabstimmungsphase. Wir reduzieren den
Rechenaufwand der Kompressionsphase, indem wir In-Train-Optimierungstechniken vorschla-
gen, die während des gradientenbasierten Lernprozesses effiziente Beschneidungs- oder Quan-
tisierungsstrategien bestimmen. Wir untersuchen die Robustheit verschiedener komprimierter
CNN, indem wir sehr kleine, für das menschliche Auge nicht wahrnehmbare Störungen in
die Bilder einspeisen. Wir verbessern die Robustheit gegen Angreifer, indem wir defensive
Kompressionsmethoden vorschlagen, die lernbare Pruning-Masken und Bitweiten in die Train-
ingsverfahren gegen Angreifer integrieren. Das Ziel dieser Arbeit ist es, Kompressionsverfahren
zu entwickeln, die den Kompromiss zwischen aufgabenspezifischer Genauigkeit, Robustheit
gegen Angreifer und Ausführungsmetriken bei weniger rechnerischem Aufwand verbessern.





Abstract

Convolutional Neural Networks (CNNs) achieve state-of-the-art performance on computer vision
applications such as image classification, semantic segmentation and object detection. The
improved performance of these networks comes at the cost of huge model size and compute
complexity. Efficient processing of these networks is critical to allow its deployment in compute
and memory-constrained target hardware (HW) platforms. Using compression techniques like
pruning and quantization, we can reduce the compute and memory demand of CNN inference.
We derive execution estimates using HW-models and scheduling schemes to provide feedback
to search algorithms which determine efficient compression configurations. We specifically
model a spatial array based CNN accelerator and leverage reinforcement learning (RL)-based
exploration to derive HW-aware pruning configurations. Existing search algorithms which derive
compression configurations require floating point pretrained model and high computational effort
due to iterative fine-tuning phase. We reduce the computational effort of the compression phase
by proposing in-train optimization techniques which determine efficient pruning or quantization
strategies during the gradient-based learning process. We finally investigate the adversarial
robustness of different compressed CNNs by injecting very small perturbations to input images
that are imperceptible to the human eye. We improve the adversarial robustness by proposing
defensive compression methods which integrate learnable pruning masks and bit-widths in the
adversarial training schemes. The goal of this work is to investigate compression techniques
which improve the trade-off between task specific accuracy, adversarial robustness and execution
metrics with less computational effort.





1 Introduction

1.1 Motivation

Technological advances in the fields of automation and robotics are changing our world in a
significant way. Autonomous Driving (AD) is revolutionizing mobility by offering more flexibility
and comfort. One of the main challenges of autonomous driving is its dependency on a reliable
perception and understanding of the environmental surroundings. Perception is acquired using
dedicated sensors such as cameras, LiDAR and radar. These sensors produce raw data in the form
of signals, which have to be processed to extract meaningful information, crucial for the planning
of the driving trajectory. The process of classifying and detecting objects using sensor data is
therefore a crucial building block in the perception stack of AD functionality.

Neural network based algorithms have gained growing interest in the last years in several
perception based applications. They achieve impressive results for state-of-the-art Computer
Vision (CV) applications like image classification [1], semantic segmentation [2] and object
detection [3]. The high memory demand, energy consumption and latency of high-performance
CNNs portray the main challenges for the deployment of such neural networks on resource-
constrained embedded hardware, such as autonomously driving cars or mobile devices, for
real-world applications. Therefore, neural network compression and acceleration represents a key
aspect to enable CNN in applications with strict latency, memory and energy requirements.

Many approaches have been developed in the past few years for reducing the model size and
computational complexity of CNNs. Some effective and popular techniques include pruning
[4, 5, 6], quantization [7, 8] or knowledge distillation [9]. Typical CNN hardware accelerators
include general purpose and data center Graphics Processing Units (GPUs) [10], which are the
most popular choice due to their high computing capabilities and support to various machine
learning frameworks. Although model compression reduces the total compute complexity,
the custom CNN configuration caused by compression hinders the efficient acceleration on
general-purpose processors like GPUs. In these cases Application-Specific Integrated Circuits
(ASICs) [11] and field programmable gate arrays (FPGAs) [12] provide custom solutions to
leverage HW benefits in the form of latency and energy consumption for these compression
techniques. Most of the compression works in literature highlight the benefits in terms of
proxy metrics such as Operations (Ops) and parameters (Params) , which are not guaranteed to
produce benefits on HW metrics such as latency for the target task. In-order to obtain HW-aware
compressed CNNs, we directly incorporate HW metrics instead of proxies in the target objective
function of the optimization scheme.

Given a CNN model, the search space to realize an efficient compression configuration grows
exponentially with increasing number of layers. To obtain HW-friendly layer-wise compression
strategies, post-training based compression methods use search techniques, such as, RL [5, 13] or
Evolutionary Search (ES) [14, 15]. They require a pretrained baseline model and additionally
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demand costly post-train GPU hours. The search space for compression techniques, such as
quantization alone consists of |q|2L solutions, where q is the set of possible quantization levels
and L is the number of layers. Quantizing the operands in certain layers leads to larger drops
in accuracy than others, and different accuracy drops can take place at different quantization
levels for the same layer. Moreover, quantization strategies change the mapping and scheduling
space of the accelerator. For example, a quantization strategy might make new schedules possible,
which leads to sudden drops in latency and energy, leading to better HW implementation. In-
order to realize a Fast Compression with lower GPU hours, we directly determine the efficient
compression strategy along with the learnable parameters during the training process and produce
dominant solutions in terms of prediction accuracy, target HW metrics.

With the continuous progress in the development of AD, the associated features come in-
creasingly into the spotlight. Self-evidently, the safety critical environment for AD maintains
zero-tolerance for potential threats for the CNN-based perception algorithms. With the advent
of adversarial attacks, Szegedy et al. [16] unveiled the vulnerability of CNNs against malicious
perturbations added to inputs, resulting to fool neural networks. Defense methods [17, 18]
incorporate the attacked samples into the training process, making the deployment secure against
the adversarial perturbations. Most compression schemes are only evaluated on the test dataset
without adversarial perturbations. In-order to obtain HW-aware robust CNNs, we conduct detailed
investigations to analyze robustness of compressed CNNs and furthermore formulate a defensive
compression scheme which is resistant against adversarial attacks.

1.2 Objectives

We aim to achieve accurate and robust CNNs which produce low HW execution metrics by
using a fast optimization scheme. Specifically, we optimize our CNN f with model parameters
θ to maximize prediction accuracy Acc for a validation dataset Dval consisting of inputs x and
corresponding labels y, given in Eq. 1.1.

E(x,y)∼Dval [f(x, θ, α)] 7−→ Acc (1.1)

Our first objective is to realize HW-aware CNN models by exploring compression opportunities
in the form of α and directly minimize the specific execution metrics (given as HWmetrics)
like latency, throughput, memory access and energy consumption as highlighted in Eq. 1.2. We
would like to determine the efficient compression configuration α∗ indicating the pruning and
quantization strategy for different layers of the CNN model to obtain Pareto-dominant solutions
with respect to the prediction accuracy and the underlying HW platform.

α∗ = arg min
α

HWmetrics(TargetHW, f(x, θ, α))

θ∗ = arg max
θ

Acc with Acc = E(x,y)∼Dval [f(x, θ, α∗)]
(1.2)

Target platform dependencies and scheduling schemes imposed by the compiler must be taken
into account while selecting the CNN compression configuration α to obtain Pareto-dominant
solutions. For e.g. GPUs can obtain benefits in execution metrics using regular channel pruning
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configuration. Bit serial accelerators can leverage execution benefits using mixed precision
quantization strategies.

Our second objective is to procure an efficient compression strategy with reduced computational
effort. Specifically, we aim to achieve a HW-friendly CNN configuration f(x, θ, α) with reduced
number of GPU hours. We formulate a search problem in Eq. 1.3 to obtain an efficient CNN
compression configuration α. Specifically, we split the dataset D into training (Dtrain) and
validation (Dval) sets. We aim to reduce HW metrics and maximize the prediction accuracy on
validation set by searching efficient pruning and/or quantization strategies α∗. However, the
post-train search problem involves expensive inner loop convergence (determining θ∗ in Eq. 1.3
for every compression scheme α in the search space).

α∗ = arg min
α

HWmetrics(TargetHW, f(x, θ, α))

α∗ = arg max
α

V alAcc with V alAcc = E(x,y)∼Dval [f(x, θ, α)]

θ∗ = arg max
θ

TrainAcc with TrainAcc = E(x,y)∼Dtrain [f(x, θ, α∗)]

(1.3)

To reduce the computational effort, measured in GPU hours, required for optimization, we need to
determine θ∗(α) which can provide sufficient judgement about the compression strategy α in the
form of V alAcc. However, the search space for compression through pruning and quantization
grows exponentially with deeper CNN models. This would demand an increased number of GPU
hours due to iterative fine-tuning and extensive model exploration. Therefore, we reduce the GPU
hours by integrating the compression opportunities and task specific training scheme into a single
optimization problem.

Our third objective is to further improve the adversarial robustness of the compressed CNNs.
We formulate defensive compression schemes by learning efficient compression configurations
during the adversarial training procedure. We expose the compressed CNN f to adversarial
images Xadv, resulting in the adversarial accuracy Accadv. This represents the adversarial
robustness of the CNN against a specified threat model τ , see Eq. 1.4.

f(Xadv, θ, α) 7−→ Accadv s.t. τ 7−→ Xadv, f

θ∗, α∗ = arg max
θ,α

Accadv with Accadv = E(x,y)∼Dval [f(Xadv, θ, α)]

α∗ = arg min
α

HWmetrics with HWmetrics = Target HW (f(Xadv, θ
∗(α), α))

(1.4)

Determining the influence between the compression scheme α and HW metrics and further
formulating a defensive compression scheme to improve Accadv aids us to realize HW-aware
Robust CNNs.

1.3 Contributions

The thesis realizes HW-aware robust CNNs using HW-aware compression, Fast Compression
and Robust Compression techniques as highlighted in Fig. 1.1. In-order to obtain benefits in HW-
execution metrics, the compression scheme must account for the correlation between the workload
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dimensions and its corresponding schedule on target HW-platform. In Fig. 1.1, we observe that
the convolutional layer consists of input, output feature maps and weights. The first contribution
of the thesis, i.e. HW-aware compression determines efficient compression configurations for
each layer of the CNN to satisfy target HW constraints. As an example for compression method,
Fig. 1.1 determines efficient quantization configuration for input and weights to improve the
compute density in the underlying HW-accelerator. The second contribution of the thesis proposes
Fast Compression methods, which determine the compression configurations for various workload
present in the CNN model. As shown in the Fig. 1.1, pertubtating the input image with adversarial
noise distorts the prediction quality of the CNN model. The third contribution of the thesis
i.e. Robust Compression, investigates unified training schemes to achieve adversarial robust
compression of CNN models.

Figure 1.1: Overview of this thesis document summarizing the three contributions and various objectives.
Input image is fed into the neural network with several layers to generate predictions. The
three contributions of the thesis enable an end-end HW-aware robust compression to achieve
an efficient inference on target accelerator.

HW aware Neural Network Compression: Most CNN compression approaches in lit-
erature [19, 4, 20, 21] such as pruning do not consider target HW benefits such as energy
consumption and latency as optimization goals, instead focus on proxy optimization targets such
as Ops and Params. Further pruning approaches such as AMC [5], ChamNet [22] require target
HW accelerator during the compression process. Limited works in literature [23] realize an
end-end automated channel pruning pipeline for complex CNN applications such as semantic
segmentation and 3D object detection. Therefore,

• We realize channel pruned configurations of an over-parameterized CNN by imposing
constraints on execution metrics such as energy consumption and latency for spatial
array based CNN accelerator. We obtain execution estimates by realizing HW models
providing us the flexibility to explore different components such as compute array sizes,
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memory hierarchies and dataflow choices. We further reduce the time required to obtain the
execution estimates by determining an efficient schedule using analytical search approaches.

• We investigate the latency-accuracy trade-offs on channel pruned configurations for Point-
Pillars [24], a fast LiDAR-based 3D object detection model. We conduct detailed ex-
perimental evaluation using RL-agent based channel pruning using HW metrics from a
GPU.

Reduced GPU Hours for Model Compression: Most pruning and quantization based
CNN compression pipelines in literature [21, 5, 13] follow a three stage pipeline to search for
an efficient compression configuration. The increasing number of layers due to the growing
task complexity demands more GPU hours to search for a pruning and/or quantization strategy.
Therefore,

• We reduce the number of GPU hours for CNN pruning using multi-task RL agent, identify-
ing layer’s redundant features and adequate fine-tuning time concurrently.

• We propose an in-train pruning approach, which identifies redundant weights by mini-
mizing a hardware-aware auxiliary loss when updating the network’s connections. Our
approach realizes a pruned model for the same number of epochs compared to the base-
line training, requiring no additional overhead for searching pruning configuration or
fine-tuning.

• We introduce a novel training scheme which jointly learns the model parameters and
the number of unique values required to represent weights and activations for all the
layers, thereby identifying optimal word length assignments. We further incorporate
HW-awareness by appending a differentiable auxiliary HW-loss objective using Gaussian
process regression.

Improved Adversarial Robustness: Extensive amount of work in literature such as [17,
18] propose defensive training schemes to produce robust neural networks countering adversarial
attacks. Very few works investigate the influence between compression and adversarial robustness.
Therefore,

• We conduct a detailed study on adversarial robustness of compressed CNNs variants. We
analyze adversarial robustness for various pruned, quantized and knowledge distilled CNN
configurations using four white box and two black box attacks.

• We obtain robust pruned and mixed precision configurations by augmenting the trainable
pruning masks and bit-widths during the adversarial training.

1.4 Organization of Thesis

This thesis is organized into five chapters. This Chapter (Chapter.1) deals with the motiva-
tion behind the thesis and gives a very high-level overview of the problem statement and our
contributions.
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In Chapter. 2, we introduce various building blocks of CNNs required to perform training and
inference. We discuss three CV tasks, namely image classification, semantic segmentation and
object detection. We introduce popular CNN architectures, datasets and metrics associated with
the three tasks. Further, we cover the preliminaries of compression techniques such as quantization
and pruning. We discuss various choices for CNN inference accelerator and additionally provide
an introduction to adversarial robustness.

In Chapter. 3, we realize HW-aware CNNs by incorporating HW-metrics directly during
the compression process. We first discuss various components in the traditional three stage
compression pipeline. We further discuss pruning schemes in literature and point out their
limitations. In-order to obtain HW-estimates, we formulate a HW-model and search for efficient
scheduling scheme for individual layers of a CNN model. We alternatively derive the HW-
estimates by directly executing a CNN model on an inference HW-platform. We provide these
estimates as a feedback in the three stage compression pipeline to highlight the benefits of
HW-aware CNNs. The content of this chapter is based on the following publications:

• M. Vemparala, N. Fasfous, A. Frickenstein, E. Valpreda, M. Camalleri, Q. Zhao, C.
Unger, NS. Nagaraja, M. Martina and W. Stechele, ”HW-Flow: A Multi-Abstraction Level
HW-CNN Codesign Pruning Methodology”, Leibniz Transaction of Embedded Systems
(LITES), 2022 [25].

• M. Vemparala, A. Singh, A. Mzid, N. Fasfous, A. Frickenstein, F.Mirus, HJ.Voegel,
NS. Nagaraja, W. Stechele, ”Pruning CNNs for LiDAR-based Perception in Resource
Constrained Environments”, In IEEE Intelligent Vehicles Symposium Workshops, 3D-
Deep Learning for Automated Driving (3D-DLAD) 2021 [26].

In Chapter. 4, we explore various fast compression methods to reduce the computational
effort for the optimization process. Firstly, we reduce the amount of fine-tuning time required to
evaluate a compressed configuration during the RL-based search process. We further propose to
jointly train the weights and determine the compression strategy by devising an in-train pruning
and quantization scheme. We demonstrate the effectiveness of our in-train compression method
by highlighting the HW-benefits and reduction in GPU-hours. The content of this chapter is
based on the following publications:

• M. Vemparala, N. Fasfous, A. Frickenstein, MA. Moraly, A. Jamal, L. Frickenstein, C.
Unger, NS. Nagaraja, and W. Stechele, ”L2PF - Learning to Prune Faster. In International
Conference on Computer Vision Image Processing (CVIP), 2020 [27]”.

• M. Vemparala, N. Fasfous, A. Frickenstein, S.Sarkar, Q.Zhao, S.Kuhn, L.Frickenstein,
A.Singh, C.Unger, NS.Nagaraja, C.Wressnegger, W.Stechele, ”Adversarial robust model
compression using in-train pruning”, In IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), 2021 [28].

• M. Vemparala, N. Fasfous, L.Frickenstein, A. Frickenstein, A.Singh, D.Salihu, C.Unger,
NS.Nagaraja, W.Stechele, ”Hardware-aware mixed-precision neural networks using in-train
quantization”. In British Machine Vision Conference (BMVC), 2021 [29].
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In Chapter. 5, we study the impact of adversarial attacks on state of the art compression
techniques. We thereby formulate defensive compression schemes to derive HW-benefits and
resilience towards adversarial attacks. The content of this chapter is based on the following
publications:

• M. Vemparala, A. Frickenstein, N. Fasfous, L.Frickenstein, Q.Zhao, S.Kuhn, D.Ehrhardt,
Y.Wu, and W. Stechele, C.Unger, NS.Nagaraja, and W.Stechele, ”Breakingbed - breaking
binary and efficient deep neural networks by adversarial attacks”, In Intelligent Systems
Conference (IntelliSys), 2021 [30].

• M. Vemparala, N. Fasfous, A. Frickenstein, S.Sarkar, Q.Zhao, S.Kuhn, L.Frickenstein,
A.Singh, C.Unger, NS.Nagaraja, C.Wressnegger and W.Stechele, ”Adversarial robust
model compression using in-train pruning”, In IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), 2021 [28].

• M. Vemparala, N. Fasfous, L.Frickenstein, A. Frickenstein, A.Singh, D.Salihu, C.Unger,
NS.Nagaraja and W.Stechele, ”Hardware-aware mixed-precision neural networks using
in-train quantization”, In British Machine Vision Conference (BMVC), 2021 [29].

With this thesis, we significantly improve the HW-efficiency of CNN with respect to target
platform, reduce the computational effort (in GPU-hours) for the optimization process and defend
against adversarial attacks, facilitating the broad adoption of these models in many practical
problems.

27





2 Background

2.1 Convolutional Neural Networks

Neural networks that have more than three layers, that is, more than one hidden layer are
referred to as Deep Neural Networks (DNNs). CNNs constitute a special class of DNNs with
multiple windowed and weight-shared layers called convolutional layers. Successive layers detect
various features in the input image at different scales. The first layers are usually responsible
of recognizing simple shapes, edges and patterns, while complex features can be detected at
the deeper stages of the network. CNNs are well-suited for generating predictions based on
multi-dimensional, localized input features, e.g. image processing applications. In this section,
we discuss in detail the basic building blocks of CNN required during training and inference.

2.1.1 Convolutional layer

The convolution of an input activation Al−1 with the convolution kernel W l produces an output
feature map Al, where each pixel of the feature map Al can be computed as shown in Eq. 2.1.

Al[co][ho][wo] =

Inp.Ch︷︸︸︷
Ci∑
ci

Kernel.dim︷ ︸︸ ︷
Kw∑
kw

Kh∑
kh

al−1ci,wo·s+kw,ho·s+kh · w
l
co,ci,kw,kh

, where Al ∈ RCo×Ho×Wo

(2.1)
The Input Feature Maps (Ifmaps) denoted by Al−1 are composed of multiple channels Ci and

spatial dimensions Wi, Hi. To compute the convolution operation, the kernel of dimensions
Kw × Kh slides across the input 2-D map with stride size s. A dot-product is performed
between the kernel pixels wl ∈W l and a sub-set of pixels al−1 ∈ Al−1 from the input volume.
The dot-product accumulates the values across all input channels resulting in an output pixel.
The convolution operation is the repetition of the aforementioned dot-product operation for the
entire Ifmap with Co filters, generating Output Feature Map (Ofmap) Al ∈ RWo×Ho×Co as
demonstrated in Fig. 2.1.

Zero padding can be applied to the Ifmaps to increase the horizontal and vertical size of the
feature map, by adding zeros around the original volume. The horizontal and vertical dimensions
of the output volume can be computed using the formulas detailed in Eq. 2.2. Padding is leveraged
to Ifmap to regulate the dimensions of the Ofmap in the subsequent layers of the CNN. Stride
and Padding are used to control the spatial output dimensions of the Ofmap that are determined
by Eq. 2.2.

Wo = bWi −Kw + 2 · Pw
Sw

c+ 1 ; Ho = bHi −Kh + 2 · Ph
Sh

c+ 1 (2.2)
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Figure 2.1: Sliding window based convolution using kernel matrix W l ∈ Kw ×Kh×Ci×Co and Ifmap
Al−1 ∈ Hi ×Wi × Ci

The number of Multiply–Accumulates (MACs) in the convolution operation is given by Eq. 2.3.

#MACs = Co × Ci ×Kw ×Kh ×Ho ×Wo (2.3)

The convolution algorithm shown in Eq. 2.1 and Fig. 2.1 offers several data reuse opportunities.
Due to the weight sharing property in the convolutional layers, the same Ifmap is leveraged to
produce Co filters. Therefore, the reuse factor of Ifmap in a convolutional layer is given by Co.
Each kernel window Kh ×Kw is iterated Wo ×Ho to generate the entire Ofmap. Therefore, the
reuse factor of kernel matrix is given by Wo ×Ho.

Different forms of convolution: In order to obtain a high training and testing accuracy on
various datasets, CNNs with multiple kernels per layer lead to multiple filters. Each kernel filter
convolves on all the Ifmaps obtained on the previous layer, resulting in lots of mulitplications,
some of which may be redundant. Training deeper models would get challenging due to diffi-
culties in fitting these models on a single GPU. Therefore, many works such as Alexnet [31],
MobileNetv2 [32], EfficientNet [33] use a slightly different variant of Eq. 2.1 by reducing the
number of parameters and operations, improving the throughput of training and inference.

Grouped Convolution: In the vanilla form of convolution described in Eq. 2.1, each Ofmap
is generated using Kh × Kw × Ci MAC operations. Grouped convolutions divides the input
channels Ci into g groups and demands Kh × Kw × Ci/g MAC operations to generate each
Ofmap as shown in Eq. 2.4 and Fig. 2.2.

Al[co][ho][wo] =

Inp.Ch split into g groups︷︸︸︷
Ci/g∑
ci

Kw∑
kw

Kh∑
kh

al−1ci,wo·s+kw,ho·s+kh · w
l
co,ci,kw,kh

(2.4)
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Figure 2.2: Computing the grouped convolution using kernel matrix W l ∈ Kw ×Kh × Ci × Co and
Ifmap Al−1 ∈ Hi ×Wi × Ci with g groups.

Grouped convolutions were first used in Alexnet [31] to fit the training on less powerful GPUs
with smaller DRAM available in the past. Using the grouped convolutions, we can increase the
width of the CNN seamlessly as the resulting Ofmaps is only related to subset of pixels in Ifmap.
The number of MAC operations for grouped convolutions is given by Eq. 2.5.

#MACs = Co × Ci/g ×Kw ×Kh ×Ho ×Wo (2.5)

The reuse factor of Ifmap in a grouped convolutional layer is given by Co/g. Each kernel
window Kh×Kw is iterated Wo×Ho to generate the entire Ofmap. Therefore, the reuse factor
of kernel matrix is given by Wo ×Ho.

Depthwise separable convolution can be understood as the extreme form of grouped con-
volution with g = Ci = Co. The name depthwise separable indicates that the pixels in Ofmap
directly depends on the corresponding spatial dimension but not the input channel depth as shown
in Fig. 2.3.

Al[co][ho][wo] =

Kw∑
kw

Kh∑
kh

al−1ci,wo·s+kw,ho·s+kh · w
l
co,ci,kw,kh

(2.6)

The number of MAC operations for depthwise convolutions described in Eq. 2.6 is given by
Eq. 2.7.

#MACs = Co ×Kw ×Kh ×Ho ×Wo (2.7)

There is no reuse factor for Ifmap in a depthwise seperable convolutional layer as each Ofmap
is related to its corresponding Ifmap. Each kernel window Kh × Kw is iterated Wo × Ho to
generate the entire Ofmap. Therefore, the reuse factor of kernel matrix is given by Wo ×Ho.

Transpose Convolution: Different forms of convolutions discussed above reduce/maintain
the spatial dimensions of the Ofmap relative to its Ifmap. However, in applications such as
semantic segmentation [34], certain convolutional layers are responsible to upsample the Ifmap.
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Figure 2.3: Depthwise separable convolution of kernel matrix and Ifmap.

Consider a 4× 4 Ifmap. Inorder to perform transpose convolution with a kernel size of 3× 3 and
stride 2, we pad zeros to the Ifmap as shown in Fig. 2.4. It is equivalent to performing a vanilla
convolution described in Eq. 2.1 with a 3 × 3 kernel over a 7 × 7 Ifmap using unit stride.

Seite 1Thema | Abteilung | Datum

Input Feature Map Ouptut Feature Map

Figure 2.4: Example of transpose convolution with stride = 2 for kernel size 3× 3 on input feature map
dimension 4× 4.

The number of MAC operations for transpose convolution is given by Eq. 2.8 which is similar
to Eq. 2.1. It is important to note that the majority of operations in the transpose convolution has
zero multiplications which can be skipped using efficient software implementations.

#MACs = Co × Ci ×Kw ×Kh ×Ho ×Wo (2.8)
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Similar to the vanilla form of convolution, the reuse factor of Ifmap in a transpose convolutional
layer is given by Co. Each kernel window Kh ×Kw is iterated Wo ×Ho to generate the entire
Ofmap. Therefore, the reuse factor of kernel matrix is given by Wo ×Ho.

Dilated Convolution: Dilated convolution also known atrous convolution is commonly
employed in applications such as semantic segmentation [35]. The motivation behind this dilated
convolution is to vary the projected area of kernel matrix on the Ifmaps and capture information
at multiple scales. Compared to the vanilla form of convolution, there is an additional parameter
which controls the number of zero elements inserted in the kernel to inflate it. Let us refer this
by Dw and Dh. When Dw > 1, Dw − 1 number of zero elements are inserted in the spatial
dimension of the weight kernels to extend it. For a weight kernel with dimension Nkx and Nky

the extended dimension after dilation applied is given by Eq. 2.9.

K̂w = Kw + (Kw − 1) · (Dw − 1) K̂h = Kh + (Kh − 1) · (Dh − 1) (2.9)

Consider a 7 × 7 Ifmap. Inorder to perform dilated convolution with a kernel size of 3 × 3
and dilation rate of 2, we pad zeros to the kernel matrix as shown in Fig. 2.5. It is equivalent to
performing a vanilla convolution described in Eq. 2.1 with a 5 × 5 kernel over a 7 × 7 Ifmap
using unit stride.

Seite 1Thema | Abteilung | Datum
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Figure 2.5: Example of dilated convolution with dilation rate = 2 for kernel size 3× 3 on input feature
map dimension 7× 7.

The number of MAC operations for dilated convolution is given by Eq. 2.10. It is important to
note that the majority of operations in the dilated convolution has zero multiplications which can
be skipped using efficient software implementations.

#MACs = Co × Ci × K̂w × K̂w ×Ho ×Wo (2.10)

Similar to the vanilla form of convolution, the reuse factor of Ifmap in a dilated convolutional
layer is given by Co. Each kernel window Kh ×Kw is iterated Wo ×Ho to generate the entire
Ofmap. Therefore, the reuse factor of kernel matrix is given by Wo ×Ho.
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2.1.2 Fully Connected layer

Fully Connected (FC) refers to a layers where each pixel of Ifmap is connected to all elements in
its previous Ofmap as well as the next layer. FC layers are simplified by considering as a special
case of the convolution operation described in Eq. 2.1 by setting Wi = Kw, Hi = Kh, Wo = 1 and
Ho = 1. These layers restrict weight reuse opportunities and demand high memory bandwidth
during the inference. Nonetheless, batch optimization can be leveraged to reuse the same filters
on different input images to reduce the energy consumption and data transfers across various
memory levels. The last layers in the CNN leverage the FC layers to obtain the classification
output. The number of MAC operations for FC layer is given by Eq. 2.11.

#MACs = Co × Ci (2.11)

2.1.3 Pooling layer

Pooling layers reduce the dimensionality of feature maps by performing a sub-sampling of the
input volume. This sub-sampling is performed by sliding a 2D feature map across the input
and deriving a single pixel from it, like the maximum or the average value in the window. The
dimenisonality of Ofmap in the pooling volume can be evaluated with the same formulas used for
a convolutional layer as discussed in Eq. 2.2. Pooling is applied to each channel separately and
the commonly used configuration is Sw = Kw (here Kw denotes the pool receptive field) such
that no overlapping is present. Max Pooling extracts the maximum value from its receptive field,
whereas, Average Pooling computes an average of the values in its receptive field as shown in the
Fig. 2.6.
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Figure 2.6: Depiction of Average Pooling and Max Pooling for a 4× 4 Ifmap and 2× 2 pooling window
with stride 2.

2.1.4 Non linear activation

Convolutional or FC layers are usually followed by activation functions to introduce non-linearity
into the networks. Non-linear functions, which are commonly used, include Sigmoid, Hyperbolic
Tangent or Tanh and Rectified Linear Unit (ReLU). Sigmoid activation is not zero-centric. Be-
sides, sigmoid and tanh functions suffer from vanishing gradient problem during back-propagation.
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State-of-the-art neural networks tend to use ReLU [36] since it is simple and facilitates faster
training. Different non-linear activation functions have been illustrated in Fig. 2.7.

Figure 2.7: Non linear activation functions used in CNNs. X-axis represents the input of the non-linear
activation function and Y-axis represents the output.

2.1.5 Batch Normalization

The batch normalization layer normalizes the distribution at the input of each layer. This produces
guaranteed speed-up and accuracy improvement during training. Each layer in a CNN consists of
several channels. During batch normalization, each channel is normalized and then transformed
linearly using parameters β and γ, as shown in Eq. 2.12. The parameters (β, γ) are learned
during training. µl,c and σl,c denote the mean and variance of layer l and channel c for the current
mini-batch during the training. Since normalization is performed over mini-batches, this method
is called batch normalization. During inference of CNN, instead of deriving the l, c from current
batch statistics, moving mean and moving variance acquired across the training are used.

yl,c =
xl,c − µl,c√
σ2l,c + ε

γ + β (2.12)

2.1.6 Training Neural Networks

Loss Function: The loss function is a differentiable metric which computes the error
between the outputs predicted by the CNN and the ground truth labels g. The choice of the loss
function is an important step in the model design because it reflects the quality of the predictions.
The formulation depends on the application task. For instance, it is typical to use the cross-entropy
loss for classification tasks while it is common to use the Mean Squared Error or the L1-Error for
regression tasks. Several applications also append mean squared sum of all the weights to avoid
over-fitting on the training data, also known as regularization loss.
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Optimizer: The learning process (also called training) for CNN is based on updating the
trainable weights w. This process happens in two stages:

• Forward Pass: The CNN predicts the outputs for a given input sample or batch θ using the
model parameters w(t) at each training step t. Given the model predictions, the loss value
L(θ, w(t), g) can be evaluated using the ground truth labels as reference.

• Backward Pass: The computed loss is back propagated iteratively through each layer
of the CNN in order to update the parameters w(t). For this purpose, the gradient of
the loss function ∆wL is calculated with respect to different trainable parameters. The
scaling factor η is called learning rate. The weights are therefore updated according to the
following Eq. 2.13.

w(t+1) = w(t) − η

Backpropagation︷ ︸︸ ︷
∆wL(θ, w(t), g)) (2.13)

This equation is repeated until convergence, i.e. we update the trainable parameters, for
each training example, until we reach a local minimum. For faster convergence, it is
common to use the momentum optimizer [37]. For adaptive learning, one of the most
popular and fast optimizers is Adam [38].

2.2 Neural Networks in Computer Vision

CNNs have produced better predictions than humans on computer vision applications such as
image classification [39], semantic segmentation [35] and object detection [24] using supervised
ground truth labels.

2.2.1 Image Classification

Out of O possible classes, the input image is predicted based on the output Ỹ ∈ RO. It is typical
to translate the classification problem into predicting the probability of each possible class given
an input image, so that the output layer produces a vector with a fixed dimension of O. Several
CNN topologies were proposed in the last decade to solve the image classification problem.
For instance, AlexNet was introduced by Krizhevsky et al. [31] as the first CNN topology for
classifying the ImageNet dataset. Other examples which followed in the next years include
VGG-16 [40], Inception-Net [41], ResNet [39] and EfficientNet [33].

AlexNet [31] primarily used for image classification tasks consists of 5 convolutional layers, 3
FC layers has 60 million parameters requiring approximately 1.1 billion multiply-accumulate
(MAC) operations for one forward pass. AlexNet uses LRN operation in first and second
convolutional layers. It further uses split convolutional mode in layers 2, 3, 4 to reduce the
number of computations and perform the convolutions parallely. The most popular variant of
VGG from Visual Geometry group is the VGG-16 [40], which has a depth of 16 layers, and
a very regular structure, consisting exclusively of 3 × 3 convolution and 2 × 2 max-pooling
layers. The layer dimensions are gradually reduced from 224 × 224 pixels to 7 × 7 pixels till
the last convolutional layer, while the number of output channels is simultaneously increased
from 3 to 4096. However, VGG-16 contains more than 140 million weights and one forward pass

36



2.2 Neural Networks in Computer Vision

requires nearly 16 billion MAC operations. GoogleNet [41] has 7 million parameters across 57
convolutional layers and only one fully connected layer. GoogleNet has nine inception modules.
Each inception module consists of four branches with 1 × 1, 3 × 3, 5 × 5 convolutions and
down-sampling layer. Two auxiliary loss layers inject loss from the intermediate layers and
prevent gradient vanishing. At inference time, the auxiliary layers can be removed.

Residual networks [39] are stacked convolutional layers with skip (shortcut) connections to
jump over specific layers, organized in blocks called residual blocks. In conventional (plain)
architectures, convolutional layers are stacked directly. In plain architecture, stacking up to 30
layers is correlated to an increase in model accuracy, however, going deeper will cause accuracy
to saturate and even to starts degrading. Therefore, residual networks leverage identity mapping
across multiple layers such that the gradients back-propagate easily through them, allowing faster
learning. Each block consists of two convolutional layers, batch normalization, and a nonlinear
function. The end of the block is element-wise summation followed by batch normalization. The
element-wise summation is performed between the input block and output of batch normalization
of second convolutional layer. In recent years, we observe efficient CNN models using depth-wise
convolutions [32] and compound model scaling techniques [33] to improve accuracy of the
models with increased depth.

CIFAR-10 [42] represents one of the most common datasets for image classification. Within
the CIFAR-10 dataset, 10 classes are represented ranging from images of airplanes to trucks,
where each class is expressed by 6000 images. In total, 60, 000 color images of the size of
32×32 pixels are divided into 50, 000 training and 10, 000 test images. ImageNet is a large-scale
dataset from ILSVRC challenge [1]. The training dataset contains 1000 classes and 1.2 million
images. The validation dataset contains 50,000 images, 50 images per class. The classification
performance is reported using Top-1 and Top-5 accuracy. Top-1 accuracy measures the proportion
of correctly-labeled images. If one of the five labels with the largest probability is a correct label,
then this image is considered to have a correct label for Top-5 accuracy.

2.2.2 Semantic Segmentation

Segmentation-based CNNs such as FCN [34] and DeepLab [35] predict the class of each pixel
in the input image from O possible categories. The semantic maps are derived from the logits
Ỹ ∈ RW×H×O with O probability values per pixel. The CNN topology for this task follows
an encoder-decoder architecture. The encoder network is a feature extractor having a similar
architecture as image classification CNNs and the decoder network is a set of upsampling layers
which restore the original image resolution in order to predict the pixel-wise class output. FCN
uses transpose convolution to upsample features whereas DeepLab uses the bilinear upsampling
method.

Long et al. [34] have proposed Fully Convolutional Networks (FCN) for Semantic Segmenta-
tion. FCN processes the entire image and produces dense predictions in the form of probability
maps as outputs. For training, the ground truth labels are required. The main advantage of
FCN is to convert the existing classification models to perform semantic segmentation. The FC
layers have to be converted to convolutional layers with 1× 1 kernels. The FC layer of a CNN
model completely removes the information about the features of the image and just produce
one classification output at the end. Partly, the pooling layers are also responsible for down
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sampling. They have the potential to remove information about small objects. However, FCN
produces classification output for ever pixel. To restore the original image size from the last
convolutional layer, the feature maps must be up-sampled using transpose convolutional layers.
The skip architecture is used to fuse the features from pooling layers and output of transpose
convolutions. As an example, FCN-8s is a CNN model for semantic segmentation using VGG-16
as the feature extractor. It consists of 16 convolutional layers, 3 upscore layers, 3 score layers and
3 fuse layers to provide pixel wise prediction for each image.

The Cityscapes [2] is a large-scale dataset with images captured by a camera mounted on the
front of a car. It consists of a mixed set of video sequences recorded in street scenes from 50
different cities. The images are annotated pixel-wise so that each pixel is labeled as one of the
classes. The dataset contains 5000 finely annotated images and about 20,000 coarsely annotated
images. The images were captured and provided at a resolution of 2048× 1024 pixels. The finely
annotated data is divided into training, validation and testing sets, consisting of 2975, 500 and
1525 images. Fig. 2.8 highlights an example image and its corresponding semantic label in the
dataset. Cityscapes is an important benchmark for urban semantic scene understanding.

(a) Example of a raw image. (b) Example of ground truth labels.

Figure 2.8: Example of ground truth and raw image in Cityscapes dataset [2].

The Intersection over Union (IOU) is an essential metric which calculates the number of pixels
overlapped between ground truth labels and the obtained predictions. The IOU score is evaluated
for each class in the dataset separately and finally mean Intersection over Union (mIOU) is
obtained by taking average over all the IOU values for individual classes.

2.2.3 Object Detection

Object detection can be defined as the process of extracting instances of objects from an input
image including their classes from a predefined set of categories as well as their spatial locations
and extents. The problem formulation for the object detection task is more challenging as it is
a two objective problem. It simultaneously considers the classification and localization of the
detected objects. This challenge is usually addressed by combining two equally important metrics
for the final loss computation. We can define the goal of 2D object detection as predicting a set of
2D axis-aligned bounding boxes Bi = {b(i)k }

Ni
k=1. Each 2D bounding box b can be characterized

by its center coordinates (x, y), its width w and its height h. Therefore, it can be written as
b = (x, y, w, h).
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Two-stage RCNN-based object detection One of the earlier CNN architectures to solve
the object detection problem is RCNN [43]. This approach enumerates a large set of region
candidates using the selective search algorithm. Each region of interest (RoI) is cropped directly
from the image and a CNN is applied individually and iteratively on each cropped RoI. The
extracted features for each RoI are the input to a support vector machine which performs the
classification. Usually, the initial estimation of the object boundaries using the selective search
algorithm does not tightly encompass the object. This is why a bounding box regression is
performed for each RoI based on the extracted features in order to refine the original estimates.
Even though RCNN achieves successful results in the detection task, this iterative process of
extracting features and processing each RoI individually is computationally expensive and makes
the network performance extremely slow. Fast RCNN [44] introduced the idea of extracting
features from the original image using a single CNN and then cropping the extracted features
instead for each RoI. However, both methods still rely on computationally inefficient traditional
region proposal methods such as selective search. Faster RCNN [45] introduces region proposal
network to improve the latency of the CNN model. The region proposal network operates directly
on the down-sampled image features and uses convolutional layers to make category-agnostic
bounding box candidates which are the input of the second stage (detection stage consisting of
classification of each region proposal and regression of final bounding box).

One-stage anchor-based object detection Two-stage object detectors [43, 44, 45] pre-
dict category-agnostic region proposals to classify and refine the bounding box candidates. One
stage object detection approaches merge both steps by changing the region proposal process into a
multi-class classification problem. This is done by introducing the concept of anchors which are a
set of predefined bounding boxes describing different possible object shapes, scales, orientations
and positions in the image. This is done by introducing anchors, which are a set of predefined
bounding boxes describing different possible object shapes, scales, orientations and positions
in the image. YOLO [46] is one of the most important work in one-stage object detectors. The
main idea behind YOLO is to coarsely divide the image into an S × S grid, where each cell
predicts K class probabilities, B bounding box regression attributes, and objectiveness scores. It
is therefore much faster than two-stage detection methods, whereas Faster RCNN for instance is
more accurate than YOLO. The coarse grid division leads to some extent to a failure in detecting
small objects or to greater localization errors, in particular if a grid cell contains more than one
object. This problem is the focus of the second version of YOLO called YOLOv2 [47] which
uses anchor boxes with different aspect ratios for each grid cell to give the network the ability to
detect more objects with less localization errors. SSD [48] introduces the idea of considering
multi-scale convolutional feature maps in order to achieve a competitively fast detection speed,
but also maintain a high detection accuracy even for fine-grained features and objects. It combines
detections from different down-sampling levels where at each level category scores and bounding
box regression attributes are generated using convolutional detection heads. The final detections
are generated using Non-Max Suppression.

Center-based object detection The center-based approach is recently proposed object
detection methods. It introduces a alternative way to represent objects. Anchor-based methods
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use a large number of anchor boxes causing a huge imbalance between positive and negative
examples. Additionally, they introduce more hyperparameters requiring an expert knowledge
about the dataset in order to correctly tune the number and aspect ratios of the used anchors.
Finally, they result in a larger pre- and postprocessing overhead slowing down the training and
inference pipeline. CenterNet [49] represents objects by their center points in order to transform
the object detection problem to a standard keypoint estimation problem. Instead of the use of
an anchor grid to encode objects, the center-based approach generates the training targets in
form of heatmap where the peak locations correspond to object center locations. Based on this
representation, non-max suppression can be omitted and the detection accuracy, speed can be
improved compared to anchor-based object detectors.

Lidar based 3D object detection Image-based detection approaches have limited 3D
detection capabilities compared to LiDAR-based object detection. Point clouds are indeed
challenging geometric data structures due to their irregular and sparse format. The object detection
approaches described in the previous parts of this work expect a dense image-like representation
I ∈ RW×H×C . A point cloud is however an unordered set of points P = {(x, y, z, r)i}Ni=0 where
N is the total number of points, r is the reflectance and x, y and z are the spatial coordinates in
the 3D space. This is why LiDAR-based approaches differ from image-based methods by the
requirement of a point cloud encoder which is responsible of transforming the sparse point cloud
P = {(x, y, z, r)i}Ni=0 to a dense representation I ∈ RW×H×C . Different kinds of CNN models
for LiDAR based 3D object detection are studied in Sec. 3.5.

KITTI dataset Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI) [3]
pioneered multimodal dataset providing front-facing stereo images, dense pointclouds from a
lidar sensor as well as GPS/IMU data. The dense point clouds are generated using Velodyne
HDL-64E rotating 3D laser scanner with a frequency of 10 Hz and 64 beams. The dataset consists
of 7481 annotated samples which we split between training and validation with 200k 3D boxes
over 22 scenes. Fig. 2.9 highlights an example of a sample from KITTI dataset along with its 3D
bounding box annotations and CNN predictions.

Evaluation Metric The effectiveness of the object detection task is measured using the Mean
Average Precision (mAP) metric. The metric depends on an IoU-based overlap criterion between
the ground truth and predicted bounding boxes. Each class includes an IoU threshold condition
(e.g. IoU greater than 0.7 for the car class) usually defined by the dataset suite [3]. If the defined
IoU threshold condition is satisfied, then the predicted bounding is considered as a True Positive
(TP). Similarly, if the overlap criterion is not satisfied the predicted bounding box is considered
as a False Positive (FP). The average precision (AP) for a class c is given by Eq. 2.14. Taking the
mean of these average individual-class-precision producesthe mean average precision (mAP).

APc =
#TP (c)

#TP (c) + #FP (c)
(2.14)
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predictions

Ground Truth

Figure 2.9: Example 3D bounding box predictions along with ground truth labels on KITTI dataset [3].

2.3 Compression Techniques

The improved performance of CNNs comes at the cost of becoming increasingly deeper and
larger making it difficult to deploy them on edge devices. This necessitates compressing CNNs
without loss of prediction accuracy so as to make them computationally more efficient. Various
techniques for finding optimized configurations of CNN architectures have been proposed in the
last few years. Among these, two popular methods, namely Pruning and Quantization have been
discussed in this section.

2.3.1 Quantization

Quantization has become a standard technique in both industry and academia, typically applied
before deploying CNNs in embedded settings. The benefits of quantization are manyfold, ranging
from reducing the bit-width of weights and activations to shrink the model’s size, to simplifying
the arithmetic computation units on HW, thereby lowering the energy consumed by on-chip and
off-chip data movement.

During the CNN training, it is common to represent weights, activations and their gradient
using 32-bit floating point quantization. There are two main approaches of the quantization
for CNNs : Post Train Quantization (PTQ) and Quantization Aware Training (QAT). In the
PTQ, a full-precision pretrained model is quantized to a lower bit-width representation with
few iterations of fine-tuning. This approach allows us to achieve the floating point accuracy
at 8-bits, while below 8-bits, this results in significant accuracy degradation. Alternatively,
quantization-aware training QAT methods are capable of producing quantized CNNs during the
training process [7, 50].
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LetQ(x, b) be a quantization function with number of bits b, denoted byQ : R → {q0, .., q2b−1},
consisting of 2b discrete output values. Let us consider an operand x ∈ R. The mapped value xq
can be derived using linear quantization based on number of assigned bits b as shown in Eq. 2.15.
We calculate the absolute maximum value c in the data distribution. We ensure that the quantized
data is in the range of [−2b−1, −2b−1 − 1, .., 0, .. 2b−1 − 1]. We scale the quantized values using
a scaling factor c

(2b−1−1) .

c = max|x|

xq = Floor(x · (2b−1 − 1)

c
) · c

(2b−1 − 1)

(2.15)

For positive data distributions, e.g. outputs upon ReLU based non linear activation, we map
x ∈ R to positive discrete values in the range of [0, 2b − 1]. Most methods such as [7, 50] use
uniform quantization techniques. However, works such as [51, 52] use non uniform logarithmic
quantization to reduce the error between full precision and quantized data types. In Eq. 2.16, we
derive discrete values xq using non linear quantization with first step size ∆, bit-width b and log
base a.

xq =sign(x)× Clip(Floor(loga
x

∆
),−2b−1, 2b−1 − 1)

a∗ = argmin
a
|x− xq|

(2.16)

Binarization is an extreme form of quantization where the weights and activations are repre-
sented using a single bit. Courbariaux and Bengio proposed Binarized Neural Networks (BNNs)
[53, 54], where the weights and activations are restricted to {+1,−1}. Since the weights and
activations are binary, multiply and accumulate (MAC) operations typically used in convolution
can be replaced with XNOR and popcount operations. Efficient BNN training schemes can be re-
alized using STE [55, 56], multiple bases [57, 8] or latent free weights [58, 59]. BNNs drastically
reduce memory size, accesses and improves power efficiency substantially without a significant
degradation in prediction accuracy. Rastegari et al. [55] proposes an approach to enhance the
performance of binarized CNNs, by multiplying the absolute mean of weights and activations
with the 1-bit weight and activation. Liu et al. [56] improves the training scheme of BNN by
approximating the discrete gradient of sign function with a magnitude aware piecewise polyno-
mial function. To further mitigate the accuracy degradation of BNNs, Lin et al. [8] extended
BNNs by approximating the full-precision convolutions in CNNs by using linear combinations
of multiple binary bases for both weights M and activations N , resulting in Accurate Binary
Convolutional Neural Networks (ABC-Nets). Thus, the convolutions of Multi Bit Networkss
(MBNs) can be implemented by computing M ×N bit-wise convolutions in parallel. Group-Net
decomposes the network into mulitple groups, e.g. multiple binary residual blocks and improves
the prediction accuracy. Recent efforts by Helwegen et al. [58] improves the training scheme of
BNNs by avoiding latent weights and gradient approximation.
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2.3.2 Pruning

Pruning is a standard technique for removing redundancies in neural networks that do not affect
the network performance. This involves removing weights, kernels or channels from CNNs. The
granularity of CNNs pruning is defined by the regularity. Based on this, pruning can be classified
into: Structured Pruning and Unstructured Pruning. Different pruning regularities have been
illustrated in Fig.2.10.
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(c) Filter Pruning.

Figure 2.10: Illustration of various pruning regularities. Irregular pruning identifies compression op-
portunities in an unstructured manner. Regular pruning identifies redundant kernel win-
dows Kh ×Kw in the weight matrix. Filter pruning identifies redundant output channels
Kh ×Kw × Ci in the weight matrix.
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Unstructured Pruning: Unstructured pruning involves identifying redundant individual
weights from networks as illustrated in Fig. 2.10-a. This is relatively simpler to obtain high
compression ratios and does not cause much accuracy degradation. However, weight pruning
leads to a irregular structure which does not yield benefits when deployed on general-purpose
hardware.

Structured Pruning: Structured pruning involves removing kernels, channels or filters as a
whole from the network as illustrated in Fig. 2.10-b and Fig. 2.10-c. This is more challenging as
compared to weight pruning but yields greater hardware advantages. When deployed on general
purpose structured hardware like GPUs, the advantages of structured pruning can be exploited
using existing Compute Unified Device Architecture (CUDA) kernels. Pruning input channels
from a convolutional layer automatically leads to the filters in its previous layer getting pruned.
Thus, the terms channel pruning and filter pruning can be used reversibly. However, this also
makes it slightly complicated for implementing channel pruning on CNNs having complicated
structures like residual blocks with convolutional shortcuts. During implementation, it has to
be ensured that there is no mismatch in filters or channels for the convolutional layers. It is
challenging to obtain higher compression ratios for structured pruning compared to weight pruning
with minimal degradation in prediction accuracy. Apart from pruning regularity, pruning can
also be classified into handcrafted or automated pruning techniques. Also, pruning approaches
may be post-train or in-train. More details on these pruning techniques have been provided in
chapters 3 and 4.

2.4 Hardware Accelerators for Neural Networks

The complexity of state-of-the-art CNNs increase by incorporating large number of parameters
and a deeper structure in order to yield better prediction accuracy. This capability of a better per-
formance comes at the expense of increasing computational requirements. Performing real-time
inference of CNNs on mobile and embedded platforms, especially imposing real-time constraints
is hard and critical. A possible way to accelerate CNNs is by leveraging the parallelization of the
MAC operations on various compute units. This requires however specific hardware architectures
offering a native support of multi-threading and a more efficient performance of convolution
operations. The more efficient performance arises from the following optimizations embedded in
the hardware architecture:

• Native support for parallel computations: This is an extremely important feature since
convolutional layers apply a huge number of independent MAC operations. Increasing
the utilization of Processing Elements (PEs) and maintaining the computational efficiency
results in a lower latency.

• Low-precision arithmetic: CNNs can yield similar accuracy values even when the precision
of activations and weights is decreased. A native support for low-precision MAC operations
can therefore result in an overall improvement in efficiency (in terms of latency and energy)
without affecting much the prediction accuracy.
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• Efficient dataflow architectures: Inference is a memory-intensive operation if the memory
architecture is not properly dimensioned. The amount of data volumes that are loaded and
stored in memory requires a smooth dataflow and stall-free access patterns across different
hierarchies.

These hardware platforms specifically designed to accelerate the required computations include
GPUs, ASICs and FPGAs.

2.4.1 Graphical Processing Units

GPUs are the most commonly used hardware accelerator in the field of CNNs and are supported
by the vast majority of Machine Learning software frameworks. They deliver the best computation
speed and memory bandwidth when it comes to the training and inference of CNNs. The rapid
development resulted in superior clock frequency (GHz) and memory bandwidth [60] (hundreds
of GB/s) that allow to achieve the best results in terms of latency and prediction accuracy.
Furthermore, GPUs offer user-friendly frameworks for developers such as CUDA. However,
GPUs are greedy in terms of energy and are therefore not always suited for many embedded
and mobile applications. Additionally, many optimization techniques and the use of custom data
types are not supported in most current GPU-based platforms. This motivates the need for an
alternative accelerator architecture which have a lower energy consumption and is more flexible
in supporting custom data types and dataflow based optimization algorithms.

2.4.2 Application Specific Integrated Circuits

ASICs are designed to specialize in a specific use case and will permanently be only deployed
for that single task, i.e. once it is desinged, it cannot be changed afterwards. The design process
of ASICs is similar to one of FPGAs, where low-level hardware description languages such as
Verilog or VHDL are used. ASIC-based CNN accelerators have a high performance (throughput),
and lower energy consumption. In fact, convolutions can be computed using low-precision data
types, and memory access patterns can be customized and accelerated using different hardware
configurations and optimization techniques. However, the design process of ASICs is relatively
slow and inflexible. With the fast evolving requirements of CNN deployment, the used hardware
accelerator is required to be more adaptive and responsive to quick changes and facilitates the
integration of state-of-the-art optimization patterns.

Custom ASIC architectures have achieved significant improvement in throughput and energy
efficiency. DaDianNao [61] relies on large on-chip memory (consumes nearly half of the area)
and achieves reduction in latency and power savings compared to the GPU. A flexible accelerator
Eyeriss [11] was able to accelerate convolutional layers of AlexNet, VGG-16 with low power
consumption. Eyeriss uses 16-bit fixed point with a flexibility of zero gating in the PEs. As
discussed in Sec. 2.3, it is simple to produce high compression rates using irregular pruning.
Accelerators such as EIE [62], SCNN [63] leverage the irregular sparsity to avoid the scheduling
of zero multiplications with specialized circuits. EIE [62] is an efficient method for highly
irregular pruning, introducing compressed representation for weights and activation to bypass
zero multiplications. The implementation is limited to FC layers. SCNN [63] discusses an
accelerator design that can be used on convolutional layers, with sparse dataflow capable of
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detecting and scheduling only MAC operation with non-zero activation and weights greatly
reducing latency and energy consumption.

2.4.3 Field Programmable Gate Arrays

FPGA is an integrated circuit which can be programmed to have a custom design capable
of performing a specific task or functionality. FPGAs allow a high degree of flexibility and
customizability. FPGA is an array of interconnected circuits containing components dedicated
for specific functions as well as generic configurable logic units. This combination of custom and
generic units allows lower power consumption and higher performance.

The core unit of an FPGA is the configurable Adaptive Logic Module (ALM) which consists
of combinational Look-Up Table (LUT) and registers. These programmable logic elements can
perform custom functions designed by the developer. In addition to these configurable logic units,
FPGAs contain custom hard blocks optimized for a specific functionality such as the DSP blocks
which can perform 8-bit/ 16-bit or floating point MAC operations per unit. These blocks can
mainly be leveraged to execute the convolution operations.

In Arria-10 FPGA [64, 65, 66], there are two types of embedded memory blocks: 640 bit
Memory Logic Array Blocks (MLABs) and 20 Kb M20K blocks. The MLABs are enhanced
SRAM blocks optimized for specific functionalities such as shift registers and wide FIFO buffers.
The M20Ks are used to store large memory arrays while offering enough independent access
ports. These will be the main memory blocks used for storing input and weight features. The
Arria 10 FPGA offers 2713 M20Ks resulting in a storage size of 54260 Kbits. However, the
offered SRAM blocks are not enough for storing all input features, filters and partial sums of
several state-of-the-art CNNs. Therefore, the external memory bandwidth is of great importance
because the overall performance of the hardware accelerator is bounded by the speed of memory
accesses. For Arria 10 GX board, the external memory bandwidth is limited to 19.2 GB/s. This
makes the design task of a performant accelerator a challenging one. Xilinx FPGA such as the
ZCU102 evaluation board [67] consists of 2520 DSP48E2 slices [68]. Each DSP block contains
27bit× 18bit multiplier. It consists of 600K logic blocks and 32.1 Mb of BRAM.

The traditional FPGA design process requires expert HW knowledge as the logic blocks and
connections need to be described manually using a hardware description language (HDL) like
Verilog or VHDL. The FPGA bit stream is synthesized after mapping all the described components
to functions either in form of hard-logic blocks if the function is available or otherwise using soft
logic blocks. The synthesis requires furthermore the functions to be placed using the available
hardware resources and connected during the routing process. If all these processes are successful,
the FPGA bit stream is generated. However, the HDL-based low level languages make the
development of the FPGA design demanding in terms of knowledge, development time and cost.

A high-level alternative language to describe the FPGA-based accelerator design is OpenCL.
This language is very similar to C in terms of syntax, but it supports the parallelization of multiple
instructions. OpenCL supports different platforms such as GPUs and FPGAs and is therefore
widely used as a language. Even though the syntax of this high-level language is generic to
multiple platforms, the compiler is always specific to the target device. The OpenCL program
which describes the accelerator on the FPGA board is called kernel, and is compiled using the
Altera Offline Compiler (AOC) for the Arria-10 FPGA.
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2.5 Adversarial Robustness

Adversarial Robustness illustrates the capability of a network or system to be resilient against a
attacks imposed by an adversary. An adversary in this context tries to modify the input of the
CNN slightly to manipulate the prediction of a system to malfunction. These slight variations are
often imperceptible for humans, so we expect the system not to alternate its predictions. There are
adversarial attack schemes that differ in approach, effectiveness, and efficiency. The adversarial
attack schemes can be categorized into black- and white-box attacks [69]. They differ in the
knowledge that the attacker has about the CNN model. For black-box attacks, attackers have no
information about the intrinsic of a CNN, such as its architecture or weights. However, the attack
scheme has access to a variable number of predictions. The number of predictions is mostly
dependent on inference latency, network traffic (if online), or defense mechanisms protecting
against numerous queries from the same source. However, multiple smart queries with slightly
manipulated inputs disclose some model intrinsics. For white-box attacks, the attacker has full
knowledge about the network structure and can use the gradient information to construct effective
adversaries. The following sections explain white box and black box attacks as it is necessary to
understand against what compressed CNN needs to get defended. The defensive compression
schemes are explained more in Sec. 5.4.

2.5.1 White Box Attacks

White-box attacks are more fierce attack schemes as the adversary is aware of the details about
the model and do not need to reconstruct a model or its gradient. Therefore, the most significant
benefit for white-box attacks is their reduction in queries, as most common white-box approaches
use the model gradient with respect to the input directly. Using this gradient turns out to be
a very effective and efficient (fast) way to construct successful and strong perturbations. The
mentioned points are the primary motivation to focus on and protect against white-box attacks
that are gradient-based in the scope of this thesis.

Gradient-based approaches still differ in multiple aspects. First, an attack can be targeted or
untargeted. The latter means the attack is successful as soon as the model is making a wrong
prediction. Targeted attacks try to trick the model into making a specifically wanted, wrong
prediction. Therefore, the targeted attacks are more dangerous for real-world scenarios like AD,
if they are successful. In the following, the most common approaches are briefly explained.
Fast Gradient Sign Method: The most commonly used attack to verify the robustness of neural
networks against input perturbations is the Fast Gradient Sign Method (FGSM) [70]. FGSM
linearizes the loss function of a neural network around θ by calculating its gradient ∇L(I, L, θ)
to generate adversarial examples IAdv. The input variation parameter ε controls the perturbation’s
amplitude [71], as expressed in Eq. 2.17.

IAdv = I + ε · sign (∇L (I, L, θ)) (2.17)

The attack is strengthened when performed iteratively. This can be considered as an extension
of FGSM, generating adversarial samples using a small step-size [71].
Projected Gradient Descent: An even more effective variant is iterative Projected Gradient
Descent (PGD) on the loss function with uniform random noise initialization [72], expressed in
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Eq. 2.18.

IAdvi+1 = πS

(
IAdvi + α · ∇L

(
IAdvi , L, θ

))
(2.18)

Here, adversary examples IAdvi+1 are generated by taking one step into the ascent direction of
the loss gradient ∇L(IAdvi , L, θ) with respect to the previous image IAdvi at iteration i, where
the step-size is scaled by α, followed by a potential projection π onto the legal set S. Legal
adversaries are ensured by a projection π onto the legal set I + S with S = {δ : ||δ||p ≤ ε}. A
projection onto the legal set πS is performed by clipping δ to the interval [−ε, ε]. Ii defines the
image at iteration step i and α defines the step-size of the optimization step in the ascent direction
of ∇IL. In the chapter 5, the PGD analysis is performed using `∞-norm as a distance metric
between natural image I , and adversarial example IAdv. The iterative multi-step optimization
method is able to converge to local maxima of the non-concave and constrained maximization
problem representing possible worst-case adversaries for the underlying model. By considering
random uniform initialization, arbitrary starting points on the corresponding loss surface are
ensured, thus resulting in an exploration of potentially varying local maxima and lastly giving
rise to the structural behavior of the corresponding loss surface. This renders the PGD attack as
the ultimate first-order adversary, as stated by Madry et al. [18]. In Sec. 5.3, we analyze various
hyperparameters of PGD attack for different compression techniques.
DeepFool: With the DeepFool [73] attack, the authors propose a method to generate adversarial
examples that fool classifiers on large-scale datasets by estimating the distance of an input
instance I to the closest decision boundary. The iterative method estimates the perturbation δi at
each iteration i till the classifier f(Ii) changes its prediction (f(Ii) 6= L). In practice, once an
adversarial perturbation δ is found, the adversarial example is pushed further beyond the decision
boundary. The algorithm is not guaranteed to converge to the optimal perturbation, nevertheless
it generates adversarial examples with good approximations of the minimal perturbation. The
size of the calculated perturbation can also be interpreted as a metric for the model’s robustness
against adversarial attacks [74].
Carlini & Wagner: Carlini and Wagner (C&W) [75] presented a targeted attack, to refute the
promising defensive approach of defensive distillation [76]. The proposed C&W attack emerged
as one of the strongest attacks in literature [77]. C&W finds perturbations δ with minimal
distance D(I, I + δ) that will change the classification of image I to the target class t. This is
a challenging non-linear optimization problem and therefore the authors introduce a function
g, such that g(I + δ) = 0 when the classifier gets fooled towards the target class. The attack
constructs adversarial examples which try to minimize the objective as mentioned in Eq. 2.19.

min(‖δ‖p + ε · g(I + δ)),

where g(I) = ((max
j 6=t

Z(I)j)− Z(I)t)
+ (2.19)

Z(I)j indicates the output of the CNN for class j before the softmax layer. The minimum
condition g(I) = 0 occurs when Z(I)t ≤ Z(I)j ∀j 6= t. The choice of ε maintains a trade-off
between the attacked image similarity and the success rate of the target class. Using `2 distance
metric, the objective function is minimized through the gradient decent. In Sec. 5.4, we formulate
defensive compression methods, which are robust against C&W attack.
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2.5.2 Black Box Attacks

Black-box attacks tend to be closer and more relevant for the deployment phase of neural networks
as most attackers will not have additional information about the intrinsic of a CNN. In this thesis,
we explore two black box attacks namely, GenAttack and LocalSearch.
GenAttack: GenAttack [78] is a gradient-free optimization strategy based on a genetic algorithm.
The initial population of perturbed image examples is generated by adding uniform random noise.
The best individuals survive the generation based on their fitness evaluation, the selection strategy
and the crossover and mutation probabilities. Fitness evaluation reflects the optimization objective,
while the selection strategy allows elite individuals in the population to generate new children
perturbations through crossover and mutation mechanisms. GenAttack is a faster search algorithm
when compared to LocalSearch [79], and generates perturbations which are imperceptible to the
human eye.
LocalSearch: LocalSearch [79] is a simple gradient-free adversarial black-box attack, which is
based on random perturbation and a greedy search algorithm around the perturbed pixels. The
LocalSearch procedure works in iterations, where each iteration consists of two steps. The first
step is to select and evaluate a small subset of points Pi, referred to as the local neighborhood. In
the second step, a new solution Pi+1 is selected by taking the evaluation of the previous solution
Pi into account. LocalSearch is simple to implement, but is computationally expensive, similar
to most greedy search algorithms. In Sec. 5.3, we perform detailed analysis to understand the
influence of various white box and black box adversarial attacks on various compressed CNN
variants.
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Modern CNNs demand enormous latency and memory access, making them both computationally
and memory intensive. CNN compression is essential to realize an efficient embedded application.
The architecture of the CNNs is fixed before the training process starts. Therefore, the standard
training which traditionally leverages cross entropy and regularization loss does not influence
the architectural configuration. Identifying the redundant computations and parameters which
produces minimum degradation in task specific accuracy and improving the HW specific metrics
is refereed as HW aware CNN compression. There has been an increased focus on model
compression [19, 80, 6, 27] and acceleration techniques [81, 82] for CNNs. These techniques
tackle the compute complexity for deployment needs in embedded scenarios, like reduced storage
requirements [83, 84] and inference time [85]. Evaluating a compression strategy based on proxy
metrics, such as parameter and operation counts is loosely correlated to HW benefits and can
lead to sub-optimal deployment setups. This has influenced recent works to optimize neural
networks with Hardware-In-the-Loop (HIL) approaches [5, 13, 14]. Reliance on proxy metrics
oversimplifies the problem at hand and does not always guarantee improvements in energy or
latency when deployed on real HW. In this chapter, we realize HW aware CNNs by incorporating
HW-metrics directly in the compression loop.

The upcoming sections are structured as follows: Sec. 3.1 introduces three stage pipeline to
attain HW-aware compressed model. Sec. 3.2 discusses related work on CNN pruning and its
impact on HW-metrics. Sec. 3.3 formulates a HW-model for spatial CNN accelerator to predict
estimates required during the compression stage. Sec. 3.4 demonstrates a RL based channel
pruning pipeline using estimates from the HW-model. Sec. 3.5 highlights the effectiveness of the
search pipeline on LiDAR-based 3D object detection. The chapter is based on the publication of
Vemparala et al. [25] and Vemparala et al. [26].

3.1 Post Train Compression

In this section, we describe various components in the CNN optimization pipeline (Sec. 3.1.1)
which considers a pre-trained model and determines suitable compression configuration. We
further discuss about automated search methods (Sec. 3.1.2) such as RL [5, 13], Genetic Algorithm
(GA) [14, 15] which are commonly employed to determine the compression configuration. We
finally discuss HW-based Key Performance Indicators (KPIs) in Sec. 3.1.3, which can provide
feedback to accomplish HW-awareness for the automated search techniques.
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3.1.1 Three Stage Pipeline

Finding the correct layer-wise compression strategy using pruning and quantization methods
with respect to a target HW platform is a complex problem. Earlier works use uniform pruning
and quantization strategy. Uniform pruning techniques rely on constant pruning rates across the
layers and handcrafted heuristics such as magnitude-based [19] or geometric mean based [20] to
compute the saliency of weight matrix. Uniform quantization methods assign equal bit-width to
weights and activations for the entire CNN’s representation. These techniques rely on efficient
QAT methods [50, 7] which are capable of modeling the error introduced by the discretization of
weights and activations. However, different layers contribute differently to the accuracy and HW
efficiency of a network [15], justifying the use of different pruning and quantization degrees for
various layers of the CNN. To obtain an efficient HW-aware compressed model, we introduce the
three stage compression pipeline as shown in the Fig. 3.1.

Seite 1Thema | Abteilung | Datum

Model Training Iterative Compression / Fine-tuning Task/ Hardware specific Evaluation

Compression Ratios 0.8 0.5 0.3

Genetic SearchLearning Agent

Conv
Custom 

Scheduler

GPU

FPGA

Custom 

Accelerator

Model Accuracy, Latency, Energy, DRAM access

Feedback loop for Model Compression

Figure 3.1: Illustration of three stage hardware aware compression pipeline.

Model Training: The first stage of the pipeline refers to the training of the L layer baseline
model with weights {Wl}Ll=1. Here {Wl} denotes the weight parameter tensor of the l-th layer.
The convolutional layer l ∈ {1, ..., L} receives an input feature map Al−1 ∈ RHi×Wi×Ci , where
Hi, Wi, and Ci indicate the spatial height, width, and input channels respectively. The weights
{Ŵl} ∈ RKh×Kw×Ci×Co are the trainable parameters of the individual layers, here Kh, Kw,
and Co are the kernel dimensions and the number of output channels (filters) respectively. The
baseline model is trained for different applications as highlighted in Sec. 2.2. We obtain the
pretrained weights by following the training procedure and optimizers as discussed in Sec. 2.1.6.
The baseline model is typically trained using full/half precision data types using large scale
training frameworks such as TensorFlow [86] and Pytorch [87]. The baseline model without the
compression pipeline is over-parameterized and demands more latency, energy consumption and
DRAM access.

Search for optimal compression: As discussed in Sec. 2.3, we rely on pruning and quanti-
zation to compress CNN model. In pruning, the weight matrix is zeroized using binary masks
Ml = {0, 1}Kw×Kh×Ci×Co (irregular pruning), Ml = {0, 1}1×1×Ci×Co (kernel pruning),
Ml = {0, 1}1×1×Ci×1 (channel pruning). The Hadamard product � is applied to realize a
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sparse representation of weight matrix W̃ l ∈ RKh×Kw×Ci×Co = W l �Ml. To improve the
trade-off between prediction accuracy and HW-metrics, search algorithms such as RL [5] and
GA [14] determine layer-wise compression ratios and locations of redundant weight elements. To
mitigate the search complexity, works such as AMC [5] determine layer-wise compression ratios.
In-order to effectively guide the search algorithm, iterative fine-tuning becomes necessary [15, 26]
for few epochs (e.g. 0.5 - 2 epochs) to recover the loss in accuracy. This is particularly important
for channel pruning and quantization search.

Model Evaluation: The goal of compression pipeline is to complement well-established
proxies, such as number of operations and parameter counts, with more elaborate HW-model
based estimates, which are conducive to finding efficient CNNs for embedded applications. The
HW metrics are determined by executing the model inference on different target platforms as
shown in the Fig. 3.1. The model inference on NVIDIA-GPUs can be efficiently performed
using TensorRT [88]. The connections and HW architecture in the FPGA can be described using
High-Level Synthesis (HLS) [89] or OpenCL [85]. In embedded applications such as autonomous
driving and robotics, the design of neural networks and the target HW accelerator goes hand
in hand. During the early development phases, it is likely that the target platform is not fully
defined, the HW is not available, or compilers are prone to errors, making a HIL-based approach
challenging. In these scenarios, HW model is an essential tool for CNN optimization. The HW
model takes CNN architecture description as input and provides HW metrics such as latency,
energy or DRAM access as output.

3.1.2 Automated Search Methods for Channel Pruning

The goal of the search algorithms is to improve the trade-off between prediction accuracy and
model compression compared to baseline models. Inorder to determine an efficient compression
strategy, search algorithms such as RL and GA need to determine the locations of redundant
weight elements. Furthermore, fine-tuning is required to reduce the gap for prediction accuracy
between baseline and compressed model.

Search space complexity: In-order to systematically determine a compressed CNN model, it
is important to formulate a search space indicating the compression opportunities for the search
algorithm. The size of the search space depends upon the chosen pruning regularity. In irregular
weight pruning, the weight matrix at layer l i.e. {Wl} ∈ RHi×Wi×Ci×Co , requires binary pruning
masksMl = {0, 1}Kw×Kh×Ci×Co . For a L layer CNN model, the total number of compression
possibilities or search space complexity s =

∏L
l=1(2

Hl
i×W l

i×Cl
i×Cl

o). The search space can
be reduced by using pruning regularities such as kernel pruning (s =

∏L
l=1(2

1×1×Cl
i×Cl

o)) or
channel pruning (s =

∏L
l=1(2

1×1×Cl
i×1)). Even though irregular and kernel pruning have greater

search space and lead to to better prediction accuracies for a given compression ratio, they require
specific hardware designs to extract HW benefits. Channel/Filter pruning removes whole filters
from each layer and is therefore the most hardware-friendly pruning type. Furthermore, higher
search space complexity requires huge number of GPU hours for the compression pipeline. In
this work, we study the search space for channel/filter pruning and understand the improvements
in HW benefits.

RL based pruning: RL based search algorithms consists of three components, namely envi-
ronment, agent, reward model. In the context of model compression, we consider the environment
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f as CNN model, the pruning agent π deciding the compression configuration and HW model µ
providing rewardR. The environment provides state S as the input to the RL agent. The state
space contains all the information about the environment that the agent observes [90]. In the
work of AMC [5], the state of the art RL agent is encoded using key architectural information
such as layer number l,stride s, filters Co, input channels Ci, number of remaining channels∑L

j=l+1 ϕ
j . RL-agent used in [21] uses fully-trained filters matrix W l|Ll=0 as state space. The

agent produces actions Al to the CNN environment for each layer l ∈ {1, L} and obtains reward
R indicating the effectiveness of compression configuration by analyzing the trade-off between
prediction accuracy and HW benefits. The pruning action Al at layer l can be either discrete or
continuous decision. Discrete pruning action refers to specifying the redundant filter locations
as {a`1, a`2, ..., a`N l}, where a`i ∈ {0, 1} is equivalent to {prune, keep} and N ` is the number of
filters in the `th layer [21]. Using this scheme, the agent is able to explore both sparsity ratio and
to select the exact position of filters to prune. The work in AMC produces continuous actions in
the form of layer-wise compression ratios as {c1, c2, ..., cL}, where c` ∈ (0, 1] for each layer `.
Based on the compression ratio, magnitude based heuristic is employed to identify redundant
elements in kernel matrix. The quality of an action is determined by the reward signal. The
goal of RL is to learn and acquire an agent which is capable of selecting the optimal action with
current given state. This agent is also called policy and can be expressed as given in Equation 3.1,
where π(a|s) represents the policy.

π(A|S) = P[At = A|St = S] (3.1)

Huang et al. [21] use the Stochastic Policy Gradient (SPG) [90] method to find an optimal
policy π∗. The learnable parameters of the agent are updated with gradient ascent so that actions
with higher rewards are more probable to be sampled [91]. Deterministic policy is also defined
as A = π(S), which means the current action of the agent is deterministic and depends only
on the current state. Deterministic policy is commonly used for applications with continuous
action requirement or extraordinary large discrete action space. In deeper layers of CNNs such as
ResNets [39], the number of discrete actions for channel pruning exceeds 103. However with
continuous action, there is only one value which is suitable for deeper and wider CNNs. In the
work of AMC [5], actor-critic based Deep Deterministic Policy Gradient (DDPG) agent is used.

GA based pruning: GAs are a class of evolutionary algorithms inspired from the process of
natural selection. In natural selection, species that can adapt well to changes in the environment
survive and go to the next generation, a concept also termed as survival of the fittest. Various
variants of GAs are available in literature. Using Non Sorting Genetic Algorithm (NSGA)-II [92],
mixed precision [15] and pruned [93] CNNs are derived. Channel pruning can be formulated as a
search problem, where redundant filters are pruned based on layer-wise compression ratios and a
magnitude-based heuristic. The pruning rates result in an integer number of remaining channels
for each layer. Pruning certain filters leads to large degradation in prediction accuracy, highlighting
different sensitivities for various pruning choices. Moreover, pruning makes large portions of
the total computations possible in a single tile, leading to schedule-dependent improvements in
latency. These aspects make the search space discrete and non-differentiable. GAs are useful
to tackle this search problem, as they are known to be resilient to noisy search spaces, quick to
prototype, and do not need smooth, continuous search spaces to perform well (gradient-free).
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This also relieves the burden of handcrafting a cost function to combine the multiple criteria
(accuracy, latency, OPs), by using NSGA-II, which follows a multi-objective Pareto-optimal
selection approach. This ultimately facilitates better design space exploration, and maintains
diverse non-dominated trade-off solutions which may fit different deployment scenarios.

The pruning problem at hand demands solving a multi-criteria optimization problem with two
opposing objectives. The aim is to find the layer-wise sparsity ratios such that the computation
effort in terms of number of operations or hardware estimate like latency is minimized. At the
same time, we need to ensure that this does not affect the prediction accuracy of task at hand.
Aggressive pruning leads to a drop in prediction accuracy, whereas, higher accuracy is costly in
terms of hardware. Hence, there is no unique best solution but a trade-off between accuracy and
latency has to be made. NSGA provides a set of pareto-optimal solutions that balances accuracy
and hardware estimate.

In Sec. 3.4, we incorporate execution metrics in AMC based RL pruning search [5] using
HW-model to obtain HW-aware pruning configurations. In Sec. 4.3, we also reduce the number
of GPU hours for try and learn based RL pruning search [21] by appending fine-tuning based
continuous reward.

3.1.3 Hardware Metrics for Model Inference

To understand the benefits in HW metrics for the compressed CNN model inference, we analyze
the following metrics.

Operations and Parameters: Without the knowledge of HW accelerator, the complexity of
CNN model inference can be measured by the total number of operations (OPs) and parameters
(Params). These metrics help the CNN designer to understand the possibility of CNN deployment
with latency constraints under peak utilization of compute units and memory blocks. In Sec.2.1,
we discussed the number of operations for different kinds of layers.

External Memory access: External memory is also refereed as off-chip, where the weight
matrix, inputs and partial outputs are stored. As the on-chip memory is limited (typically KBs
or MBs), weights and Ifmaps are loaded as tiles from external memory (typically GBs). The
amount of memory traffic measured in MBs between off-chip memory and on-chip memory is
refereed as external memory access. Due to the limited memory bandwidth in CNN accelerators,
the higher number external memory access creates stalls in the inference pipeline. The most
power consuming component of the CNN accelerator is the off-chip memory access. The
cost of accessing data from external memory is 200× more costlier than performing a MAC
operation [11].

Latency: The latency of the CNN is the time interval between the stimulation of the input
image and its response as prediction logits from the accelerator. The latency is measured in
milliseconds (ms). Inference latency depends upon various factors such as HW platform, software
environment, compiler tools, CNN architecture description and layer-wise quantization strategy.
The latency is fed to optimization pipelines through HW model based predictors, look up tables
or HIL measurements.

Throughput: The processing throughput is measured in Frames Per Second (FPS). Moreover,
the computational throughput is measured in Giga Operations Per Second (GOPS). Processing
throughput is an important metric to understand the effectiveness of batch processing or parallel
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execution of multiple layers. Computational throughput provides an understanding of pipeline
stalls and compute utilization of the accelerator.

Energy Consumption: The energy consumption of the CNN accelerator is determined using
the data movement costs at various memory hierarchies and compute cost in PE array. The energy
consumption is measured in Joules (J). The energy consumption depends upon various factors
such as HW architecture, CNN architecture, compiler tools and scheduling scheme.

3.2 Related Work

Based on the target optimization metrics, we classify pruning techniques in the literature into three
categories: HW-agnostic, HW-aware, and HW-modeling-based pruning techniques. Additionally,
we discuss HW-modeling works that compute the HW estimates of CNN accelerators in literature.

3.2.1 Hardware Agnostic Pruning

The advantages of pruning were investigated in early works such as [94, 95]. Subsequent works
determined the redundant weights based on an iterative method, without considering any target
hardware resource constraints, e.g. magnitude-based pruning [96]. Recently, He et al. [20]
pruned redundant filters using a geometric median heuristic. However, the efficiency term was
limited to the Pruning Rate (PR), i.e., the ratio of pruned to total parameters. The PR was set
constant to all the layers, which does not capture the energy or latency requirements of the
target inference HW. The work by Guo et al. [97], dynamically pruned CNNs irregularly based
on a saliency function during training to produce efficient networks. Recently, Frickenstein
et al. [98] proposed the auto-encoder-based low-rank filter-sharing technique (ALF), which
utilizes sparse auto-encoders to extract the most salient features of convolutional layers, pruning
redundant filters. ALF approximates weight filters of existing CNNs and thus, reduces the gap
between increasing hardware requirements of state-of-the-art networks and the constrained setup
of embedded applications. The authors of [4] proposed structured channel pruning, where the
saliency of individual channels is determined through Lasso regression. The pruning ratio for
each layer is based on handcrafted heuristics which targets lower proxy metrics such as OPs and
Params. In more recent works, automated pruning methods have gained popularity. Huang et
al. [21] uses the REINFORCE algorithm [99] to formulate layer-specific agents, which receive
the kernel matrix as a state and produce actions to prune exact filters. Different to other RL-agent
based pruning work [5], here the agent has a more complex task of learning the features of a layer
rather than simply its sparsity ratio. The agent’s reward is formulated using a multi-objective cost
function, which aims to find CNN models with both high accuracy and low proxy metrics. These
works do not search for a pruning configuration specific to particular target HW-platform but
instead identify redundant trainable weight parameters.

3.2.2 Hardware Aware Pruning

As HW platforms tend to be complex, the effects of arbitration, stalls, etc., may be severely
understated if HW estimations purely rely on proxy metrics such as OPs and Params. Moreover,
the highly complex design problem of task-to-resource mapping, dataflow scheduling, and
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memory management further complicates the issue of using simple estimation proxies. By
considering real HW metrics, HIL based compression pipelines have been used to verify the
advantages of CNN optimization techniques pragmatically [100, 22, 5]. NetAdapt [100] prunes
filters based on a pre-existing look-up table of HW metrics obtained ahead of time from a mobile
device. This is a costly approach, as building the look-up table is tedious and time consuming,
requiring the designer to execute all possible workloads and layer dimensions to be accurate
and complete. Furthermore, the look-up table is rendered useless once there are changes in HW
architecture or compiler updates. For this method to work, the HW would need to be decided
and readily available before the CNN optimization process starts. Another drawback to the
approach is that the pruning technique is performed in a layer-wise manner, which is susceptible
to local minima, as inter-layer effects on the hardware platform and prediction accuracy are not
considered. ChamNet [22] also adopts a look-up table strategy to estimate the latency with a
Bayesian energy predictor and performs neural architectural search. The predictors for the HW
metrics also require the ”ready-to-use” target HW platform to perform optimization. Furthermore,
if the target HW is changed, the effort to recollect the data for the new look-up table and the
Bayesian optimizer needs to be taken into account. HW-NAS-Bench [101] presents a dataset
to evaluate various CNN configurations on different HW platforms. The dataset is generated
by performing extensive real HW measurements on Neural Architecture Search (NAS)-specific
search spaces [102, 103]. Furthermore, the dataset does not cover exploration of HW specific
hyper-parameters which impacts the CNN compilation/scheduling procedures. The work in
AMC-AutoML [5] demonstrated an RL pruning agent, producing channel sparsity ratios for
each layer as its action after every episode. Based on the magnitude obtained from the L2-norm
heuristic and the sparsity ratio of each layer given by the RL agent, the redundant channels are
pruned. The work demonstrated results of both proxy metrics (OPs and Params) and HIL-based
timing evaluation using TF-Lite. Another HIL-based optimization technique, HAQ [13], resorts
to RL-based exploration to determine suitable, layer-wise quantization levels for weights and
activations in the CNN model. The realized mixed precision CNNs require dedicated processing
elements to derive benefits in HW metrics. The reward function, including real HW metrics, is
generated by directly executing the inference of a CNN model on a Field Programmable Gate
Array (FPGA) design which supports quantized computations [104]. In this chapter, we only
discuss channel pruning based compression as it eases out the additional HW implementation
effort.

3.2.3 Hardware Modeling

HW-modelling offers the CNN designer the ability to explore and modify specific details of the
accelerator, such as the memory hierarchy, PE dimensioning and the scheduling strategies to
obtain new estimates. These estimates guide the CNN pruning based search algorithms without
requiring the costly synthesized HW design. The deterministic nature of CNN inference execution
on hardware makes analytical hardware modeling an intuitive approach to simulate aspects of
the synthesis and deployment phases. Timeloop [105] is a HW-modeling tool that exploits
CNN execution determinism to offer accurate estimates of a given description. The strength of
modeling is to circumventing the need for cycle-accurate simulators and/or synthesized hardware
in the early phases of development. The tool provides the flexibility of changing the cost of
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operations (e.g. read, write, multiply-accumulate) and the memory hierarchy, among other design
parameters. Based on the data movement constraints set by the designer, the tool searches the
scheduling solution space in an exhaustive or randomly sampled manner, thereby providing the
HW estimates. The schedule search time could either last significantly long with exhaustive
search or lead to a sub-optimal solution with random sampling. Interstellar [106] proposes formal
dataflow definitions. Unlike Timeloop, the authors of Interstellar use the Halide programming
language to represent the HW-architecture and data movement constraints. The influence of
memory hierarchy and dataflows on energy efficiency and latency is investigated thoroughly.
MAGNet [107] considers various CNN architectures and hardware constraints generating an
optimal register-transfer level (RTL) and mapping strategy to execute the CNNs efficiently. It
explores various tiling strategies and dataflows by proposing a highly configurable processing
element array. Yang et al. [108] leverage a HW-model to estimate the energy requirements of
each layer. The layers with the highest energy contribution present a good starting point for the
pruning process, based on the L2-norm heuristic. However, energy estimates do not influence the
sparsity ratio directly. The work is also limited to optimizing normalized energy, but not latency,
which is an equally important parameter for real-time applications.

In Sec. 3.3 and Sec. 3.4, we remove the limitations of pure proxy and HIL-based neural
network pruning by introducing a HW-model for estimating the efficiency of CNN architectures.
Instead of exhaustive and random sampling search techniques, we analytically reduce the size
of the search space, and thereby the search-time, without sacrificing schedule efficiency. We
integrate the HW-model into compression pipeline using DDPG based RL search, GA search to
obtain efficient pruning configurations. In Sec. 3.5, we investigate an end-end HW-aware channel
pruning based CNN deployment pipeline for 3D object detection on NVIDIA-1080TI GPU.

3.3 Modelling Neural Network Accelerator

The core components in the HW-model of CNN accelerator are the compute and memory blocks.
Fig. 3.2 demonstrates an example deployment of a convolutional layer on a HW-model. In-order
to obtain HW-estimates, the layers of CNN need to be scheduled into memory blocks ensuring
minimal data movement at various levels of hierarchy. The tiles at the lowest level of memory
hierarchy are mapped into the compute block consisting of PEs. In Sec. 3.3.1, we discuss about
compute core and memory hierarchy of spatial CNN accelerators. We discuss about scheduling
(Sec. 3.3.2), mapping methods (Sec. 3.3.3) which reduce energy consumption and latency based
on the formulated model. Furthermore, we formulate the schedule search space and propose
analytical search method to generate HW estimates quickly in Sec. 3.3.4. In Sec. 3.3.5, we
explore different parameters of search space to determine efficient schedule and validate our
HW-estimates with Eyeriss [11] accelerator.

3.3.1 Compute and Memory Architectures

The compute block is defined by several parameters, including the number of PEs, interconnect
dimensions, register file sizes and quantization support. The register files in each PE can be
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Figure 3.2: Scheduling and mapping CNN workload on different components of HW-model.

specified according to their size and its partition for Ifmaps, Ofmaps and weights as shown in
Fig. 3.2 (top/right). Using these blocks, diverse compute architectures can be described.

A memory hierarchy can be created using generic memory blocks. Each block is accounted for
its position in the hierarchy by referring the memory below it and the level at which it is placed.
The highest level represents the largest memory, where all the data fits. Its usually refereed as
DRAM. Memories existing on the same level can hold replicated and/or unique data. Memory
blocks can be detailed with their total or datatype-wise segmented size. Below last-level memories
(i.e. SRAM as shown in Fig. 3.2), a compute block with an array of processing elements can
be instantiated. Finally, system-wide specifics can be set, such as clock rate, off-chip memory
bandwidth and the costs of multi-level memory accesses. For validating our HW-model, we use a
similar energy-cost model as the work in Eyeriss [11].

3.3.2 Scheduling Schemes

Inorder to obtain HW-estimates such as latency and energy consumption, the CNN model needs
to be scheduled and mapped onto the HW-accelerator. The energy contribution of data movement
cannot be disregarded for efficient execution of CNNs. For most cases, it constitutes the majority
of the total power consumption to execute CNN models. CNNs consist of convolutional layers,
which are commonly represented in a nested loop format, as expressed in Fig. 3.3. The for-loops
shown present many reuse opportunities.

The main computation is at the core of the inner-most loop and many elements are accessed
in multiple iterations of the higher loops. Specifically, reuse occurs when the indices of the
parameters involved in the inner-most computation remain fixed for some loops before iterating
in others. In HW, this translates to a single element being stored at a lower level memory for
multiple iterations before being purged to make space for new data. For optimal reuse to occur,
no single element should be read more than once from a higher level memory. This implies
that during all the iterations that a single element is involved in, all the other elements that it
is reused against also fit in the lower level memory. Practically, due to memory constraints,
the parameters required by the entire nested-loop do not fit in the lowest-level of the memory
hierarchy. A standard method of exploiting the entire hierarchy is to relax this constraint and split
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Figure 3.3: Nested for-loop representation of strided convolution.

the for-loops into shallower loops through a technique called loop-tiling. As shown in Fig. 3.2,
the loop tiling strategy effectively decides which tiles T ∈ {TCi , TCo , THo , TWo , TKw , TKh

, TB}
of CNN computation will take place in one round of communication with a lower level memory.
Note that TB is the tiling along the batch dimension when performing batch processing. The
tiling strategy is selected based on the amount of on-chip buffer Buf , respecting the inequality
in Eq. 3.2.

THi × TWi × TCi × TB︸ ︷︷ ︸
Input Tile

+THo × TWo × TCo × TB︸ ︷︷ ︸
Output Tile

+Kh ×Kw × TCi × TCo︸ ︷︷ ︸
Weight Tile

≤ Buf (3.2)

To generate an output tile with spatial dimensions TWo , THo with stride s and kernel k, an input
tile with spatial dimensions TWi , THi are required. The relation between input and output tiles is
given in Eq. 3.3.

TWi = (TWo − 1) · s+Kw

THi = (THo − 1) · s+Kh

(3.3)

The order of the loops can also be manipulated dynamically for each layer without affecting the
algorithm through loop-reordering. As an example in Fig. 3.3, loop Ci can be swapped with
loop Co, allowing a single element ci to reside longer on the lower-level memory while iterating
over all possible elements co ∈ Co. This can help extract improved reuse opportunities since
the lower-level loops remain on the lower-level memories of the hardware architecture, thus
closer to the compute units. This section considers three loop orders, namely Input Reuse Order
(IRO), Weight Reuse Order (WRO), and Output Reuse Order (ORO) schemes inspired by the
work in [109]. Switching dynamically between these three reuse schemes allows to schedule the
entire CNN exploiting the reuse opportunities of different layers. As an example, layers with a
very large kernel can benefit from ORO and WRO schedules, whereas layers with large feature
maps (e.g. the first layers of most conventional CNN) will benefit the most with IRO schedule.
This is refereed to as dynamic loop tiling. Finally, once a memory level is distributed spatially,
further loops can be unrolled over the parallelism degree offered by the hardware architecture
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through loop-unrolling. In Fig. 3.3, the kernel’s elements can be assigned to spatially distributed
processing elements, executing several Kw loop iterations in parallel during a single clock cycle.

Using the aforementioned strategies, the scheduler builds a matrix of possible tilings and loop
orders. Each potential solution in the matrix is checked for legality, by assessing whether its
transfer size breaches the memory restrictions at lower levels. The volumes V moved between
the memory levels are calculated based on the memory occupation and the number of invocations
required. To analytically reduce the size of the search space, a Computation-to-Communication
(CTC) hall-of-fame is constructed after the evaluation of all legal solutions, which contains
only a top percentage of the highest CTC loop tilings/orderings. Eq. 3.4 represents a CTC ratio
formula, inspired by the work in [110]. γ represents a bandwidth-correction term to account for
the burst-length of the memory transfers. The numerator is the number of operations/complexity
of a particular workload. The denominator is the overall DRAM access along with bandwidth
scaling for input, weights, and outputs for a particular workload.

CTC =
2 ·Ho ·Wo ·Kh ·Kw · Co · Ci∑

dtype γdtype · Vdtype
,

dtype ∈ {ifmap, ofmap, psum, weight}
(3.4)

The hall-of-fame solutions are passed on to the mapper. An analysis on the hall-of-fame size and
the efficiency of the final schedule produced is presented in Sec. 3.3.4.

3.3.3 Mapping Methods

In-order to derive the HW-estimates, the scheduled tiles must be mapped into the PE-array. We
refer mapping to dataflow between PE array and the last memory block in the hierarchy. In the
case of Eyeriss accelerator [11], the last memory block in the hierarchy refers to SRAM. Many
dataflow strategies have been explored in literature [11, 106]. Reuse opportunities in CNNs
include convolutional, weight, input, and partial sum reuse. In this work, we focus on three
dataflows, namely weight-stationary, output-stationary, and row-stationary. The weight-stationary
dataflow unrolls the dimensions TCi and TCo as PCi and PCo across the spatially distributed
computation array. Each PE holds complete kernels (Kw ×Kh) and corresponding input feature
slices. Spatial reduction of partial sums can occur inside the PE, however, accumulation across
input channels requires psum traversal over the spatial computation array. The output-stationary
dataflow similarly unrolls PCi and PCo , however, the psums remain stationary in each PE,
while input feature map pixels traverse the array and kernel pixels are updated once they are
exhaustively used over the tile. Finally, row-stationary as introduced in [11] unrolls the THo

dimension horizontally across the array as PHo. Each Kh column of PEs is responsible for the
complete computation of an entire row of the output Wo, while the neighboring set of Kh PEs
computes the output row below that. Folding and replication techniques are applied to fit this
unrolling method on the physical array dimensions. All three dataflows enable interleaving of
channel computation within a single PE to maximize the use of the register files.

The mapper analytically determines the viability of a particular dataflow, based on the HW-
details such as the interconnect dimensions, PE array size, and scratchpad configuration. The HW-
modelling framework attempts to find a mapping that optimizes a given criterion (energy, latency,
or a trade-off) while respecting the dataflow’s restrictions. As presented in Fig. 3.3, unrolling a
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subset of a loop’s iterations as P spatially distributed computations, improves execution time.
Assuming a filled pipeline, the latency of a layer ϕL can be estimated as the product of intertile
and intratile latency as shown in Eq. 3.5. The intertile latency is computed based on the number
of tiles required to transfer from off-chip memory to on-chip memory. Based on the PE unrolling
procedure of the tiles available in the on-chip memory, the intratile latency is calculated. In Eq. 3.5,
the kernel dimensions Kh and Kw are not tiled, as such granular tilings result in performance
degradation for modern CNN models with small kernel sizes.

ϕ̃L,interTile =

⌈
Co
TCo

⌉
·
⌈
Ci
TCi

⌉
·
⌈
Ho

THo

⌉
·
⌈
Wo

TWo

⌉
ϕ̃L,intraTile =

⌈
TCo

PCo

⌉
·
⌈
TCi

PCi

⌉
·
⌈
THo

PHo

⌉
·
⌈
TWo

PWo

⌉
·
⌈
TKh

PKh

⌉
·
⌈
TKw

PKw

⌉
ϕ̃L,total = ϕ̃L,interTile × ϕ̃L,intraTile

(3.5)

A particular mapping produces reuse factors for each datatype at different memory levels.
We denote a reuse factor with Rdtype

level, where level ∈ {Offchip, Onchip, Array, Registers}.
Reuse factors are dependent on tiling and unrolling strategies, as well as data interleaving [11],
where a single computation element switches between multiple sets of the same datatype in order
to extend the utilization of its registers. Once a legal mapping is found, the energy contributions
of each datatype at each memory level can be computed. Eq. 3.6 shows an example of the energy
consumption calculation at a particular memory level for a single datatype [11]. The read/write
cost term C of a particular memory level can be set based on the fabrication technology or a
relative normalized cost to other memory types in the hardware architecture. The energy estimates
of all datatypes at all memory levels can be calculated similarly and summed up to obtain the
total layer energy ϕE .

ϕE,Level(dtype) = (

Level∏
off−chip

R
dtype
level) · CLevel

∀ dtype ∈ {ifmap, ofmap, psum, weight}

(3.6)

Finally, the mapping found is fed back to the scheduler, determining whether the tiling factors
it provided were adequate. The possible combinations for legal schedules are evaluated and
compared. These two optimization problems are codependent, as a tiling strategy that optimizes
off-chip data movement may result in a mapping that under-utilizes the processing elements for a
particular dataflow and vice versa.

3.3.4 Search Space Formulation for Efficient Schedule

For HW-estimates, creating a complete schedule implies choosing a fixed set of tiling factors {TCi ,
TCo , THo , TWo} and unrolling factors {PCi , PCo , PHo , PWo , PKh

, PKw}. We restrict TKh
= Kh

and TKw = Kw, and therefore omit them from the tiling factors set. Modern CNNs employ small
kernel sizes, making it unreasonable to tile them during computation. Furthermore, tiling the
kernel dimension generates a large amount of partial sums which can quickly become parasitic
due to memory consumption and on-chip movement, if not collapsed into an output pixel. We
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can define two subspaces in the scheduling search space: tiling space T and mapping space P .
Eq. 3.7 defines the size of the subspaces. Ord defines the reordering possibilities of the outer
(off-chip memory) loops of the convolution. In this section, we consider three distinct orderings,
IRO, OROs, and WROs, relating to inputs, outputs, or weights being kept longer on the on-chip
memory respectively.

|T | = Ci · Co ·Ho ·Wo ·Ord
|Pτ | = TCi · TCo · THo · TWo · TKh

· TKw ∀τ ∈ T
(3.7)

|T | and |Pτ | represent the cardinality of the tiling space and mapping space associated with
a single tiling τ ∈ T respectively. Therefore, the size of Pτ is directly dependent on a single
solution τ = {TCi , TCo , THo , TWo , Ord} ∈ T . Restricting T directly reduces the number of
total Pτ searches necessary for finding a schedule. T may contain a single solution τ which
results in a single mapping ρ ∈ Pτ , that is optimal for the overall schedule, in terms of latency,
energy, or both. The trade-off in restricting the size of T is between schedule search speed and
the optimality of the found schedule. To avoid evaluating drastically sub-optimal tilings, we
analytically reduce the size of T , and maintain solutions τ , which have a higher probability of
producing efficient ρ mappings. The search for the optimal mapping ρ can also be expedited with
further sampling techniques.

A straightforward approach to restricting the search space is to uniformly sample equidistant
solutions in T . We choose uniform sampling over random sampling to consider, at a minimum,
a single candidate from each neighborhood in the search space. For fixed dimensions Ci, Co,
Ho, and Wo, the distance between two solutions depends on the sampling step. For small search
spaces, the sampling step can be set to a small integer value. Therefore, for all experiments on the
CIFAR-10 dataset, the sampling step was set to 2, effectively halving the number of tiles from
each dimension. For the larger CNN models, better suited for the ImageNet dataset, integer steps
are less effective. The size of a particular dimension Ci, Co, Ho, and Wo, varies greatly between
the first layer of the CNN towards the last. This makes the choice of a single integer step-size for
all dimensions either grossly large to maintain simulation speed or small to maintain optimality
at the cost of prohibitively increased search time. We use a ratio-based sampling to overcome
this problem, where the step-size is a fixed fraction of the total dimension. This decouples the
dimensions of the CNN from the number of τ mappings to be evaluated. We also allow each
dimension to have its own ratio, providing more flexibility in finely searching smaller dimensions
and coarsely searching larger ones. One more technique to aggressively reduce the search space
is to find all the factors (divisors) of a particular dimension and declare those as the possible tiling
factors. Since a factor will always give an integer number of tiles, this method usually leads to
near-optimal results and is scalable to larger CNNs.

The CTC ratio metric is elaborated in Sec. 3.3.2 for choosing a reasonable tiling solution.
Based on the intuition that a high CTC tiling solution τ could result in an efficient mapping, we
analytically reduce the search space by creating a CTC Hall Of Fame (HOF). In the first step,
we evaluate the CTC ratio for all τ ∈ T , which is a fast and parallelizable operation. A set
percentage of T with the highest CTC ratios among all the solutions is entered in the HOF. Only
members of the HOF have their respective P searched for mapping solutions.
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We have a total number of full schedule evaluations equal to
∑T

τ |Pτ |, which rapidly grows
with T , emphasizing the importance of good search space reduction techniques to maintain
reasonable search time, without cutting out the optimal solutions in the space.

3.3.5 Search Space Exploration for Hardware Estimates

We evaluate the HW-model by exploring the HW estimations using different kinds of data reuse
schemes. We improve the schedule search time for an efficient schedule and mapping solution by
systematically reducing the search space of the proposed HW-model optimizer using a detailed
ablation study in Sec. 3.3.4. An advantage of using HW-models over HIL-based methods is the
flexibility of prototyping and testing multiple target architectures before committing to a final
design for synthesis and fabrication. We report various HW configurations with different PE
array sizes, memory costs, SRAM buffer and register sizes in Tab. 3.1. Column 3 indicates the
data access cost from higher memory levels (DRAM) to lower levels (RF) relative to one MAC
operation. This section uses the HW-Flow-Val model with 16-bit word length to explore various
dataflows and compare the modeling estimates with Eyeriss [11] accelerator.

Hardware
Model

Architecture
Spec PE Array Memory Cost SRAM Register

DRAM, SRAM, Array, RF size Words
<KB> filter, ifmap, psums

HW-Flow - Val 16× 16 200, 6, 2, 1 128 192, 12, 16
Timeloop [105] 16× 16 200, 7.41, 0, 1 128 192, 12, 16

Eyeriss-like-168 PE (RS) 12× 14 200, 6, 2, 1 128 224, 12, 14
Eyeriss-like-256 PE (RS) 16× 16 200, 13.84, 2, 1 256 224, 12, 14
Eyeriss-like-1024 PE (RS) 32× 32 200, 155.35, 2,1 3072 224, 12, 14
Eyeriss-like-Deeplab (RS) 32× 32 200, 155.35, 2,1 3072 224, 37, 16

Table 3.1: Hardware configurations used for experiments and validation. RS refers to row-stationary
dataflow.

Tab. 3.2 shows the search time needed for different analytical search strategies to produce a
schedule. The quality of the search method can be measured by its corresponding mapping goal.
In the first three rows, we produce various schedules targeting different optimization goals. We
observe lower energy consumption or latency, when the search goals are changed accordingly.
Three different T sampling rates (5%, 10%, 20%) with 1% CTC-HOF are explored. We observe
that the normalized energy increases as we limit the exploration by increasing the sampling rate.
Based on the trade-off between evaluation speed (see Tab. 3.2), we sample the tile space with
10% for ImageNet experiments to obtain HW estimates for the pruning process. This results in an
overall shorter search time (up to ×2.5) at the cost of degradation in mapping optimization goal.
We also highlight the tile sampling method by computing divisors in Tab. 3.2. We observe that
the divisors-based sampling method produces a schedule with the lowest energy consumption.
However, this method could produce sub-optimal results in case of channel pruning when the
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agent finds prime-number of filters for a particular layer. For CIFAR-10 experiments, we use
smaller, integer steps of 2, as these CNNs have a small scheduling search space.

Search Strategy
Search DRAM Energy Energy Latency

Time [s] [×109] [×109] [×106cycles]

10% T , 1% HOF* 9.87 10.76 83.25 379
10% T , 1% HOF** 10.13 155.82 257.49 65
10% T , 1% HOF 10.23 11.06 91.89 67

5% T , 1% HOF 25.59 12.10 83.96 60
10% T , 1% HOF 10.23 11.06 91.89 67
20% T , 1% HOF 7.23 10.47 104.61 118
divisors T , 1% HOF 12.86 14.60 71.61 65

5% T , 100% HOF 215.42 12.10 83.96 60
5% T , 1% HOF 25.59 12.10 83.96 60
10% T , 100% HOF 23.03 11.06 91.89 67
10% T , 10% HOF 15.24 11.06 91.89 67
10% T , 1% HOF 10.76 11.06 91.89 67
divisors T , 100% HOF 51.47 9.67 72.44 65
divisors T , 1% HOF 12.86 14.60 71.61 65

All simulations were run with 24 threads on an Intel Xeon E5-2698 Process

Mapping goal : *energy, **latency, ***dram access

Table 3.2: Schedule search duration and optimality under different search space reduction strategies for
AlexNet on Eyeriss-like-256. All schedules optimize for a trade-off between latency and energy,
unless marked otherwise. Similar to Eyeriss [11], we normlize DRAM energy (column 3) and
total energy (column 4) to the cost of one MAC operation.

The sensitivity analysis of the CTC-HOF tile space reduction technique is shown in Table 3.2.
The results show that the (10% T , 1% HOF) strategy is very effective, providing a speedup
of 2.14× compared to (10% T , 100% HOF) schedule without sacrificing the optimality of the
schedule. Combining these methods is critical in maintaining a reasonable exploration time for
multiple pruning experiments. We finally use the sampling strategy (10% T , 1% HOF) with an
overall search time reduction of 20× compared to the search strategy (5% T , 100% HOF). Once
a HW-CNN pair is found, the HW-optimizer can run with a more exhaustive search strategy and
provide an improved schedule for the final deployment stage.

We demonstrate the HW estimates and compare them with ideal performance at peak compute
utilization and unbounded on-chip memory size. We obtain the ideal estimations for DRAM
access counts (indicated in red) by simply summing-up the layer-wise transfer volumes of Ifmaps,
Ofmaps and weights. These ideal assumptions in the initial phases of development allow the
designer to choose the CNN topologies that suit the application under consideration. We perform
the measurements for four CNN models, namely AlexNet, VGG-16, ResNet18, and ResNet152.
We observe that as the on-chip buffer size increases, larger tiles of input, weights, and outputs
can be stored on the buffer, thereby decreasing the number of DRAM Accesses. We observe
that the HW-model estimations for all the CNN architectures could meet the ideal estimations
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at higher buffer sizes (≥ 512KB). We notice that the HW-model estimations produce a higher
number of DRAM accesses, as the schedule must consider more complex design details and
constraints at this level. The AlexNet architecture achieves the least throughput (Ops/Cycle)
among other architectures, as a considerable number of operations and parameters are assigned to
fully-connected layers. The throughput produced at the HW-model considers the dataflow and
the underlying unrolling scheme and therefore achieves closer estimates compared to real target
deployment. We observe that the throughput saturates at 128KB buffer size for HW estimations of
different CNN architectures. A slight decrease in throughput happens for AlexNet and ResNet18
at scheduling for on-chip memories larger than 128KB. This is due to the schedule simultaneously
optimizing for inference energy (not shown in the figure) as the on-chip memory grows.
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Figure 3.4: Analysis of DRAM Access and Throughput on varying the on-chip buffer size and different
CNN architectures.

The row-stationary (RS), weight-stationary (WS) and output-stationary (OS) dataflows are used
to explore the HW estimates. The mapper searches for a trade-off between normalized energy and
latency while respecting each dataflow’s unrolling rules, the HW’s memory and compute capacity
checks. We obtain the HW estimates for AlexNet and ResNet18 models for different on-chip
buffer sizes. We observe that the RS dataflow is the most energy efficient at all the buffer sizes.
This is due to RS maximizing the data reuse at the register-level, for all the datatypes [11]. OS
and WS dataflows maximize the compute utilization of PE arrays, albeit with higher normalized
energy requirements. The WS dataflow achieves higher throughput using larger buffer sizes
(≥ 32KB) for ResNet18.

To validate the correctness of estimates of the HW-model and mapping components, we
compare its estimates with the Eyeriss architecture [11] and its Timeloop model [105] for
AlexNet [31] inference, which has diversified kernel sizes, strides and input/output dimensions.
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Figure 3.5: Influence of dataflows selection on normalized energy and throughput of the HW accelerator.

Fig. 3.6 shows a breakdown of normalized energy contributions of each datatype at each memory
level for the convolutional layers. We observe that our HW-model tracks the original Eyeriss
results similar to Timeloop in Fig. 3.6. A slight offset is observed, which can be attributed to
small differences in the energy references used during the search. The overlapping line charts
show the latency estimates of both frameworks.
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Figure 3.6: Validation with the Eyeriss accelerator [11] and Timeloop [105]. Note: [11] does not report
layerwise latencies.
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3.3.6 Discussion

In this section, we formulated a HW-model of a flexible CNN accelerator and determined an
efficient scheduling scheme to generate HW-estimates. The HW-model requires specification of
compute and memory hierarchy. The off-chip communication scheduling requires exploration
of loop-parameters which influence different latency and energy contributions. In particular, we
have explored loop-tiling and loop reordering of the convolutional loop applied to all the layers in
the CNNs. These optimizations generate efficient communication and computation schedules for
different variants of the Eyeriss [11] accelerator. In-order to compute detailed HW-metrics, the
scheduled tiles are mapped onto the PE array using different different dataflows such as RS, OS
and WS. We formulate an energy cost model to compute the contributions of energy consumption
from different memory sources. We compute the number of processing passes to calculate the
latency of the accelerator. The aim of this chapter is to leverage the HW-estimates during the
compression loop to produce HW-aware CNNs.

To leverage the HW-estimates during the compression loop, it is important to reduce the sched-
ule search time to quickly provide feedback. HW-models in literature such as Timeloop [105]
only investigate uniform or random sampling based search. Thus, we realize different sampling
opportunities at various levels in HW-model to produce execution metrics. We explore the
effectiveness of sampling the tiling, interleaving space with respect to the schedule search time
and the final HW-metrics. We further understand the appropriate search heuristics based on the
CNN model and its workloads. Based on the study conducted in Tab. 3.2, we reduce the schedule
search time by 20× compared to uniform sampling procedure. The discussed model and reduced
search time in this section plays an important role to inject HW-awareness for the automated
RL-based pruning in Sec. 3.4. Furthermore, the usage of HW-model based estimates from this
section is not only limited to the procedure detailed in Sec. 3.4 but also applicable in Sec. 4.3, 4.4
and 4.5.

3.4 Hardware Model based Automated Pruning

Without loss of generality, in an L-layer CNN, the convolutional layer l ∈ {1, ..., L} receives
an Ifmap Al−1 ∈ RHi×Wi×Ci , where Hi, Wi and Ci indicate the spatial height, width and input
channels respectively. A0 is the input image I to the CNN, as shown in Fig. 3.7 (bottom). The
weights W ∈ RKh×Kw×Ci×Co are the trainable parameters of the individual layers, here Kh, Kw

and Co are the kernel dimensions and the number of output channels (filters) respectively. The
input Al−1 is convolved with the weights W l, where the kernels are moved over the input with
stride s. In detail, the task of the agent π is to prune the input channels Ci of the environment by
zeroizing the binary pruning mask Al = {0, 1}1×1×Ci×1. To select the most salient channels, the
Hadamard product� is applied, giving a sparse representation W̃ l ∈ RKh×Kw×Ci×Co = W l�Al.
Referring to Fig. 3.7, zeroizing an input channel in the lnth layer will zero out the corresponding
output feature map from the ln−1 layer. Consequently the kernels of all filters in the ln−1 layer
are also zeroed-out. Channel-wise pruning removes several weights from the CNN at once,
causing a significant loss in accuracy. To mitigate this negative effect and guarantee an energy
and latency efficient compression, the learning-based agent π has to learn good actions Al. In
this section, we complement well-established proxies, such as OPs and Params count, with
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more elaborate HW-model based estimates, which are conducive to finding efficient CNNs for
embedded applications.
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Figure 3.7: Overview of automated pruning using HW-model. The CNN environment (bottom) is pruned
by a RL agent (right).

3.4.1 Hardware Model based Channel Pruning using RL

The DDPG agent’s architecture, including the actor and the critic, is adopted from He et al. [5].
The agent is augmented with key rewards and state information, allowing it to understand the
influence of its pruning actions on the inference hardware with respect to the energy estimates ϕE
and the latency estimates ϕL as elaborated in Sec. 3.3. The newly adapted state S is composed of
the following layer information of the environment’s f : the index of the layer l, stride s and the
layer dimensions after pruning C̃o, C̃i,Wi, Hi. It should be noted that the estimates ϕ obtained
from the HW-models are considered to be part of the state S, where ϕ = [ϕ0, ..., ϕl, ..., ϕL]
ensembles either layer-wise energy estimates ϕE or latency estimates ϕL. As expressed in Eq. 3.8,
the action Al−1 is applied for composing the input state S of the agent.

S l =< l, s, C̃o, C̃i,Wi, H, ϕ
l,

l−1∑
i=0

ϕi,

L∑
j=l+1

ϕj ,Al−1 > (3.8)

In this section, the agent is trained using one of the two reward functions, either the estimate
balanced or estimate constrained reward function, as defined in Eq. 3.9. The balanced reward
of Eq. 3.9 is inspired by [21]. When the HW-constraints are unknown in the early stages of the
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design, the reward function can be formulated to achieve at least a target accuracy ψ∗ before
optimizing the performance estimate term. A trade-off between the accuracy term (1−(ψ∗−ψ)/b)
and the estimate term log(ϕ∗/ϕ) after each pruning action is the goal of the estimate balanced
reward function. Parameter b influences the turning point between a negative and positive reward
R, encouraging the agent to improve the accuracy when the difference between ψ∗ and ψ is larger
than b. When this condition is met, the agent starts to optimize the trade-off between accuracy and
hardware estimates. This reward can also be extended to optimize multiple KPI’s by appending
several logarithmic terms. The estimate constrained compression improves the reward R by
maintaining higher prediction accuracy ψ after each pruning action. This encourages the agent to
prune the CNN model while minimizing the accuracy degradation when the HW-constraints are
strictly stipulated.

R =

{ (
1− ψ∗−ψ

b ) · log
(
ϕ∗

ϕ

)
, if balanced

ψ, otherwise constrained
. (3.9)

The estimate term in the reward represents the benefits obtained from pruning with respect to
the HW-model µ, giving the estimate ϕ∗ of the unpruned base model and ϕ after each episode of
the agent.

3.4.2 Pruning with Proxy Metrics and Hardware Estimates

The experiments in Tab. 3.3 serve as an example on how the HW-estimates can improve the
optimal task-to-resource mapping. In Tab. 3.3, we evaluate pruning configurations for ResNet56
on CIFAR-10 dataset and ResNet50 on ImageNet dataset.

Prune configuration Acc PR Memory Energy Latency
(< constraint >) [%] [%] [MB] [×109] [×103cycles]

ResNet56
Baseline (not pruned) 93.59 - 1.69 3.76 2350
-50% Ops *; 93.03 50.00 1.21 2.08 1219
-50% Energy*; 93.14 54.00 1.11 1.88 1159
-50% Latency*; 93.24 50.89 1.15 2.05 1176

ResNet50
Baseline (not pruned) 76.06 - 51.00 361.12 206873
-50% Ops *; 73.25 50.00 22.67 178.55 103968
-50% Energy*; 73.69 49.82 24.12 180.91 104411
-50% Latency*; 74.35 49.68 25.62 180.93 103576

(matched constraint)

Table 3.3: Constrained and balanced pruning configurations on ResNet variants, compared to other works
in literature. HW estimates measured on Eyeriss-256.

We search for pruning configurations to reduce 50% of the OPs , 50% of the energy and 50% of
the latency and report the estimates in the subsequent rows. We observe that the target constraints
are met for all the pruning experiments. Consequently, the HW-aware pruning experiments
preserves the network’s accuracy equivalent to the OPs based pruning configurations, while
achieving optimal constrained estimates. For ResNet56, the energy and latency constrained
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solutions produce 0.11 pp and 0.21 pp better prediction accuracy compared to the work in OPs

constrained pruning configurations with improved HW estimates. For ResNet50, the energy and
latency constrained solutions produce 0.44 pp and 1.10 pp better prediction accuracy compared
to the work in OPs constrained pruning configurations.

3.4.3 Pruning for different hardware dimensions

To emphaisze the importance of HW-models, we consider the three candidate Eyeriss-like
hardware accelerators with 168, 256, and 1024 PEs. In this experiment, the agent performs
pruning based on the two types of reward functions proposed in Eq. 3.9, namely estimate
constrained and balanced.

Estimate Constrained: The agent is tasked with pruning the ResNet56 model trained on
CIFAR-10 such that it meets a given fixed constraint while minimizing the accuracy degradation
of the compressed network. The constraint is set to 50% energy or latency reduction relative to
the baseline leader, i.e. the accelerator which performs the best for the target metric. The results
in Tab. 3.4 show several interesting trends. We observe that the 168 PE variant is the baseline
leader for energy-constrained pruning and the 1024 PE accelerator as a baseline leader for latency
constrained pruning. With 1024 PEs, there is an ample capacity to improve latency, requiring a
lower pruning rate to meet the application constraint. Conversely, the CNN can be pruned more
effectively for 168 and 256 PEs when considering an energy-constrained application. For both
cases, choosing the correct hardware platform results in a pruned network with higher accuracy.
These critical observations can facilitate the choice of a suitable hardware for a given application
constraint.

Prune configuration Acc PR Energy Latency
(< constraint >;< level >;< hw model >) [%] [%] [×109] [×103cycles]

Baseline (not pruned); Fine; 168 PE - RS 93.59 - 3.72 3377
Baseline (not pruned); Fine; 256 PE - RS 93.59 - 3.76 2350
Baseline (not pruned); Fine; 1024 PE - RS 93.59 - 5.52 588

Target Energy (-50%)**; Fine; 168 PE - RS* 92.63 58.16 1.85 1644
Target Energy (-50%)**; Fine; 256 PE - RS 93.14 54.00 1.88 1159
Target Energy (-66%)**; Fine; 1024 PE - RS 91.09 75.22 1.88 170

Target Latency (-92%)**; Fine; 168 PE - RS 86.89 93.14 0.40 269
Target Latency (-87%)**; Fine; 256 PE - RS 89.66 87.94 0.59 306
Target Latency (-50%)**; Fine; 1024 PE - RS* 92.92 52.68 3.07 294

*: Baseline leader — **: reduction required to meet constraint — (violated constraint) (matched constraint)

Table 3.4: Pruning ResNet56 on CIFAR-10 using estimate constrained rewardR on Eyeriss-like accelera-
tors.

Estimate Balanced: As detailed in Sec. 3.4.1 and Eq. 3.9, the balanced estimate reward
encourages the agent to maintain the target accuracy ψ∗, while minimizing the estimates ϕ. Here,
ψ∗ and b are set to 0.5, 0.125 respectively. From Tab. 3.5, we observe that all the configurations
optimized for energy and latency undergo minimal degradation in prediction accuracy with
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different latency and energy estimates. The Eyeriss-like 168 PE configuration achieves the best
energy, whereas 1024 PEs achieves the best latency.

Prune configuration Acc PR Energy Latency
(< reward >;< level >;< hw model >) [%] [%] [×109] [×103cycles]

Baseline (not pruned); Fine; 168 PE - RS 93.59 - 3.72 3377
Baseline (not pruned); Fine; 256 PE - RS 93.59 - 3.76 2350
Baseline (not pruned); Fine; 1024 PE - RS 93.59 - 5.52 588

Energy balanced; Fine; 168 PE - RS 91.94 69.14 1.41 1309
Energy balanced; Fine; 256 PE - RS 92.56 62.22 1.61 913
Energy balanced; Fine; 1024 PE - RS 92.30 62.09 2.69 238

Latency balanced; Fine; 168 PE - RS 92.64 56.50 1.94 1658
Latency balanced; Fine; 256 PE - RS 92.58 59.75 1.69 975
Latency balanced; Fine; 1024 PE - RS 92.97 57.14 3.18 276

Table 3.5: Pruning ResNet56 on CIFAR-10 using the estimate balanced reward function on Eyeriss-like
accelerators.

3.4.4 Pruning for different dataflows

The following experiment is performed to evaluate the relationship between effective pruning
configuration with different dataflows. We compare the target hardware model, with 256 PEs,
against two variants with identical specification, except for their dataflows. Here, the three
dataflows, weight-stationary (WS), output-stationary (OS), and row-stationary (RS), described in
Sec. 3.3.3, are compared in their potential for improved execution of pruned CNNs.

Prune configuration Acc PR Energy Latency
(< constraint >;< level >;< hw model >) [%] [%] [×109] [×103cycles]

Baseline (not pruned); Fine; 256 PE - OS 93.59 - 5.87 1960
Baseline (not pruned); Fine; 256 PE - WS 93.59 - 5.77 1991
Baseline (not pruned); Fine; 256 PE - RS 93.59 - 3.76 2350

Target Energy (-68%); Fine; 256 PE - OS 91.84 72.05 1.88 584
Target Energy (-68%); Fine; 256 PE - WS 90.06 84.53 1.75 1308
Target Energy (-50%); Fine; 256 PE - RS * 93.14 54.00 1.88 1159

Target Latency (-50%); Fine; 256 PE - OS * 92.91 52.11 3.06 981
Target Latency (-51%); Fine; 256 PE - WS 84.17 96.20 0.71 1612
Target Latency (-58%); Fine; 256 PE - RS 92.36 61.05 1.72 984

*: Baseline leader — (violated constraint) (matched constraint)

Table 3.6: Constraining dataflows relative to 50% of the baseline leader (RS for energy and OS for latency).

The baseline estimates of the unpruned network show the energy and latency variation caused
by dataflows (Tab. 3.6). All three dataflows present unique non-dominated solutions for baseline
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energy and latency. Similar to the estimate constrained experiment, we set the constraint with
respect to the baseline leader dataflow. RS results in the lowest baseline energy, whereas the
OS has the lowest baseline latency. We can observe that the agent obtains minimum accuracy
degradation for RS when constraining for energy. When constraining for latency, the agent
achieves better accuracy for OS and RS. WS demands higher pruning rate when constraining
both energy and latency thereby resulting in lower accuracy (marked as red in Tab. 3.6). Thus, we
can conclude that the row stationary dataflow is an optimal mapping scheme to achieve efficient
energy and latency.

3.4.5 Pruning DeepLabV3+ for Semantic Segmentation

Using the HW-model estimations, we prune DeepLabv3 [35] (using ResNet18 backbone) on
the CityScapes [2] dataset. For the DeepLab-based CNN, the bottleneck layers consist of two
residual blocks with a dilation rate of 2 and an Atrous Spatial Pyramid Pooling (ASPP) block
with dilation rates {1, 8, 12, 18}. To obtain HW-estimates for dilated convolutional layers, we
adapt the row-stationary dataflow. The rows of PEs responsible for the dilated parts of the kernel
can either be clock-gated or removed from the logical mapping. This implies that the diagonal
reuse of input pixels across the spatial array is disrupted. This phenomenon is equivalent to a
regular convolution with a large stride, where not every row of the input feature is shared directly
with the diagonal neighbor PE [11]. Nevertheless, a non-direct neighbor PE may still reuse the
Ifmap row. In this case, the potential to reuse an Ifmap row at the PE array-level depends on the
degree of unrolling PHo, the dilation rate, and the stride. We use an Eyeriss-like architecture with
a large PE array to perform inference of the DeepLabv3 model. In Tab. 3.7, we highlight that the
DeepLabv3 cannot be scheduled on the standard Eyeriss architecture [11] (Eyeriss-168). This is
due to the Ifmap register files being dimensioned to hold at-most 12 pixels at a time (see Tab. 3.1),
which is a decision made by the designers in [11] to support the largest kernel size row in AlexNet
(11 pixels). The dilated convolution layers in DeepLabv3, can have up to 36 pixel rows at a
time, for a 3×3 kernel with a dilation rate of 18. Increasing the PE array dimensions would not
resolve this issue, as it is inherent to the pipeline and dataflow constraints of the Eyeriss-like
architecture. We increase the Ifmap register sizes to 37 pixels per PE (i.e. 36 + 1) to make all
layers schedulable on the accelerator and obtain baseline estimates.

Prune configuration mIOU PR Memory Energy Latency
(< reward >;< level >;< hw model >) [%] [%] [MB] [×109] [×106cycles]

Baseline (not pruned); Eyeriss-like 168 PE 69.68 - 33.26 NS NS
Baseline (not pruned); Eyeriss-like 1024 PE 69.68 - 33.26 NS NS
Baseline (not pruned); Eyeriss-like-Deeplab 69.68 - 33.26 1541 267.4

Ops Constrained (Ours); Eyeriss-like-Deeplab 69.69 50.00 25.48 954 174.9
Energy Constrained (Ours);Eyeriss-like-Deeplab 69.88 51.90 29.05 820 161.5
Latency Constrained(Ours); Eyeriss-like-Deeplab 69.79 60.36 16.87 677 119.6

(NS: Not Schedulable) (matched constraint)

Table 3.7: Pruning DeepLabv3 on the CityScapes dataset.

We constrain the number of operations, energy, and latency during the pruning process to
50% as shown in Tab. 3.7. There is no degradation in the mIOU (mean intersection over union)
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evaluation metric for different pruning constraints. We could derive that the unpruned DeepLabv3
model is over-parameterized for the CityScapes dataset. We observe that a higher pruning
rate is required to constrain latency to 50%. We highlight the pruned models’ effectiveness by
demonstrating the semantic predictions on three sample images of the CityScapes dataset in
Fig. 3.8. We observe that the pruned models could produce better predictions (terrain in column
1, bikers in column 2, motorcycle and terrain in column 3) due to their higher generalization
capability. By analyzing the layer-wise pruning ratios for different target constraints, we observe
that the agent heavily prunes the ASPP and decoder blocks. For energy-constrained pruning, the
agent only finds redundant operations in the decoder blocks.

3.4.6 Discussion

In this section, we propose a HW-model based automated pruning approach using RL-agent.
We formulate the search space using the channel pruning to easily obtain HW-benefits without
specialized implementations. We augmented the HW-estimates obtained from the models as
discussed in Sec. 3.3 to the state input of the RL-agent. We explored two kinds of rewards, namely
the constrained and balanced formulations in Eq. 3.9. We replace the proxy estimates such as the
OPs and Params to HW-estimates with energy and latency in the state and reward formulations.

Using the RL-agent, we conduct detailed experiments to highlight the benefits of HW-aware
compression from Sec. 3.4.2 to Sec. 3.4.5. We derive energy-aware and latency-aware CNN
models for CIFAR-10 and ImageNet datasets in Tab. 3.3. By incorporating HW-estimates in
the compression loop, we are able to obtain lower energy and latency with minimal change in
the prediction accuracy. We explore various HW-configurations with different PE and on-chip
memory sizes in Tab. 3.4. We show that the pruning rate varies based on the HW configuration
to satisfy a given target constraint. We also access our pruning framework on different dataflow
configurations for a given HW-constraint. We observe that the RS, OS dataflows require lower
pruning rates to satisfy energy and latency constraints in Tab. 3.6 respectively. Finally, we observe
the effectiveness of our HW-model based pruning on the task of semantic segmentation. Using
HW-model exploration, we dimension our accelerator such that all the layers for the DeepLab
model have valid schedules. We finally derive energy and latency aware Deeplab architectures
using our pruning framework. Throughout the experiments, we highlight the need to provide
HW-estimates during the compression loop and realize HW-friendly CNN models which execute
efficiently on the target deployment platform. We also establish a similar HW-aware compression
pipelines in Sec. 3.5 and Sec.4.5.

3.5 HIL based Pruning for LiDAR Processing

Over the last decade, several CNN based architectures have been proposed for object detec-
tion. While object detection CNN architectures were originally proposed for image data [111,
48, 112, 113], there have been several advances in investigating their applicability to LiDAR
point clouds [114, 115, 116, 117, 118, 119, 120, 121, 24]. While images provide dense 2D
measurements, 3D localization is challenging due to loss of the depth dimension during image
creation. LiDAR point clouds are an intrinsically 3D data that capture rich geometric information
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Figure 3.8: Qualitative results for pruned models on different scenarios in the CityScapes dataset. Black
regions are unlabeled in the original dataset.

such as shape and scale. Due to the geometric and sparse nature of point clouds, they require
extra processing and transformations to make use of conventional 3D object detection pipelines.
The models used are typically compute- and memory-intensive with strict latency constraints,
hindering their deployment in resource-constrained environments. The automation of CNN
pruning for hardware deployment allows the exploration of the pruning configurations in terms
of hardware estimates. Inorder to obtain HW-friendly CNN configurations on general purpose
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accelerators such as GPUs, it is important to incorporate latency measurements in the RL-based
pruning approach. This can be performed using HIL approach during the optimization phase as
discussed in this section.

3.5.1 LiDAR based 3D object detection

Current approaches for LiDAR based 3D object detection are either raw point-cloud based [118,
122, 123, 124], discretization based [117, 115, 125, 126], or fusion based [117, 116]. These
approaches differ mainly in their point-cloud processing and model architecture, offering several
design choices with a trade-off between accuracy and efficiency. Point cloud is an unordered set
of points P = {(x, y, z, r)i}Ni=0 where N is the total number of points, r is the reflectance and x,
y and z are the spatial coordinates in the 3D space. This is why LiDAR-based approaches differ
from image-based methods by the requirement of a point cloud encoder which is responsible
of transforming the sparse point cloud P = {(x, y, z, r)i}Ni=0 to a dense representation I ∈
RW×H×C .

A common approach that was already mentioned in the context of fusion-based approaches
is the projection of statistical handcrafted features extracted from the point cloud on a 2D
representation. ComplexYolo [121] is the adaption of the well-known 2D YOLO detection
method for the 3D application use case. ComplexYolo projects the point cloud using the Bird’s
Eye View (BEV) plane projection. Each element in this representation has 3 channels describing
the maximal height, intensity and density of all points that project to that grid cell. The backbone
and detection head are adapted versions from the 2D-based YOLO network giving the ability to
regress 3D bounding boxes from projected point clouds. The main limitation of LiDAR-based
approaches with handcrafted projected representations is the considerable information loss mainly
on the vertical axis resulting from dropping many data points (due to projection of point cloud on
the ground plane) and also from handcrafted feature space design.

A different approach is the generation of voxel-based volumetric descriptions of the point
cloud that preserve the 3D nature of the input feature space. VoxelNet [115] uses a volumetric
representation of the point cloud data. However, instead of using hand-crafted statistical features
for each voxel, it applies a PointNet on all points within each non-empty voxel to extract a
voxel-wise learned feature representation. The obtained volumetric feature maps are processed
using 3D convolutions followed by a region proposal network to predict the final detections.

In order to speed up the feature extraction process even more, PointPillars [24] replaces the
volumetric voxel representation with a pillar representation by collapsing the height dimension
already at the initial stage. Similarly, pillar-wise feature descriptions are extracted directly from
raw points within each non-empty pillar. The obtained representation is a 2D image-like data
structure. The main advantage of this representation is to drop the need for 3D convolutions
which are costly in terms of runtime. We compare ComplexYolo [121], VoxelNet [115] and
PointPillars [24] based CNN architectures in Tab. 3.8.

3.5.2 End-End pruning pipeline

The RL-based pruning approach discussed in Sec. 3.4, allows reduction of model complexity
either based on proxy estimations or HW-estimates. However, the compression of the resulting
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Model Encoder Detection Advantage/limitationtype Method Head
Complex-YOLO [121] Handcrafted, projection projection in BEV

grid (height, inten-
sity, density)

YOLO High inference speed, rel-
atively good detection ac-
curacy

VoxelNet [115] Learned, voxel-based voxelization in 3D
grid, voxel-wise
feature extraction,
3D convolutions

SSD better accuracy than pillar-
based encoding but costly
3D convolutions

PointPillars [24] Learned, pillar-based pillarwise feature
extraction, 2D
backbone

SSD faster than other learned
encoders for comparable
accuracy

Table 3.8: Summary of popular LiDAR-based object detection models.

CNN graph for HW deployment using proxy estimations has lower HW-benefits compared to
the baseline implementation. In order to get a reduction with respect to inference latency, the
over-parameterized graph with pruned masks is translated to a slim graph with less parameters
and connections.

To automate network pruning with HIL, the proxy-based estimations are substituted with
a client that communicates with a HW setup dedicated for model inference (Fig. 3.9). The
client sends a serialized CNN model definition that is parsed by the inference setup. The over-
parameterized model along with pruning masks are translated into a slim model which is then
executed by the hardware accelerator. After several warm-up inference cycles, the compiler
optimizations converge and the accuracy of the pruned model is evaluated on the validation set.
The hardware measurement of latency and runtime memory for each CNN layer are profiled
during the inference step. The accuracy and runtime of the pruned model is returned from the
inference setup to the client for reward computation. Similar to Eq. 3.9, the reward function can
be expressed in terms of mAP and the HW latency measurements, as in Eq. 3.10.

RBalanced = (1− mapbaseline −mappruned

bound
) log

(
latencybaseline

latencypruned

)
(3.10)

3.5.3 Baseline models for 3D object detection

We train Complex-YOLO [121] and PointPillars [24] as baseline models. Complex-YOLO uses
DarkNet-19 as a backbone that is a popular feature extractor for YOLO-based detection models
known for its reduced complexity. The detection head of Complex-YOLO is an adapted version
of YOLOv2 [127]. It uses the mean squared error as a regression loss and the binary cross entropy
as a classification loss. The regression targets consist of the spatial coordinates and dimensions
projected to the ground plane (x, y, w and h) and the orientation angle characterized by its real
and imaginary parts. We use 3 anchor dimensions [1.6, 3.9, 1.56], [0.6, 0.8, 1.73] and [0.6, 1.76,
1.73] and two orientations 0 and π

2 . The height and z-coordinate are regressed in a handcrafted
manner using the anchor dimensions. ComplexYolo uses a handcrafted point cloud encoder. The
point cloud is projected to the ground plane in a 1024× 512 grid. Similarly to the original paper,
the considered point cloud ranges are [0, 40m], [-40m, 40m] and [-2m, 1.25m] respectively in
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Figure 3.9: Overview of the RL-based pruning method for efficient LiDAR point cloud inference. The
baseline classification model is pruned by an RL agent. The agent can directly observe the
effect of its pruning actions on accuracy and inference latency through a HIL setup.

the x, y and z directions. Each cell in the input grid is encoded with 3 attributes which are the
maximal intensity, the maximal height and the density of the points included in the grid cell. The
model is trained for 100 epochs with a batch size of 16.

PointPillars uses the same backbone and detection head as VoxelNet [115]. The PointPillars
encoder uses a pillar-based representation for the point cloud. Similar to the original work [24],
the considered point cloud ranges are [0, 69.12m], [-39.68m, 39.68m], and [-3m, 1m] respectively
in the x, y and z directions. The used input grid resolution is 432 × 496. Tab. 3.9 compares
the complexity and latency of Complex-YOLO and PointPillars baselines. We observe that
PointPillars is more computationally expensive than Complex-YOLO in terms of operations and
inference time due to its learned encoder in contrast to the handcrafted encoder of Complex-
YOLO. This encoder can be leveraged for pruning along with the backbone for better compression
performance. However, note that the number of parameters of Complex-YOLO is much higher as
its deeper layers have a higher number of output channels (1024, 2048) than PointPillars (256).

Model Complexity (GFLOPs) #params Runtime Memory (MBs) Latency (ms)

ComplexYolo 50 33.8 M 674 7

PointPillars 62 4.8 M 1502 19

Table 3.9: Model Complexity for the baseline Complex Yolo and Point Pillars based CNN models for 3D
object detection.
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Model Car Pedestrian Cyclist
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

ComplexYolo 85.80 78.12 78.91 35.53 38.96 35.55 76.70 71.23 65.17

PointPillars 89.59 89.14 89.14 63.22 61.1 58.52 80.83 72.83 69.86

Table 3.10: mAP according to BEV IoU for explored models on the validation split of KITTI.

Tab. 3.10 compares the mAP in BEV for the Complex-YOLO and PointPillars models. We ob-
serve that PointPillars has the higher mAP values with different difficulty levels (Easy/ Moderate/
Hard) on the KITTI dataset [3]. Complex-YOLO also has a poor performance in terms of 2D
metrics as the height dimension and z-coordinate are not learned attributes, rather handcrafted
based on the chosen anchor dimensions.

3.5.4 RL Pruning using proxy metrics

This section obtains the pruning configuration based on FLOPs. In order to train the RL agent,
we perform 50 warm-up episodes and 250 training episodes. During the warm-up phase, pruning
ratios are set randomly. The used object detection model is highly sensitive to pruning. The
agent’s pruning actions with significant compression ratios often result in a mAP value close to
zero. A meaningful reward computation with the agent’s actions based on these mAP values is
challenging. We observe that one epoch of episode-wise fine-tuning recovers the mAP value,
thus enabling a better evaluation of the agent’s actions with the chosen reward formulation without
adding excessive GPU hours for exploration.
Reward Model. The reward formulation is an important aspect of an RL-based pruning setup.
In Fig 3.10, we compare the accuracy guaranteed reward model in AMC [5] and several variants
our balanced reward formulation (Eq. 3.10). We highlight the pruning exploration using a
scatter plot. The solutions obtained with early episodes and those obtained with late episodes
are shown in blue and red respectively. Fig. 3.10a shows the exploration of the agent with the
AMC reward model. The agent is more focused on accuracy and converges with an insignificant
reduction in FLOPS. The convergence areas obtained using the balanced reward model (shown
in Fig. 3.10b, 3.10c, 3.10d) deliver a better tradeoff between detection accuracy and model
complexity. This is due to the introduction of the accuracy bound, which reduces the contribution
of the accuracy term to the reward model. Using different accuracy bounds, we obtain different
convergence areas. When the bound value is higher, the convergence leads to lower model
complexity. The scatter plot for an accuracy bound of 0.125 (Fig. 3.10b) shows more solutions
converged in the right region indicating higher model complexity. Increasing the bound from
0.125 to 0.25 (Fig. 3.10c) shifts the convergence area to the left (lower model complexity) and
slightly to the bottom (lower accuracy value). Going beyond 0.25 (Fig. 3.10d) results in an
accuracy decay without any significant reduction in complexity.
Fine-Tuning. Additional fine-tuning is performed selectively for the Pareto optimal solutions
of pruning schedules for 30 epochs. In Fig 3.11a, we highlight the Pareto dominant solutions
(red) for the balanced reward with an accuracy bound of 0.25. The resulting design choices have
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(a) AMC reward model.
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(b) balanced reward b = 0.125
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(c) balanced reward b = 0.25
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(d) balanced reward b = 0.5

Figure 3.10: RL-based exploration with different reward bounds. The solutions in blue and red color
indicates the pruning configurations explored during early and final stages of RL search
respectively.

comparable baseline mAP with around 30-45% drop in complexity depending on the considered
design choice.
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Comparison with Uniform Pruning. In order to evaluate the effectiveness RL-based pruning,
we uniformly prune the baseline PointPillars model using the magnitude-based pruning heuristic
and layer-wise uniform pruning ratios. The uniform pruning ratios range from 0.1 to 0.9. The
resulting pareto-optimal uniformly pruned solutions are fine-tuned for 30 epochs and shown in
blue color in Fig. 3.11b. The comparison of the RL-based solutions (orange) with uniformly
pruned ones shows the dominance of the design choices given by the data-driven approach.
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(a) Baseline vs fine-tuned pareto optimal pruned
solutions.

0.2 0.4 0.6
65

70

75

80

85

90
Baseline mAP

Relative FLOPS

A
cc

ur
ac

y
(%

)
RL-Pruning

Uniform Pruning

(b) Uniform vs RL pruning.

Figure 3.11: Comparison of PointPillars [24] baseline and uniformly pruned solutions against an RL-based
approach with a reward formulation based on FLOPs reduction.

3.5.5 RL pruning using Hardware metrics

Automated pruning based on proxy metrics such as FLOPs significantly reduce the model’s
complexity with a slight degradation in the prediction accuracy. However, the reduction in FLOPs
does not always reflect a proportional latency reduction. Fig. 3.12 analyzes the latency and
number of FLOPs for each layer of the PointPillars baseline. Even though the first two layers have
comparable complexity to other layers, the profiling results show that their latencies are larger
than the subsequent layers. The first layer represents the encoder and its latency, as depicted,
is the sum of the latencies of the underlying operations. The encoder consists of dense matrix
multiplication, batch normalization, ReLU, max pooling and scatter operations. Furthermore,
the first layers involve a high volume of data transfer, resulting in a memory-bounded execution.
The computation of FLOPs does not take the HW execution aspects into consideration. A
FLOPs-based pruning setup will not distinguish the encoder from other layers in computational
complexity, which practically have much lower latencies.

The results obtained from the HIL setup are shown in Fig. 3.13. These solutions are obtained
with the same method as FLOPs-based pruning, and then fine-tuning the Pareto-optimal solutions
for 30 epochs. In Fig 3.13a, we show that the hardware-aware pruning configurations dominate
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3 Hardware Aware Neural Network Compression

Figure 3.12: Latency in milliseconds (top) and complexity in GFLOPS (bottom) for each layer of the
PointPillars model. The x-axis represents the layer numbers in both charts.

the uniformly pruned solutions. The HW-aware RL-based approach makes it possible to achieve
more accuracy for the same relative latency to the baseline. We obtain an improved mAP (66%
→ 78%) with a latency reduction of 59%. In Fig. 3.13b, we show that solutions obtained from
hardware-aware pruning dominate FLOPs-based pruning as well. Using the HW-aware pruning
approach, we observe a latency reduction of 59%, while the best latency reduction obtained for a
FLOPs-based setup is only 40% compared to the baseline.

We present a qualitative comparison between two models compressed with a HW-aware
pruning approach, offering 1.92× and 2.38× latency reductions, versus their baseline. Each row
of Fig. 3.14 is a scene, and we highlight the predictions of the point cloud on different models
in the columns. The ground truth bounding boxes is present in green and predictions in blue.
In the first row, we observe that both pruned models have equivalent qualitative predictions,
when compared to the baseline model. The scene in the second row involves a large number of
vehicles driving in both directions and parking on both sides of the road. The pruned model with
lower latency benefits (1.92×) performs similar to the baseline model. However, the aggressively
pruned model (2.38×) shows prediction quality degradation, where vehicles which are too far to
the left are not detected. In the third row, we observe that the pruned models are able to detect
cars which are not predicted by the baseline model. Even though the baseline predictions for
bounding box attributes are better in these cases (location and dimensions), this improvement
in delivering accurate bounding boxes which come at the cost of the inability to detect other
objects in the scene. In this case, pruned models show a better trade-off between classification
and regression attributes.
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Figure 3.13: Comparison of HW-aware pruned solutions with uniform and FLOPs based approaches. We
highlight the relative reduction in latency (x-axis) w.r.t. baseline.

Baseline model
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Pruned model(2.38×)

Figure 3.14: Qualitative results of baseline and two different channel pruning configurations.

3.5.6 Comparison to State of the Art

The comparison to the state of the art is challenging due to the use of different validation splits
and different inference hardware across various approaches. We use the validation splits similar
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to Complex-YOLO [121]. The latency measurements for our approach as well as Complex-
YOLO are performed on GTX 1080 Ti with a batch size of 8. The latency is measured for the
entire CNN model which includes the encoder, backbone and detection head. It excludes the
pre-processing and post-processing parts which are in general not specific to the used approach
and less computationally expensive. We directly adopt latency (also evaluated on GTX 1080 Ti)
and accuracy evaluation of [118], [116], [128], [129], [120] from [23] in Tab. 3.11. LiDAR-based
and fusion-based 3D object detection methods outperform Centernet [113] which is a recent
and popular image-based 3D object detection model. Compared to fusion-based methods such
as F-PointNet [118] and AVOD-FPN [116], voxel-based LiDAR-only systems have a reduced
model complexity. The point-based model Point-GNN [128] which uses graph neural networks
for point-wise feature extraction has the highest accuracy among all the considered models.
However, its inference time exceeds all other models by a large margin. PointPillars is at least
2.5× faster than other end-to-end trainable CNNs reported in Table 3.11. Our hardware-aware
pruned model based on the PointPillars baseline achieves 1.5× faster inference speed, while
maintaining competitive accuracy results.

Approach Modality Complexity Latency Car (BEV IoU) Car (3D IoU)
(GFLOPs) (ms) Easy Mod. Hard Easy Mod. Hard

Centernet [113] Camera 119.8 - 31.5 29.7 28.1 - - -

F-PointNet1 [118]
Fusion

- 170 90.58 84.73 75.12 82.13 69.22 60.78
AVOD-FPN1[116] - 100 90.64 84.37 80.04 82.77 71.94 66.31
Point-GNN1[128]

Lidar

- 643 92.04 88.20 81.97 87.25 78.34 72.29
Fast Point R-CNN1[129] - 95 89.97 87.08 80.40 85.39 77.46 70.21
SECOND1[120] - 50 89.39 83.77 78.59 83.34 72.55 65.82
PointPillars1[24] 62 20 - 87.98 - 84.05 74.99 68.30
PointPillars[compiler-aware NAS [23]]1 3.8 18 90.02 86.79 80.80 85.20 75.57 68.37
PointPillars [Ours] 19.8 13 90.18 88.13 80.29 85.42 76.20 68.50
Complex-YOLO [121] 50 7 85.80 78.12 78.91 - - -

Table 3.11: Comparison of our HW-aware pruned PointPillars model with the state-of-the-art 3D object
detection methods. 1 indicates that the accuracy and latency measurements are reported based
on the work on compiler-aware NAS [23].

3.5.7 Discussion

In this section, we propose an end-end HW-aware pruning pipeline for 3D object detection
using LiDAR data. The approach adapts the RL-agent from the work of AMC [5] to predict
the layer-wise compression ratios. A magnitude-based pruning is performed in order to reduce
the complexity of the baseline model. The compression pipeline includes a HIL setup which
translates the pruning configuration into a CNN graph with reduced parameters and connections.
This automated HW translation allows the evaluation of the accuracy and latency of the pruned
graph while taking into account HW-specific and compiler optimizations. A HW-aware balanced
reward model is formulated based on the measured values and used in order to train the agent.

The baseline model was trained using the implemented model exploration framework which
supports different point cloud encoders and anchor-based detection heads. PointPillars is an
end-to-end trainable CNN which uses a learned pillar-based encoder to extract features from the
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point cloud. It achieves around 11% better accuracy than CNN using handcrafted encoders such
as ComplexYolo in terms of mAP in BEV for the car class. Furthermore, it outperforms other
end-to-end trainable CNNs by at least 2.5× in terms of inference time.

The baseline model is further pruned using the HW-aware compression approach. During
the search process, the accuracy of each pruning configuration is scattered along with latency
to form a Pareto plot. We should also note that the pruned configuration is fine-tuned for one
epoch to realize the reward value. Iterative pruning and fine-tuning could result in enormous
amount of GPU-hours, especially for larger datasets such as NuScenes [130]. Therefore, we
reduce the number of GPU-hours using In-Train optimization techniques which is discussed in
Chapter 4. After the search is complete, different design choices can be obtained from fine-tuning
the Pareto-optimal solutions. The latency can be reduced up to a factor of 2.38× with competitive
accuracy values compared to baseline model. The obtained pruned configurations outperform
uniform solutions and FLOPs-based pruned models.

3.6 Conclusion

Optimization of CNNs and the design of resource-constrained HW platforms go hand in hand.
In this chapter, we introduce the three stage compression pipeline consisting of model-training,
compression and HW-evaluation. We point out the limitation of considering proxy estimates
during the compression loop and formulate HW-models to generate estimates such energy,
latency. We identify the challenges to schedule and map certain CNN workloads and propose
fast scheduling methods based on HW-heuristics. We leverage the estimates of the HW-model
for optimizing and exploring CNN models. With HW-aware pruning using HW estimates, we
achieved ×2 energy and latency reduction with minimal loss in prediction accuracy compared
to its baseline unpruned models. We extend the investigation to segmentation tasks, where
observations on pruning rates of decoder and ASPP blocks were made with respect to the pruning
target. DeepLabv3’s energy and latency were reduced by ∼50%, while improving the accuracy of
the baseline, over-parameterized model. We further investigated the accuracy-latency trade-offs
for LiDAR based CNN processing. We compressed the PointPillars baseline using an automated
HW-aware RL-based pruning approach. We obtained different design choices by fine-tuning the
Pareto-optimal pruned solutions. We reduced the latency up to a factor of 1.5× on NVIDIA GTX
1080 TI with comparable accuracy values. We also observed that the pruned models with HW
awareness outperform the uniformly pruned solutions as well as the RL-based pruned solutions
with proxy rewards.
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CNNs are challenging to deploy on a target HW with constrained resource budget. As discussed
in Sec. 3.1, the traditional model compression works have used the sequential three stage pipeline
to reduce the size of the models. All the stages require careful hyper-parameter tuning to obtain
optimal performance. Furthermore, modern CNNs increase the depth and width of the model
architecture to improve the prediction accuracy. This would increase the search space to find an
effective compressed configuration, resulting in high amount of optimization time. The major
computational effort in the three stage compression pipeline is spent for iterative fine-tuning of
every search candidate CNN to recover prediction accuracy. The prediction accuracy after fine-
tuning serves as a good metric to guide the search algorithm to produce near-optimal compression
configurations. In-order to atleast explore 100 compressed configurations on ImageNet dataset [1]
for ResNet18 [39], approximately 50 GPU hours are required using one NVIDIA-V100 GPU [15].
Furthermore, the compressed configurations found during the search must be re-trained/fine-tuned
till convergence again to report the validation/test accuracy.

In this chapter, Sec. 4.1 elaborates the need for huge number of GPU hours in the three stage
compression pipeline. Sec. 4.2 discusses related work on post-train/in-train compression methods.
We specifically contextualize these works to compare the trade-off between compression rates
and GPU hours. Sec. 4.3 introduces an approach on formulating a RL-agent which produces
channel pruning configurations with lower GPU hours. Sec. 4.4 highlights a novel training
scheme which produces sparse CNNs using learnable prune masks during the training process.
Finally, Sec. 4.5 discusses a novel training scheme incorporating HW-awareness to produce
mixed precision configurations. The chapter is based on the publications of Vemparala et al. [27],
Vemparala et al. [28] and Vemparala et al. [29].

4.1 Reducing GPU hours

4.1.1 Search space for Model Compression

We aim to obtain an efficient compression strategy for the CNN model with lower GPU hours.
Using pruning methods, we identify the redundant elements in the weight matrix W l for all layers
l ∈ {1, ..., L}. As discussed in Sec. 2.3.2, Sec. 3.1.1, we use prune masks to derive a sparse weight
matrix for each layer l as W̃ l = W l �Ml, where maskMl can have different dimensionality
based on the pruning regularity (Fig. 2.10). For irregular sparsity, the dimensionality of the
pruning mask is given by,Ml ∈ {0, 1}Kw×Kh×Ci×Co . For kernel pruning, the dimensionality
of the mask is given by, Ml ∈ {0, 1}1×1×Ci×Co . Subsequently, for channel pruning, the
dimensionality of the mask is given by,Ml ∈ {0, 1}1×1×Ci×1. Another way to find an efficient
compressed configuration is to perform model quantization. Using model quantization, each
convolutional layer l ∈ {1, ..., L}, can be assigned bit-widths for both weights and activations
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as {blw, bla}. Using bdtype bit-width, dtype consists of at-most 2bdtype unique values. For a bit-
serial accelerator such as BISMO [131], allowed bit-width range bdtype ∈ {2, 3, 4, 5, 6, 7, 8}.
Leveraging higher quantization levels in different layers, produces better task specific metrics for
the CNN model. On the other hand, using higher bit-widths for convolutions gets challenging to
execute on real-time HW due to resource/latency constraints.

The search algorithms discussed in Sec. 3.1.2 attempt to obtain efficient pruning and quantiza-
tion configurations, dominating the baseline CNN models in terms of prediction accuracy and
compression rates. The search space complexity for model pruning depends on the regularity. The
search complexity for simplest case, i.e. channel pruning is given by 2Ci

l. To obtain an efficient
mixed precision quantized CNN, the search space complexity for a flexible bit-serial accelerator is
given by |bw|l×|ba|l. Here, |bw| and |ba| refers to number of bit-width configurations for weights
and activations respectively. For commonly used CNNs such as ResNet18, the compression
search space consists of 719

2 × 264
5 × 2128

5 × 2256
5 × 2512

4
CNN candidates. Furthermore,

for deeper and modern CNNs, the search space grows exponentially larger. Therefore, in this
chapter, we investigate methods which reduce the GPU hours and still obtain efficient compressed
configurations with minimal degradation of prediction accuracy.

4.1.2 Iterative fine-tuning in Compression Pipeline

We intend to maximize the validation accuracy V alacc, minimize the HW-metrics HWmetrics

by searching for an efficient compressed configuration α. Evaluating a compressed configuration
could get challenging due to the inner loop optimization specified in Eq. 4.1. The inner loop
involves ensuring convergence in the training behaviour to determine optimal weights θ(α∗). The
outer loop involves searching for a near optimal compression configuration α.

α∗ = arg min
α

HWmetrics(TargetHW, f(x, θ, α))

α∗ = arg max
α

V alAcc with V alAcc = E(x,y)∼Dval [f(x, θ, α)]

θ∗ = arg min
θ
Ltrain(x, θ, α∗)

(4.1)

In-order to evaluate a compressed configuration α during the search stage, fine-tuning is performed
for few epochs to quickly evaluate the architecture. This becomes important to compression
methods like channel pruning, quantization which modify the architecture and impacts the
distribution of Ofmaps at every layer. Furthermore, for tasks such as object detection which
produces outputs from different branches, e.g. bounding box coordinates, classes, fine-tuning
becomes necessary to guide the search algorithm to achieve near optimal solutions [26]. In case of
quantization search on ImageNet dataset, approximatly half an epoch is needed to distinguish the
validation accuracy for various mixed precision configurations [15]. In case of channel pruning
search on KITTI [3], one epoch is needed to distinguish the validation accuracy (Sec. 3.5) for
various sparse models. The iterative fine-tuning becomes further essential when the complexity of
training increases, e.g. including multi-objective optimization tasks such as improving adversarial
robustness. Therefore, in this chapter we explore search techniques which reduce the number of
fine-tuning epochs (Sec. 4.3) and in-train optimization techniques (Sec. 4.4, 4.5) which consume
GPU hours similar to baseline model.
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4.2 Related Work

When the compression is performed after training the baseline model, this approach is referred
to as post-train compression. Recent works in literature identified limitations in terms of com-
putational effort for this approach and proposed to integrate the compression method into the
training phase to jointly optimize the weights, pruning connections and quantization choices. We
refer to these unified training and compression schemes as in-train compression. Related work in
post-train compression and in-train compression have been discussed in details in the subsections
4.2.1 and 4.2.2 along with the advantages and limitations of each approach.

4.2.1 Post-train Compression

Post-train compression usually adopts a standard three stage approach as discussed in Sec. 3.1. A
wide range of post-train pruning and mixed precision quantization strategies have been proposed
to determine near-optimal layer-wise compression ratios. Huang et al. [21] demonstrated a
try-and-learn RL-based filter-pruning method to learn both sparsity ratio and the exact position of
redundant filters, but it leaves out the number of fine-tuning epochs for every search candidate as a
hyper-parameter. Here, the compression strategy changes, depending on the model’s architecture
and the dataset at hand. In AMC [5], a DDPG based RL-agent is utilized in regular filter pruning.
The RL-agent provides the environment with a continuous action that can be defined as the
compression ratio of each layer. Based on the magnitude obtained from the L2-norm heuristic
and the sparsity ratio of each layer given by the RL-agent, the redundant channels are pruned.
However, in complex applications like object detection [26], AMC pruning requires fine-tuning
at every episode to efficiently explore the pruning search space.

ReLeQ [132], HAQ [13] and AutoQ [133] propose RL-based exploration schemes to determine
HW-aware layer-wise quantization strategies. ReLeQ searches for bit-width configurations only
for the weights of each layer, while HAQ searches for both weights and activations. AutoQ
determines a fine-grained quantization strategy for each filter in every layer. The reward function is
evaluated after executing the inference of the quantized CNN on a target HW. This involves finding
a bit-width strategy in a large search space, demanding high training effort due to the iterative
fine-tuning of every solution during the exploration. In APQ [14], a joint search is conducted to
determine model’s architecture, pruning, quantization configuration. The model configuration
is found through evolutionary search and achieves a remarkable reduction in search time as it
uses a quantization-aware accuracy predictor for the CNN to estimate accuracy of each candidate.
The accuracy predictor still needs to be trained in order to perform reasonable predictions of the
CNN’s accuracy under different quantization strategies. This incurs an additional overhead of
GPU hours when collecting the predictor’s training dataset. Furthermore, the accuracy predictor
is very costly to train (2400 hours required for ImageNet dataset) and needs to be retrained when
new CNN workloads or datasets are adopted. In Sec. 4.3, we extend the work of Huang et al. [21]
incorporating GPU-hour awareness by proposing an RL-agent which learns fine-tuning iterations
making it a hyper-parameter free method.
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4.2.2 In-train Compression

Post-train compression approaches can reduce the model size without a significant drop in predic-
tion accuracy. This helps in reducing energy consumption and storage during inference. However,
in-train compression approaches reduces the number of GPU hours required for optimization
process. There have been efforts to integrate the pruning process into the training phase to jointly
optimize the weights and pruned connections. The autoencoder-based low-rank filter-sharing
technique (ALF) proposed by Frickenstein et al. [98] utilizes sparse autoencoders that extract the
most salient features of convolutional layers. ALF discards filters in an unsupervised manner,
decides the sparsity ratio and location of pruned filters for each layer. ALF is limited to filter
pruning and does not support other pruning regularities. ALF also adds an additional expansion
layer which prohibits the extraction of inter-layer filter pruning benefits. Zhang et al. [134] present
a systematic weight pruning framework for CNNs, where pruning is formulated as a constrained
non-convex optimization problem subject to limiting the cardinality of weights in each layer,
resulting in a high degree of sparsity. By leveraging alternating direction method of multipliers
(ADMM), the optimization problem can be decomposed into two subproblems which are then
solved separately. The first subproblem uses Stochastic Gradient Descent (SGD) to optimize the
model weights θ with respect to cross-entropy loss and an adaptive regularization loss ρ

2‖θ−Z‖
2
F .

Z is a duplicate variable for weight matrix θ that satisfies the cardinality constraint |Z| <= n, n
denoting the number of non-zero values in the weight matrix. The second subproblem is solved
analytically by applying projection on Z such that it is closest to θ but still satisfies the cardinality
constraint. The authors subsequently extend their work in StructADMM [135] to structured
sparsity and provide analysis on row pruning, column pruning and filter pruning. Although
the task-specific and pruning objectives are solved simultaneously, there are some drawbacks
of this approach. This work requires prior knowledge of layerwise sparsity ratios from other
pruning works which might not always be available. The cardinality constraint is not guaranteed
to be met which might require hard pruning at the end, relying again on the magnitude heuristic.
Furthermore, to ensure convergence, initialization of the duplicate variable Z plays a vital role.
ADMM [134] uses pre-trained model weights to initialize Z.

Sparse learning or training sparse networks from scratch [136, 137, 138] can also be considered
as an in-train pruning technique, which has achieved extremely high pruning rates with negligible
accuracy degradation. This method does not require a pretrained dense model and the network
topology is updated during training through pruning and regrowing connections. Parameters
are pruned based on magnitude and grown back at random [136] or based on gradient [138]
or momentum [137] information. However, these methods often require predefined layer-wise
sparsities and are mostly effective in reducing model size through weight pruning, rather than
focusing on the HW advantages through structured pruning. In Sec. 4.4, we aim at eliminating
the need of a pretrained model and devise a method that can learn the layerwise sparsities on its
own, given the target sparsity for the entire model.

WaveQ [139] formulates a gradient-based optimization problem by introducing a sinusoidal
regularization loss, pushing the weights to optimal quantization levels. However, the quantization
level of activations is set uniformly. Wu et al. [140] learns quantization levels through a path
selection-based neural architectural search formulation. Each quantization level is treated as a
different type of layer and importance of each level is captured using a Gumbel-Softmax function
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formulation. This method is challenging to scale for larger CNN models, as the super-network
leads to larger search and training costs. The work in LBS [141] alleviates the compute cost by
devising a single-path scheme that captures different quantization and filter pruning strategies
using binary gates. Instead of allowing the entire search space to determine optimal bit-widths,
LBS limits the quantization choices to ensure training stability during the reassignment process
(e.g. 2, 4, 8 bits). The work in [142] investigates a suitable parameterization of the quantization
operation to learn bit-widths and avoid unbounded gradient updates. In particular, the authors
learn step-size and dynamic range for quantized weights and activations to determine the optimal
quantization strategy. Differently, in Sec. 4.5, we learn the number of unique values required to
represent weights and activations by progressively reducing the bit-widths using a differentiable
loss formulation. Furthermore, we determine HW-aware mixed precision CNNs by leveraging
guassian process estimator to predict latency.

4.3 GPU Hours Aware RL Pruning

In this section, we discuss a pruning approach, namely Leaning to Prune Faster (L2PF) [27]
involving a RL-agent, which learns a layer’s redundant features and adequate fine-tuning time
concurrently across the search phase. In this regard, the pruning problem, environment, state
space and action spaces in the context of a RL are formulated in Sec. 4.3.1. We discuss the
agent’s design in Sec. 4.3.2 and reward formulation in Sec. 4.3.3. Specifically, we build upon
a learning-based pruning approach [21] by appending the GPU hour awareness in the form of
continuous reward. We conduct various experiments in Sec. 4.3.4 to analyze the GPU hour
savings using the proposed RL search approach. Finally, we discuss the key findings in the post
train GPU hour aware RL search in Sec. 4.3.5.

4.3.1 RL Search Formulation

Channel Pruning: The structured channel-pruning task within a RL framework can be expressed
as a try-and-learn problem, similar to the work from Huang et al. [21]. We aim to search an
efficient filter pruning configuration that achieve the highest Compression Ratio (CR), while
incurring a minimum loss of prediction accuracy and requiring a minimum number of fine-tuning
epochs during the exploration episodes. Fig. 4.1 demonstrates the interplay between the proposed
pruning agent and CNN environment. The proposed method is able to learn three aspects: First,
the minimum number of epochs required to explore each pruning strategy. Second, the degree of
sparsity of each layer in the model. Third, the exact position of the least important filters to be
pruned.

Formally, let f be a fully-trained model with L layers and the input of the `th convolutional
layer has a shape [c` × w` × h`], where c`, h` and w` represents number of input channels,
height and width. The `th layer is convolved with the weight tensor W`, i.e. 2D convolu-
tional layer’s trainable parameters, with shape

[
N ` × c` × k` × k`

]
, where k` represents the

kernel size and N ` is number of filters. After pruning n` filters, the weight tensor is of shape[
(N ` − n`)× c` × k` × k`

]
. The layer’s CR is defined as c`−n`−1

c`
. Additionally, we define

model CR to be the total number of weights divided by the number of non-zero weights.
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Figure 4.1: Agent receives rewards and weights as input state, whereas environment receives both prune
and epoch actions. In each prune episode, M=5 Monte-Carlo set of actions are sampled (Aprune
and Aretrain). The corresponding M rewards (Rprune and Rretrain) are normalized to zero mean
and unit variance [21].

Environment: The environment is the pretrained CNN model to be pruned. The state space
is the fully trained weight tensor W` of the layer to be pruned, which is used as an input for
the agent, similar to Huang et al. [21]. For each layer (or residual block), a new agent is trained
from scratch. The environment receives two actions from the agent: pruning action Aprune and
fine-tuning epoch action Aretrain. Subsequently, it generates a reward R = Rprune +Rretrain. For
each filter there is a binary mask m`

i ∈ {0, 1}
c`×k`×k` . Pruning the ith filter W`

i in layer ` is
performed by element-wise multiplication between the filter W`

i and its corresponding mask m`
i .

When pruning W`
i , the ith kernel of all filters in the (`+ 1)th layer are also pruned. At each

pruning step, masks are updated according to Aprune and the environment is fine-tuned for a few
epochs eretrain.

Action Space: The action space of the proposed RL-framework is split into two distinct spaces
to satisfy the discrete and continuous requirements of actions for pruning and epoch learning
respectively. The discrete pruning action space is the combination of all possible prune actions
Aprune. It is clear that action space dimension grows exponentially as O(2N ), where N is the
number of filters in a layer. Discrete actions are sampled fromN independent stochastic Bernoulli
units [91]. Each Bernoulli requires a parameter p which presents the probability of keeping the
filter as shown in Eq. 4.2.

P (a, p) =

{
p if a = 1 (keep filter)

1− p if a = 0 (prune filter)
(4.2)

The continuous epoch-learning is used to determine the number of fine-tuning epochs eretrain.
Continuous actions are typically sampled from continuous distributions like normal N (µ, σ) or
beta distributions Beta (α, β) [143]. Beta distribution requires two parameters to be learned,
which complicates gradient propagation implementation. Normal distribution has also two
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parameters as shown in Eq. 4.3, the mean µ is a learnable parameter, while σ is chosen to be
non-learnable. Here, µ ∈ (0, 1) since µ value is fed in from sigmoid unit.

N
(
µ, σ2

)
=

1√
2πσ

exp

(
−(a− µ)2

2σ2

)
(4.3)

4.3.2 Agent Design

The agent is a non-linear stochastic functional approximator parameterized by θ. It is composed of
four convolutional layers, two classifiers each with two fully connected layers [21], and two types
of stochastic output units, i.e. Bernoulli and Normal. The agent parameters are θ = {w, µ,P},
where parameters w are the agent weights, µ is a learnable parameter to sample the fine-tuning
action Aretrain, and P is the set of probabilities for Bernoulli units. The agent outputs two actions:
discrete action Aprune for pruning, and continuous action Aretrain for fine-tuning epochs.

The pruning action Aprune is a set {a`1, a`2, ..., a`N l}, where a`i ∈ {0, 1} is equivalent to
{prune, keep} and N ` is the number of filters in the `th layer [21]. Using this scheme, the agent
is able to explore both sparsity ratio and to select the exact position of filters to prune.

The fine-tuning action Aretrain is a continuous action sampled from a normal distribution with
two parameters - µ, σ. The mean µ is a learnable parameter, while σ is chosen to be non-learnable
and set to be proportional to |Rretrain| [91, 144]. The value of σ controls how far a sample can be
from the mean. When reward signal Rretrain is low indicating bad actions, then σ takes higher
value which allows the agent to explore actions further away from µ. Actions Aretrain /∈ [0, 1] are
considered bad and given negative rewards. The environment fine-tunes for the number of epochs
given in Eq. 4.4, where β is an upper limit for eretrain.

eretrain = min[max[0, Aretrain], 1]× β (4.4)

We leverage the SPG method to find an optimal policy π∗. SPG is guaranteed to converge at
least to a local optimum without requiring the state space distribution [90]. Our objective function
J(θ) is the expected sum of all rewards over one episode. The objective gradient w.r.t. the policy
parameters is given in Eq. 4.5. Both terms in Eq. 4.5 can be solved approximately using the policy
gradient theorem. Specifically, we implement a variant of SPG called REINFORCE [91, 21]. The
agent parameters θ are updated with gradient ascent so that actions with higher rewards are more
probable to be sampled [91].

∇θJ (θ) = ∇θE
[
rprune

]
+∇θE [rretrain] (4.5)

The first term in Eq. 4.5 has the Bernoulli policy πB
(
Aprune|W`,P,w

)
, while the second has

the normal policy πN
(
Aretrain|W`, µ,w

)
, where W` are weights for layer to prune. Finding a

closed-form solution for the expectation is not feasible, so it is approximated using M samples of
a Monte-Carlo gradient estimator with score function [145, 90].

The gradient of our objective function is given by Eq. 4.6.

∇θJ (θ) ≈
M∑
j=1

[
(Rprune)j ·

n∑
i=1

aij − pij
pij(1− pij)

· ∂pij
∂w

+ (Rretrain)j ·
aj − µj
σ2
j

· ∂µj
∂w

]
(4.6)
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4.3.3 Multi-Objective Reward

The quality of agent’s action is conveyed back as a reward signal, Rprune and Rretrain for Aprune

and Aretrain respectively.
Prune Reward: The prune reward Rprune is a measure for sparsity level and model accuracy

accpruned. It promotes actions that remove filters with minimum accuracy loss of the pruned
model w.r.t. the validation set. Following the work of Huang et al. [21], we define the prune
reward as a product of two terms, i.e. accterm and eff term, as stated in Eq. 4.7.

Rprune

(
A`

prune, accpruned

)
= accterm · eff term (4.7)

Accuracy Term: Similar to Huang et al. [21], accterm is defined in Eq. 4.8. The bound b is a
hyper-parameter introduced in the reward function to allow control over the trade-off between
model compression and tolerable accuracy drop. When the accuracy drop is greater than b, accterm
is negative, otherwise it lies in the range [0, 1].

accterm =
b−max

[
0, accbase − accpruned

]
b

(4.8)

Efficiency Term: To prevent the agent from choosing huge compression ratios, the efficiency
term eff term proposed by Huang et al. [21] is extended as shown in Eq. 4.9. If the prune action is
aggressive, the accuracy drop will be less than the bound b resulting in a negative reward. If layer
sparsity ratio is low, eff term will drive reward to zero.

eff term =

log
N

(N − n)
if (N − n) ≤ N

−1 if (N − n) = 0

(4.9)

Fine-tuning Epoch Reward: The fine-tuning epoch reward Rretrain is responsible for pro-
moting a lower number of fine-tuning epochs. The reward is expressed in Eq. 4.10. An action
is considered good when |Aretrain| is low without causing an intolerable accuracy drop. If the
environment incurs no accuracy loss then Rretrain = 0, when loss is incurred then it will be a
negative value scaled by the absolute value of Aretrain.

Rretrain
(
Aretrain, accpruned

)
= |Aretrain| ×

(
accpruned − accbase

)
(4.10)

In each prune episode, M Monte-Carlo set of actions are sampled again resulting in M corre-
sponding rewards Rprune and Rretrain. The reward values are normalized to zero mean and unit
variance for both set of rewards [146, 145].

4.3.4 Experiments

Setup: Our experiments are conducted on the CIFAR-10 [42] dataset. One-time random splitting
of the 50k images into 45k training and 5k evaluation is performed. Agent reward is evaluated
on 5k images. To ensure that our pruning method generalizes, the 10k images in the test dataset
are held separate and only used after the agent learns to prune a layer, to report actual model
accuracy. No training or reward evaluation is performed using the test dataset. As a baseline,
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4.3 GPU Hours Aware RL Pruning

ResNet-20 is trained from scratch as described in [39] until convergence with validation accuracy
92.0%, and test accuracy of 90.8%. After each pruning episode, the environment is retrained for
a few epochs (8 w/o epochs learning) using mini-batch momentum SGD [37] with learning rate
of 0.001, gamma 0.5, step size of 1900, batch size of 128, and l2 regularization. After learning to
prune a layer, the model is fine-tuned for 150 epochs before moving to the next layer. The agent
is also trained using mini-batch momentum SGD with fixed learning rate of 0.005 and batch size
equal to the number of Monte-Carlo samples M = 5.

Pruning Order: We investigate four different strategies based on the pruning order and the
agent’s capability to prune layers simultaneously (layerwise or blockwise). We exclude the first
convolutional layer since pruning it offers insignicant compression benefits, while damaging the
learning ability of the model. When pruning a full residual block, we preserve the element-wise
addition by zero-padding the output channels of the second layer in a residual block to restore the
original number of output channels, such that the order of pruned channels is preserved. Fig. 4.2
shows results of pruning ResNet20 with loss bound b of 2%.

Accuracy Drop Sparsity Ratio # Remaining filters # Pruned filters
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Figure 4.2: Exploration of filter pruning configuration based on order and agent complexity. Top-left
and top-right subfigures indicate layer-wise pruning. Bottom-left and bottom-right subfigures
indicate module-wise pruning.

In Fig. 4.2 (top-left), we perform layer-wise pruning following the forward pruning order
(conv2 1 1 → conv4 3 2). The agent starts pruning initial layers aggressively and struggles
to find redundant filters in the deep layers (indicated by large blue bars). In Fig. 4.2 (top-right),
we perform a similar layer wise pruning analysis for the backward pruning order (conv2 1 1←
conv4 3 2). From Tab. 4.1, we observe that the backward pruning order results in higher CR
with lower accuracy degradation (0.9%). In Fig. 4.2 (bottom-left) and 4.2 (bottom-right), we
perform block wise pruning allowing the agent to prune the entire residual block simultaneously.
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Similar to layer-wise pruning, we prune the residual blocks both in forward and backward orders.
Lower compression ratio is observed when compared to layer-wise pruning, see also Tab. 4.1.
Thus, we prune layer-wise in backward order as it results in lower accuracy degradation and high
CR for the subsequent experiments.

Configuration
Pruning Bound Learnable Acc CR
Order [%] Epochs [%] [×]

ResNet-20 [39] - - - 90.8 1.00

L2PF (Block-wise) Forwards 2.0 7 89.9 (-0.9) 1.84
L2PF (Layer-wise) Forwards 2.0 7 89.6 (-1.2) 1.79

L2PF (Block-wise) Backwards 2.0 7 89.5 (-1.3) 3.38
L2PF (Layer-wise) Backwards 2.0 7 89.9 (-0.9) 3.90

L2PF (Layer-wise) Backwards 1.0 7 90.2 (-0.6) 2.52
L2PF (Layer-wise) Backwards 2.0 7 89.9 (-0.9) 3.90
L2PF (Layer-wise) Backwards 3.0 7 89.2 (-1.0) 4.53
L2PF (Layer-wise) Backwards 4.0 7 88.5 (-2.3) 7.23

L2PF (Layer-wise) Backwards 2.0 7 89.9 (-0.9) 3.90
L2PF (Layer-wise) Backwards 2.0 3 89.9 (-0.9) 3.84

Table 4.1: Evaluating various configurations for L2PF to analyze the influence of exploration granularity,
pruning order, accuracy bound w.r.t. prediction accuracy and compression ratio.

Reward Bound: In Tab. 4.1, we also evaluate the impact of the prediction accuracy and
compression ratio by varying the agent’s loss bound b. As we increase b, we obtain higher CR
with lower prediction accuracy after fine-tuning. We choose b as 2% in the next experiments to
maintain a trade-off between accuracy degradation and CR.

Reducing Fine-tuning: Previous experiments were conducted with fine-tuning epochs set
manually to 8 at each exploration step. We allow the agent to decide the amount of fine-tuning
time required to evaluate the pruning strategy based on the retrain epoch reward presented in
Eq. 4.10. Fig. 4.3 shows a comparison of number of fine-tuning epochs required to decide the
pruning strategy for each layer. Pruning with epochs learning achieves 1.71× speedup in search
time with a slight reduction in compression ratio, see Tab. 4.1.

Class Activation Maps: The discrete action space proposed by Huang et al. [21] and applied
in L2PF allows the integration of Class Activation Maps (CAMs) [147] into the design process.
CAM allows the visualization of RoI in an input image to identify the corresponding prediction
label. Regions with red color denote the part with higher interest for CNN model and blue denotes
regions with less importance w.r.t. the target label. Tab. 4.2 shows three example CAMs for
the learned features of vanilla ResNet20 and the influence of L2PF pruning (backwards) on the
learned features and thus the RoIs. The progression of discriminative regions of classes can be
compared across pruning steps.

In the first row, the vanilla ResNet20 predicts the wrong class, i.e. deer. After pruning layer
conv3 3 2, the RoI shifts towards the trunk of the car indicating the correct class. In the second
row, the vanilla ResNet20 predicts the ship class. The agent tries to retain the prediction across
different stages of pruning with high confidence. In the third row, the vanilla ResNet20 predicts
the truck class. Accordingly, the pruned model at different stages also predict a truck. However,
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Figure 4.3: Reduction of GPU hours using epoch-learning based reward formulation. We highlight the
number of filter pruned and fine-tuning epochs.

we can observe that the RoI becomes narrower indicating that the pruned model requires only
few concentrated regions due to lower model capacity.

Input ResNet-20 Learning to Prune Faster (Backwards)
image unpruned conv4 3 2→ conv3 3 2→ conv2 3 2→ conv2 1 2

raw deer(0.53) car(0.99)→ car(0.99)→ car(0.99)→ car(0.88)

raw ship(0.99) ship(0.51)→ ship(0.98)→ ship(0.81)→ ship(0.99)

raw truck(0.99) truck(0.98)→ truck(0.77)→ truck(0.62)→ truck(0.67)

Table 4.2: CAM visualization for three examples images from the validation dataset. Each column shows
the CAM output after pruning, using backwards pruning order before model fine-tuning.

State of the Art Comparison: In this section, we compare the proposed L2PF with other
RL-based state-of-the-art filter pruning works proposed in literature.

In Fig. 4.4 and Tab. 4.3, we compare our pruning configuration using layer-wise CR and final
prediction accuracy with AMC [5], L2P [21], ALF [98]. We re-implemented L2P using forward
pruning order with an accuracy bound b=2% to obtain pruning results for ResNet20. Compared to
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Figure 4.4: Comparing L2PF pruning statistics on ResNet-20 with State-of-the-Art.

Configuration Pruning Acc CR Fine-tune
Type [%] [×] [epochs]

ResNet-20 [39] - 90.8 1.00 -

AMC-Plain20 [5] RL-agent 90.2 1.84 -
ALF [98] In-train 89.4 3.99 -
L2P [21] RL-agent 89.6 1.79 60.3K
L2PF (Ours) RL-agent 89.9 3.84 35.2K

Table 4.3: Evaluating various configurations for L2PF to analyze the influence of exploration granularity,
pruning order, accuracy bound w.r.t. prediction accuracy and compression ratio.

L2P, we obtain 0.3% better prediction accuracy, 2.11× higher CR and 1.71× less fine-tune epochs.
ALF and AMC do not require fine-tuning during the pruning process. Compared to AMC’s
pruning implementation for Plain-20, we obtain 2.08× higher CR with 0.3% lower prediction
accuracy. Compared to ALF, we achieve 0.5% better accuracy with comparable CR.

4.3.5 Discussion

In this section, we demonstrated an RL-based filter-wise pruning method which is both feature
and time-aware. Our multi-task approach achieved high CRs, while minimizing the required GPU-
hours and the accuracy degradation. The analysis on the sequence of layer-wise pruning led to the
conclusion that backward (deep-to-shallow) pruning can produce dominating results compared
with the existing state-of-the-art CRs, with minimal degradation in task specific accuracy. Finally,
we visually analyzed the effect of our pruning technique with the help of CAMs to build a
better understanding of our agent’s pruning decisions. GPU hours for CNN compression can
have many negative consequences on development cycles, profitability and fast exploration. The
GPU-hour-aware approach presented can help mitigate this impediment and achieve a competitive
advantage in active research fields such as autonomous driving.
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4.4 In-Train Pruning

Techniques for pruning neural networks aim to remove redundant structural parameters like
channels, kernels or individual weight elements of neural networks in order to decrease the
memory requirements and accelerate the computation of the network at hand, while maintaining
the network’s accuracy. Most pruning methods [4, 5, 6] follow a three step approach: First,
a model is learned to solve a task at hand. Second, this very model is pruned according to a
separate objective function. Third, the model is fine-tuned to maintain the overall accuracy. This,
however, significantly increases the computation effort (the GPU hours) for the pruning process.
To improve upon this, recent research proposes RL agents to automate the process of finding the
optimal model pruning strategies [5, 21, 27]. While, these learning-based compression techniques
outperform pure heuristic-based approaches both in efficiency and compression ratio, they often
do not yield an optimal solution.

In this section, we propose to incorporate the pruning process, i.e., learning an appropriate
pruning mask, in the underlying optimization function of the training. We thereby break through
the barrier between training and pruning, and circumvent the need for magnitude-based heuristics.
The remainder of the section is structured as follows: In Sec. 4.4.1, we introduce trainable pruning
masks which are appended during the CNN learning process. We further formulate task, HW
specific loss terms to improve prediction accuracy and impose resource constraints during the
training process. Sec. 4.4.4 provides detailed experiments to show the effectiveness of our in-train
pruning approach. We further conduct a discussion about the proposed in-train pruning approach
in Sec. 4.4.5.
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Figure 4.5: Methodology of the proposed In-train Pruning approach [28]
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4.4.1 Trainable Prune Masks

Our approach compresses a model for reducing the computational complexity of a CNN as
shown in Fig. 4.5. We aim for obtaining a pruning strategy directly when optimizing the
CNN’s weights W during the training process and thus save the optimization effort of additional
post-train pruning. We adopt trainable pruning edges in the network using a binary mask
Mb ∈ {0, 1} derived from a trainable continuous mask M . The weights W are canceled out if the
corresponding dimension of the mask is 0 and left unchanged if it is set to 1: W �Mb. At each
layer l ∈ {1, ..., N} of an N -layer CNN, we append a binary pruning mask M l

b to the network’s
weights W l. All but the fully-connected layers have an input shape Ll−1 ∈ RHi×Wi×Ci , where
Hi, Wi, and Ci indicate the spatial height, width and input channels, respectively. L0, LN

represents the the input image I and classification output of the CNN respectively. The weights
W ∈ RKh×Kw×Ci×Co are the trainable parameters of the individual layers, where Kh, Kw and
Co refer to the kernel’s dimensions, and the number of output channels/filters, respectively.

The binary masks for irregular weight pruning are structured as M l
b = {0, 1}Kh×Kw×Ci×Co ,

kernel pruning requires masks as M l
b = {0, 1}1×1×Ci×Co , channel pruning requires masks

M l
b = {0, 1}1×1×Ci×1 and filter pruning masks have the structure M l

b = {0, 1}1×1×1×Co . The
size of the binary mask increases as the pruning tends to become more irregular leading to
higher compression rates. However, irregular and kernel pruning demands dedicated hardware
implementation [62] for load balancing and additional memory for mask indices, resulting in
sub-optimal benefits on general-purpose platforms. The masked weights are obtained using
the the Hadamard product � along the pruning dimension as W̃ l as shown in Eq. 4.11, that is,
weights W are cancelled out if the corresponding dimension of the mask is 0 and left unchanged
if it is set to 1.

W̃ l = W l �Mb, W̃
l ∈ RKh×Kw×Cin×Co

Mb = round(Mnorm)

Mnorm = 0.5 · tanh(M) +0.5

(4.11)

Our training scheme influences Mb using cross-entropy and HW objectives, by updating the
continuous-valued and trainable masks M with the same shape as Mb. The trainable masks are
introduced to incorporate the pruning objective into the training process. An optimizer, usually
a Momentum optimizer (indicated as Optimizer 2 in Fig. 4.5) is used to update the trainable
masks M with respect to prune loss Lprune (Eq. 4.12). We use tanh, scale, and shift operations
to derive the normalized masks Mnorm in the value range of [0, 1] from the continuous-valued
masks M . We then apply the round operation to restrict the mask values to the binary set {0, 1}
as shown in Eq. 4.11. Any discrete parameter with a limited range set would introduce zero
gradients. We use Straight Through Estimator (STE) similar to [148] to overcome the vanishing
gradient effect and obtain updates for continuous masks M , later discretized to Mb for applying
pruning decisions on the weights.

The adopted methodology for in-train pruning has been illustrated in Fig. 4.5. It shows a
randomly sampled image from the training set being fed to a CNN f(·). Based on the network’s
prediction Ypred and the true label Y , the cross-entropy loss is calculated. The trainable weight
and mask parameters (W,M ) are optimized with respect to cross-entropy and regularization loss.
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Based on continuous-valued masks (M ), the binary masks (Mb) are derived as shown in Eq. 4.11.
The Fig. 4.5 also illustrates a channel pruning scenario where the channels in the weight matrix,
corresponding to the 0 values in Mb are pruned. This automatically leads to filters in the previous
layer getting pruned. The number of channels or filters remaining after applying the prune masks
influences the layerwise estimates (number of parameters or MAC operations). These layerwise
estimates are added to obtain the hardware estimate for the whole network. The hardware loss
LHW is formulated such that the specified target hardware constraints are met during pruning.
The trainable masks are optimized at regular intervals jointly with respect to this HW loss LHW
and cross-entropy loss using a second optimizer. Hence, this method can automatically learn the
layerwise sparsities through trainable masks. Also, it does not rely of magnitude of weights as
the pruning heuristic as lowest magnitude weight pruning is sometimes found to be sub-optimal
[149].

4.4.2 Task Specific and Hardware Specific Loss

We define the loss function that allows us to account for HW-specific compression objectives. The
inference complexity of the CNN depends on the number of non-zero values in the binary pruning
masks sum(M l

b) at every layer l. We represent the HW inference complexity as a function
of M l

b given as ψl(M l
b). Increasing the number of zeros in the prune masks leads to a lower

number of computations and parameters. However, this impacts prediction accuracy for extreme
compression rates.

The latent weights W and the trainable masks M are optimized to improve the task-specific
accuracy with respect to the sum of the cross-entropy loss Lce and regularization loss Lreg. The
trainable prune masks M are also considered in the regularization loss to avoid too many binary
masks Mb elements biased at the early stages due to exploding magnitude. We provide more
details about the regularization Lreg in Fig. 4.8. In addition to this, we optimize the trainable
masks M based on an auxiliary loss term LHW , which captures hardware HW benefits. It is
important to select pruning masks which not only produce HW benefits but also allow smooth
minimization of cross-entropy loss during the training process. Therefore, we formulate prune
loss Liprune at step i in Eq. 4.12, which is an accumulation of Lce and LHW . The HW loss LHW
is the difference between the complexity of neural networks at iteration i and a target constraint
ψ∗. We accumulate the complexity of all the N layers to obtain the complexity of the whole
network.

LiPrune = Lice + b× LiHW

LiHW = max(

∑N
l=1(ψ

i
l)∑N

l=1(ψ
0
l )
− ψ∗, 0)

(4.12)

We use the scaling factor b to control the convergence speed for the prune masks M during the
training process. For extreme constraints such as 70% HW reductions, we use higher b=50 (more
details in Tab. 4.6). The complexity of the neural network can be represented using the number of
parameters or MAC operations. In Eq. 4.13, we represent the complexity by also incorporating
the binary prune masks Mb. We first calculate the compression ratio µl for every layer l based
on the number of non zeros present in the weight matrix. For this purpose, we introduce M l

base
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having the same dimensionality as M l
b, consisting of all ones, representing the unpruned model.

We observe that the number of zeros in the binary prune masks directly affect the complexity of
layer l, which can be represented using either parameters ψl(params) or operations ψl(ops).

µl = sum(M l
b)/sum(M l

base)

ψl(params) = K l
w ×K l

h × C lin × C lo × µl

ψl(ops) = Alo ×Bl
o ×K l

w ×K l
h × C lin × C lo × µl

(4.13)

Eq. 4.13 can be extended to pruning regularities such as channel/filter pruning, where inter-
layer HW benefits must be taken into consideration. For channel pruning, we capture the
inter-layer benefits by incorporating µl and µl+1, thereby reducing C li and C lo respectively. We
use an optimizer similar to that of standard training, such as Momentum/ADAM, to update the
prune masks. As shown in Eq. 4.14 and Eq. 4.15, we approximate the gradients gmce and
gmHW derived from Lce and LHW to update the continuous prune mask M , incorporating STE
as shown in the Fig. 4.5.

gml
ce =

∂Lce
∂M l

=
∂Lce
∂W̃

· ∂W̃
∂M l

b

·
∂M l

b

∂M l
norm
· ∂M

l
norm

∂M l

STE!
=

∂Lce
∂W̃

· ∂W̃
∂M l

b

· ∂M
l
norm

∂M l

(4.14)

As shown in Eq. 4.15, the gradients updating prune masks due to LHW scales depending on
the baseline complexity ψlbase of the layer l. We derive ψlbase by setting µl = 1.

gml
HW =

∂LHW
∂M l

=
∂ψl

∂M l
=

∂ψl

∂M l
b

·
∂M l

b

∂M l
norm
· ∂M

l
norm

∂M l

STE!
=

∂ψl

∂M l
b

· ∂M
l
norm

∂M l
=

ψlbase

||M l
base||

· ∂M
l
norm

∂M l

(4.15)

4.4.3 Choice of hyperparameters

The hyperparameters for in-train pruning are listed below:

• Prune begin step: Updating the trainable masks M with respect to the prune loss Lprune
is started a few epochs after the normal training begins. For CIFAR-10 dataset, the mask
update begin step is set at the 20th epoch.

• Prune end step: The pruning masks are frozen some time prior to the end of the training
process. This helps to determine the learned layerwise sparsities as well as fine-tune the
pruned model during training itself.

• Mask update frequency: The trainable masks M are updated along with the weights, with
respect to the cross-entropy loss Lce and regularization loss Lreg during every training step
till they are frozen at the mask update end step. The number of times the prune masks are
updated with respect to the prune loss Lprune at every epoch is determined by the mask
update frequency.
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• Choice of Mask Optimizer: A suitable gradient descent optimizer like SGD, ADAM or
Momentum optimizer can be chosen for optimization of the HW objective. We found that
Momentum optimizer is well suited for this purpose.

• Learning Rate of Mask Optimizer: Since the weight optimizer follows a step learning rate,
setting a fixed learning rate for the mask optimizer for prune loss optimization is easier to
handle. A Momentum optimizer with a learning rate of 0.01 is found to perform reasonably
well.

• Prune Loss constant b: b controls the trade-off between cross-entropy loss Lce and hardware
loss LHW. A large value of b accelerates the rate of optimization of the HW objective but
may lead to sub-optimal results due to insufficient exploration. A small value of b, on the
other hand, is not able to meet aggressive target constraints. Exploration for values of b for
different target constraints have been presented in Table 4.6.

4.4.4 Experiments

The aim of in-train pruning is to train models from scratch while optimizing task accuracy
and resource requirements in parallel. Model weights, as well as trainable prune masks (or
importance values attached to masks), are trained on cross-entropy loss on the given task, using a
Momentum optimizer with an initial learning rate to 0.1. For CIFAR-10 datasets, the training
is performed for 300 epochs. The learning rate is scaled down by a factor of 10 at the 80th and
160th epoch. The trainable prune masks are updated with respect to HW estimates loss using
another Momentum optimizer with a fixed learning rate of 0.01. The prune mask update with
respect to the hardware objective starts at EPrune, Start = 20 and is done once every epoch. At
EPrune, End = 240, the pruning masks are frozen, that is, the layer sparsities no longer change after
EPrune, End. For Imagenet dataset, EPrune, Start and EPrune, End are set to the 10th and 80th epochs
respectively. The training is performed for 100 epochs with a learning rate drop at epochs 30, 60
and 90. However, these hyperparameters may be slightly adjusted based on training performance.
Achieving high task-specific performance as well as the hardware objective depends on properly
setting hyperparameter values, which have been studied in details in Sec. 4.4.3.

Pruning under FLOPs Constraints: We investigate the effectiveness of in-train channel
pruning in Tab. 4.4 based on different constraints on the operation reduction metric. As shown
in column 4 of Tab. 4.4, we set the target reduction factor for operations ψ∗ from Eq. 4.12 to
{1.0, 0.4, 0.3, 0.2} for ResNet20 and ResNet56 on the CIFAR-10 dataset and {1.0, 0.7, 0.5} for
ResNet18 on the ImageNet dataset. We observe -2.91 pp and -0.53 pp of accuracy degradation
for operation constraint ψ∗ = 0.4 in ResNet20 and ResNet56 respectively. For an extreme target
constraint ψ∗ = 0.2, we observe an accuracy degradation of -4.3 and -1.99 pp for ResNet20 and
ResNet56 respectively. We report the corresponding parameter reduction in column 6. In Tab. 4.4,
we also investigate the consistency of these trends on more challenging datasets such as ImageNet.
We observe a minor degradation of -1.31 and -3.47 pp for operation constraints of 0.7 and 0.5 on
the ResNet18 model trained on the ImageNet dataset. However, it is difficult to achieve more
drastic constraints for ResNet18 on ImageNet without considerable accuracy degradation.

Exploration of Pruning Regularities: We show different pruning regularity schemes for
the proposed in-train pruning scheme. We observe that irregular weight pruning produces lower
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Model Dataset Acc Ops Reduction Param
[%] Target Actual Reduction

ResNet20 CIFAR-10

92.47 1.0 - 1.0
89.56 0.4 0.38 0.68
88.67 0.3 0.31 0.58
88.17 0.2 0.17 0.30

ResNet56 CIFAR-10

93.56 1.0 - 1.0
93.03 0.4 0.35 0.55
92.38 0.3 0.28 0.50
91.57 0.2 0.18 0.37

ResNet18 ImageNet
68.53 1.0 - 1.0
67.22 0.7 0.69 0.88
65.06 0.5 0.45 0.78

Table 4.4: In-train pruning for various operation constraints. We use ResNet20 and ResNet56 on CIFAR-
10 dataset and ResNet18 on ImageNet dataset.

accuracy degradation (-1.16 pp, -0.38 pp) compared to structured channel pruning (-4.30 pp, -2.22
pp) for ResNet20 and ResNet56. Although weight pruning shows lower accuracy degradation
for extreme target reductions, it is challenging to obtain inference benefits from such pruning
regularities on general-purpose structured execution hardware like GPUs.

Model
Prune Acc Ops Reduction

Regularity [%] Target Actual

ResNet20

baseline 92.47 1.0 -
weight 91.31 0.2 0.16
kernel 89.78 0.2 0.19

channel 88.17 0.2 0.17

ResNet56

baseline 93.56 1.0 -
weight 93.18 0.2 0.19
kernel 92.25 0.2 0.21

channel 91.34 0.2 0.21

Table 4.5: Exploring different pruning regularities for operation reduction factor ψ∗=0.2.

Training Behavior on CIFAR-10: The training behaviour which incorporates joint optimiza-
tion of trainable weights and prune masks is analyzed in Fig. 4.6 for the CIFAR-10 dataset and in
Fig 4.7 for the ImageNet dataset. We plot the Top1 accuracy and HW loss Lhw, detailed in Eq.
4.12, across the training steps. The noisy behaviour in accuracy improvement can be seen across
the iterations, indicating the joint optimization of the compression task (prune masks) and the
learning task (weights). For the CIFAR-10 dataset, all the pruning constraints can be comfortably
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4.4 In-Train Pruning

met with accuracy curves following the same trend as in vanilla training, the operation constraint
of ψ∗ = 0.2 being relatively more challenging than the other two.
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Figure 4.6: Comparison of in-train pruning behaviour across several training iterations for different
operation constraints ψ∗=0.4, 0.3, 0.2 for CIFAR-10.

Training Behavior on ImageNet: The training behaviour for pruning constraints ψ∗=0.7,
0.5, 0.3 for ResNet18 on the ImageNet dataset is illustrated in Fig. 4.7. While the curves for
ψ∗=0.7 display roughly the same behavior as models on CIFAR-10, higher constraints on FLOPs
show considerable deviation. The fluctuations in HW Loss, particularly for 0.5 and 0.3 FLOPs
constraints, indicate that scaling up to large datasets like ImageNet is much more challenging.
While the optimizer for HW loss attempts to prune some channels, optimizer for cross-entropy
loss attempts to grow them back, thereby resulting in the fluctuations in HW loss. At the 30th

epoch, when the learning rate for optimization w.r.t cross-entropy loss drops, the constraints are
met more aggressively and at the same time, there is a drop is accuracy. The accuracy drops
further at the 60th epoch when learning rate w.r.t cross-entropy loss is further reduced. For a
constraint of ψ∗=0.5, the accuracy values oscillate largely and is finally able to recover after the
pruning masks are frozen. For ψ∗=0.3, although the accuracy is restored to some extent, it is
still about 18 pp lower than the unpruned baseline model. This is a scenario where the RL based
post-train pruning approach proved to be more effective that our proposed in-train approach.

Effect of Regularizing Prune Masks: As specified in Sec. 4.4.2, we incorporate trainable
prune masks M in the regularization loss Lreg along with weights W . Regularizing the trainable
masks M avoids early bias of binary masks Mb. We demonstrate this effect by studying the
training behaviour for the proposed pruning scheme in Fig. 4.8. We constrain the number of
operations to 30% of the baseline model and set b=10 to understand the behaviour of LHW across
training iterations. We observe that regularizing the trainable prune masks M (blue), achieves the
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Figure 4.7: Comparison of in-train pruning behaviour across several training iterations for different
operation constraints ψ∗=0.7, 0.5, 0.3 for ResNet18 on ImageNet.

target constraint (LHW = 0). We observe that there is only slight reduction in LHW , when prune
mask M is not regularized. This occurs as the initialization of the trainable mask M is set to
1.0. Without regularizing the prune masks M and using a lower initialization such as Minit = 0.3
(green) would result in bias for the pruning decision during the early stages of training process.
This would cause longer training time to achieve target constraints.

Exploration of b: The scalar constant b in prune loss LPrune (Eq. 4.12) determines the relative
importance of cross-entropy loss Lce and hardware loss LHW . The exploration for b has been
presented in Tab. 4.6. The value of b determines how fast or if at all the HW constraints are met.
Tab. 4.6 shows that using lower values of b, drastic HW constraints cannot be met. In order to
achieve 80% FLOPs reduction on CIFAR-10, the b value is set to 50. For ResNet18 model trained
on ImageNet, a b value of 200 is necessary for 50% FLOPs reduction. Again, very high values of
b might lead to very fast pruning without sufficient exploration, which in turn might affect the
model accuracy.

Exploration of learning rate: Learning rate exploration plays a key role is ensuring that
the maximum accuracy levels are reached. Vanilla training for ResNet20 with a step learning rate
usually uses a learning rate drop every 80 epochs. However, for in-train pruning, we observed
that avoiding a learning rate drop after the prune masks are frozen, that is after the 240th epoch,
always produced better results. In-train pruning results for ResNet20 with learning rate steps 80,

106



4.4 In-Train Pruning

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

·104

0
0.

2
0.

4
0.

6
0.

8

Iteration

H
W

L
os

s
(L
H
W

)

with regularized M
w/o regularized M

Minit = 0.3

Figure 4.8: Comparison of HW loss LHW across several training iterations for different operation con-
straints ψ∗=0.3 for different settings of continuous masks M .

160 and 80, 160, 250 have been presented in Tab.4.7. This portrays the importance of learning
rate exploration to achieve optimum performance.

Comparison with Post-train Pruning We compare our in-train pruning approach with two
state-of-the-art post-train pruning approaches: AMC [5].and ALF [98]. AMC is a RL-based
pruning approach, whereas ALF uses autoencoders to learn the pruning strategy. Comparison
of in-train pruning with these two approaches under FLOPs constraints is given below. Our
method is found to achieve better performance than ALF for higher reduction in operations. For
ResNet20 on CIFAR-10, our method achieves 0.16 pp improvement in accuracy for the same
level of operations. Our method far surpasses ALF for ResNet18 on ImageNet. For the same
level of reduction in operations (30%), the accuracy is better for our approach by 2.93 pp. In-train
pruning achieves better accuracy on ResNet18 with more than 50% reduction in operations than
ALF with 30% operations reduction. However, ALF achieves higher model size reduction for the
same level of reduction in operations. Due to the use of autoencoders in each layer, it is difficult
to scale ALF for very deep networks. Moreover, ALF supports only filter pruning while our
method supports all pruning regularities.

Comparsion with AMC: The RL-agent proposed in the original work of AMC [5] is only
suited for channel-wise pruning. It follows the standard three stage pipeline: Taking a pre-trained
model→ Searching for a pruning strategy using a DDPG agent→ Fine-tuning the pruned graph.
After an initial warmup phase of 100 episodes, the RL agent is allowed to search for 400 episodes
to find the appropriate pruning strategy. The strategy or the layerwise prune ratios that yields
the best reward, in this case accuracy on the validation set, is chosen. The pre-trained model is
pruned based on the strategy devised by the RL agent. Finally, the pruned model is fine-tuned for
40 epochs with a learning rate of 0.01 for the first 20 epochs and 0.001 for the next 20 epochs.
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Model Dataset b Ops Reduction Acc
Target Actual [%]

ResNet20 CIFAR-10
10 0.2 0.33 88.65
50 0.2 0.17 88.17

ResNet56 CIFAR-10
10 0.2 0.21 91.34
50 0.2 0.18 91.57

ResNet18 ImageNet
10 0.5 0.80 65.98
100 0.5 0.58 66.09
200 0.5 0.45 65.06

Table 4.6: Exploring different values of scalar constant b in Prune Loss.

Model/ learning rate Ops Reduction Acc
Dataset drop epochs Target Actual [%]

ResNet20
CIFAR-10

80, 160 0.4 0.38 89.56
80, 160, 250 0.4 0.35 89.35

80, 160 0.3 0.31 88.67
80, 160, 250 0.3 0.32 87.21

Table 4.7: Exploring different learning rates for In-train Pruning on ResNet20.

The in-train pruning results are compared with AMC based post-train pruning results in Tab. 4.9
for operations constraints of ψ∗=0.4, 0.3, 0.2 on CIFAR-10 and ψ∗=0.7, 0.5, 0.3 on ImageNet.
In most of the cases, our approach performs as good as AMC based pruning. The difference in
accuracies between the two approaches is marginal and can sometimes also be attributed to the
higher level of compression that is achieved compared to the specified constraints. However, for
70% operations constraint on ResNet18, RL based pruning clearly outperforms in-train pruning
to a large extent.

We also highlight the effectiveness of in-train pruning approach for a far more challenging and
relevant task in autonomous driving, Object Detection. CenterNet with DLA-34 [113] backbone
on the KITTI dataset [3] is used as the baseline model. We use a 75% and 25% split for the
training and validation set respectively. We constrain the number of operations of CenterNet [113]
model to 50% and compare the performance of post-train and in-train pruning approaches on the
task of object detection. For baseline training as well as in-train pruning, the models are trained
for 200 epochs using ADAM optimizer and step learning rate policy. We use an initial learning
rate of 0.001 and decrease the learning rate by 0.01 at 60, 90 and 120 epochs. For in-train pruning,
the trainable mask values are updated using a Momentum optimizer with a fixed learning rate
of 0.01. The mask update begins at the 20th epoch, stops at the 140th epoch and uses a scalar
constant b value of 50 for the prune loss Lprune. AMC based post-train pruning uses 50 initial
warmup episodes and 200 search episodes for the RL agent. Final fine-tuning is performed for 40
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Model Dataset Method Acc [%] Ops [106]

ResNet20 CIFAR-10
ALF 89.4 15.8 (-61%)

In-train 89.56 15.4 (-62%)

ResNet18 ImageNet
ALF 64.3 1239 (-32%)

In-train 67.23 1251.7 (-31%)
In-train 65.06 816.33 (-55%)

Table 4.8: Comparison of ALF with In-train Pruning.

Model Dataset Method Operations Reduction
0.4 0.3 0.2

ResNet56 CIFAR-10
AMC [5] 92.86 92.68 91.66
In-train 93.03 92.38 91.57

ResNet20 CIFAR-10
AMC [5] 90.70 89.25 87.61
In-train 89.56 88.67 88.17

0.3 0.5 0.7

ResNet18 ImageNet
AMC [5] 67.66 65.59 62.98
In-train 67.23 65.06 49.62

Table 4.9: Comparison of AMC [5] Pruning with In-train Pruning.

epochs with a learning rate of 10−3 for the first 20 epochs and 10−5 for the remaining 20 epochs.
We report the 2D mAP for validation data on easy, medium, and hard constraints of the car class
in Tab.4.10.

For AMC based pruning, we report the GPU hours required for pre-training the baseline model,
pruning search and the final fine-tuning. We observe that the pruning search with episode-wise
fine-tuning (2 epochs of fine-tuning per episode) produces the best mAP among pruned models
for easy and medium constraints but is extremely costly in terms of GPU hours. Our approach
performs pruning during the training process, thereby saving GPU hours by 1.49× and 4.45×, as
compared to AMC with and without fine-tuning during the pruning steps respectively. Also, it
produces the best mAP values for hard constraints, exceeding the baseline by 6.56 pp.

In Fig. 4.9, we perform qualitative comparison of the predictions obtained using in-train
pruning (right) with the baseline model (left). Green boxes indicate ground truths and Blue
boxes indicate predictions. In the first row, we observe that the pruned model doesn’t predict
the bounding box for the car present at the far right corner. However, we observe that the
overlap between in-train pruned predictions and ground truth bounding boxes is higher even
when compared to the baseline model. This also justifies the higher mAP for the hard constraint
in Tab. 4.10.
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Method mAP (car) [%] GPU Hours
Easy Medium Hard

Baseline 89.24 80.56 71.65 22.87

AMC (w/o episode finetuning) 87.38 79.44 70.79 22.87+20.72+4.3 = 47.89
AMC (with episode finetuning) 89.26 80.46 71.55 22.87+112.05+7.7 = 142.62

In-train Prune 85.83 78.94 78.21 32

Table 4.10: Kitti validation for post-train vs in-train pruned CenterNet with 50% operations constraint.

Figure 4.9: Qualitative comparison of In-train pruning (right) with its baseline predictions (left).

4.4.5 Discussion

In this section, we incorporate the pruning process in the underlying optimization function of the
training, an approach which we term as in-train pruning. We thereby break through the barrier
between training and pruning, and save the computational effort required during the search stage.
The pruning search stage played an important role in the approaches discussed in Sec. 3.4,3.5
and 4.3. Our joint formulation of the learning and pruning objectives eliminates the search
stage and thereby allows us to find a trade-off between task-specific accuracy and compression
rate. Moreover, this method is found to be most effective for structured pruning regularities.
As structured pruning is more advantageous on general-purpose accelerators such as GPUs,
this strengthens the motivation for the proposed in-train pruning scheme. We also eliminate
the need for a pretrained model. We demonstrate that our method achieves 80% reduction of
MAC operations in ResNet models. The scalability of this method has been tested for image
classification on large datasets like ImageNet. This method also yields promising results for
CenterNet pruning for object detection on the KITTI dataset.

The proposed approach in this section is limited to model pruning. In Sec. 4.5, we realize a
mixed precision quantized CNN configurations using a similar in-train approach. As discussed
in Chapter.3, it is important to incorporate HW-metrics during the compression process. The
HW-estimates need to be differentiable during the training process to influence the CNN model.
We also achieve this objective in Sec. 4.5. We further extend this approach to realize robust
pruning configurations in Sec. 5.4.
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4.5 In-train Mixed Precision Quantization

Model compression techniques such as quantization [7, 15, 8], pruning [5, 82, 27], and knowl-
edge distillation [9] reduce the memory footprint of CNNs and speed up their computation.
Quantization, in particular, has become a standard technique in both industry [54, 28] and
academia [7, 131], typically applied before deploying CNNs in embedded settings. The benefits
of quantization are manyfold, ranging from reducing the bit-width of weights and activations to
shrink the model’s size, to simplifying the arithmetic computation units on HW and lowering
the energy consumed by on-chip and off-chip data movement [89]. Quantization is typically
applied as a post-training calibration method, which takes in a full-precision pretrained model
and compresses it to a lower bit-width representation with iterative steps of fine-tuning.

Alternatively, QAT methods are capable of producing quantized CNNs during the training
process [50, 7]. These are typically uniform in terms of bit-width assignment, fixing the entire
CNN’s representation to a pre-determined number of bits. However, different layers contribute
differently to the accuracy and efficiency of a network [15], justifying the use of different quanti-
zation degrees for different layers of the CNN. To obtain HW-friendly layer-wise quantization
strategies, post-training quantization methods use search techniques, such as RL [13] or ES [14],
bringing back the costly post-training GPU hours. In this section, we reduce the execution metrics
for model inference by searching for optimal bit-widths directly during the training process
and produce dominant solutions in terms of prediction accuracy and model complexity, when
compared to uniform bit-width assignments and post-training methods. With our approach, we
ensure similar amount of GPU-hours as training as baseline model. We also incorporate the
HW-awareness by predicting estimates from a bit serial accelerator using guassian regressor.

4.5.1 Trainable Bitwidths

Without loss of generality, the activation feature map Al−1 ∈ RHi×Wi×Ci is considered as the
input to a convolutional layer l ∈ [1, ..., L], where Wi, Hi and Ci describe the dimensions of
width, height and input channels. A0 and AL are the input image and the prediction of the CNN,
respectively. The weight matrix W l ∈ RKw×Kh×Ci×Co consists of kernels of shape Kw ×Kh,
and Co output channels. A convolution operation of tensors W l and Al−1 results in the output
Al ∈ RHo×Wo×Co . The output features of the final layer AL can be used for the computation of
the task-specific accuracy ψ, by comparing it to the dataset labels.

Every layer l is associated with weight and input activation bit-widths, represented as blw and
bla respectively. The compressed CNN can be obtained by selecting the optimal quantization
tuple (blw, b

l
a) ∀ l. In this paper, we target two objectives: (1) reducing the bit-width of weights

and activations during the training process to lower the computational complexity of a neural
network, and (2) improving the HW-awareness by directly finding the quantization strategy based
on real HW metrics, such as latency and memory accesses. Both can be efficiently achieved by
formulating a joint optimization problem as shown in Fig 4.10.

We aim to obtain an efficient quantization strategy directly when training the network’s weights
W to circumvent any additional effort of post-train quantization search. More generally, b is the
bit-width of the quantized datatype, weights or activations. The real-valued data are represented
by 2b unique values in the fixed-point quantization domain. The mapping of a data element x
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Figure 4.10: Depiction of post-train quantization approaches (left) in comparison to the proposed approach
(right). Optimal precisions are determined through progressive quantization.

(i.e. weight or activation) onto a quantized value xq is expressed in Eq. 4.16. This is similar
to the linear quantization methods proposed in [50, 7]. Firstly, x is clipped between [−c,+c],
where c is a trainable variable for every layer and is determined by the task-specific loss function
of the CNN model [7]. Based on the determined c for a given datatype, we define a scaling
factor s = c/(2b−1 − 1). For activations, we clip the values between the range of [0,+c], instead
of [−c,+c], due to the non-linear activation function (ReLU). xq approximates the continuous
domain of x into the discrete values xq ∈ {0, s, 2s, 3s, ..., (2b−1)·s}. During backpropagation,
the gradient of the Round operation vanishes, therefore we estimate it in order to update the
real-valued weights during the training phase. In the simplest case, the estimated gradient gx
could be obtained by replacing the derivative of Round with the identity function (see Eq. 4.16).
This is referred to as the STE [150].

xq = Round(Clip(x, 0, c) · (2b − 1)

c
) · c

(2b − 1)
; gxgxq · 1x≤c (4.16)

Varying the number of bits b of each datatype, for every layer, can change the prediction accuracy
ψ by several percentage points. One way to determine the best configuration is to perform
exploration using an RL-agent [13] or an ES algorithm [14, 15]. However, this search could lead
to excessive GPU hours, given the need for iterative fine-tuning for every exploration step. This
motivates learning the most efficient allocation of datatype precision of each layer during the
training process itself. There are challenges to achieve this task due to two important reasons:
(1) Devising a training scheme which directly changes the bit-width b could lead to sudden
fluctuations in the discrete weight distribution, resulting in unstable gradient updates, (2) The
bit-width b only considers integer values, e.g. b ∈ [1, 2, 3, ..., 8] for an accelerator supporting
maximum of 8-bit fixed-point multiplications. Using another STE to round the parameters in the
forward pass while retaining the original float values in the backward propagation could lead to
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further gradient approximation, producing sub-optimal prediction accuracies ψ. We tackle these
challenges by determining the set of unique values U required to represent all x, as shown in
Eq. 4.17.

~xq = Round(Clip(x, 0, c) · |U |
c

)× c

|U |

g|U | g~xq ·
( −c
|U |2

·Round(Clip(x, 0, c) · |U |
c

) +
Clip(x, 0, c)

|U |
) (4.17)

We avoid using another gradient approximation by allowing the cardinality |U | to be a real-
valued trainable parameter. Note that our approach in Eq. 4.17 differs from Eq. 4.16 by not
restricting the values to an integer number b in 2b, allowing |U | to have an arbitrary number of
unique elements to represent the trainable parameters. We introduce a hyperparameter EQuant, Start
which represents the epoch at which the learning process for the bit-widths is started. This allows
smooth, float-point values for the size of |U |, progressively lowering the projected cardinality
of U for each layer’s datatypes, until EQuant, Stop is reached. The number of unique values |U | is
updated by cross-entropy loss Lce based on the gradient g|U | as shown in Eq. 4.17. The unique

values in U required to represent x increases based on the rounding error (x·|U |c −Round(x·|U |c )).
The HW loss objective LHW is captured by fractional bit-widths (e.g. 3.5-bits) during the initial
stages of training (i.e. between EQuant, Start and EQuant, Stop epochs). This also leads to progressive
quantization which lowers the gradient approximation at the initial stages of the training, thereby
improving the learning capability of the neural network. We gradually determine the optimal
bit-widths based on Lce and LHW objectives as we approach the end of the training. We round
the number of unique values |U | to the nearest power-of-two in the middle of training process
(EQuant, Stop), deriving the optimal bit-width b as Round(log2 |U |).

4.5.2 Task Specific and Hardware Specific Loss

We define the constrained loss function LHW as shown in Eq. 4.18, to account for HW-specific
compression objectives. b∗ and bmax represent constrained and maximum supported bit-widths,
respectively. The inference complexity of the CNN depends on the number of bits assigned
to the weights bw and activations ba for each layer l ∈ [1, ..., L]. We represent the workload
shape of layer l as lshape and HW inference complexity as a function of lshape, blw and bla given as
ϕl(lshape, blw, b

l
a). We use the scaling factor v to control the convergence speed for the optimal

quantization strategies {(b1w, b1a), ..., (bLw, b
L
a )} during the training process.

Ltotal = Lce + Lreg + v × LHW

LHW = max
(∑L

l=1(ϕl(lshape, b
i
w, b

i
a)−

∑L
l=1 ϕl(lshape, b

∗
w, b
∗
a))∑L

l=1(ϕl(lshape, bmaxw , bmaxa ))
, 0
) (4.18)

Decreasing the number of bits blw and bla leads to a lower number of Bit Operations (BOPs) for a
given layer l, as defined in Eq. 4.19.

ϕlBOPs = X l
o × Y l

o ×K l
x ×K l

y × C li × C lo × blw × bla (4.19)
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4.5.3 Differentiable HW awareness

Many HW-aware compression works use HIL setups and/or HW-measurement look-up tables
to integrate the actual HW performance into the optimization loop [14, 100, 13, 5]. Although
this approach is valid for agents which require a simple reward value for their CNN optimization
decisions, it cannot be extended to the gradient-descent optimization used in this work for in-train
quantization. For the training optimizer to work seamlessly with HW-based loss minimization,
the HW measurements need to be provided through a differentiable function. By nature of a
differentiable function providing the HW-estimates, intermediate values for quantization can also
be supported during the in-train quantization’s progressive bit-width reduction. For example,
3.5-bits does not reflect any executable computation bit-width on real HW. During smooth,
progressive in-train quantization, such bit-widths may appear, which need to have a sensible loss
value associated with them to guide the gradient-descent-based training optimizer.

Gaussian process regression provides the means to construct a differentiable HW estimator.
This injects HW-awareness into the chain-rule for the SGD, allowing it to set the layer-wise
quantization values (blw, b

l
a) ∀ l. A GP prior is trained on measurements ϕHW collected on real

HW, with respect to different computation workloads ρ. Starting with the covariance matrix
K shown in Eq. 4.20, we use a squared exponential kernel, inspired by the approach in [22].
σ and ` represent the amplitude and lengthscale of the GP’s kernel, respectively. ρ indicates
the workload features, i.e. the convolutional layer’s dimensions and bit-widths. Considering a
General Matrix-Matrix Multiplication (GEMM) execution of a convolutional layer, ρ is the vector
of features representing rows, columns and inner product (depth) of the matricies, as well as the
bit-widths of weights and activations.

K(ρ, ρ′) = σ2exp(−||ρ− ρ
′||2

2`2
), where ρ = (row, depth, col, bw, ba)

ϕHW ∼ GP(m(ρ),K(ρ, ρ′))

(4.20)

Based on the GP prior in Eq. 4.20, a predictive function can also be described by a mean and
a covariance matrix. To guarantee the GP regressor is differentiable, we must assert that the
covariance function K is differentiable. This condition is fulfilled by our squared exponential
kernel, as shown in Eq. 4.21.

∂K(ρ, ρ′)

∂ρ∂ρ′
=
σ2

`4
(`2 − (ρ− ρ′)2)exp(−||ρ− ρ

′||2

2`2
) (4.21)

The GP regressor’s HW predictions ϕHW can be used in the HW loss formulation LHW ,
presented in Eq. 4.18. The differentiable GP regressor provides ∂ϕ

∂ρ during backpropagation,
which links in the chain-rule, allowing the in-train quantization SGD to manipulate the (blw,
bla) ∀ l through the ρ gradients, thereby minimizing the latency and/or DRAM accesses of the
inference execution on HW. In Fig. 4.11, we present the performance of the GP regressor on
unseen validation workloads from ResNet20-CIFAR and ResNet18-ImageNet, with varying
blw, bla. The high-accuracy of the HW measurement predictions can clearly guide the in-train
quantization algorithm to make decisions on minimizing the HW loss LHW , which reflect real
reductions in latency and DRAM accesses on the final HW accelerator.
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Figure 4.11: Validating the performance of the GP regressor on unseen CNN workloads from ResNet20-
CIFAR and ResNet18-ImageNet for prediction of HW latency and DRAM accesses.

The BISMO [131] based FPGA design allows us to derive HW-metrics for convolutional
and dense workloads with different quantization configurations. The convolutional and dense
workloads are transformed into GEMM workloads. The convolution workloads can be lowered
into a general matrix multiplication (GEMM), by representing the W l and Al−1 tensors as 2-D
matrices MatW and MatA, according to Eq. 4.22. The dimensions m and n represent the rows
and columns of each matrix.

MatW ∈ RmW×nW , MatA ∈ RmA×nA

mA = nW = Ci ×Kx ×Ky,

mW = Co, nA = Xo × Yo
(4.22)

Al = Conv(W l, Al−1) = MatW × MatA (4.23)

Note that in Eq. 4.23, transposing both matrices and switching their order would also produce
the convolution result. HW accelerators typically exploit data reuse to minimize the number
of costly off-chip DRAM calls they need to perform during execution. For example, if one
column from the right-hand side (RHS) matrix is to be computed against every row from the
left-hand side (LHS) matrix, the accelerator can load the RHS column once and stream through
all the LHS rows, until the column has been used exhaustively for the GEMM computation.
The BISMO scheduler executes GEMM workloads in this manner, although it is agnostic to the
workload being provided. We could then consider forcing the weights W l ∀ l ∈ L to remain
in the RHS matrix throughout the execution, which would result in a weight-reuse schedule
(WRS). Conversely, maintaining activations Al−1 in the RHS, would result in an activation-reuse
schedule (ARS).

4.5.4 Experiments

We evaluate the proposed in-train quantization technique on CIFAR-10, CIFAR-100 [42], and
ImageNet [1] datasets. We use ResNet20 and ResNet56 as baseline models for the CIFAR-10,
CIFAR-100 datasets, and ResNet18 as a baseline model for the ImageNet dataset. In all the
experiments, we set the first and last layer as 8-bit quantization. If not otherwise mentioned,
all hyper-parameters specifying the task-related training were adopted from ResNet’s base
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implementation [39]. To train the GP regressor presented in Sec. 4.5.3, latency and DRAM
accesses measurements were collected from two BISMO [131] bit-serial accelerators synthesized
on an FPGA board with a Z7020 SoC. For CIFAR-10 and CIFAR-100 experiments, an array
of 8×8 processing elements (PEs), with 256 lanes was synthesized. For ImageNet workloads,
we synthesize HW with 6×6 PEs and 256 lanes each. The collected measurements include all
layer shapes in the considered CNNs, and all possible bit-width combinations for weights and
activations. For Tab. 4.14 and 4.15, we report the DRAM accesses and latency by executing the
quantized CNN workloads directly on the BISMO accelerator.

Mixed Precision Quantization: We investigate the effectiveness of our in-train quantization
approach in Tab. 4.11, based on different constraints ϕ∗ on the number of target BOPs. We
perform in-train quantization by constraining the number of BOPs to the complexity equivalent
of uniform 4-bit (see row 3, 4 in Tab. 4.11). By introducing trainable bit-widths for both weights
and activations, we produce 0.1 pp and 1.1 pp better prediction accuracy than uniform 4-bit
quantization for ResNet20 and ResNet56, respectively. We highlight the importance of the
scaling factor v (Eq. 4.18) for lower BOPs constraints ϕ∗ = 333, 1024. We observe that the target
constraint ϕ∗ is only met when the scaling factor is increased. We observe a reduction in BOPs
by 1.8× and 1.5× with negligible accuracy degradation compared to uniform 4-bit quantization
for ResNet20 and ResNet56, respectively. Furthermore, we report the training cost required to
obtain the baseline and mixed precision models. Our in-train quantization scheme learns optimal
bit-widths with minimal overhead in training time, i.e. 6%, 3% extra cost compared to uniformly
quantized ResNet20 and ResNet56 respectively.

Model/ Mixed Precision Scaling Avg. Bitwidth Constraint ϕ∗ Actual ϕ Top-1 Training Cost
Dataset Weight Activation Factor (v) Wbit Abit BOPs (M) BOPs (M) (%) (GPU hours)∗∗

R
es

N
et

20
C

IF
A

R
-1

0

7 7 - 8 8 - 2592 92.4
2hr 43min

7 7 - 4 4 - 666 92.2

3 7 1.0 4.0 4 666 679 91.0

2hr 53min
3 3 1.0 4.0 4.0 666 651 92.3

3 3 0.1 7.1 7.1 333 2028 92.3
3 3 0.5 2.9 4.8 333 575 92.3
3 3 1.0 2.3 3.7 333 376 91.5

R
es

N
et

56
C

IF
A

R
-1

00

7 7 - 8 8 - 8025 71.1
7hr 29min

7 7 - 4 4 - 2029 70.5

3 7 1.0 4.0 4 2029 2019 72.2

7hr 46min
3 3 1.0 3.7 5.1 2029 2123 71.6

3 3 0.5 3.7 4.8 1024 2201 71.9
3 3 1.0 3.7 4.5 1024 1739 71.3
3 3 2.0 2.6 3.2 1024 1311 69.9

∗∗ Training cost is measured on a NVIDIA TITAN-X GPU

Table 4.11: Influence of scaling factor v in LHW for BOPs-constrained in-train quantization.

Training behaviour: In Fig. 4.12, we demonstrate the training behaviour of the proposed
in-train quantization approach. We highlight the training curves for the ablation study performed
in Tab. 4.11, to understand the influence of the scaling factor v on the final prediction accuracy and
BOPs reduction. We consider ResNet20 and ResNet56 trained on the CIFAR-10 and CIFAR-100
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Figure 4.12: Comparison of in-train quantization behaviour for ResNet20 (left) and ResNet56 (right) with
uniform quantization and different scaling factors.

datasets to observe the improvement in accuracy and reduction in BOPs. For the 4-bit uniform
quantization (indicated in blue), we observe that the BOPs remain constant across the training
steps. We constrain our mixed-precision models to a achieve 2× BOPs reduction compared to
the uniform 4-bit model (see Tab. 4.11). We train uniformly quantized and constrained mixed-
precision models for 300 epochs with a step learning decay policy. For uniform quantization, we
decay the learning rates by 0.1 at 80, 160 and 240 epochs. For the constrained mixed-precision
models, we decay the learning rate at 120, 180 and 240 epochs. We ensure convergence in the
quantization strategy before the learning rate decay. For our constrained mixed-precision models
(indicated by red, green, orange), we observe reduction in BOPs across the training steps. We
increase the scaling factor v to achieve the desired BOPs constraint. For ResNet56, we observe
1.2×, 1.6× reduction in BOPs compared to the uniform 4-bit configuration for scaling factor v=
1.0, 2.0, respectively, with no degradation in accuracy.

In Fig. 4.13 and Fig 4.14, we compare the distribution of Wq for our approach against the
distribution under uniform quantization. We observe that uniform quantization training [7] does
not change the number of unique values (peaks) across the training steps, allocating a fixed number
of values from the start of the training. In our approach, we observe progressive quantization,
starting from a smooth normal distribution and slowly converging to discrete peaks of quantized
values. This allows larger gradient flow during the initial stages of the training and improves
the trade-off between prediction accuracy and HW complexity for the resulting mixed-precision
neural network.

Mixed Precision Segmentation: The semantic segmentation task is critical to applications
in robotics and autonomous driving. High-quality segmentation is computationally complex by
several orders of magnitude, when compared to classification tasks. This complexity is due to the
typically larger input image resolution and the additional layers needed for semantic segmentation
(bottleneck, ASPP block and decoder layers). For the DeepLab-based CNN architecture, we
use ResNet18 as the backbone network and the last two residual blocks use dilation rate of 2.
The Atrous Spatial Pyramid Pooling (ASPP) block contains dilation rates of {1, 8, 12, 18}. Our
approach produces 0.7 pp better mean average over union (mIOU) and 15% lower BOPs with
similar training cost as shown in Tab. 4.12.
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((a)) uniform 2-bit conv2 9 ((b)) uniform 4-bit conv2 9

Figure 4.13: Distribution of quantized weights Wq for uniform PACT [7]

((a)) 8bit→3-bit conv2 7 ((b)) 8bit→4-bit conv2 9

Figure 4.14: Distribution of quantized weights Wq for our proposed approach

Model/ Quant. BOPs mIOU Training Cost
Dataset (G) (%) (GPU hours)∗∗

D
ee

pL
ab

C
ity

Sc
ap

es 8bit [7] 5365 66.6 26hrs 1min4bit [7] 1469 65.4

Ours 1254 66.1 28hrs 23min
∗∗ Training cost is measured on a NVIDIA V100 GPU

Table 4.12: Comparison of our in-train quantization approach with state-of-the-art methods.

Comparison with State of the Art: In Tab. 4.13, we compare our approach with state-
of-the-art uniform quantization approaches, such as PACT [7] and ABC-Net [8]. We also
compare with works which produce variable bit-widths for weights and activations such as
HAQ [13], DNAS [140], and LBS [141]. HAQ [13] determines layer-wise bit-widths using RL.
Such methods have a high computational search cost as the bit-width policy must be learned,
involving iterative fine-tuning/evaluation for different bit-width combinations at each episode.
DNAS [140] and LBS [141] determine the quantization strategy using gradient based optimization.
DNAS constructs a super net consisting of several parallel edges representing search convolution
operations with different quantization levels. LBS reduces the search complexity compared to
the multi-path DNAS and also exploits filter pruning to further extract compression benefits.
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Model/ Method Mixed Precision BOPs Top-1
Dataset Weight Activation (M) (%)

R
es

N
et

20
C

IF
A

R
-1

00

PACT-8 [7] fixed fixed 2592 68.3
PACT-4 [7] fixed fixed 666 67.0
PACT-2 [7] fixed fixed 189 61.6
ABCNet-3x3 [8] fixed fixed 390 61.0

HAQ (RL)* [13] learned learned 653 67.7
DNAS* [140] learned learned 660 67.8
LBS* [141] learned learned 630 68.1

Ours learned learned 646 68.3
R

es
N

et
56

C
IF

A
R

-1
00

PACT-8 [7] fixed fixed 8025 71.1
PACT-4 [7] fixed fixed 2029 70.4
PACT-2 [7] fixed fixed 528 67.8
ABCNet-3x3 [8] fixed fixed 1153 68.4

HAQ (RL)* [13] learned learned 2015 71.2
DNAS* [140] learned learned 2035 71.2
LBS* [141] learned learned 1918 71.6

Ours learned learned 1739 71.3

Table 4.13: Comparison of our in-train quantization approach with state-of-the-art methods. ∗ indicates
that the accuracy and BOPs measurements are reported from [141].

However, all the three approaches retrain the sampled quantized strategies obtained from the
search phase indicating higher GPU hours compared to our approach, which requires only the
regular training time of the CNN as shown in Tab. 4.11. Our quantization scheme produces
dominating solutions in the number of BOPs and prediction accuracy compared to HAQ and
DNAS. Compared to LBS, our ResNet20 model has slightly higher accuracy (0.2 pp), with a
slight increase in BOPs.

In-train HW-aware Quantization We investigate the effectiveness of the proposed in-train
optimization scheme in Tab. 4.14, based on pseudo-HW-aware constraints (BOPs), as well as
real HW constraints, i.e. inference latency. Using the GP regressor introduced in Sec. 4.5.3,
our approach produces bit-widths based on the target metric and target HW. We observe that
constraining the number of BOPs does not necessarily produce optimal latency benefits in all
the three networks, making it a pseudo-HW-aware metric. Our approach directly reduces the
latency by 1.3× with respect to all 4-bit CNNs, with negligible degradation in prediction accuracy
(<1 pp). In case of ResNet56 based latency constrained model, we obtain lower BOPs and
prediction accuracy than BOPs based optimization. This can be attributed to the strict latency
constraint imposed by the HW model demanding high compression ratios across several layers.

In Fig. 4.15, we compare the various quantization strategies optimized for BOPs (top) and
latency (bottom). We observe lower bit-widths for the latency optimized mixed-precision strategy
in the shallower layers. In the deeper layers, we observe higher assignment of bit-width for the
activations. This is due to deeper layers being less computationally intensive, allowing more
bit-widths to be allocated to maintain prediction accuracy, without adding too much latency.
Particularly, activation bit-widths are increased, which have smaller volumes in the deeper layers
of the CNN.
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4 Fast Compression

Model/ Constraint BOPs Mem Access Latency Top-1
Dataset (M) (MB) (KCycles) (%)

R
es

N
et

20
C

IF
A

R
-1

0 PACT-4 [7] 666 6.6 1135 92.2
PACT-2 [7] 189 4.1 769 89.5

Ours (BOPs) 448 5.1 951 91.3
Ours (Latency) 530 4.8 875 91.2

R
es

N
et

56
C

IF
A

R
-1

00 PACT-4 [7] 2029 18.7 3134 70.4
PACT-2 [7] 528 10.8 2025 67.8

Ours (BOPs) 1739 15.6 2753 71.3
Ours (Latency) 1498 13.3 2374 70.7

R
es

N
et

18
Im

ag
eN

et PACT-4 [7] 34714 216 39637 65.4
PACT-2 [7] 14984 132 28939 60.4

Ours (BOPs) 27424 192 36930 64.6
Ours (Latency) 35356 151 31112 64.5

Table 4.14: Pseudo-HW-aware constraints and real HW constraints for various CNN models on CIFAR-10,
CIFAR-100, and ImageNet datasets.
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Figure 4.15: Comparsion of layerwise bit-width strategy for BOPs (top) and latency (bottom) optimized
in-train quantization.

To demonstrate the sensitivity of the determined quantization strategy with respect to the
target HW, we can formulate GP regressors which capture different scheduling schemes on
the inference hardware. For the target BISMO bit-serial accelerator, convolutional and dense
workloads are transformed into GEMM workloads. To verify the HW-awareness of our method,
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4.5 In-train Mixed Precision Quantization

we consider the contrasting ARS and WRS schemes, which favor the reuse of either activations or
weights, respectively. We construct GP regressors which can capture the differences between these
schedules and analyse the effect of these subtle HW-specific details on our in-train quantization
method. With this, we verify the degree of HW-awareness possible through our differentiable GP
regressors and in-train quantization technique.

VEMPARALA, FASFOUS, FRICKENSTEIN ET AL.: HW-AWARE IN-TRAIN QUANT. 5
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(a) ResNet18-ImageNet (bW ,bA) = (4, 4)
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(b) ResNet18-ImageNet (bW ,bA) = (2, 8)
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(c) ResNet18-ImageNet (bW ,bA ) = (8, 2)

Figure 5: ARS and WRS execution of ResNet-18 for ImageNet with uniform quantization.
The results motivate the in-train quantization method to make schedule-aware decisions on
layer-wise, datatype bit-widths, as shown in the paper.

(a) ResNet18-ImageNet (bW , bA) = (4, 4)
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(b) ResNet18-ImageNet (bW ,bA) = (2, 8)
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(c) ResNet18-ImageNet (bW ,bA ) = (8, 2)

Figure 5: ARS and WRS execution of ResNet-18 for ImageNet with uniform quantization.
The results motivate the in-train quantization method to make schedule-aware decisions on
layer-wise, datatype bit-widths, as shown in the paper.

(b) ResNet18-ImageNet (bW , bA) = (2, 8)
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(b) ResNet18-ImageNet (bW ,bA) = (2, 8)
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(c) ResNet18-ImageNet (bW ,bA ) = (8, 2)

Figure 5: ARS and WRS execution of ResNet-18 for ImageNet with uniform quantization.
The results motivate the in-train quantization method to make schedule-aware decisions on
layer-wise, datatype bit-widths, as shown in the paper.

(c) ResNet18-ImageNet (bW , bA) = (8, 2)

Figure 4.16: ARS and WRS execution of ResNet-18 for ImageNet with uniform quantization. The results
motivate the in-train quantization method to make schedule-aware decisions on layer-wise,
datatype bit-widths,

In Fig. 4.16-a, we execute ResNet18 for ImageNet on an 6×6×256 BISMO array [131]. The
weight and activation bits are set to 4-bits for all layers (uniform). We see that reusing the smaller
volume of weights at the start of the CNN leads to WRS performing better, while ARS improves
the execution for the latter half of the network, where reusing the activations is more beneficial.
This is due to the fact that the total redundant reads are reduced when reusing the smaller volume
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4 Fast Compression

datatype, as a larger portion of it can be stored on-chip and used exhaustively, leading to fewer
total processing passes.

In Fig. 4.16-b and -c, we execute ResNet18-ImageNet again, once with (bW , bA) = (2, 8) and
then with (bW , bA) = (8, 2), for all layers. It can clearly be observed that with the expensive cost
for reading the 8-bit wide datatype, the corresponding schedule which reuses that datatype has
a significantly improved execution compared to the other. For example, ARS performs better
than WRS for all layers, when the activations are 8-bit wide (Fig. 4.16-b). Conversely, WRS
beats ARS when bW = 8 (Fig. 4.16-c). Therefore, reusing the more costly datatype brings an
advantage to the execution schedule. It is important to note, that all runs presented in Fig. 4.16
are on the exact same HW, but with a different schedule. This indicates that simply knowing
the theoretical peak operations per second (OPS) of a hardware accelerator is not sufficient to
have real HW-awareness. Subtleties, such as the schedule and datatype reuse highly influence the
execution.

In Tab. 4.15, we observe that our quantization approach assigns higher bit-widths to the
favorable datatype being reused by the HW, thus learning to exploit the inherent efficiency of the
chosen schedule, without knowing its details. The average bit-width of weights in the WRS-based
mixed-precision strategy remains at the highest value (8-bits), while the activations are quantized
more aggressively, as they are costly and not reused by the WRS schedule. Conversely, we
observe higher average bit-width for activations in ARS-based mixed-precision strategy. We also
observe 1.33× and 1.01× reduction in DRAM accesses for ARS and WRS-based quantization
strategies in ResNet56, with 0.4 pp better accuracy.

Model/ Training Avg. bit-width ARS Mem WRS Mem DRS Mem Top-1
Dataset Scheme Weight Activation (MB) (MB) (MB) (%)

R
es

N
et

20
C

IF
A

R
-1

0 PACT-4 [7] 4 4 6.6 5.4 5.4 92.2
PACT-2 [7] 2 2 4.1 3.3 3.3 89.7

Ours (ARS-Opt) 2.3 5.3 5.0 6.3 4.6 91.8
Ours (WRS-Opt) 8.0 3.3 10.3 4.7 4.7 91.6

R
es

N
et

56
C

IF
A

R
-1

00 PACT-4 [7] 4 4 18.7 15.3 15.3 70.4
PACT-2 [7] 2 2 10.8 8.9 8.9 67.8

Ours (ARS-Opt) 2.1 4.2 14.0 19.2 13.0 70.8
Ours (WRS-Opt) 8.0 3.7 30.3 15.1 15.1 70.8

Table 4.15: Influence of quantization strategies based on the ARS and WRS compiler schedules.

4.5.5 Discussion

In this section, we propose an in-train quantization technique, which eliminates the need for com-
putationally expensive model exploration time, typically required in post-training compression
methods. We specifically eliminate the iterative fine-tuning and retraining phases used in RL
or evolutionary search based optimization pipelines. In-order to learn the quantization strategy
directly during the training, we formulate a QAT scheme using learnable bit-widths. We modify
the parameterization of the fixed point quantizer used in uniform QAT schemes such as PACT [7]
to determine efficient bit-width assignments. We avoid gradient explosion by determining set
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of unique values required to represent weights and activations for all the layers. We also formu-
late HW-loss using fractional bit-widths. Furthermore, we determine HW-aware bitwidths by
formulating a differentiable loss object using GP regression. The GP regression automatically
supports HW-estimates for fractional bits. Compared to the uniform 4-bit quantization, our
approach reduces the number of BOPs by 1.5× for ResNet56 with minimal accuracy degradation
on CIFAR-100 dataset. Compared to state-of-the-art mixed-precision approaches, we reduce the
number of BOPs while improving the prediction accuracy, producing dominating solutions. With
no degradation in task accuracy, our approach reduces the inference latency by 1.3×, compared
to a uniformly quantized ResNet56.

This approach is similar to the in-train pruning procedure specified in Sec. 4.4. We leverage
the quantization as a compression opportunity instead of determining redundant elements in
the weight matrix. We additionally formulate differentiable HW-estimator to easily attain
HW-awareness during the training process. We also determine compiler-aware/schedule-aware
quantization strategy similar to Sec. 3.4. We observe higher bit-width assignments to the Ifmaps
for the ARS compiler based quantization strategy. Similarly, we observe higher bit-width
assignments to the weight matrix for the WRS compiler based quantization strategy. These
experiments assure the HW-awarenes due to the GP-regressor for determining an efficient
quantization strategy during the training process. We also realize defensive mixed precision
strategies by integrating QAT with state of the art adversarial training scheme in Sec. 5.4.

4.6 Conclusion

In this chapter, we investigate efficient CNN optimization methods which produce HW-aware
compression configurations with lower GPU hours. In Sec. 4.3.1, we presented pruning agent that
learns to prune filters of CNN in iterative procedure. The agent requires no human-in-loop, does
not use any handcrafted heuristics for filter selection criteria. Filter position and importance is
leaned by the agent to derive the most efficient model in term of compression ratio with minimum
accuracy loss. The proposed agent learns two kind of actions: Firstly, action to prune filters,
Secondly, number of retraining epochs to be conducted between pruning steps. With epoch
learning, we achieve reduction in optimization time by 2× compared to pruning without epoch
learning. We also achieve 3.8× compression ratio with only 1% accuracy loss.

In Sec. 4.4, we incorporate the pruning process in the underlying optimization function of the
training, an approach which we term as in-train pruning. We thereby break through the barrier
between training and pruning, and save the computational effort for additional post-train pruning.
We also eliminate the need for a pre-trained model. We demonstrate that our method achieves
80% reduction of multiply and accumulate (MAC) operations in ResNet models. Our method
is found to be most effective for structured pruning regularities. As structured pruning is more
advantageous on general-purpose accelerators such as GPUs, this strengthens the motivation for
the proposed in-train pruning scheme. Also, since the robust pruned model is achieved during
training itself, this method saves the GPU hours for model exploration and final fine-tuning. This
method also yields promising results for CenterNet pruning for object detection on the KITTI
dataset.
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4 Fast Compression

In Sec. 4.5, we propose an in-train quantization technique, which eliminates the need for com-
putationally expensive model exploration time, typically required in post-training compression
methods. We directly optimize our quantization strategy by formulating a HW-aware differen-
tiable loss objective using Gaussian process regression. We show that our approach can determine
efficient quantization strategies based on the underlying schedules of the HW-accelerator. Com-
pared to state-of-the-art mixed-precision approaches, we reduce the number of BOPs while
improving the prediction accuracy, producing pareto dominating solutions.
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5 Adversarial Robust Compression

Neural network compression is an extensively studied topic for reducing the computational
complexity [55, 8, 7], the memory demand [6, 5] and/or the energy consumption [100] of CNNs
deployed on embedded systems. These aspects widen the potential for CNN applications in
real-world scenarios. For e.g. an autonomous car must not get tricked to take wrong (potentially
dangerous) decisions by slightest variations of the image-based input that are not perceptible by
humans. One particular example of these variations (or perturbations) is the group of adversarial
attacks against which networks should be robust. Attacking neural networks can be done by
injecting small perturbations to the inputs, using white-box and black-box methods as discussed
in Sec. 2.5. Understanding these threats help to develop pro-active [151] and re-active [152]
methods to defend against adversarial examples and thereby improve CNN robustness. We
also propose compression methods which jointly optimize the CNN’s compute complexity and
its vulnerability to adversarial attacks. We specifically realize adversarially robust pruned and
quantized CNNs.

In this chapter, Sec. 5.1 elaborates the need for adversarial training methods to defend against
perturbations. Sec. 5.2 discusses related works on analyzing adversarial robustness of compressed
Neural Networks. We further discuss robust compression approaches in literature. Sec. 5.3
illustrates detailed experiments, which investigates the adversarial robustness of different com-
pressed variants. Sec. 5.4 describes defense methods to achieve robust compressed models
through in-train pruning and quantization. Sec. 5.5 concludes the chapter by providing important
take-aways. The chapter is based on the publications of Vemparala et al. [30], Vemparala et
al. [28] and Vemparala et al. [29].

5.1 Robustness of Compressed Networks

Most CNN compression methods in the literature are evaluated only in terms of prediction
accuracy on the test dataset. Despite their satisfactory performance, these methods do not
compare the change in adversarial robustness with respect to the baseline model. In this chapter,
we would like to first determine CNN compressed variants, which are inherently robust against
adversarial attacks. Furthermore, we would like propose a unified constrained optimization
method to compress large-scale CNNs into both compact and adversarially robust models. In
Sec. 5.1.1, we formulate the three objectives for realizing robust compressed models. In Sec. 5.1.2,
we discuss a defensive training method from literature, which achieves robust CNNs with lower
GPU hours.
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5 Adversarial Robust Compression

5.1.1 Joint Objective formulation

Achieving a balanced trade-off between the optimization objectives natural accuracy, compres-
sion rate and adversarial robustness of CNNs, portrays an extensive optimization space.

Natural Accuracy: One of the three optimization aspects considers the natural accuracy
of underlying CNNs used to solve image classification tasks. Given a CNN F with model
parameters θ that classifies original images Xorg with its corresponding labels Y for a given
image classification task results in an natural accuracy Accnat. In this chapter, we focus on
preserving the baseline natural accuracy Accnat using compression techniques like pruning and
quantization. The compressed model Fc aims to maintain the natural accuracy Accnat similar to
to its full precision CNNs F with model parameters θc as shown in Eq. 5.1.

Fc(θc, Xorg, Y ) 7−→ Accnat (5.1)

Compression Rate: The second optimization objective represents the compression rate of
underlying CNNs. A compressed CNN Fc with model parameters θc classifying input images X
results in a certain compute complexity on the target hardware after deployment. We measure the
compute complexity of pruned CNNs using FLOPs. To represent the processing advantages of
quantized CNNs, we report the number of BOPs. We aim to reduce the compute complexity of
pruned and quantized CNNs with respect to a baseline power hungry full precision model.

Adversarial Robustness: Lastly, exposing the given compressed CNN Fc to adversarial
images Xadv results in the adversarial accuracy Accadv, representing the adversarial robustness
of the underlying model against a specified threat model τ , see Eq. 5.2.

Fc(θc, Xadv, Y ) 7−→ Accadv s.t. τ 7−→ Xadv,Fc (5.2)

5.1.2 Fast Adversarial Training

A number of defense mechanisms have been proposed, that provide robustness to CNNs against
the adversarial attacks. Adversarial training refers to incorporating attacked images, generated
by a threat model, in order to ensure that the model loss on all attacked images of the same
class is low. Based on the attack mechanism used for generating image perturbations during
training, there are different defense procedures, some of which are more effective than the others.
Adversarial training proposed by Madry et al. [18] provides security guarantees against all attacks
of the first-order.

Wong et al. [17] introduced Fast Adversarial Training (FastAT) to train models adversarially,
a technique that was previously deemed expensive. One of the earliest adversarial training
techniques, proposed by Goodfellow et al. [70] used FGSM attack for generating adversarial
examples during training. Though this method was fast, it was sub-optimal. Wong et al. [17]
found that FGSM attack with random initialization is as effective for defence as PGD-based
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training. PGD based adversarial training is costly due to the necessity of constructing adversarial
examples using iterative attack during training. With FastAT, the cost of training with one
iteration of FGSM is significantly lower than the other variants. They also introduced several
techniques like cyclic learning rate and mixed-precision arithmetic to accelerate the convergence
of the training process. Using these techniques they brought down the training time for adversarial
training to the same level as vanilla training. In this work, FastAT has been used to achieve robust
optimization.

5.2 Related Work

Robust compressed models have been achieved through compression techniques by pruning
and quantization. Galloway et al. [153] evaluated and interpreted the adversarial robustness of
BNNs. They highlight the most commonly mentioned benefits of BNNs, i.e. the reduced memory
consumption and the faster inference. Their work complements the two benefits with a third
aspect, namely the robustness of BNNs. They show an improved or on par robustness of BNNs
against adversarial attacks compared to full-precision models. The inherently discontinuous
and approximated gradients of BNNs gives them an advantage over full-precision networks for
adversarial attacks. In Sec. 5.3, we conduct extensive experiments on different compression
variants such as pruning, quantization and knowledge distillation on various white box and black
box attacks.

Inspired by the work of Zhang et al. [134], Ye et al. [154] incorporated adversarial robustness
into the ADMM objective to produce RobustADMM. One of the main findings of the work for
improving adversarial robustness of a compact model is to concurrently prune and adversarially
train an over-parameterized network from scratch. They infer that adversarial robustness requires
a significantly large capacity of the network. Directly training a sparse model from scratch cannot
reach the same level of natural accuracy and adversarial robustness, that can be achieved by
training an over-parameterized model (4 or 8 times its size) and then pruning it.

Contrary to the hypothesis of Ye et al., Kundu et al. [155] proposed Dynamic Network Rewiring
(DNR) following the SNFS [137] based sparse training approach to realize a robust network from
scratch. It achieves ultra high levels of compression and can learn the layerwise sparsities of
the network on its own through momentum redistribution. To combat accuracy degradation, it
uses a dynamic L2 regularizer, inspired by a relaxed version of the ADMM regularization loss.
Unlike SNFS, DNR framework also supports channel pruning regularities. DNR combines the
advantages of both sparse learning as well as ADMM. To the best of our knowledge, it is the only
sparse learning approach that has been extended for robust compression. However, the robustness
of these models is not guaranteed as they evaluate their attacks against weak adversaries (PGD
attack for 7 iterations with step size α = 0.01).

Gui et al. [156] proposed Adversarially trained Model Compression (ATMC) framework,
a unified constrained model compression formulation where existing compression techniques
like pruning, quantization and factorization are incorporated into the constraints. However, a
pretrained model with adversarial robustness is required before the compression.

Sehwag et al. [149] proposed a post-train robust pruning approach entitled Hydra, which
achieves extremely high levels of compression for weight pruning. It learns the pruning strategy
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based on robustness aware optimization objective. The authors show that it performs better than
the lowest magnitude-based weight pruning [6] heuristic. After pretraining an over-parameterized
model using normal vanilla training, the pruning is based on the importance score computed
from the adversarial loss. Fine-tuning is performed on the pruned subgraph. They succeed in
obtaining robust subnetworks within the non-robust pretrained network. In Sec. 5.4, we produce
robust compressed models, which does not require a pre trained model and aims at obtaining a
pruning/quantization strategy without relying on handcrafted heuristics.

5.3 Robustness of Quantized and Pruned Networks

In order to get a deeper understanding of the effectiveness of adversarial attacks (Sec. 2.5), applied
to binary and efficient CNNs, we perform an extensive set of robustness evaluation experiments.
In this section, we expose vanilla full-precision, distilled, pruned and binary CNNs to a variety of
adversarial attacks.

5.3.1 Robustness Evaluation Setup

Although a successful attack could easily be carried out by adding large perturbations, the
requirement of finding the minimum necessary perturbation in each case is typically desirable
to perform the attack in an inconspicuous manner. This justifies CNNs to being particularly
robust against adversarial attacks that are relevant or expected in practice. However, despite the
requirement to keep the perturbation as small as possible, the target for training against an attack
structure can be to maximize a corresponding loss function. A prior analysis on the robustness
of real world compressed CNNs provides insights which facilitate the realization of strong
adversarial defense methods. We perform white box and black box attacks on compressed variants
as shown in Fig. 5.1. Compressed CNNs aim to mitigate the challenges of their deployment on
edge devices. Compression techniques such as knowledge distillation, pruning, and binarization
can potentially make CNNs more efficient in embedded settings.

Knowledge Distillation: Knowledge Distillation (KD) is the transfer of knowledge from a
teacher to a student network [157, 9]. The student can be a smaller CNN, which is trained on
the soft labels of the larger teacher network, achieving an improvement in accuracy-efficiency
trade-off. The student represents a compressed version of the teacher, condensing its knowledge.
We focus on KD training, using Kullback Leibler (KL) divergence between the teacher and the
student output distribution formulated as the loss function in Eq. 5.3. Here, σ(ft(I)) and σ(fs(I))
represent the softmax output logits of the teacher and student network respectively, computed for
a sample image I in a mini batch of N samples.

LKLKD (ft, fs, T ) =

N∑
n=1

σ(ft(In)/T ) log

(
σ(ft(In)/T )

σ(fs(In)/T )

)
(5.3)

Pruned Neural Networks: He et al. [5] proposed a learning-based compression method. The
authors leverage a RL agent, which learns the possible sparsities in each layer and prunes them
based on an `2-norm heuristic. We adapt the RL-agent of AMC-AutoML [5] to support different
pruning regularities such as filter-wise (F. Prune), channel-wise (Ch. Prune), kernel-wise (K.

128



5.3 Robustness of Quantized and Pruned Networks

Prune) and weight-wise (W. Prune) pruning (shown in Fig. 5.1). Pruning input channels from a
layer also discards corresponding output filters from previous layers. Thus, Ch./F. pruning result
in a similar compression ratio and CNN structure. The pruning regularity has a direct impact on
the hardware implementation complexity and throughput benefits. In this paper, the pruning rate
is set at a constant value of 50% over all experiments and pruning regularities.

Binary Neural Networks: Binarization represents the most aggressive form of quantization,
where the network weights W and activations are constrained to ±1 values. This greatly reduces
the memory requirements of CNNs. Binarizing a floating-point CNN reduces its memory
footprint by ×32. Rastegari et al. [55] introduced XNOR-Net, where the convolution of an
input feature map Al−1 and weight tensor W l is approximated by a combination of XNOR
operations and popcounts ⊕, followed by a multiplication with a scaling factor α, such that
Conv(Al−1,W ) ≈ (sign(Al−1) ⊕ B) · α (shown in Fig. 5.1). BNNs typically suffer from
accuracy degradation. To mitigate this problem, Lin et al. [8] proposed a scheme for ABC-Net.
The authors approximated the convolution by using a linear combination of multiple binary bases
for weights and activations, shrinking the accuracy gap to full-precision counterparts. In this
chapter, we implement ABC-Net and XNOR-Net binarization techniques, to evaluate the effect
of adversarial attacks on accurate BNNs.
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•

•

•
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•
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Figure 5.1: Experimental setup for breaking binary (C) and efficient (A) and (B) CNNs attacked with
white-box (FGSM, PGD and C&W) and black-box (LocalSearch and GenAttack) adversarial
attacks. Evaluated by using loss/accuracy levels, stress-strain graphs, box-plots and class
activation mapping (CAM).

We evaluate robustness of CNNs which are trained and evaluated on CIFAR-10 [42] or
ImageNet [1] datasets. The 50K train and 10K test images (32 × 32 pixels) of CIFAR-10 are
used to train and evaluate compressed variants of ResNet20/56 [39, 9, 5, 55, 8] respectively.
The ImageNet dataset consists of ∼1.28M train and 50K validation images (256× 256 pixels).
Compressed variants of ResNet18/50 are trained and evaluated for ImageNet experiments. If
not otherwise mentioned, all hyper-parameters specifying the training and the attacks were
adopted from the reference implementation. The robustness evaluation covers various white-
box (FGSM, PGD, C&W, DeepFool) and black-box (LocalSearch, GenAttack) attacks on the
CIFAR-10-trained ResNet20/56 compressed variants, as well as ImageNet-trained CNNs.

Tab. 5.1 summarizes the compressed CNNs and their full-precision counterparts analyzed in
this section. It shows that the different compressed variants differ drastically in their memory
demand and their compute complexity. Deep learning inference accelerators such as the NVIDIA-
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T4 GPU [158] or Xilinx FPGAs with DSP48 blocks support SIMD-based bit-wise operations [81].
In particular, a single DSP48 block can perform two 16-bit fixed-point multiplications or 48
XNOR operations at once. The normalized compute complexity (NCC) is defined as the optimal
utilization of MAC and XNOR operations in one compute unit. The DSP48 block serves as a
reference implementation to compute NCC in Tab. 5.1.

Dataset Model Acc. [%] Memory demand [MB] NCC [106]
C

IF
A

R
-1

0

ResNet20 [39] 92.46 % 1.07 41
KD-KL [157] 93.25 % 1.07 41
Ch.Prune [5] 89.76 % 0.70 19
K.Prune [5] 90.73 % 0.61 20
W.Prune [5] 91.98 % 0.59 20
XNOR [55] 82.71 % 0.04 1.3
ABC(1×1) [8] 83.42 % 0.04 1.3
ABC(3×3) [8] 88.94 % 0.12 8.0
ABC(5×5) [8] 90.64 % 0.20 21.3

ResNet56 [39] 93.88 % 3.40 125
KD-KL [157] 94.24 % 3.40 125
Ch.Prune [5] 92.86 % 2.50 62
K.Prune [5] 93.04 % 2.19 63
W.Prune [5] 93.54 % 2.02 62
XNOR [55] 83.24 % 0.11 3.0
ABC(1×1) [8] 86.29 % 0.11 3.0
ABC(3×3) [8] 92.48 % 0.33 24
ABC(5×5) [8] 92.82 % 0.55 66

Im
ag

eN
et

ResNet50 [39] 75.43 % 102.01 10216
ResNet18 [39] 69.00 % 46.72 1814
ResNet18-Ch.Prune [5] 67.62 % 34.52 884
ResNet18-XNOR [55] 49.10 % 4.14 173
ResNet18-ABC(1×1) [8] 51.07 % 3.48 153
ResNet18-ABC(3×3) [8] 59.83 % 6.28 417

Table 5.1: Accuracy Top1 [%], Memory demand [MB] and the NCC of compressed CNNs and their
full-precision counterparts.

5.3.2 Robustness Evaluation on CIFAR-10 dataset

PGD-Evaluation: Considering PGD attack as the ultimate first-order attack (Sec. 2.5), this
section experimentally explores the structure of the loss surfaces and the corresponding accuracy
deterioration of the proposed efficient CNNs, while exposing the models to PGD adversaries,
similar to those proposed by Madry et al. [18]. Investigating the resulting structural behavior,
especially the loss level to which the PGD attack is converging to and the speed of deterioration
of accuracy, helps in understanding the adversarial robustness of the underlying models with
respect to a defined PGD threat model τPGD={ ε, α, i }.

All models are pretrained on CIFAR-10 dataset without any adversarial examples, to distin-
guish the influence of varying compression techniques on adversarial robustness. Subsequently,
each model is exposed to PGD attacks from τPGD={ε=2, α=0.5, i=1000}. Following the
method of Carlini et al. [69], i was increased to verify convergence, ensuring local-maxima,
representing potentially worst-case adversarial examples for the underlying model with respect to
the applied threat model τPGD. However, results are only shown up to i=100, since τPGD showed
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Figure 5.2: PGD attack accuracy (solid) and loss (dashed) over several iterations for compressed variants
of ResNet20 (left) and ResNet56 (right) averaged over five reruns of PGD attack. Additionally,
the horizontal breaking line (BL - dashed black) visualizes the deterioration of model accuracy
below random guessing (≤ 10% ) for CIFAR-10. Visual markings are added to categorize
models above and below the BL at i=10.

convergence for all investigated models in this range. The loss value and the corresponding
accuracy of the models to the adversary were tracked every 5th-iteration. In the following, the
adversarial robustness of a model against PGD attacks is evaluated by (1) the overall loss level
the PGD attack is converging to and as a consequence the resulting accuracy (2) the number
of iterations a model can sustain until it breaks. We can consider a CNN model broken, if its
accuracy indicates that the classification is random (10% for CIFAR-10 dataset), represented
by model accuracy graphs dropping below the breaking line. Fig. 5.2 shows the mean over five
reruns of PGD attack for all models to exploit random initialization, which ensures random
exploration of the underlying non-concave maximization problem as described in Sec. 2.5.

Consistently, all investigated pruning techniques harm adversarial robustness against PGD
attack with respect to its vanilla versions of ResNet20/56, when considering (1) the loss and
accuracy after a converged attack and (2) the speed of breaking. Vanilla and pruned versions of
ResNet20 break within five iterations, whereas the respective ResNet56 versions break within
ten iterations. KD shows greater resilience to the PGD attack since (1) its accuracy after the
converged attack is higher compared to both the ResNet20/56 vanilla variants and (2) breaking
at a higher number of iterations. KD-KL breaks at i=15 for its ResNet20 variant and at i=40 at
its ResNet56 variant. Binarization can improve the robustness against the defined PGD attack,
materializing in (1) the higher loss and accuracy after a converged attack and (2) the greater
resilience for a longer period of PGD iterations. XNOR-Net and ABC(5×5) break at i=20, while
ABC(3×3) and ABC(1×1) break at around i=60 for their ResNet20 variants. For the ResNet56
variants, ABC(1×1) and ABC(5×5) break at i=20, whereas ABC(3×3) sustains up to i=40. The
ResNet56 variant of XNOR-Net outperforms all other models in (1) accuracy after converged
attack (∼14%) and (2) being the only model that never breaks throuhgout this experiment (see
Fig. 5.2 right).

Investigations on different threat models: In Fig. 5.3, we present box-plots from data
collected over a range of experiments. For each attack, we sweep over the respective strength and
iterations mentioned in Tab. 5.2. The exact definition of strength and iteration for each attack can
be recalled from Sec. 2.5. The data includes both models, ResNet20 and ResNet56.
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Attack Strength ε Iterations i

FGSM 2, 4, 8, 16 N/A
PGD 0.1, 0.5, 1.0, 2.0 2, 3, 4, 5
CW 0.01, 0.1, 1.0, 5.0, 10.0 1,10, 20, 50
DeepFool N/A 1, 5, 10, 20
Local Search 8, 16, 32 50, 100, 150, 200

GenAttack 8, 12
50,100, 150, 200
popsize=6, 16

Table 5.2: Various strength and iteration combinations tested for ResNet20 and ResNet56 variants (vanilla,
pruned, binary, and distilled). Strength and iteration definitions for each attack are explained in
Sec. 2.5

Fast Gradient Sign Method: For FGSM attacks, the results show that the KD-KL variant
is more resilient compared to other compression techniques, as its mean attacked accuracy is
higher compared to other variants. During the training, the distillation is performed using higher
temperature (T = 30). The attack perturbations are generated using cross-entropy loss with T = 1,
resulting in saturated gradients and therefore weakening the attack. We also observe a boost in
robustness, when the baseline CNN is the larger ResNet56 model. Interestingly, the binarized
ABC models also exhibit similar robustness for both ResNet20 and ResNet56 variants (see third
quartile FGSM attacked accuracy of ABC-Nets in Fig. 5.3).

Projected Gradient Descent: For PGD, we raise the attack intensity by increasing the
strength ε or attack iterations i. We observe that the mean accuracy after attack is higher for
XNOR and distilled CNN variants compared to vanilla and pruned CNN models.

Carlini & Wagner: For the C&W method, we observe that the attack impacts all the
compressed variants. We use the target class as deer for CIFAR-10 dataset to fool the CNN model.
We also observe that the mean accuracy after attack is lower than other attacks making it the
strongest threat model.

DeepFool: Similar to the C&W attack, DeepFool renders most of the CNN compressed
variants. One exception is the XNOR-Net [55], which can sustain accuracy after attack with high
amount of attack intensity. It is worth noting that the other binary CNNs like ABC-Net do not
perform as well as XNOR with this threat model.

LocalSearch: We observe the mean accuracy after attack for all the variants of BNNs is
higher for local search based black box threat model. The target class we consider for the attack
is deer in CIFAR-10 dataset. The data points are based on different strengths ε = { 8, 16, 32 }
and iterations i = { 50, 100, 150, 200 }.

GenAttack: For GenAttack, we consider the number of generations i as { 50, 100, 150, 200
}, different attack amplitudes ε as {8, 12} and various population sizes N as {6, 16}. In Fig. 5.3,
a clear difference between the robustness of BNNs and other variants is observed. We can classify
BNNs as strong against blackbox based GenAttack.
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Figure 5.3: Box-plots for attacks on compressed variants of ResNet20 and ResNet56.

5.3.3 Robustness Evaluation on ImageNet dataset

For the robustness evaluation on the ImageNet dataset [1], we use pre-trained ResNet50 and
ResNet18 models, and compressed variants of ResNet18. We observe a higher attack search
time for ImageNet compared to the CIFAR-10 dataset due to the larger image sizes and model
complexity. Therefore, we limit our analysis to two white-box attacks (FGSM and PGD), and
one black-box attack (GenAttack). We consider compressed variants such as Ch-Prune, XNOR,
ABC(1×1) and ABC(3×3) specified in Tab. 5.3- 5.5.

Fast Gradient Sign Method: In Tab. 5.3, we report the natural accuracy and attacked accuracy
for different strengths (ε = {2, 4, 8, 16}). ResNet50 achieves the highest natural accuracy and
attacked accuracy for different strengths compared to other models. Among the compressed
variants the channel pruned and ABC(3x3) models portray slightly higher robustness at different
strengths.

FGSM Nat.Acc ε = 2 ε = 4 ε = 8 ε = 16

ResNet50 [39] 75.43 % 22.18 16.24 12.08 7.46
ResNet18 [39] 69.00 % 12.82 8.16 5.19 2.95
ResNet18-Ch.Prune [5] 67.62 % 11.18 6.64 3.99 2.34
ResNet18-XNOR [55] 49.10 % 7.57 4.54 2.19 0.93
ResNet18-ABC(1×1) [8] 51.07 % 9.11 4.65 2.30 1.13
ResNet18-ABC(3×3) [8] 59.83 % 11.33 5.73 2.65 1.43

Table 5.3: Accuracy (Top1) [%] of CNNs after FGSM adversarial attacks for ImageNet.
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5 Adversarial Robust Compression

Projected Gradient Decent: In Tab. 5.4, we report the attacked accuracy for two strengths
(ε = 0.1, ε = 0.5). The attacked accuracy decreases for all the models as we increase the
number of iterations i. We observe 9.16% higher attacked accuracy for binarized ResNet18 using
ABC(3×3) compared to the ResNet50 model at i = 5 and ε = 0.1. Robustness at higher attack
strength ε = 0.5 degrades the prediction accuracy for all the compressed variants.

PGD ε i = 2 i = 3 i = 4 i = 5

ResNet50 [39] 0.1 25.77 16.07 9.83 5.91
(75.43 %) 0.5 3.35 0.94 0.43 0.27
ResNet18 [39] 0.1 17.86 10.32 5.58 3.11
(69.00 %) 0.5 1.33 0.17 0.04 0.01
ResNet18-Ch.Prune [5] 0.1 17.02 10.23 5.92 3.50
(67.62 %) 0.5 1.40 0.27 0.06 0.02
ResNet18-XNOR [55] 0.1 13.16 11.46 10.06 8.84
(49.10 %) 0.5 5.67 3.07 1.57 0.78
ResNet18-ABC(1×1) [8] 0.1 18.35 16.22 14.20 12.37
(51.91) 0.5 7.60 3.64 1.75 0.82
ResNet18-ABC(3×3) [8] 0.1 23.90 20.81 17.80 15.07
(59.83) 0.5 8.31 3.70 1.59 0.66

Table 5.4: Accuracy [%] of CNNs after PGD adversarial attacks for ImageNet.

GenAttack: We set an adaptive mutation rate ρ and mutation range α for GenAttack based
on the dataset configuration and set the population size to 6, as in [78]. In Tab. 5.5, we report
overall attacked accuracy and accuracy w.r.t. the fooled target class at several iterations during
the attack search (i = {200, 400, 600, 800, 1000}). We also analyze the robustness for two attack
strengths (ε = 8, 12). Similar to previous observations, ABC models portray higher robustness
with respect to their unattacked accuracy, when compared to other compressed variants and the
vanilla ResNet50 and ResNet18 models.

GenAttack ε
i = 200 i = 400 i = 600 i = 800 i = 1000
OA/TA OA/TA OA/TA OA/TA OA/TA

ResNet50[39] 8.0 21.29/12.80 11.64/34.46 6.87/51.94 4.67/64.08 3.06/72.82
(75.43 %) 12.0 13.16/17.45 5.67/41.19 3.55/56.65 2.40/67.29 1.60/74.58

ResNet18[39] 8.0 16.41/14.52 8.11/41.83 4.35/62.58 2.36/75.62 1.34/83.29
(69.00 %) 12.0 10.24/22.44 5.13/50.74 2.70/68.85 1.58/80.21 1.04/86.62

ResNet18-Ch.Prune[5] 8.0 12.34/12.82 6.05/39.02 3.17/60.46 2.00/74.46 1.22/82.79
(67.62 %) 12.0 7.33/20.25 3.29/49.44 1.84/68.97 1.08/80.11 0.88/86.80

ResNet18-XNOR[55] 8.0 13.06/0.64 12.86/0.72 12.64/0.84 12.68/0.86 12.68/0.94
(49.10 %) 12.0 11.56/0.78 11.14/0.92 11.14/1.04 11.04/1.16 10.82/1.22

ResNet18-ABC(1×1)[8] 8.0 17.59/1.48 17.67/1.62 17.37/1.76 17.23/1.88 16.89/1.98
(51.07 %) 12.0 15.83/1.90 15.40/2.08 15.20/2.26 15.02/2.34 14.86/2.52

ResNet18-ABC(3×3)[8] 8.0 26.00/0.68 25.02/0.82 25.26/0.92 25.46/0.98 25.58/0.96
(59.83 %) 12.0 22.50/0.74 22.04/0.94 22.36/1.02 21.75/1.08 21.90/1.14

OA/TA = Accuracy to original label / Accuracy to target label.

Table 5.5: Accuracy (Top1) [%] of CNNs after GenAttack adversarial attacks for ImageNet. The Popula-
tion size for the experiments = 6
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5.3 Robustness of Quantized and Pruned Networks

5.3.4 Class Activation Maps

We use CAM [147] to determine the region of interest (RoI) for the prediction class using clean
and attacked images. The output feature maps of the last convolutional layer and the weight tensor
of the fully-connected layer is considered as the input to the CAM. The CAM highlights regions
of the image that influence the CNN’s prediction to a specific class. Similar to heat-maps, red
regions indicate those with the highest contribution, while blue indicates the ones with the least.
We applied CAM on various compressed variants of ResNet20 and ResNet56, trained on CIFAR-
10, which are attacked by DeepFool (Tab. 5.6). As mentioned in Sec. 2.5, DeepFool attempts to
find the adversarial perturbation which leads the CNN to the closest decision boundary. Once a
perturbation is found, it is reinforced to push the prediction beyond that boundary. Through the
CAM visualizations in this section, we attempt to capture this behaviour over the attack iterations.

Model Image→ IAdv Vanilla Distilled Pruned Binary
KD-KL Ch./F. Kernel Weight XNOR ABC(1×1) ABC(3×3) ABC(5×5)
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Table 5.6: CAM for ResNet20/56 and its compressed variants performed on non-attacked and DeepFool
attacked images on the automobile image from CIFAR-10 dataset.

All the compression techniques produce no mis-classification in the automobile example using
the unattacked raw image in Tab. 5.6. Three interpretations can be made from the heat maps. We
support our interpretation with quantitative analysis by measuring the third quartile value of the
heat map intensity across all the pixels. Observing the CAM output of ResNet56’s vanilla and
channel-pruned variants for the unattacked input image, the RoI has large focused interest regions.
For an intensity range of (0,255) blue→red, the third quartile value of the heat map intensity
across all pixels is 184 and 162 for vanilla and channel-pruned respectively, indicating a large RoI.
Second, the intensity of the interest regions decreases, after the attack is applied for one iteration.
The third quartile value decreases (171, 152) indicating the lower interest regions. Third, after the
attack is applied for five iterations, the focus on the attacked region (bonet) is reinforced to fool
towards the nearest class (truck). The third quartile value further decreases (135, 121). Under
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5 Adversarial Robust Compression

DeepFool attacks, ResNet56 is more robust compared to ResNet20 which can be illustrated by the
more distinct RoIs in the heat maps. The BNN variants have a small RoI compared to their vanilla
model for unattacked images. The third quartile value for ResNet56-XNOR is 98 indicating this
aspect. As the inherent RoI for BNNs are small and concentrated, it could reduce the chances of
finding and perturbing the smaller set of critical pixels by the attack model.

5.3.5 Discussion

The robustness of distilled models can be attributed to their soft label training, which can be
more informative than sheer, hard labels. The student is ideally able to learn both the correct
classification and the distribution of closeness among other classes. Furthermore, the student is
distilled using a high temperature factor T , causing the magnitude of the predicted class to be T
times more confident than when trained on hard labels [75]. Thus, white box attacks like FGSM,
PGD and DeepFool would require strong adversarial perturbation for fooling the final prediction
to its nearest class. However, the C&W attack is able to fool the distilled model, even at higher
temperatures as the attack is not focused on the cross-entropy loss directly.

The training scheme for BNNs is not as simple as vanilla or pruned models. It requires a
straight-through-estimator, making the white-box attacks challenging compared to other variants.
Introducing multiple scaling factors in case of ABC-Net eases the approximation to its full-
precision model. Thus, XNOR-Nets appear to be more resilient against white-box attacks
(Fig. 5.3). Moreover, the PGD loss levels in Fig. 5.2 demonstrate the robustness of XNOR-Net
through lower loss convergence values and breaking speed. The discretization of weights and
activations also makes BNNs stronger against black-box attacks. The CAM results support
the robustness for BNNs as they inherently possess smaller and concentrated RoI, reducing the
chances of finding and perturbing the critical set of pixels. The BNN robustness is also observed
for the ImageNet dataset when attacked with PGD and GenAttack (Tab. 5.4, Tab. 5.5). In Sec. 5.4,
we also analyze robustness of uniform, mixed precision CNNs and further realize defensive
in-train quantization method.

Pruning is the process of eliminating unused and/or redundant parameters. Here, balancing the
compression rate and the accuracy is a key factor. Due to the reduced learning ability, pruned
models are not automatically more robust than their full-precision counterpart. This would call
for an extra objective function for improving the robustness. Existing works have shown that it is
possible to remove more model parameters when pruning is applied in an unstructured manner [6].
A similar behavior can be expected if the robustness is included in the pruning and fine-tuning
process. In Sec. 5.4, we realize defensive post-train, in-train pruning methods and highlight its
robustness against white box attacks such as PGD and C&W.

5.4 Defensive Pruning and Quantization

In Sec. 5.3, we investigate the adversarial robustness of various compressed CNN variants. We
observe that the pruned models are vulnerable to the attacks among all of them. Furthermore,
we had also investigated the robustness of multi-bit CNNs and observed superiority in most of
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the white box and black box attacks. In this section, we aim to achieve adversarially robust
HW-friendly CNNs by formulating a defensive compression scheme.

5.4.1 Defensive Compression

In this section, we target two objectives: 1) Compressing a model to reduce the computational
effort of a neural network, and 2) increasing the robustness against an adversary manipulating
input data. Both can be effectively achieved by formulating a joint optimization problem as
shown in Fig 5.4.

Figure 5.4: Depiction of defensive compression method using in-train pruning and quantization

We modify the in-train pruning approach specified in Sec. 4.4 and in-train quantization approach
in Sec. 4.5 to achieve a balanced trade-off between natural accuracy Accnat (calculated from the
ground-truth labels Y for the corresponding images I), adversarial robustness Accadv, and model
complexity sum(Mb) during the training process. This is achieved without introducing separate
(post-training) phases for pruning and fine-tuning.

To obtain robust pruned CNNs, we adopt the concept of adversarial training [18] but incorporate
pruning edges in the network using a binary mask Mb ∈ {0, 1}. These masks are derived from a
trainable continuous mask M , that is, weights W are canceled out if the corresponding dimension
of the mask is 0 and left unchanged if it is set to 1. Attacks against a neural networks are
described as finding a minimal perturbation δ of an image I (forming the the adversarial example
Iadv = I + δ) that changes the outcome of a given model represented by the prediction function
f(·) [70]. For adversarial training, we make use of this generation principle, while maximizing
the loss L for a given perturbation budget ε in Eq. 5.4.

min
W,M

E
(I,Y )∼D

[
max
|δ|≤ε
L (f(I + δ,W �Mb), Y )

]
. (5.4)

137



5 Adversarial Robust Compression

The outer minimization problem in Eq.5.4 involves a set of randomly sampled images from
dataset D, where the expected loss E on the random samples is minimized through an adversarial
training scheme, such as FastAT [17]. Exposing a model to adversarial images Iadv results in the
adversarial accuracy Accadv, representing the measure of adversarial robustness of the underlying
model. In principle, one may use different methods for generating adversarial examples for
training, such as FGSM [70], PGD [18] and CW [75]. Wong et al. [17], however, show that
using FGSM in combination with random initialization is particularly effective. With this, the
cost of training, measured in GPU hours, with one iteration of FGSM is significantly lower than
with other variants like PGD-based adversarial training [18]. We integrate the in-train update
operations of the pruning mask Mb in the FastAT procedure as shown in Alg.1.

Algorithm 1: Joint selection of pruning masks and adversarial training.
Require :Training samples D, perturbation strength ε, step size α

1 Initialize θ, Mb ← 1
2 for Epoch = 1, . . . Nepochs do
3 for Batch B ⊂ D do
4 Initialize perturbation δ ← random uniform(−ε,+ε)
5 Sample a batch of K examples {(I(1), Y (1)), · · · , (I(K), Y (K))} from data

distribution.
6 Use FGSM attack to generate perturbations on batch K to update δ
7 δ ← δ + α · sign(∇δL(f(I + δ,W � Mb), Y )
8 δ ← max(min(δ, ε),−ε)
9 Iadv ← I + δ

10 Update weights W and pruning masks M using SGD for adversarial images:
11 W ←W − η · ∇WL(f(Iadv,W �Mb), Y )
12 M ←M − η · ∇ML(f(Iadv,W �Mb), Y )

13 end
14 if EPrune, Start ≤ Epoch ≤ EPrune, End then
15 if Epoch mod Prune step = 0 then
16 M ←M − η · ∇MLPrune(M,ψbase)
17 end
18 Mb ← round(0.5 · tanh(M) +0.5)

19 end
20 end

During each training step, we generate a uniform random initialization for the adversarial
perturbation as shown in line 4, followed by performing a step into the ascent gradient direction
(line 7) is scaled by the step size α. We update the weights and pruning masks of the neural
network jointly in lines 11 and 12 for clean and adversarial images with learning rate η. During
these update steps the importance scores for masks Mb get accumulated. Lines 15 and 16 zero
out prune masks based on a hardware loss LPrune (sec:loss). As shown in line 14, we start and
freeze the optimization of prune masks at the epoch corresponding to EPrune, Start and EPrune, End
respectively.
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We also integrate the QAT such as PACT [7] and in-train mixed precision scheme with
FastAT [17] based defense method. To obtain mixed precision CNNs, we learn the number
of unique values |U | ∈ {1, 256} required to represent weights and activations for each layer.
We detail the quantization for weights and activations as Wq and Aq in Eq. 5.5 and Eq. 5.6,
respectively. We clip the activations A between the range [0,+c] due to the non-linear activation
function (ReLU) and approximate them as Aq ∈ {0, 1, 2, ..., (2b − 1)}, similar to [7].

Aq = Round(Clip(A, 0, c) · (2b − 1)

c
) · c

(2b − 1)
(5.5)

We clip the weight values using a tanh() function and limit the range between [-1, 1], similar
to the work in DoReFa-Net [50] as shown in Eq. 5.7. We approximate the continuous domain of
weightsW into the discrete valuesWq ∈ { −(2b−1−1), ...,−2, −1, 0, +1, +2, ..., (2b−1−1)}.

Wq = 2
(
Round(Cliptanh(W ) · (2b−1 − 1)) · 1

(2b−1 − 1)

)
− 1 (5.6)

Cliptanh(x) =
tanh(x)

2max(tanh(x))
+

1

2
(5.7)

Our in-train quantization approach aims to achieve a balanced trade-off between natural
accuracy Accnat (calculated from the ground-truth labels Y for the corresponding images I),
adversarial robustness Accadv, and model complexity ϕ during the training process, rather than
introducing separate post-training phases for finding the quantization strategy. Attacks against
a neural network are described as finding a minimal perturbation δ of an image I (forming the
the adversarial example Iadv = I + δ) with label Y that changes the outcome of a given model
represented by the prediction function f(·) [70]. For adversarial training, we make use of this
generation principle, while maximizing the loss L for a given perturbation budget ε as shown in
Eq. 5.8. We integrate the in-train update operations of the unique values U for quantized weights
Wq and activations Aq in the FastAT procedure as shown in Alg.2.

min
W

E
(I,Y )∼D

[
max
|δ|≤ε
L (f(I + δ,Wq), Y )

]
. (5.8)

Different from Alg. 1, we formulate a defensive quantization method in Alg. 2. We update the
weights and unique values |U | of the neural network jointly in line 11 for clean and adversarial
images, with learning rate η. During these update steps, the importance scores for trainable unique
values for each layer |U | get accumulated. Line 13 reduces the number of unique values based on
a hardware loss LHW and cross entropy loss Lce. As shown in line 12, we start and freeze the
quantization strategy at the epoch corresponding to EQuant, Start and EQuant, End respectively.

5.4.2 Experiments - Robust Pruning

In this section, we demonstrate our proposed in-train pruning and quantization’s ability to achieve
compressed models, balancing the trade-off between natural accuracy and adversarial robustness.
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Algorithm 2: Joint learning of quantization strategy and adversarial training.
Require :Training samples D, perturbation strength ε, step size α

1 Initialize θ, |U | ← 256
2 for Epoch = 1, . . . Nepochs do
3 for Batch B ⊂ D do
4 Initialize perturbation δ ← random uniform(−ε,+ε)
5 Sample a batch of K examples {(I(1), Y (1)), · · · , (I(K), Y (K))} from data

distribution.
6 Use FGSM attack to generate perturbations on batch K to update δ
7 δ ← δ + α · sign(∇δL(f(I + δ,Qunat(W )), Y )
8 δ ← max(min(δ, ε),−ε)
9 Iadv ← I + δ

10 Update weights W and unique values |U | using SGD for adversarial images:
11 W ←W − η · ∇WL(f(Iadv, Qunat(W )), Y )
12 if EPrune, Start ≤ Epoch ≤ EPrune, End then
13 |U | ← |U | − η|U | · ∇|U |L(f(Iadv, Qunat(W )), Y )

14 end
15 end
16 end

Baseline Training As a baseline for adversarial training, we implement FastAT [17] (see
Tab. 5.7). For FastAT on the CIFAR-10 dataset, we use random FGSM with strength ε = 8/255,
step size α = 10/255 to generate adversarial perturbations during the training process. We train
for 300 epochs and set the initial learning rate to 0.1 and scale it down by a factor of 10 every
80 epochs. For evaluating robustness of the pruned models, the PGD attack is performed with
ε = 8/255 and α = 2/255 for 20 iterations.

AMC-based Robust Pruning For the purpose of comparison with post-train pruning ap-
proach, we implement the state-of-the-art RL-based pruning scheme AMC [5]. We find pruning
configurations tgenerating a trade-off between natural accuracy and adversarial accuracy. We
constrain the number of operations to the target specified in Tab. 5.7 and Tab. 5.8 and allow the
RL-agent to search for 500 episodes to obtain the pruning strategy. We adversarially fine-tune the
resulting network with a cyclic learning rate of 0.1 for 30 epochs.

Improved Robustness with In-Train Pruning We augment our pruning approach with
FastAT [17]-based adversarial training and start zeroing the prune masks at EPrune, Start = 20 and
freeze the masks at the EPrune, End = 240. We use an initial learning rate of 0.1 and decrease it by
a factor of 10 at the 80th and 160th epoch. We use the same attack strength as baseline training.

In Tab. 5.7, we make a comparison between the RL-based post-train pruning approach and the
proposed in-train pruning method. Across all experiments, we observe an improvement in natural
accuracy, while maintaining similar adversarial robustness. For a target reduction ψ∗=0.3 on
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ResNet20, we obtain an improvement of 5.91 pp in natural accuracy. For ResNet56 and ψ∗=0.3,
we obtain an improvement of 8.65 pp in natural accuracy and with similar adversarial robustness.

Model
Operations
Reduction

FastAT + RL Prune FastAT + In-train Prune
Acc PGD-Acc Acc PGD-Acc
[%] [%] [%] [%]

ResNet20

1.0 81.52 40.65 81.52 40.65
0.70 78.89 40.39 80.63 39.27
0.50 77.11 39.65 80.32 40.14
0.30 66.97 33.89 72.88 34.33

ResNet56

1.0 84.03 38.45 84.03 38.45
0.70 82.78 42.47 84.52 36.91
0.50 81.88 41.78 84.56 36.78
0.30 74.75 36.95 83.40 36.89

Table 5.7: Comparison between post-train RL-based robust pruning and the proposed in-train robust
pruning for various operation constraints.

In Fig. 5.5, we plot the training behaviour to compare the in-train pruning approach with (blue)
and without (gray) adversarial robustness, for ψ∗ = 0.3. We observe noisy improvement in natural
accuracy behaviour for the in-train robust pruning (blue). The sudden fluctuation in accuracy at
15K and 30K iterations indicates the change in training behaviour due to the step learning rate
policy. During these iterations, we observe large changes in the HW loss, indicating a phase of
exploration in the binary prune masks Mb (0↔ 1). The changes in the pruning masks result in
noisy accuracy improvement but eventually stabilize within 5K training iterations. We freeze the
changes in pruning masks at the 45K iteration as the pruning constraint ψ∗ is satisfied (LHW =
0).

We also verify the robustness of our in-train pruning scheme with stronger adversarial attacks
such as Carlini-Wagner (C&W) [75] as shown in Fig. 5.6. C&W is an iterative attack guided
by an optimizer such as Adam, which produces strong adversarial examples by simultaneously
minimizing perturbation distance and manipulating the predictions based on a target class.
Different loss functions can be applied in C&W attacks. In our experiments, the most efficient
l2-bounded loss is used for the evaluation. We run the attack for 100 iterations and set the C&W
constant c=100, which is responsible for controlling the trade-off between the attacked image
similarity and the success rate of the target class. We do not perform a binary search on the c value
as suggested in the paper, since our focus is not on minimizing adversarial distance. Instead, we
use a high value of c to ensure that the models are subjected to the strongest attack for reasonable
image perturbations. In Fig. 5.6, we observe that the vanilla model trained without adversarial
perturbations breaks very early at the 10th iteration. However, robust models withstand the
attack for more iterations (≥ 20) with adversarial accuracy at least greater than 20%. Our pruned
models obtain even higher adversarial accuracy than the unpruned RobustAT network after 30
iterations. We also observe higher adversarial accuracy starting from the 20th iteration for our
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Figure 5.5: Comparison of the proposed in-train pruning scheme for operation constraint ψ∗ = 0.3 with
(blue) and without (gray) the consideration of adversarial robustness.

in-train pruned model with target constraint ψ∗ = 0.3. This indicates the generalization capability
of the in-train pruning approach as the compression rate increases.
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Figure 5.6: Comparison of adversarial robustness for different CNN models using C&W attack for
ResNet20.

In Tab. 5.8, we analyze the proposed in-train pruning approach with different pruning regu-
larities in the context of adversarial robustness. Additionally, we compare our results with the
post-train RL-based pruning scheme. The RL-agent proposed in the original work of AMC [5]
is only suited for channel-wise pruning. We adapted the RL-agent to also perform pruning for
different regularities. We observe that irregular weight pruning gives the best trade-off between
natural and adversarial accuracy. These observations also align with the robust pruning works in
literature [149, 154]. The effectiveness of the in-train pruning scheme compared to the RL-based
pruning scheme becomes more evident as the pruning is structured (weight-wise→ channel-wise).
Compared to RL-based weight pruning, we observe a slight degradation in natural accuracy (-0.65
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pp) for the in-train pruning scheme on ResNet20. However, the proposed method produces 5.91
pp, 0.44 pp better natural and adversarial accuracy respectively for channel pruning. The same
trend also applies to ResNet56. As channel pruning is more advantageous on general-purpose
accelerators such as GPUs, this strengthens the motivation for the proposed in-train pruning
scheme.

Model
Pruning

Regularity

FastAT + RL Prune FastAT + In-train Prune
Acc PGD-Acc Acc PGD-Acc
[%] [%] [%] [%]

ResNet20

1.0 81.52 40.65 81.52 40.65
weight 79.08 40.35 78.43 38.59
kernel 75.79 38.63 77.92 38.64

channel 66.97 33.89 72.88 34.33

ResNet56

1.0 84.03 38.45 84.03 38.45
weight 83.94 41.04 83.21 38.64
kernel 81.68 40.82 83.31 38.68

channel 74.75 36.95 83.40 36.89

Table 5.8: Robust pruning for various pruning regularities with target operation constraint ψ∗ = 0.3.

In Tab. 5.9, we analyze the scalability of the robust in-train pruning approach for larger and
more complex datasets such as ImageNet. We train ResNet18 and ResNet50 models using
FastAT [17] to obtain robust baseline models. We consider random FGSM with strength ε =
2/255, step size α = 2.5/255 for generating adversarial perturbations during training. The models
are trained for 100 epochs, the learning rate is initially 0.1 and scaled down by 10 every 30
epochs. We report adversarial accuracy using the PGD attack with ε = 2/255 and α = 0.5/255 for
20 iterations. Tab. 5.9 presents the natural and adversarial accuracies for operations constraint
of 30%, 50% and 70% on ResNet18 models. For 30% operations reduction, ResNet18 achieves
1.19 pp better adversarial accuracy compared to the baseline with 1.84 pp degradation in natural
accuracy, whereas for 50% operations reduction, ResNet18 achieves 1.76 pp better natural
accuracy with less than 1% degradation in adversarial accuracy. However, for 70% operations
constraints, both ResNet18 and ResNet50 suffer a degradation of (3.27 pp, 5.34 pp) and (9.21 pp,
7.56 pp) in natural and adversarial accuracies respectively.

We compare the proposed in-train pruning approach to the robust pruning works in literature.
In Tab. 5.10, we report the results of RobustADMM [154], Hydra [149] and ATMC [156].
RobustADMM, Hydra and ATMC use different baseline models, PGD evaluation parameters
and adversarial training schemes. RobustADMM considers an over-parameterized ResNet as a
baseline model and prunes it for various parameter constraints. We report their channel pruning
results which achieve a model size of 0.04× 106 (mentioned as w = 1 in [154]) and 0.17× 106

(mentioned as w = 2 in [154]). Differently, our approach uses the smaller ResNet20 as a
baseline model and achieves 6.21 pp and 6.31 pp better natural accuracy while maintaining
similar adversarial robustness for model sizes with 0.04× 106 and 0.16× 106, respectively. The
results from our approach dominate in terms of natural as well as adversarial accuracy for the
same pruning constraints due to dynamic sparsity ratios across layers and heuristic-free pruning.
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Model
Acc Adv. Acc Ops Reduction Model Size
[%] [%] Target Original ×106

ResNet18-AT 47.22 28.29 1.0 - 11.68
ResNet50-AT 58.35 37.33 1.0 - 25.60

ResNet18-Prune 45.38 29.48 0.7 0.69 10.60
ResNet18-Prune 48.98 27.34 0.5 0.49 10.02
ResNet18-Prune 43.95 19.08 0.3 0.29 8.43

ResNet50-Prune 53.01 29.77 0.3 0.29 14.66

Table 5.9: In-train pruning for various operation constraints for ImageNet dataset

Compared to the work in Hydra [149], we achieve a significant improvement for channel
pruning configurations. Different from RobustADMM, Hydra performs a PGD attack for 50
iterations to measure adversarial robustness. Compared to a 50% constrained channel-pruned
VGG-16 model, we achieve 69.08% model reduction and 29.64 pp improvement in natural
accuracy, while maintaining a similar level of adversarial robustness. The work in ATMC [156]
evaluates robustness of compressed ResNet-34 with the PGD attack for 7 iterations. For the
comparison, we use the weight pruned configuration of ATMC-32bit model with same attack
hyper-parameters and obtain 6.63%, 14.43% higher robustness for ε = 4/255, 8/255 respectively
with similar model size. Different from [154, 149, 156], our pruning method does not require a
pre-trained model.

5.4.3 Experiments - Robust Quantization

We demonstrate our proposed mixed-precision approach’s ability to achieve compressed models
with a balanced trade-off between natural accuracy and adversarial robustness. As a baseline
for adversarial training, we implement FastAT [17] with uniform quantization. We augment our
trainable quantization parameters in the FastAT defense method and report the natural accuracy
and PGD robustness [18] for our mixed precision strategies in Tab. 5.11. The PGD attack, referred
as the “ultimate” first-order adversary [18], generates perturbations using iterative multi-step
optimization method. By considering random uniform initialization, arbitrary starting points
on the corresponding loss surface are ensured, thus resulting in worst-case adversaries for the
given image with respect to an underlying CNN model. For PGD evaluation, we use a strength of
8/255, step size 2/255 for 20 iterations. Existing work shows that low-precision models exhibit
higher adversarial robustness due to the discrete nature of the quantization operations [153].
Thus, we observe an increase in adversarial robustness as the bit-width is reduced for the uniform
PACT quantization. Our in-train quantization approach improves the trade-off between the three
objectives, namely prediction accuracy, adversarial robustness, and BOPs reduction. The achieved
robustness is increased by 0.9 pp and 1.4 pp, while reducing the number of BOPs by 1.6× and
1.9×, compared to adversarially trained uniform 4-bit ResNet20 and ResNet56, respectively.
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5.4 Defensive Pruning and Quantization

Work Baseline
Model

Pre-trained
Model

Pruning
Regularity

PGD Model
Size Acc

[%]
Adv. Acc

[%]Attack
ε, α, iter ×106

FastAT
Wong et al. [17] ResNet20 7 no prune

8, 2, 10 0.27 82.06 40.97
8, 2, 50 0.27 82.06 40.52

RobustADMM
Ye et al. [154] ResNet18 3

channel 8, 2, 10 0.04 64.52 38.01
channel 8, 2, 10 0.17 73.36 43.17

In-train Prune
(Ours) ResNet20 7

channel 8, 2, 10 0.04 70.73 39.31
channel 8, 2, 10 0.16 79.67 43.22

ATMC
Gui et al. [156] ResNet34 3

weight 4, 0.7, 7 0.11 84.00 62.00
weight 8, 1.4, 7 0.11 84.00 39.00

In-train Prune
(Ours) ResNet56 7

weight 4, 0.7, 7 0.13 82.68 68.63
weight 8, 1.4, 7 0.13 82.68 53.43

Hydra
Sehwag et al. [149] VGG16 3

weight 8, 2, 50 0.76 78.90 48.70
weight 8, 2, 50 0.15 73.20 41.70
channel 8, 2, 50 7.65 52.90 38.00

In-train Prune
(Ours) VGG16 7

channel 8, 2, 50 5.51 82.54 38.36
channel 8, 2, 50 0.76 73.40 30.20

Table 5.10: Comparing the in-train pruning scheme with SoTA on CIFAR-10 dataset.

Model/ Method Bitwidth BOPs Top-1 PGD-20
Dataset Wbit Abit (M) (%) (%)

R
es

N
et

20
C

IF
A

R
-1

0 PACT [7] 4 4 666 81.9 ± 0.04 40.6± 0.27
PACT [7] 2 2 189 76.0 ± 0.06 41.5 ± 0.32

Ours (high BOPs) 4.6 3.7 691 82.5± 0.50 41.3± 0.35
Ours (low BOPs) 3.5 2.9 427 81.7± 0.08 41.5± 0.31

R
es

N
et

56
C

IF
A

R
-1

0 PACT [7] 4 4 2029 85.3 ± 0.25 41.5± 0.72
PACT [7] 2 2 529 82.3± 0.58 47.3± 2.28

Ours (high BOPs) 4.4 3.6 2045 85.2 ± 0.70 42.5± 0.67
Ours (low BOPs) 2.9 2.7 1049 84.7 ± 0.91 42.9± 0.21

Table 5.11: Adversarial Robustness of uniformly quantized and mixed precision CNNs.

5.4.4 Discussion

In this chapter, we formulate compression schemes to realize pruned and quantized CNN models,
which balance the trade-off between natural accuracy and adversarial robustness. In Sec. 5.3,
we have observed that the pruning based compression variants are the most vulnerable against
adversarial attacks. Therefore, we formulate a defensive pruning method by introducing learnable
prune masks in Fast adversarial training [17]. The proposed in-train robust pruning approach
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5 Adversarial Robust Compression

demands lower number of GPU-hours than post-train methods such as RL. Post-Train pruning
approaches demand iterative fine-tuning as well as retraining phases. These phases consume
more GPU-hours in the case of adversarial defense methods. We also observe that our method
leads to better a trade-off between natural accuracy and robustness (Tab. 5.7) for severe pruning
constraints (70% reduction in the number of operations). Furthermore, we also found the in-train
method to produce better trade-off than RL-agent for the channel pruning regularity (Tab. 5.8).
The channel pruning configurations as discussed in Sec. 2.3 can be easily deploy-able in general
purpose HW-platforms. We further analyzed the robustness of pruning configurations against
stronger attacks such as C&W in Fig. 5.6.

We further propose a defensive mixed precision approach by integrating in-train quantization
discussed in Sec. 4.5 and FastAT [70]. We observe improved robustness as we reduce the bit-
width but with an impact in natural accuracy. These observations align with BNN robustness in
Sec. 5.3. We further determine efficient bit-width assignments to determine the balance between
natural accuracy, bit operations and adversarial robustness.

5.5 Conclusion

In this chapter, we provided a comprehensive analysis on recent white-box and black-box
adversarial attacks against state-of-the-art vanilla, distilled, pruned and binary neural networks.
We demonstrated that the robustness of CNNs not only depends on the adversarial attack but
also on the compression technique at hand. Conclusions were made on robustness by analyzing
PGD loss/accuracy levels, box-plots and CNN heat maps with CAM. The following three
conclusions can be made from the analysis: First, knowledge distillation, i.e. by minimizing the
KL divergence between a teacher and a student, inherently make the model more robust to various
adversarial attacks. Second, on the tested black-box attacks, BNNs are more robust compared
to other compressed neural networks. Finally, binary and efficient DNNs break differently on
various adversarial attacks. From the presented data, we show that knowledge about the expected
adversarial attack or the used compression technique can help the designer or the attacker generate
more robust applications or stronger attacks respectively.

We further investigate a joint formulation of the learning and compression objectives allowing
us to incorporate advantages from adversarial training and increase the robustness of the com-
pressed network. Thus, this method finds a trade-off between task-specific accuracy, adversarial
accuracy and compression rate. Compared to state-of the-art robust pruning approaches, our
method is found to improve natural accuracy while maintaining same level of adversarial robust-
ness for similar or higher compression rates. We infer that this improvement in performance is
due to the ability to learn dynamic sparsity ratios across layers and heuristic-free pruning. We
further integrate adversarial training into mixed precision approach to obtain robust quantized
models. We, thereby obtain better tradeoff between prediction accuracy, robustness, and the
reduction in number of BOPs.
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6.1 Conclusion

The deployment procedure of CNNs on resource constrained HW accelerators is challenging
due to limited compute/memory budgets and higher GPU-hours for optimization. Furthermore,
CNNs must be robust against slightest variations of input in the form of adversarial attacks to
improve safety and security of CV application. In this thesis, we realize HW-aware robust CNNs
to improve the trade-off between the three objectives, namely task-specific accuracy, execution
metrics and adversarial robustness with lower GPU-hours. This would make the inference of
various CV applications more accurate, fast and secure.

We improve the HW-awareness of compression methods to minimize the execution metrics
of CNNs. We specifically provide HW-metrics as a feedback to compression methods/search
algorithms to determine efficient pruning and quantization configurations. Using the proposed
approach, we model a spatial array based CNN accelerator to obtain HW-estimates and derive
benefits for compressed CNNs used for image classification and semantic segmentation. We
also derive latency estimates from the GPU based inference and provide it to RL-based pruning
scheme to obtain efficient LiDAR-based 3D object detection.

We realize Fast Compression methods to reduce the GPU hours required to determine pruning
and quantization configurations. We identify that the iterative fine-tuning phase demands high
amount of GPU-hours. We formulate a RL-agent based pruning technique which learns the
amount of fine-tuning epochs required to judge a pruning configuration through continuous
reward formulation. We further reduce the number of GPU hours by incorporating the pruning
in the underlying optimization function of the task specific training process. We thereby break
through the barrier between training and pruning, and save the computational effort for additional
post-train compression. We also realize mixed precision models by introducing learnable bit-
widths directly during the training process. We formulate a differentiable HW estimator through
Guassian regression to directly determine efficient bit-width assignments with respect to execution
metrics such as latency. We determine mixed precision configurations for different variants of
bit-serial accelerator.

We analyze the adversarial robustness of different compression variants by performing white-
box and black-box attacks against state-of-the-art vanilla, distilled, pruned and binary neural
networks. We demonstrated that the robustness of CNNs not only depends on the adversarial
attack but also on the compression technique at hand. We determine that the complex training
schemes for BNNs leads to robustness against several adversarial attacks. We also identify
that various pruning configurations are extremely vulnerable against adversarial attacks. Our
joint formulation of the learning and pruning objectives allow us to additionally incorporate
recent advantages from adversarial training and increase the robustness of the pruned neural
networks. Compared to state-of the-art robust pruning approaches, our method is found to
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improve natural accuracy while maintaining same level of adversarial robustness for similar or
higher compression rates. We infer that this improvement in performance is due to the ability to
learn dynamic sparsity ratios across layers and heuristic-free pruning. We similarly realize robust
mixed precision CNNs to improve the trade-off between task-specific accuracy, number of BOPs
and adversarial robustness.

6.2 Future Work

We identify potential extension to the current work for improving each of the addressed objectives
as following:

Enhanced HW awareness: Pruning techniques have different levels of regularities. We can
derive higher compression rates using irregular weight pruning compared to channel pruning
for maintaining minimal degradation of prediction accuracy. In this thesis, we schedule and
map only channel pruning configurations to realize HW-aware pruned CNNs. However, we
can also investigate specialized scheduling schemes [63] to efficiently process irregular sparse
convolutional workloads to further reduce the latency. The 3D object detection in this thesis
is limited to LiDAR-based sensor modality. Recently, there have been developments in CNN
architectures [159, 160] which improve the detection quality by extracting features from both
camera and LiDAR sensors. Investigating compression opportunities in these networks would
further provide us additional pareto dominant solutions.

Flexible Compression: We determine mixed precision CNNs by learning efficient bit-width
assignments during the task-specific training process. However, our approach requires retraining
when the change in bit-width assignment is desired. Inorder to flexibly switch the bit-width
configuration during inference, mixed precision supernets [161] with robust quantizers need to be
realized. This flexibility also enables to formulate quantization-aware NAS approaches. Most
QAT or post train quantization methods require sensitive or proprietary training datasets to realize
low precision CNNs. Formulation of zero-shot quantization methods such as [162] is needed to
realize training data free mixed precision CNNs.

Robustness aware NAS: In this thesis, we derive HW-aware robust CNNs through prun-
ing and mixed precision quantization. By formulating NAS approach with adversarial robust-
ness [163] as one of its search objectives, we can further increase the compression rates. Moreover,
the generalization of adversarial robustness towards common input corruptions [164, 165] is an
interesting research direction to investigate.
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