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Nonequilibrium dynamics in constrained quantum
many-body systems

Abstract

Symmetries and constraints constitute central concepts in physics and are vital tools
for classifying equilibrium quantum phases of matter. In this thesis, we investigate the
role of constraints in quantum many-body systems out of equilibrium. Using a combi-
nation of numerical and analytical techniques, we demonstrate that constraints can lead
to unexpected and novel dynamical phenomena. In the first part of the thesis, we study
how the presence of local gauge constraints — characteristic of exotic quantum phases of
matter such as spin liquids — can induce slow dynamical relaxation to equilibrium and
in certain cases even prevent such relaxation altogether. Dynamical properties of sys-
tems with gauge constraints can also serve as important signatures to identify them in
experiment. In this context, we propose local dynamical probes as a way to detect the
presence of topological edge states in the Kitaev honeycomb spin liquid. In the second
part of the thesis, we go on to consider the dynamics of systems with novel types of mo-
bility constraints — so-called fracton phases of matter — and show that the time evolution
in such systems generally leads to the emergence of classical hydrodynamic transport at
late times. Our analysis reveals novel, subdiffusively slow hydrodynamic universality
classes in these fracton systems, in agreement with recent results from quantum simu-
lation experiments. We further demonstrate how fracton constraints can also affect the
dynamics of quantum information, as indicated by a significant slowing down of oper-
ator spreading. Certain mobility constraints can even lead to the emergence of tagged
particle tracer motion in homogeneous quantum many-body systems. Using this connec-
tion we are able to greatly simplify the calculation of exact transport properties in several

generic and even integrable systems.
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Betreuer: Prof. Dr. Michael Knap Johannes Feldmeier

Nichtgleichgewichtsdynamik in
Quantenvielteilchensystemen mit Zwangsbedingungen

Zusammenfassung

Symmetrien und die sich daraus ergebenden Zwangsbedingungen stellen in der Physik
zentrale Konzepte dar und fungieren als wichtige Werkzeuge fiir die Klassifizierung der
Gleichgewichtsphasen von Quantenmaterie. In dieser Dissertation untersuchen wir die
Rolle von Zwangsbedingungen auflerhalb des thermischen Gleichgewichts. Durch eine
Kombination aus numerischen sowie analytischen Methoden zeigen wir, dass Zwangsbe-
dingungen zu tiberraschenden neuen dynamischen Phianomenen fiithren kénnen. Im er-
sten Teil der Dissertation studieren wir wie lokale Eich-Zwangsbedingungen — charakter-
istisch fiir exotische Quantenphasen wie Spinfliissigkeiten — eine langsame Relaxations-
dynamik ins thermische Gleichgewicht zur Folge haben kénnen und diese in manchen
Féllen sogar vollstandig verhindern. Dynamische Eigenschaften von Systemen mit Eich-
Zwangsbedingungen konnen zudem als wichtige Signaturen zu deren experimentellen
Identifikation dienen. In diesem Zusammenhand schlagen wir lokale dynamische Pro-
tokolle als Moglichkeit vor, topologische Randzustédnde in der Kitaev Spinfliissigkeit auf
dem Honigwabengitter zu detektieren. Im zweiten Teil der Dissertation untersuchen
wir die Dynamik von Systemen mit neuen Arten von Zwangsbedingungen — sogenannte
Fracton-Phasen — und zeigen, dass die Zeitentwicklung in solchen Systemen im Allge-
meinen zur Emergenz von klassischem, hydrodynamischem Transport zu spéten Zeiten
fithrt. Unsere Untersuchung enthiillt neue, subdiffusiv langsame hydrodynamische Uni-
versalititsklassen in Fracton-Systemen, in Ubereinstimmung mit aktuellen Resultaten
aus Quantensimulationsexperimenten. Wir zeigen dariiber hinaus, wie Zwangsbedin-
gungen in Fracton-Systemen die Dynamik von Quanteninformation beeinflussen kén-
nen, angezeigt durch ein erhebliches Verlangsamen der Ausbreitung von Operatoren.
Manche Zwangsbedingungen kénnen emergent sogar zur Bewegung markierter, unter-
scheidbarer Teilchen in homogenen Quantensystemen fiithren. Diesen Zusammenhang
nutzend gelingt es uns, die Berechnung von Transporteigenschaften in einigen gener-

ischen sowie integrablen Quantensystemen erheblich zu vereinfachen.
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I think I can safely say that nobody understands quantum mechanics.

Richard P. Feynman

More is different.
Philip W. Anderson

Introduction

The Schrédinger equation, first introduced almost one hundred years ago [8], forms the
foundation for our understanding of quantum physics at low energies. This ‘theory
of everything’ — as it pertains to a condensed matter point of view — is swiftly stated:
ihdy [¢) = H |1p), where |1)) describes the quantum state of the system and H is the Hamil-
tonian that describes motion and interactions of particles. In principle, all that is left to
do is to solve it. But as quick and precise as we may be in stating our goal, achieving it
is tremendously challenging: The number of different states that need to be accounted
for in the Schrédinger equation grows exponentially with the number of particles mak-
ing up the system of interest. If we would like to describe the macroscopic properties of
condensed matter systems, we are presented with a seemingly insurmountable task. This

is the many-body problem.

How can progress be made? One approach is to approximate a given problem with a
different one that is tractable, for example because the particles in the new problem do
not interact with each other. This is the program of mean-field theory and its extensions.
Often, apart from the dimensionality of the system, the success of mean field descriptions
comes down to choosing the ‘right” quasiparticles that can be approximated as being non-
interacting. This highlights the fact that in practice we require physical insight beyond
an (impossible) brute force application of the Schrodinger equation to correctly describe
the behavior of many-body quantum systems, echoing the viewpoint of Anderson that
“more is different” [9]. More rigorously, phases of matter and the transitions between
them can often be captured by Ginzburg-Landau effective actions for the long length
scale degrees of freedom [10, 11], treated within the renormalization group approach [12].
The Ginzburg-Landau action for a given microscopic system can be postulated purely on

grounds of global symmetries and thus exhibits universality, which holds that the micro-
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scopic details are qualitatively unimportant for the long wavelength physics. This im-
mensely successful paradigm establishes global symmetry and its spontaneous breaking
as a cornerstone of our understanding of equilibrium phases of matter.

However, over the last decades we have learned that this is not the full story. Ignited
by the experimental discovery of the fractional quantum Hall effect [13] and the presence
of high-temperature superconductivity in the cuprates [14], subsequent theory develop-
ment has led to the realization that there exist topologically ordered quantum phases that
cannot be distinguished by any local order parameter, thus falling outside the Landau
paradigm of global symmetry breaking! [15]. Instead, novel quantum phases of matter
such as fractional quantum hall states and spin liquids are characterized by topological
ground state degeneracies, fractionalization and emergent gauge structures, the latter of
which lead to local symmetries instead of global ones [15]. These insights, along with
the development of powerful numerical tools such as the density matrix renormalization
group (DMRG) [16-19], have led to flourishing and continuous theoretical progress in
classifying the ground state quantum phases of matter over recent years [20].

At the same time, this immense success is built on the description of stationary quan-
tum systems in equilibrium. In contrast, much less is known about the behavior of closed
quantum many-body systems in nonequilibrium situations, as clear guiding principles
such as the Landau paradigm are absent. In addition, numericals tools such as DMRG,
while working wonders investigating ground states with low entanglement, start to hit
the ‘entanglement wall’ out of equilibrium, as in general an exponential number of (highly
entangled) eigenstates contributes to the time evolution. Once more, these issues seem-
ingly render attempts to make general statements challenging. Nevertheless, some re-
markable progress has been achieved, in particular with regards to the crucial ques-
tion [21, 22]: Do quantum many-body systems prepared in nonequilibrium initial states
eventually thermalize? The answer culminated in the formulation and numerical veri-
fication of the eigenstate thermalization hypothesis (ETH) [23-26], which provides a viable
mechanism for thermalization in generic interacting quantum systems. However, impor-
tant open questions remain. If a quantum system thermalizes, in which manner (e.g. how
quickly) is the thermal state approached dynamically? How can we characterize or even
classify such dynamical processes for different microscopic models and is there any uni-
versality to their dynamics in the spirit of Ginzburg-Landau? In addition, although it is
expected that generic interacting systems thermalize, under which circumstances can ex-
ceptions to this rule occur? The phenomenon of many-body localization in systems with
strong disorder provides an example for such an exception to thermalization [27-40], but
are there more? Remarkably, current quantum simulation platforms can provide theorists
with hints to where answers might be found.

Edging closer to Feynman’s vision of a quantum simulator [41], control over isolated

!"Whether and how such such phases may be realized in the cuprates is at present not fully
understood and constitutes one of the major challenges in condensed matter.
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quantum many-body systems has progressed impressively over recent years across a va-
riety of platforms, such as cold atoms [42, 43], trapped ions [44-46], superconducting
qubits [47, 48], certain condensed matter based setups [49], and others [50]. It is worth
noting that machines performing quantum computing tasks inherently operate out-of-
equilibrium. Understanding the nonequilibrium dynamics of closed quantum many-
body systems is thus an integral part of making progress towards the long-term goal of
building large-scale quantum computers and simulators. At the same time, currently
available devices are already able to address some of the above questions. In particular,
a 2017 investigation of quantum quench dynamics in an ensemble of 51 Rydberg atoms
demonstrated the absence of thermalization for certain initial states [51]. This remarkable
feature — termed quantum many-body scars [52-57] — was attributed to the presence of
dynamical constraints in the Hamiltonian time evolution. Therefore, in part sparked by
these experimental results, efforts surged attempting to develop a more general under-
standing of the role of symmetries, which act as dynamical constraints, in nonequilibrium
quantum systems.

In this context, one key realization that arose in recent years is that the dynamics of
generic interacting quantum many-body systems can often be understood within an
effective hydrodynamic picture [58-66]. This is in fact an example of out-of-equilibrium
universality and paves the way for using tools such as random unitary circuits, which are
often simpler to handle theoretically than Hamiltonians, to characterize nonequilibrium
dynamics [61-68]. Making use of such methods it was possible to establish the generic
expectation that closed systems with a global U(1) symmetry (i.e., a conserved charge)
should exhibit emergent classical diffusion at late times of the nonequilibrium evolution.
This result in turn leads to many interesting questions in the broader context of con-
strained systems. What happens if we go beyond conventional global U(1) constraints?
In particular, as outlined above, novel phases of matter are often characterized by local
gauge constraints instead of global symmetries. We may thus wonder whether these
lead to emergent hydrodynamics as well and if so, what their universality class turns
out to be. Similar questions arise in the context of novel constrained fracton phases of
matter [69, 70], such as systems conserving several multipole moments of a global U(1)
charge. There are many motivating factors to find answers to these questions. Aside
from furthering our understanding of the quantum thermalization process more broadly,
understanding the dynamics of constrained systems in particular might offer ways to
characterize them in experiment, potentially driving the development of novel tools for

quantum information processing.

The remainder of this thesis, addressing the questions outlined above, is structured as

follows:

e In Chapter 2 we provide an introduction to the main concepts discussed in this the-

3



sis. In particular, the field of constrained dynamics is wide and we provide a guide
to some of the dynamical phenomena that have been the focus of intense research
in recent years and that appear throughout this thesis. We further introduce the
constrained systems most relevant to this thesis and discuss how they are realized

in quantum simulation platforms and quantum materials.

Part I of this thesis investigates the dynamics of systems with local gauge con-

straints such as dimer models and spin liquids.

In Chapter 3 we consider the dynamics of a two-dimensional quantum dimer model
with local gauge constraints. We demonstrate numerically that after a quantum
quench, most intial states show a rapid equilibration of local observables. However,
there exists a low energy phase of the model in which the constraints lead to an
effective standstill of the dynamics. We analytically argue for a lower bound on the
thermalization time in this regime and find extremely slow glassy dynamics due to

the presence of the gauge constraints.

In Chapter 4 we investigate a dimer model in a non-planar bilayer geometry. We
show that this model features a rich structure of conserved quantities beyond the
local gauge constraints. These conserved quantities can lead to unconventionally
slow hydrodynamics at late times and signatures of fracton-like dynamics. For cer-
tain initial states, the presence of non-local conserved winding numbers can even

prevent local thermalization altogether.

In Chapter 5 we consider the Kitaev honeycomb spin liquid which features a Zs
gauge structure. We propose a scheme to extract local dynamical signatures of the
presence of topological edge states using spin-polarized scanning tunneling mi-
croscopy. Such an approach can also be used to detect edge states in other novel

quantum phases such as topological magnon insulators.

In Part II of this thesis we focus on the dynamics of fractonic systems in which
the mobility of charges is constrained by the conservation of higher multipole mo-

ments.

In Chapter 6 we find novel subdiffusive hydrodynamic universality classes associ-
ated with the conservation of higher multipole moments, which we verify numer-
ically in one dimension using random circuit tools. Our results are in qualitative

agreement with results from cold atom quantum simulation experiments.

In Chapter 7 we consider Hamiltonian systems with conserved charge and dipole
moment. We formulate a theory of classical linear fluctuating hydrodynamics that

describes the coupled dynamics of charge and energy density in the presence of
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dipole conservation. It is demonstrated that this effective description is in agree-
ment with nonequilibrium quantum field theory results for a dipole-conserving
Bose-Hubbard model.

In Chapter 8 we consider the dynamics of operators in dipole-conserving systems.
We show that the presence of dipole-constraints can significantly slow down the
generically expected ballistic growth of operators. In particular, using a combi-
nation of analytical arguments and random automaton circuits, we demonstrate
the emergence of sub-ballistic operator spreading at the critical point of a density-

driven localization transition.

In Chapter 9 we show how the presence of constraints can lead to the emergence of
tracer dynamics in quantum many-body systems of indistinguishable particles. We
use this connection to provide exact transport coefficients in a number of generic
as well as integrable quantum systems. We further demonstrate how the combina-
tion of these constraints with fracton constraints can give rise to novel universality

classes of emergent hydrodynamics.
To conclude, we provide a summary and an outlook in Chapter 10.

Appendix A contains an overview of the (numerical) methods used throughout this

thesis

Appendix B contains a number of supplemental analytical calculations for the bi-

layer dimer setup of Chapter 4.






Preliminaries

In this introductory chapter, we discuss concepts around thermalization and constraints
that are central to this thesis. After an overview of nonequilibrium dynamics and the
eigenstate thermalization hypothesis, we go on to provide a brief guide to some of the
key phenomena in constrained dynamics that have been the focus of much interest in
recent years. We close with a discussion of experimental platforms that can be used to

realize the constrained systems discussed in this thesis.

2.1 Thermalization in classical and quantum systems

The central questions of this thesis revolve around the dynamics of interacting quantum
many-body systems. Generically, we expect that such systems thermalize: At late times,
expectation values of local observables equal those of an equilibrium macrostate that can
be characterized by only a few conserved quantities. Much of our discussions will be
centered around how this approach to equilibrium occurs in detail. Before plunging into
these investigations, we discuss how it is possible in the first place that an initial mi-
crostate gives rise to such an equilibrium macrostate despriction, even though the un-
derlying microscopic evolution is symmetric under time reversal, a question which has
been a topic of much discussion ever since the inception of statistical mechanics. More
recently, the question of how thermalization occurs in the context of quantum many-body
systems has received a lot of interest [21, 23, 26, 71]. In this introductory section, we pro-
vide a brief overview of attempts to explain how statistical mechanics can emerge in the
time evolution of classical systems before discussing how these concepts can be extended
to the quantum domain within the context of the eigenstate thermalization hypothesis.

Much of the following discussion follows the reviews of Refs. [21, 22].
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2.1.1 Ergodicity and thermalization in classical systems

The question how many-particle systems reach an equilibrium state characterized by only
a handful of properties such as energy or particle number lies at the heart of justifying sta-
tistical mechanics. Let us consider an isolated classical system of N particles whose state
at time ¢ is characterized by a pointI'(t) = (qi1(t), ..., gn (t), p1(¢), ..., pn (t)) in phase space.
Statististical mechanics poses that equilibrium expectation values (O),, of an observable
O as measured in experiment in this system are equal to phase space averages taken with

respect to a microcanonical ensemble:

B J5dl'O(T)

<O>eq - fs dl

(2.1)
Here, the integral over the phase space variables I' runs over a microcanonical shell S of
constant energy in phase space. Eq. (2.1) weights all microstates within this shell equally.
This relation between experiments and ensemble averages is an empirical fact, although
highly non-trivial: There is only a single physical system present in the experiment, not
an ensemble. So why does Eq.(2.1) apply to outcomes of experiments on equilibrium

systems? One way of justifying Eq. (2.1) resorts to the textbook ergodic hypothesis [72].

Ergodic hypothesis

The ergodic hypothesis poses that the ensemble average on the right hand side of Eq. (2.1)
emerges due to a time average over the system’s trajectory in phase space: Experiments
are performed over a finite time scale, and so the experimental output corresponds to an
average of the instantaneous value of the observable O over this time scale. The ergodic
hypothesis then argues that since the experimental time scale is larger than the charac-
teristic time scale of the system’s dynamics, the expectation value of an observable as

measured in experiment should be given by

(O)eq = Jlim. 1 /0 ! dtO(t). (2.2)
Here, O(t) is the value of the observable for the microscopic state of the system at time
t. It is now further assumed that the dynamics of the system is ergodic, meaning it has a
dense trajectory in phase space. According to Liouville’s theorem, the system will then
spend equal time in all parts of the phase space shell S. This implies that the time average
on the right hand side of Eq. (2.2) indeed turns into the ensemble average of Eq. (2.1), i.e.,

1T _ Jgdro(r)
lim /0 wO(t) = S 23)

In practice, establishing ergodicity, i.e. Eq.(2.3), rigorously for a given system is a very

challenging task that has been accomplished only in a limited number of cases [73-76].
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If a system’s trajectory is ergodic in phase space, Eq. (2.3) holds and infinite time aver-
ages are equal to ensemble averages. However, in practice the explanatorial power of the
ergodic hypothesis is limited by the applicability of Eq. (2.2): The amount of time needed
for the trajectory of an ergodic system to densely cover all of phase space is exponentially
large in the number of constituents. The time scale over which an observable is averaged
in an experiment is certainly short compared to such an enormous time, and therefore
the experimental outcome (O),,, cannot simply be set equal to the infinite time average
in Eq.(2.2). Put differently, it is observed empirically that systems thermalize on much
shorter than exponential time scales, questioning the role of the ergodic hypothesis in

explaining the emergence of statistical mechanics.

Typicality

The ergodic hypothesis is very ambitious in its attempt to provide a mechanism for the
emergence of statistical mechanics, leading to averages over exponentially long times.
Notably, the ergodic hypothesis makes no reference to the nature of the observables O, it
applies to all observables in a closed system by virtue of ergodic phase space trajectories.
However, experiments do not have access to all possible observables but usually refer to
macroscopic sums of local quantities. One can then attempt to explain the emergence of
statistical mechanics for this subset of observables only. As a consequence, the require-
ment of an average over a dense phase space trajectory can be dropped. Starting from a
microscopic initial state, the system then only needs to reach a typical state for which the
observables of interest take values already close to the microcanonical ensemble average
of statistical mechanics. In other words, the values of such macroscopic observables are
almost constant across the energy shell, such that a single typical state already returns the
ensemble average. It is then argued that because typical states are much more numerous
than atypical ones, this process generally need not take an exponentially long amount of

time.

Chaos

Closely related to these ideas of ergodicity and typicality is the concept of chaos in clas-
sical systems [77]. It asserts that in chaotic systems the time evolution is exponentially
sensitive to the chosen initial conditions. In particular, for two initially close phase space
points I'1(0) and T'2(0), the growth of the difference |6T'(¢)| = [T'1(t) — Ta(t)| ~ e ! of
their phase space coordinates is governed by a finite Lyapunov exponent Az. This sen-
sitivity results from the non-linearity of the classical equations of motion and is known
as the butterfly effect. It is then intuitive to assume that a system originally in an atypi-
cal initial state will quickly evolve to a typical configuration due to the chaotic nature of
the dynamics. However, we point out that precise connections between typicality, chaos

and thermalization in classical systems are lacking. In particular, the typicality argument
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does not distinguish between thermalizing dynamics and integrable systems that do not
thermalize, a clear drawback compared to the mathematically sharp ergodic hypothesis.
Remarkably however, when attempting to extend the concept of thermalization to the
quantum case, it is the arguments of typicality that reap the most reward. In particular,

the above issue of lacking mathematical clarity is resolved in the quantum case.

2.1.2 Eigenstate thermalization in closed quantum systems

Can the above considerations about thermalization be extended to quantum many-body
systems? At first sight the two questions of thermalization in classical and quantum sys-
tems appear quite different. We relied on a phase space description in the classical sce-
nario, a description which does not generalize to quantum systems. Furthermore, direct
attempts to extend the concept of chaos to quantum systems fail, as the Schrodinger equa-
tion that governs the dynamics of quantum systems is linear. Finally, the arguments on
which the classical ergodic hypothesis rests cannot apply to the quantum case: Consider
a quantum system with Hamiltonian H and eigenstates |m) with associated eigenener-
gies H |m) = E,, |m). The eigenstates |m) are invariant under the time evolution, i.e.,
et |;m) = e~iEmt |m) up to a global phase, and thus the dynamics starting from |m)
clearly cannot explore the entire energy shell of eigenstates in a small window A E around
the energy E,,. As we discuss in the following, the resolution to these issues lies in the
structure of the eigenstates |m) themselves, which have to be typical in a similar spirit as

discussed above.

Random matrix theory and quantum chaos

The dynamics of a Hamiltonian quantum system is uniquely determined by its eigenstates
and eigenenergies |m) and E,,. Attempts to extend the concept of chaos to quantum
systems thus naturally refer to the properties of |m) and E,,. The central idea of quantum
chaos holds that for chaotic systems, these eigenstates and eigenvectors effectively appear
as if the Hamiltonian were a random matrix. This is known as random matrix theory
(RMT) [78], forming the cornerstone of quantum chaos and the eigenstate thermalization
hypothesis.

Random matrix theory was originally advanced by the works of Wigner [79-81] and
Dyson [82] on the energy spectra of large nuclei, realizing that the statistical properties of
the distribution of nuclear energy levels match those of ensembles of random matrices.

In particular, the distribution
A 1 o
P(H) ~ exp{—ﬁTr(H )}, (2.4)
with an energy scale a defines the Gaussian orthogonal ensemble (GOE) for real symmet-
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ric matrices H'. Crucially, for Hamiltonians randomly drawn from Eq. (2.4), the proba-
bility distribution of the spacing w of consecutive energy levels in the spectrum (w > 0),

known as Wigner-Dyson distribution, can be approximated by
P(w) = Awexp{—Bw?}. (2.5)

Here, A and B are determined by normalization and the overall energy scale. The main
qualitative feature of Eq.(2.5) is P(w — 0) = 0, which indicates that two consecutive
energy levels are highly unlikely to be very close to each other, a feature known as level
repulsion. Level repulsion in the spectrum of Hamiltonians is a form of correlation that
can be attributed to couplings between nearby energy levels due to interactions. One of
the central insights of RMT holds that chaotic quantum many-body Hamiltonians? show
the same level statistics Eq. (2.5) as random matrices®. Notably, it suffices that the Hamil-
tonian looks like a random matrix in a generic basis, even though there exist special basis
choices in which the Hamiltonian of a physical system is sparse and does not look ran-
dom*. The emergence of Wigner-Dyson energy level statistics in the spectrum of quantum
many-body Hamiltonians is now a commonly accepted definition of quantum chaos.
Crucially, this characterization of quantum chaos is able to distinguish non-integrable
systems from integrable ones. Integrable systems feature an extensive number of con-
served quantities, thus avoiding level repulsion through vanishing coupling between
nearby eigenstates. According to the Berry-Tabor conjecture [84], integrability leads to un-
correlated, independently distributed energy levels described by Poisson statistics. The

associated distribution of the spacings between consecutive levels is given by
P(w) = exp{—w}, (2.6)

normalized to an average spacing of unity. For a given quantum many-body Hamilto-
nian, we expect to see the emergence of either Eq. (2.5) or Eq. (2.6) in the statistics of level
spacings as we approach the thermodynamic limit. This provides a key indication for
presence or absence of quantum chaos. In practice, attempts to extract signatures of quan-
tum chaos include investigations of the spectral form factor [67, 68, 85-87] or dynamical

consequences of level repulsion [88, 89].

'The GOE applies to systems with time-reversal symmetry. Similarly defined ensembles exist
for systems without time-reversal symmetry, the Gaussian unitary ensemble (GUE), as well as for
systems with time-reversal but without rotational symmetry, the Gaussian symplectic ensemble
(GSE).

%In the absence of additional symmetries such as lattice point groups, global charges, etc. If
such symmetries are present, the energy spectrum may still display RMT behavior within the
symmetry-resolved sectors of the Hilbert space.

3Bohigas, Giannoni and Schmit formulated the conjecture that all quantum systems with
chaotic classical analog follow RMT level statistics [83]

“For example, physical Hamiltonians usually exhibit a notion of locality that is absent in purely
random matrices. The matrix elements of such Hamiltonians in any local basis are sparse.
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While the statistics of the distribution of energy levels E,, of a Hamiltonian consti-
tutes the most direct indication of quantum chaos, RMT also makes important statements
about the structure of the eigenstates |m) of quantum chaotic systems [71]. In a nutshell,
according to RMT the eigenstates of random matrices are simply random unit vectors
in Hilbert space®. Using this property, the matrix elements of a given local observable
O = 3, 0;]i) (i| between two eigenstates |n) and |m) of a random matrix can be evalu-
ated as

A (©0?)

where D is the dimension of the Hilbert space and R,,,, is a random variable with mean
zero and unit variance. (O) = >~; Oi is the “infinite temperature’ average of the operator
O over the entire Hilbert space and provides the leading (in 1/D), diagonal contribution
to the matrix element of Eq. (2.7). Crucially, Eq. (2.7) does not hold for all operators O, as
is manifest for projectors O = |¢) (| on specific eigenstates. The result that the expectation
value of an operator with respect to a single random pure state equals the infinite temper-
ature ensemble average is called typicality [91-95]°. RMT then predicts that Eq. (2.7) also
applies to eigenstates from the middle of the energy spectrum of quantum chaotic Hamil-
tonians. We thus see how this notion of typicality ties in with our previous discussion
of classical systems: A single eigenstate |n) is already sufficient to reproduce ensemble

averages of relevant observables, up to small corrections decaying as 1/D.

Since (mid spectrum) eigenstates of quantum chaotic Hamiltonians are essentially ran-
dom states, their precise form is expected to depend sensitively on the precise parameters
of the Hamiltonian. This sensitive dependence can be viewed as analogous to the sensi-
tive dependence of trajectories on initial conditions in classical chaotic systems and has

recently been formalized as an additional probe of quantum chaos [98, 99].

Eigenstate thermalization hypothesis

In general, the expectation values of relevant observables depend on the system’s energy.
Such a dependency is not part of the RMT approach which thus requires some extension.

This has led to the eigenstate thermalization hypothesis (ETH), a statement about matrix el-

>For eigenstates of quantum systems with a chaotic classical counterpart in the semi-classical
limit, this is Berry’s conjecture [90].

®Typicality has also practical implications that allow to perform numerical calculations with
pure states rather than ensembles. It can be extended to finite temperatures using imaginary time
evolution [96, 97]. We use this approach in Chapter 3 to evaluate thermal expectation values with-
out having to determine all eigenstates of the Hamiltonian.
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ements of physical observables” first formulated by Srednicki [23-25]°,
Omn = O(E)dmn + ¢~/ fo (. w) Ry, (28)

where E = %(Em + E,) is the average and w = E,, — E,, is the difference in energy of
the two eigenstates |n) and |m). O(FE) is assumed to be a smooth function of the energy
E, fo(E,w) is smooth in both F and w, S(E) is the thermodynamic entropy, and R,
is a random variable with vanishing mean and unit variance. We see that the ETH of
Eq. (2.8) is quite similar to the RMT result Eq. (2.7). Indeed, since both O(F) and fo(F,w)
are smooth, they will be approximately constant in a small neighborhood around a given
energy E. Within energy intervals of a certain scale, called the Thouless energy, chaotic
systems described by the ETH exhibit RMT behavior’ in an effective Hilbert space of size
proportional to the density of states exp{S(E)}. Using the Ansatz of Eq.(2.8), we can
investigate the thermalization of observables under the dynamics of a quantum chaotic

Hamiltonian starting from an initial state [)(t = 0)) = >, Cy, |m),

W O1()) = Y |Cnl*Omm + Y CpCre™ i En=Eml O, (2.9)
m m#n

If we concentrate on the long time average of this expectation value, the second, oscillating

term drops out and we obtain
17 -
7 | w0101e) = 3 (Culo(E,). (2.10)

This expression a priori still depends on the initial state through the constants C,,. To
see that the right hand side of Eq.(2.10) is indeed equal to the expected microcanoni-
cal ensemble average, let us assume that the inital state [¢)(t = 0)) is short-range corre-
lated. The expectation value of the system’s energy then becomes (for short-range mod-
els) an extensive sum over independent local contributions. As a consequence, by the
central limit theorem, relative flucuations in energy are suppressed as ~ 1/4/N in system
size. Accordingly, the C,,, contributing to Eq. (2.10) will be restricted to eigenstates from
a very small window around the energy expectation value E = (¢(0)|H|t(0)) of the ini-
tial state. Using the ETH Eq. (2.8), all contributing states then have the same expectation

7 Again, highly non-local multibody terms such as projectors on individual eigenstates are not
included. In general it is not entirely clear to which operators the ETH applies. As general rule,
we expect all observables that refer to small subsystems are within the scope of the ETH.

8 A first observable-centric approach to ergodicity in quantum systems was provided by von
Neumann’s ergodic theorem [100], which can be connected to RMT [101].

9Reciprocally, there exists a so-called Thouless time after which the dynamics of the system
follows RMT predictions. In systems with conservation laws this timescale is expected to go as
7T ~ L?, where z is the dynamical transport exponent. Many recent efforts have been devoted
to confirming this picture using the so-called spectral form factor [67, 68, 87, 102-105].
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value O(E,,) = O(E), such that indeed

S CaPOE) = OB L ICul = Y (O, 21D
" " |Em—E|<AE “|Em—E|<AE

Due to the suppressed off-diagonal matrix elements O,y,,, fluctuations of (1()| O |1(t))
around this average will be exponentially small at sufficiently late times, guaranteeing
that the system is thermal at any instance. However, ETH cannot predict how long this
approach to equilibrium takes for a given model, observable, and initial state. In principle,
the energy differences in Eq. (2.9) are exponentially small in system size, such that expo-
nentially long thermalization times are possible. On the other hand, the off-diagonal ma-
trix elements are small, such that dephasing of the second term in Eq. (2.9) might quickly
bring the system into equilibrium. Numerical work has demonstrated that thermalization
can indeed occur on small timescales already for small numbers of particles [26]. Today,
there exists a large body of numerical evidence that the ETH is indeed generically valid in
interacting quantum many-body systems [106-115]. For large parts of this thesis we will
be invested in determining the time scale and the manner in which quantum many-body

systems relax towards equilibrium.

2.1.3 Exceptions to eigenstate thermalization

The ETH puts the concept of thermalization in quantum many-body systems on a firm
footing. Nonetheless, while generic interacting quantum many-body systems are ex-
pected to exhibit quantum chaos and show eigenstate thermalization, there are very
notable exceptions for which the ETH does not hold. We have already briefly men-
tioned integrable quantum systems, which exhibit an extensive number of local conserved
quantities and equilibrate to a generalized Gibbs ensemble rather than thermal equilib-
rium [116-119]. Violation of the ETH and absence of thermalization also occurs in disor-
dered quantum systems, via mechanisms known as Anderson localization [120, 121] for
non-interacting systems and many-body localization (MBL) as its counterpart in the pres-
ence of interactions [27-36, 38-40]. In particular, MBL is believed to be stable with respect
to general local perturbations (unlike integrable systems) for sufficently large disorder
strength. This robustness of MBL can be used as a tool to stabilize interesting phases of
matter such as symmetry-protected topological phases at finite energy densities [122-124]
or discrete time crystals [125-130]. Notably, even below (but close to) the critical disorder
strength required for localization, the approach to equilibrium in disordered systems can
remain unconventionally slow [131-137]. MBL is widely believed to be stable only in one
spatial dimension (although this is still a matter of debate, see e.g. [27, 138-141]) and is
unstable to the presence of external noise [142-148]. We will see additional examples of
exceptions to eigenstate thermalization that have been considered in the literature as we

go through the remainder of this chapter.
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2.2 Constraining the approach to equilibrium: Motivation and dynamical

phenomena

As we have seen, the ETH provides a mechanism by which quantum many-body sys-
tems can reach thermal equilibrium. However, the existence of many-body localization
demonstrates that ETH and thermalization do not apply to all quantum systems'". This
‘exception to the rule’ naturally inspires two fundamental questions that have been the

focus of much interest in recent years. On the one hand:

(1) Are there novel ways by which violations of the ETH and absence of thermalization

can occur also in translationally invariant systems without disorder?

And on the other hand, similar to the phenomenology of MBL systems below the critical
disorder strength:

(2) Can there be circumstances under which quantum systems eventually thermalize

but do so in a slow fashion?

If we can find such systems, natural follow-up questions concern their realization in
experimental settings and whether their special properties may be of practical use in
areas such as quantum information processing. These questions constitute our central
motivation and will guide our thinking throughout this thesis. In particular, both ques-
tions allude to the prospect that the nonequilibrium dynamics of many-body systems
should be constrained in one way or another as to evade a quick relaxation to thermal

equilibrium. This leads us to the study of constrained quantum many-body systems.

In order to appreciate how the presence of constraints can lead to slow dynamics in
many-body systems (classical and quantum), let us echo the following perspective from
the theory of kinetically constrained models of Ref. [149]: Consider a classical lattice gas
of N sites with binary local state space |0) and |1) and energy function H(c) which de-
pends on the configuration |c) = |c;...cn) of the system. A stochastic approach to thermal
equilibrium at inverse temperature /3 can be modelled in a Monte Carlo fashion through

transitions in configuration space:
ley — |c'), atrate ~(c— ). (2.12)

Here, v(c — (/) is the rate (or acceptance probability) for the update ¢ — ¢’. Importantly,

the rates should statisfy the detailed balance condition

CC) = exp{—BIH(') — H(c)]}. (2.13)

1°We often use the terms ‘ergodic’, ‘thermalizing” and ‘obeys the ETH’ synonymously unless
additional context is provided.
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If the set of possible updates is ergodic, the system will thermalize to the canonical en-
semble. Crucially, there are many ways to choose the updates such that detailed balance
is fulfilled, all of which lead to thermalization of local observables. This freedom of choice
is usually taken advantage of in Monte Carlo simulations in order to reduce autocorrela-
tion times and reach thermal equilibrium - in the form of a typical state that reproduces
ensemble predictions for sums of local observables — as quickly as possible. However, in
the present context we can reverse this line of reasoning and imagine that constraining
the set of updates without affecting detailed balance can lead to a much slower approach
to such a typical state. In particular, in stochastic lattice gases or systems with cellular
automaton-type dynamics, we can interpret the Monte Carlo steps as part of a real time
dynamical evolution. From this perspective, the much-dreaded ‘local minima’ of Monte
Carlo simulations are viewed as features of slow dynamical relaxation which can be en-
hanced through the presence of constraints. Similar questions can then be formulated
for natural quantum versions of such kinetic constraints, obtained by allowing only for
certain constrained off-diagonal terms in the quantum Hamiltonian.

In the following, we provide a brief overview of several relevant examples of novel
phenomena in constrained dynamics that have been uncovered over the past years and

that will be relevant in the remainder of this thesis.

221 Glassy dynamics

The reasoning presented in the previous paragraphs, see Ref. [149], originates from the
physics of classical kinetically constrained models [150-153]. These can exhibit extremely
long relaxation times and therefore glassy dynamics at low temperatures within the
framework of dynamical facilitation theory [154]'!. Naturally, the question arises whether
similarly, long relaxation times can be found in kinetically constrained closed quantum
systems. This has been found to be the case in a number of quantum systems with ki-
netic constraints, showing metastable states, slow relaxation of local observables, and sup-
pressed growth of the entanglement entropy [1, 149, 158-161]. In addition, slow glass-like
relaxation also at elevated temperatures has been found in heavy-light particle mixtures in
which heavy particles act as effective disorder potential for light particles on prethermal
time scales [162-173]. This is similar in spirit to systems with ‘disorder-free localization’
which generate their own static disorder potential [174-180].

We can formulate an illustrative argument to see how the quantum counterpart of a ki-
netically constrained classical system can feature slow dynamics. Let us assume, as sug-
gested below Eq.(2.13), that a classical constrained Monte Carlo type evolution indeed
features slow relaxation at low temperatures due to the presence of local energy minima.

These minima may not necessarily be very deep, but since only a constrained set of up-

This is in contrast with thermodynamic explanations of the glass transition [155-157], whose
complete theoretical characterization remains an active challenge.
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dates is available they will be far apart (in configuration space). We can then promote the
allowed classical updates ¢ — ¢’ to (weak) off-diagonal terms in a quantum Hamiltonian

while keeping the energy function H (c) as diagonal terms,

H=SHE )+ 3 Dewlle) (] +1¢) (). (2.14)

c,c': y(c—c)#0

If the A, are sufficiently weak (we could for example set A = 1/ at low temperatures),
the local minima will persist. However, they can now only be connected through quantum
tunneling processes, which are suppressed not only in the height of the energy barrier
between minima, but also their hamming distance in configuration space. In that sense
we might even expect ‘quantum glasses’ to be slower than their classical counterparts.
We illustrate this line of arguments in Fig. 2.1. The challenge is then to determine which
relevant models feature scenarios as outlined above. In particular, we will show that

glassy quantum dynamics does occur for a two-dimensional constrained quantum dimer

model in Chapter 3.
. AE Ad

a) classical: T~ e’ b) quantum: T ~ (e 'BAE)
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Figure 2.1: Glassy dynamics in classical and quantum constrained models. a) For classical
stochastic Monte Carlo updates, the time 7 to cross an energy barrier between two minima is dominated
by the height AFE of the barrier. In between the two minima, the system performs a diffusion process
in configuration space. b) In closed quantum systems with small off-diagonal hopping terms ~ 1/8,
the tunneling rate through the barrier is suppressed in both its height and width. This is indicated here
by a simple WKB result for the tunneling amplitude.

222 Emergent hydrodynamics

In a sense, the simplest constraint to occur in quantum many-body systems is a global
conserved U (1) charge!?. This could be the total number of particles or simply the energy
(in a closed system) itself. Nonetheless, even such elementary constraints have important
consequences for quantum dynamics. In particular, the presence of a conserved charge

prevents a rapid relaxation to thermal equilibrium since charge inhomogeneities cannot

12That is, an extensive sum over local charges, such as the total particle number N = °_ 7,
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decay locally. Instead, charge has to be transported through the system until a spatially
homogeneous density is reached eventually. It is then an important task to determine in
which manner this transport proceeds. Non-interacting or integrable systems are charac-
terized by stable quasiparticles and thus generally exhibit ballistic propagation of charge
excitations'® [181-183]. However, ballistic transport is a consequence of phase coherence
in systems that avoid thermalization. In generic interacting quantum many-body sys-
tems, we rather expect interactions to quickly induce many-body dephasing, destroying
ballistic quasiparticle propagation. Therefore, it is now generally believed that the uni-
tary time evolution leads to an emergent hydrodynamic regime of diffusive transport at
late times [58-60, 65, 66, 184]. We provide an illustration of the associated thermaliza-
tion process in the presence of conserved charges in Fig.2.2: After an initial early time
regime, the system will first equilibrate locally. From the point of view of local observ-
ables, which cannot access details of the initial state that have been scrambled quickly
throughout the system, the state is then characterized by a course-grained local charge
density n(z,t). Accordingly, the final approach to global equilibrium can be described by
an effective evolution equation for n(z, t). By symmetry, the simplest equation allowed in
a linear hydrodynamic expansion (in the absence of additional conserved quantities) is a
diffusion equation”,

om(x,t) = D d*n(x, 1), (2.15)

where the details of the underlying unitary quantum time evolution enter the value of
the effective diffusion constant D. We emphasize that the emergence of hydrodynamic
transport from unitary quantum dynamics is highly non-trivial and difficult to establish
rigorously. In particular, a controlled evaluation of transport coefficients such as the dif-
fusion constant is extremely challenging in general. Establishing systematic algorithms
that can achieve this goal is subject of several recent theoretical efforts [186-192]. As ex-
perimental capabilities to probe the emergence of hydrodynamics progress rapidly [193—
204], the computation of transport coefficients could become a benchmark for quantum
simulators in the future. Later in this thesis, in Chapter 9, we consider a special class of

quantum many-body systems where transport properties can be extracted exactly.

On a more qualitative level, we emphasize that the emergence of diffusion in quan-
tum many-body systems is an example of out-of-equilibrium universality. That is to say,
irrespective of microscopic details, the general form of the diffusion equation Eq. (2.15)
applies. We can then pose the question whether the presence of constraints beyond con-
ventional global conserved charges can exhibit novel dynamical universality classes. This

will be the subject of large parts of Chapters 4,6,7,9. In particular, our task is twofold: 1)

13Gimilarly, ballistic transport is expected on small to intermediate timescales at low energies
where quasiparticle lifetimes are long.

4 Throughout this thesis we will work with lattice systems where Umklapp-scattering processes
ensure the absence of momentum-conservation. For momentum-conserving systems the hydrody-
namic structure becomes richter, leading, in particular, to KPZ universality in one dimension [185].
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Figure 2.2: Thermalization process in systems with conserved quantities. First line: The state
of the system from the point of view of local observables. At early times, knowledge of the full quantum
state is required to characterize the system. At hydrodynamic timescales, the system is characterized by
a coarse-grained local charge density n(x,t). Equilibrium is characterized by the average charge density
n. Second line: The dynamics of the system. At early, times the full unitary evolution U(t) needs
to be considered. At hydrodynamic time scales the system follows an emergent, effectively classical
hydrodynamic equation (here: the diffusion equation). Microscopic details merely enter the numerical
value of the diffusion constant. In equilibrium, the system has reached a static state up to thermal
fluctuations. Third line: The thermalization process of the system can thus be characterized by early
time dynamics until local equilibration, an emergent hydrodynamic regime, and equilibrium.

Establishing the (potentially novel) hydrodynamic universality classes of constrained sys-
tems. 2) Demonstrating that such hydrodynamics indeed emerges from a unitary closed
quantum evolution. Importantly, step 1) can often be achieved by considering random
unitary circuit dynamics [65, 66] or effectively classical counterparts of constrained quan-
tum systems instead of closed system quantum Hamiltonians [2, 205-207], similar to the
perspective of kinetically constrained models we presented previously. However, we
emphasize that we will investigate hydrodynamic relaxation at high temperatures; uncon-
ventionally slow transport in constrained models is thus not due to the presence of local
energy minima. Instead, constraints can restrict the entropic forces that lead to hydro-
dynamics (loosely speaking: charge gradients decay for entropic reasons in conventional

diffusive systems), modifying the eventual universality class of transport.

2.2.3 Operator dynamics and entanglement growth

So far, we have mostly considered the dynamics of simple local observables, which can in-
dicate glassy behavior or slow hydrodynamic transport. What other dynamical measures
of thermalization and quantum chaos are there? One common approach is to study the
scrambling of quantum information throughout the system due to the unitary time evo-
lution [208-211]. This process corresponds to the growth of operators in the Heisenberg
picture from initially local objects to large superpositions of long Pauli operator strings.
A way to quantify this spread of operators is offered by out-of-time-ordered correlation
functions (OTOCs) between two operators [208-212],

Co,0,(t) = <! [01(t), 5] !2>, (2.16)



see also Fig. 2.3 for an illustration. For generic systems, the spatial support of an oper-
ator Oy (t) grows linearly in time, leading to a ballistic light-cone structure in the OTOC
of Eq.(2.16). Conceptually, OTOCs can be introduced as canonically quantized versions
of a classical quantity that probes the exponential divergence of trajectories with slightly
different initial conditions [212, 213]. However, this property persists only close to a clas-
sical limit, while in general the growth of the OTOC in quantum systems is bounded and
saturates to a constant value [60, 63, 64, 213-217]. Nonetheless, OTOCs serve as use-
ful measures of information scrambling and linear spreading of quantum chaos. In par-
ticular, OTOCs can distinguish between generic systems, integrable systems [218], and
many-body-localized systems where the light cone moves logarithmically slow [219-223].
We will investigate novel ways in which the spreading of operators can be qualitatively
slowed down in Chapter 8. In addition, the spreading of operators also serves as a bound
for the growth of quantum entanglement, which can be quantified e.g. through the sub-

system Rényi entropies

Su(t) = ——— log(tx[p (1), (2.17)

—n
where p4(t) is the reduced density matrix of the subsystem A. Such entanglement en-
tropies generically grow linearly in time in thermalizing systems, with a velocity upper-
bounded by the ballistic spreading of operators [61, 64].

It has previously been established that both the dynamics of operators [63-66, 189, 224]
as well as entanglement [61, 62, 225-227] in thermalizing systems can be captured within
an effective hydrodynamic description. Accordingly, the presence of conservation laws
can have qualitative impact on those processes. This has been verified explicitly in ran-
dom circuit models with a global U (1) charge conservation law [65, 66], which leaves clear
signatures in the profile of certain OTOCs!> and leads to a slow growth of Rényi entan-
glement entropies S, (t) for n > 1 [62, 228, 229]. Again, we can pose the question how
such features generalize to the presence of additional constraints beyond conventional
U(1) charges.

A

O, O (t) (05, O1(1)] # 0

o, [ 01(0) [05,0,(0)] =0
> space

time

Figure 2.3: Operator growth. Under unitary time evolution, the spatial support of an operator
@1(15) in the Heisenberg picture grows. This growth can be captured by out-of-time-ordered correlation
functions: While at early times @1(75) commutes with a spatially distant operator O, at later times the
spatial support of O;(t) overlaps with O, leading to non-trivial commutation relations.

15In particular, those OTOCs in which at least one of the operators O, /, has finite overlap with
the charge conservation law.
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2.24 Quantum many-body scars

One of the main driving forces behind the large interest in the dynamics of constrained
quantum systems in recent years has been the discovery of quantum many-body scars [51-
57]. These can be defined as eigenstates with low (i.e. sub-volume law) entanglement
at high energies in the many-body spectrum'®. Notably, these special eigenstates coexist
with a vast majority of highly entangled eigenstate that fulfill the ETH. Systems with
quantum many-body scars thus exhibit weak violations of the eigenstate thermalization
hypothesis!”. Although the number of such eigenstates is exponentially small compared
to the size of the Hilbert space, they are relevant to experiments whenever their overlap
with experimentally preparable states is large. The most well-known model exhibiting

such quantum many-body scars is the so-called ‘PXP” model,

N

ﬁ = Z p:r:lexPerla P,=1- ﬁxa (218)
T

which is approximately realized in Rydberg atom quantum simulators [51]. The model
Eq. (2.18) operates on a binary local Hilbert space 7, € {0,1} and X, corresponds to the
z-Pauli matrix. The experiments of Ref. [51] revealed very slow relaxation tied to the pres-
ence of quantum many-body scars starting from specific initial states. From a theoretical
perspective, there exist a number of known mechanisms that can lead to the emergence
of scars in the spectrum of quantum many-body systems. Among them are so-called
spectrum-generating algebras [57, 230, 231] or projector embedding constructions [232];
see the recent reviews of Refs. [233, 234] and references therein for an overview of the

many examples of such scarring-mechanisms that have emergent in recent years.

2.2.5 Hilbert space fragmentation

We have discussed a number of dynamical phenomena in constrained quantum many-
body systems: Glass-like and hydrodynamic relaxation to an eventual thermal state,
which is unconventionally slow, but does not violate the ETH. Secondly, the presence
of special “scarred’ eigenstates in the many-body spectrum, which corresponds to a weak
violation of ETH. Notably however, constraints also offer novel ways to achieve strong
violations of the ETH, where a finite ratio of all eigenstates of the Hamiltonian are non-
thermal. One route to obtain localization of observables (similar to MBL) in this way leads
to the concept of Hilbert space fragmentation [235-238]. This concept is best approached
from the perspective of kinetically constrained models in Eq. (2.12). We consider a set of

updates sufficiently constrained such that the space of possible configurations splits into

16For comparison, we can note that RMT predicts eigenstates in the middle of the spectrum to
be random states, which exhibit volume-law entanglement.

7As opposed to the strong violation of the ETH in many-body-localized systems, where all
eigenstates are believed to escape the ETH.
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disjoint partitions. In the language of kinetically constrained models this is known as re-
ducibility [150]. The partitioning of configuration space can become strong enough such
that local observables do not relax towards their expected thermal value even at infinite
times. Consequently, thermalization is absent also in quantum Hamiltonians subject to
the same constraints on their off-diagonal terms'®, ¢f. Eq.(2.14). There, the dynamics of
the system becomes reducible in Hilbert space, which is said to be ‘fragmented’ if it splits
into an exponentially large number of disjoint subsectors [235]. Again, if this exponential
fragmentation becomes sufficiently strong, local observables remain stuck at non-thermal
values. We emphasize that it is difficult in general to infer whether a given fragmentation
of Hilbert space is strong enough to cause absence of thermalization.

Formally, see Refs. [233, 238, 239], Hilbert space fragmentation can be introduced by
considering a basis {|¢;)} of the Hilbert space #, as well as the associated Krylov spaces

Kj = span{|¢;) , H [v;) , H? [¢) , ...} (2.19)

In generic, ergodic many-body systems without (conventional) symmetries'’

we expect
that K; = H for all j, i.e. the state |¢)) explores the entire Hilbert space H under ap-
plications of the Hamiltonian. Fragmentation of the Hilbert space can then be defined
by K; # H, with H becoming a direct sum of exponentially many disjoint Krylov spaces.
Defined in this way, unlike reducibility in classical kinetically constrained models, frag-
mentation is a basis-dependent concept. Importantly, for thermalization of local observ-
ables to be absent, a strong fragmentation should exist in a sufficiently simple, local ba-
sis?. Hilbert space fragmentation was initially introduced in the context of fractonic con-
strained models with dipole conservation [235, 236]. Therein, fragmentation occurs in a
classical, i.e., unentangled basis, equivalent to reducibility. In certain examples it is even
possible to provide explicit expressions for the ‘quantum numbers’ that label the disjoint
subspaces [237]. We will study the properties of such models beyond fragmentation in
the second part of this thesis. Recently, an example of strong Hilbert space fragmentation
which requires an entangled set of basis states was provided in the context of Temperley-
Lieb chains in Ref [239].

2.3 Constrained quantum systems in theory and experiment

Up until this point, we have provided an overview over the concept of thermalization in
quantum many-body systems and some of the exciting phenomena that may occur when

a many-body system’s approach to equilibrium is constrained. However, so far we have

8Considering a closed quantum system only adds yet another constraint: energy conservation.

YOr with symmetries such as lattice transformations, particle number, etc. already resolved,
such that 7 is the Hilbert space associated to one symmetry sector.

20The Hilbert space is always entirely disconnected in the eigenbasis of the Hamiltonian, which,
however, is not a simple, local basis.
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(mostly) avoided referencing specific systems. In this section, we introduce some of the
physical constraints that we will be occupied with on a theoretical level throughout this
thesis. We then proceed to give a brief account of several experimental platforms that

potentially allow for realizations of these models.

2.3.1 Emergent gauge theories

Part I of this thesis studies the dynamics of many-body systems with local gauge con-
straints. Gauge theories are central to our modern understanding of physics as they lie at
the heart of fundamental particle physics [240] and hold the promise of valuable applica-
tions in quantum information processing [241]. Gauge theories in quantum many-body
systems such quantum spin liquids are usually thought of as emergent low energy descrip-
tions. Here we discuss briefly some of the most relevant aspects of gauge constraints for
this thesis.

Dimer Models

In Chapters 3,4 we consider the dynamics of quantum dimer models [242]. Such models
originate from Anderson’s idea to use the resonating valence bond state as a means to
describe the high temperature cuprates [243]. In this scenario, a “dimer’ is a local singlet
formed between two spins and one assumes that the low energy subspace of the rele-
vant Hubbard model is well-captured by restricting to the dimer basis. One can then
write down a corresponding quantum dimer Hamiltonian in this new basis. From this
perspective, quantum dimer models are emergent low-energy descriptions of interacting
electron or spin systems. However, we may also consider the properties of dimer mod-
els in their own right once the restriction to dimer coverings is made. Putting aside the
origin story of dimers as spin singlets, this presents a good starting point to introduce
the central concepts of gauge theory as relevant for this thesis. Let us consider close-
packed, nearest neighbor dimer coverings of a square lattice as shown in Fig.2.4 and let
dj, “af@ p = Niyu € {0,1} denote the dimer occupation number on the bond between sites i
and i + é,, 1 € {z,y}. The Hilbert space of valid dimer coverings is characterized by the

constraints

A~

éi = 'fli,x + ﬁz‘_éww + ﬁi,y + ﬁi_é%y =1. (2.20)

Eq. (2.20) expresses that there is exactly one dimer emanating from each lattice site. Let us

note that within this geometry, there exist non-local winding numbers W, (W,) defined
as

W, = Z(_l)izﬁ(iz,iy),yv (2.21)

and analogous for W,. Eq.(2.21) is independent of i, and is invariant under any local

rearrangement of the dimer configuration [242] that is consistent with the constraints
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Eq.(2.20). A concrete Hamiltonian in the dimer basis that preserves the constraints
Eq.(2.20), the famous Rokhsar-Kivelson model that we consider in Chapter 3 [244], is
given by

H= _JZ djzdj-‘rey xd%ydﬂ'éx,y + hC) +V Z(ﬁivxﬁi‘f‘éy@ + ﬁi7yﬁi+ém,y) =

= =72 (00 @ +12 0D +v > (00l + (=)@ -

plaqg. plaqg.

(2.22)

where the ellipses in the pictorial representation correspond to dimers occupying the
bonds. We see explicitly how this model maps to a theory with U(1) gauge structure
by introducing the ‘electric fields’ [245, 246]

. 1
Eip = (=1 (i = 5), (2.23)

which correspond to spin-1/2 variables F;, € {#1/2} on the bonds of the lattice. The
constraint Eq. (2.20) then becomes (A, denotes a discretized lattice derivative)

éi = (—1)iz+iy (éz — 2) = EAZ‘7z — EA'Z'_éz@ + Ei,y — EAi_éy’y = ANEA'LM = —( )lzJﬂy (2 24.)
Eq. (2.24) takes the conventional form of a Gauss law for a static staggered charge distri-
bution p; = —(—1)%*%. Upon introducing the ladder operators U; , with [U; ., E;,] =
0:§0,,, Ui . for the electric fields, the Hamiltonian Eq. (2.22) reads

o= —JZ UL 0o, UivesyUsa +hoc) + VZ Ul O . Uiie,yUis + hee.)?

Y iy,

:—JZ (ICD I+ 1D +v Y \D =+ DD

plag. plag.

(2.25)

where in the pictorial representation, thick lines correspond to bonds with E; , = +1/2.
We notice that the first term in Eq.(2.25) takes the form of the Kogut-Susskind Hamil-

dimers electric fields

T
]

Figure 2.4: Dimer model - gauge theory duality. Mapping between close-packed nearest neighbor
dimer occupations and eletric field configurations according to Eq. (2.24). The flippable plaquettes are
marked in light gray.
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tonian for lattice quantum electrodynamics [247]. The usual contribution of the electric
field EE , = 1/4 provides only a constant shift and is omitted. This is a consequence of
truncating the electric field to just two possible values, making Eq. (2.25) a quantum link
model [246, 248-250]. The U;, , ~ €% are Wilson operators associated to a compact gauge
field a; ,,, which acts as the canonically conjugate phase variable to the electric field. As

expected, Eq. (2.25) is then invariant under the local U (1) gauge transformations
Uy, — efrenl; e (2.26)

for an arbitrary lattice function 6;, corresponding to a;, — a;, + A,0;. The present
discussion shows that the quantum dimer model on the square lattice indeed corresponds
to a U(1) lattice gauge theory, and there exists a large body of works detailing its ground
state phase diagram [251-257]. However, much less is known about the dynamics in
such systems. In this thesis, we explore the role of the gauge constraints Egs. (2.20,2.24)
for nonequilibrium dynamics. In Chapter 3 we uncover the presence of glassy dynamics
as discussed previously, and we investigate unconventional hydrodynamics and novel

forms of ergodicity breaking due to the non-local winding numbers Eq. (2.21) in Chapter 4.

Spin liquids

In the previous paragraph, we restricted our discussion to a Hilbert space with U (1) gauge
structure from the get-go. Naturally, the question arises how such gauge constraints can
effectively emerge as low energy theories of realistic many-body spin systems. This is
believed to be the case in quantum spin liquids [258-262], where fractionalization of spin
excitations into new particles gives rise to emergent gauge fields at low energies. Spin lig-
uids are novel topological quantum phases of matter of local spin Hamiltonians in which
the ground state breaks neither spin rotation nor lattice symmetries. They fall outside
the conventional symmetry-breaking classification of quantum phases of matter. Instead,
spin liquids are characterized by their long-range entanglement and topological proper-
ties. In particular, due to the presence of anyons in two dimensions they present poten-
tial platforms for fault-tolerant topological quantum computation [241]. However, due
to the absence of a conventional order parameter, identifying spin liquids in current ex-
periments is challenging. In Chapter 5 we study how probing local dynamical properties
of spin liquid states might aid in their experimental identification.

Some key concepts of spin liquid states can be illustrated within a parton mean field
description. Therein, the usual spin-1/2 operators S; on site i can be expressed in terms
of auxilliary bosons?! [265],

S; = % > dl oasdi s, (2.27)
o.f

Tt is also possible to use fermions[263]. In that case, the resulting gauge structure will be SU (2)
instead of U(1)[264].
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where o, 8 € {1,l} and the ¢*=%¥7 are the Pauli matrices. Importantly, the description
Eq. (2.27) enlarges the local Hilbert space dimension. In order to describe a physical spin

wave function, one should thus introduce the constraints
N df dia =1, (2.28)
(0%

i.e., there is exactly one boson at each site. Again, we encounter local constraints that
naturally lead to an emergent gauge structure. In particular, given an antiferromagnetic
Heisenberg-type lattice spin model H= > i J”S S and inserting the decomposition
Eq.(2.27), a mean field decoupling in Q;; = (d] T dja) yields? [15]

N 1 ~ A
H= =53 Ji[(d]dsaQij + he) = |Qul*] + Z A -1), (229
ij

where ); is a chemical potential that fixes the constraint Eq. (2.28) on average. We see that

Eq.(2.29) is invariant under the U(1) gauge transformations

Qij = €1 Qe

; )
di,a — di,ae Yy

(2.30)
and thus describes spinons moving in the presence of a compact U (1) gauge field, which
is static at the mean field level. In practice, a careful analysis of the stability of a given
self-consistent mean field Ansatz upon including fluctuations of the gauge field is re-
quired [259] ?°. In a spin liquid phase, the spinons are deconfined and appear as stable
low energy excitations along with the excitations of the gauge field. In addition, the gauge
structure may be broken down from U(1) to Z via the Higgs mechanism [267, 268]. In
Chapter 5 we consider the spin liquid state of the Kitaev honeycomb model [241], where
the emergent gauge field is static and the mean field parton construction solves the model
exactly. In that case, the employed partons are Majorana fermions b; , instead of complex
bosons or complex fermions, which renders the mean fields Q;; = <3i,a15j7a> real since
(Bi,ai)j@)Q = —1. This condition induces a Zs gauge structure as only §; = 0, 7 remain as

viable gauge transformations in Eq. (2.30).

2.3.2 Fracton models

In recent years, novel types of constrained quantum systems that are known as ‘fracton
models’ have attracted much interest [69, 70, 269-277]. Loosely speaking, such systems
are characterized by elementary excitations — called fractons — with restricted mobility (see

e.g. Fig.2.5). An early example was provided in the form of a solvable lattice model in

220f course, there are other mean field channels in which the Hamiltonian can be decoupled.
ZFor example, pure compact U(1) gauge theory is confining in two dimensions [266].
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Ref. [269], which aptly characterized the system’s low energy properties as ‘topological
overprotection’, as elementary excitations cannot diffuse locally, leading to long relax-
ation times. Relatedly, fracton models can feature an exponential®* number of degener-
ate ground states, which cannot be distinguished locally. This is in contrast with other
topologically ordered states, which have constant (or algebraic) ground state degener-
acy. Fracton models generally come in two different types, named type I and type II. In
models of type I, such as the X-cube code [273], there exist mobile objects composed of
multiple fractons that can move along subdimensional manifolds such as lines or planes,
even though single fractons are immobile. In type II models on the other hand, such as
Haah'’s cubic code [270], there are no dispersive quasiparticles and excitations sit at the
corners of a fractal structure. Moving an excitation leads to the creation of new excita-
tions and thus costs energy. These exactly sovable three-dimensional lattice examples of
fracton models are gapped.

Notably however, there also exist gapless fracton models that can be understood as
symmetric tensor gauge theories (or multipole gauge theories) [274, 275, 278, 279]. In the
simplest case, such a gauge theory is a rank-2 generalization of (compact) U(1) quantum
electrodynarnics25 . That is to say, instead of a usual vector potential A;(z) (i = 1,...,d,
where d is the spatial dimension) and its conjugate electric field E;(x), one works with a
two-indices tensor A;;(x) and its conjugate variables E;;(x). Demanding invariance un-
der the gauge transformation A;;(x) — A;;(z) + 9;0;6(x) and including potential charge
degrees of freedom, this leads to a modified Gauss law (the generator of such gauge trans-

formations)
ZaﬁjEzj = p, (2.31)
tj

with the local charge density p(x). Such a Gauss law naturally implies conservation not

only of the total charge, but also of the dipole moment of the charge density, since

/ddx:vp(x) = /ddx:r: Z@iajEij ~ boundary terms. (2.32)
ij

If the dipole moment is conserved, single charges are immobile and thus become frac-
tons. Only composite objects, such as dipole excitations, acquire non-trivial mobility, see
Fig.2.5. Similar constraints are relevant in certain models of the fractional quantum Hall
effect [280-285]. While at first sight this approach appears very different to the gapped
lattice models mentioned above, it has been shown that multipole gauge structures can
incorporate e.g. the gapped fracton phase of the X-cube model by Higgsing the gauge
excitations [286, 287]. Furthermore, the multipole gauge description offers an exciting
duality to elasticity theory in two dimensions [288-290], in which immobile fractons, mo-

bile dipoles and gapless gauge excitations map to disclinations, dislocations and phonons

24Exponential in the linear spatial extent of the system
2Such fracton theories can be viewed as higher rank generalizations of U (1) spin liquids [274]
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Figure 2.5: Fractons in dipole-conserving systems. In systems with dipole-conservation, single
charges are immobile and correspond to fractons. In contrast, dipole objects composed of two fractons
can move freely.

of the lattice, respectively.

In this thesis our interest in fractonic systems is twofold: On the one hand we will
demonstrate in Chapters 3,4 that the more conventional U(1) gauge theories of quantum
dimer models can exhibit dynamical features similar to fractons, such as glassy dynamics
at low energies and the emergence of mobility along subdimensional manifolds [291].
On the other hand, while above we introduced the concept of fractons in the language of
low energy field theory, in this thesis we consider the thermalization dynamics of fracton

lattice models with multipole conservation laws at high energies, see in Chapters 6-9.

2.3.3 Experimental platforms: Synthetic quantum systems and quantum ma-
terials

Loosely speaking, experimental realizations of constraints in quantum many-body sys-
tems require one of two things: a high degree of control over a synthetic quantum system
or a natural material realization. Both of these areas have seen immense progress over re-
cent years [43-46, 50, 292, 293]. Here, we provide a brief overview of several experimental

platforms that (potentially) realize the constrained systems introduced above.

Synthetic quantum systems

The central idea of synthetic quantum systems is to arrange a large set of quantum me-
chanical degrees of freedom while maintaining control and being able to manipulate its
quantum state, in conjuction with tools to characterize the properties of this state. In the
spirit of Feynman [41], this would allow for efficient simulation of quantum many-body
problems on such devices. The main challenge is to overcome the apparent conflict be-
tween large system sizes and maintaining full control: The device needs to be isolated
from environmental noise, while at the same time being steered externally towards a de-
sired time evolution of the quantum state. We sketch the progress that has been achieved
in several platforms over recent years and how constrained systems can be implemented
in them. We emphasize that the following selection of platforms is not exhaustive and we

refer to the literature for more information [50].
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Rydberg atoms

A quantum simulation platform that lends itself very naturally to the study of constrained
systems is based on Rydberg atoms in which an electron is excited to high principal quan-
tum number [51, 292, 294, 295]. Rydberg atoms feature strong repulsive van der Waals in-
teractions that scale as V;; ~ C/Ry; with the distance between two atoms. The atoms can
be trapped in optical tweezers and arranged in essentially any desirable configuration,
providing a high degree of control. The quantum dynamics of an ensemble of Rydberg
atoms is controlled by the distances between the atoms as well as by laser driving the
transition between ground state |g) and Rydberg excited state |r). This gives rise to an

effective spin-1/2 many-body Hamiltonian [51]
H=0QY 67 +A> i+ Y Vi, (2.33)
i i ij

where Q2 and A are the Rabi frequency and detuning of the ground state - Rydberg tran-
sition and #; = |r) (r|,?. When two atoms are sufficiently close, the strong interaction
Vij prevents simultaneous excitation of both atoms into the Rydberg excited state. This
is known as the Rydberg blockade, which serves as a tool to implement robust two-qubit
gates in the context of gate-based quantum computation [296, 297] and naturally imple-
ments a constraint in the quantum simulation of the Hamiltonian Eq. (2.33). The state
of the atomic ensemble can be measured in a site-resolved manner through imaging the
fluorescence of ground state atoms.

In recent years, the many-body Hamiltonian Eq. (2.33) has been implemented to study
for example quantum phase transitions between symmetry breaking phases [298, 299] as
well as quantum dynamics [51]. The latter has led to the discovery of quantum many-
body scars in the PXP model of Eq. (2.18), which is realized by Eq.(2.33) in the nearest-
neighbor blockade regime. There exist also proposals to use the blockade to implement lo-
cal gauge constraints [295, 300, 301]. Recently, a Kagome lattice quantum dimer state that
corresponds to a Zs spin liquid phase [302] was implement in a Rydberg platform [303].
In this experiment, the spin liquid is constructed directly in the dimer basis. Rydberg
atoms have recently even been used to tackle certain classical graph problems of finding
maximal independent sets, whose solution can naturally be encoded in the ground state
of Eq.(2.33) [304].

Cold atoms in optical lattices

Cold atoms in optical lattices have proven to be an extremely versatile quantum simu-
lation platforms over the past decades [42, 43]. The geometry of the setup is controlled

by trapping the atoms inside an external confining potential, which can be used to

26Tt is also possible to encode spin-1/2 qubit degrees of freedom in hyperfine ground state levels
or in two different Rydberg levels [292].
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engineer the dimensionality of the system. On top of the trap, an optical lattice can
be imposed by interference of counterpropagating laser beams, which generates an
optical standing wave that acts as a periodic lattice potential for the trapped atoms.
This allows one to study Hamiltonians relevant in the context of condensed matter
systems. The associated tight-binding tunneling matrix element of atoms in the optical
lattice is controlled (with stretched-exponential sensitivity, cf. Fig.2.1) by tuning the
lattice depth. The contact interaction between atoms can be controlled independently
via Feshbach resonances, which allow for a tuning of the scattering length. This degree
of control provides access to strongly interacting systems that can realize correlated
phases of matter, the paradigmatic example being the Fermi-Hubbard model [305, 306].
There are several probes for measuring correlations in a given quantum state in cold
atomic setups. One possibility is to perform time-of-flight measurements that map the
momentum distribution of an expanding atomic cloud to a real space distribution which
can subsequently be measured. This method was instrumental in verifying the creation
of a Bose-Einstein-condensate [307, 308] as well as the superfluid-Mott insulator transi-
tion [309]. More recently, the development of quantum gas microscopes [310, 311] allows
for single-site resolved snapshots of the many-body state. Such microscopy provides
access to high-order correlations that can be vital in characterizing strongly correlated
phases of matter [312-315]. Over the past years, this toolset has also provided insights
into nonequilibrium properties of quantum many-body systems, shedding light on many
of the concepts discussed above: Thermalization after a quench [316] and emergence
of hydrodynamics [193-197, 317], as well as non-thermal behavior such as integrable
quantum dynamics [199, 200] and observation of many-body localization [141, 318, 319].

In the context of constrained systems relevant for this thesis, cold atoms in optical lat-
tices have recently been used to realize models with fractonic dipole conservation laws as
described above. This can be achieved by imposing a linearly tilted potential in addition
to the optical lattice. The Hamiltonian implemented in such a setup is the Fermi-Hubbard

model with linear potential along the z-direction,

H=—tY (e, Jtio+he)+UD fighis+FY i (2.34)
0,0, i i
This model has been realized in two dimensions in Ref. [197] and later in one dimension in
Refs. [320, 321]. The relation to the dipole-conserving fracton systems introduced above
can be established most directly in the latter case in the regime of strong tilts F' > ¢, U.
Eq. (2.34) couples directly to the fermion center of mass, which we thus expect to act as
an emergent dipole conservation law, at least on prethermal time scales (that is, exponen-
tially long in the tilt strength). Indeed, moving a single fermion one site up the tilt (which
is suppressed as t/F') yields a large energy penalty for strong F', and so a second fermion

needs to move down the tilt at the same time in order to arrive back on energy shell. The
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movement of the two fermions thus needs to be correlated and this correlation is medi-
ated by the Hubbard interaction term U. We then naturally expect the emergence of a
dipole/ center of mass-conserving correlated hopping term at order U (¢/F)?. Formally,
this is indeed found after a Schrieffer-Wolff-transformation?”’, which yields an effective

Hamiltonian (on a one-dimensional lattice), see Refs. [320-322],

Heg = Ul’i Sl tiatiotl s+ he) U  iighie +F Y e+ O(U/F?),

Z " " (2.35)
where the remaining terms of order O(Ut?/F?) all commute with the local density 7; =
ni+ + 7). 1t should be noted that the effective Hamiltonian Eq. (2.35) acts within the
basis obtained from the Schrieffer-Wolff transformation, not the original fermions. The
experiments of Refs. [320, 321] investigated signatures of localization in linear poten-
tials [323, 324] as well as the Hilbert space fragmentation that occurs in dipole-conserving
models such as Eq. (2.35). Ref. [197] on the other hand investigated the relaxation dynam-
ics of the tilted setup Eq.(2.34) in two dimensions, where it was found that the system
does thermalize, albeit in a subdiffusively slow manner. In chapters 6,7 we relate this
slow subdiffusive relaxation dynamics to the hydrodynamic theory of dipole-conserving

many-body systems.

Trapped ions

An alternative to neutral atoms uses ions as elementary building blocks for quantum sim-
ulation [44-46]. The ions can be trapped in confining harmonic potentials where they
form a crystal structure due to Coulomb repulsion; spin-1/2 qubit degrees of freedom
can again be encoded in internal levels and can be locally addressed using focused lasers.
The quantum dynamics is controlled by global laser beams which couple the spin-1/2
degrees of freedom to the ions” motional degrees of freedom. Due to the long-range na-
ture of the Coulomb interaction (which governs these motional degrees of freedom), this
results in effective long-range, i.e. power-law decaying, spin interactions. In addition,
tightly focused laser beams can be used to engineer local magnetic fields for the spins.
State detection can be performed with single-site resolution using fluorescence imaging.

Trapped ions have proven to be a versatile platform for probing the dynamics of
quantum many-body systems over recent years, including investigations of many-body
localization [325] and dynamical quantum phase transitions®® [326]. Recently, experi-
ments in trapped ion platforms have also explored localization in tilted systems similar

to Eq. (2.34)* [327]. Another experiment has demonstrated the emergence of hydrody-

?’The Schrieffer-Wolff-transformation is equivalent to a high frequency expansion in a rotating
frame with respect to the tilted potential part of the Hamiltonian.

ZWe will investigate dynamical quantum phase transitions in a constrained system in Chapter 3

#Due to the presence of the linear potential, the long-range spin interactions become exponen-
tially suppressed, yielding an effectively short-range system.
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namics in a long-range interacting spin chain [198].

Quantum computers

The previously presented schemes fall under the category of analog quantum simulation,
where the model of interest is naturally implemented in the constituents of the respec-
tive platform and dynamics ensues by letting the system evolve under its many-body
Hamiltonian. In contrast, in digital approaches one first devises a scheme to encode the
relevant degrees of freedom of a quantum many-body system within a predefined set of
isolated qubits. The quantum state of the qubits is then evolved in a discrete manner by
sequential application of few-qubit quantum gates. The selection of gates is taylored to
the problem of interest in such a way that the encoded degrees of freedom evolve accord-
ing to a desired Hamiltonian. The Hamiltonian time evolution is thus represented as a
quantum circuit. In practice such a representation can be achieved by Trotterization of
the time evolution into small steps. The advantage of digital quantum simulation in uni-
versal quantum computers [328] comes with its programmability; given a universal gate
set, in principle any Hamiltonian can be realized. This is in contrast with analog plat-
forms that typically realize very specific Hamiltonians. However, this programmability
naturally has its costs, imposing challenging requirements on gate-fidelity and coherence
times.

Despite these challenges, much progress on the road towards programmable quantum
computation has been achieved throughout a variety of different platforms. Among them
are superconducting qubit architectures [47, 48], based on non-linear LC electric circuits
with a Josephson junction as inductance. Notably, Ref. [329] announced a quantum ad-
vantage over classical supercomputers performing a sampling task with superconducting
qubits, and recently, the topological toric code ground state has been implemented in this
platform [330]. A relevant solid state platform are nitrogen-vacancy (NV) centers in di-
amond, which provide effective two-level systems with very long coherence times that
can be addressed optically. They are also valuable platforms for quantum simulation and
sensing and have been demonstrated to show thermalization and the emergence of hy-
drodynamics [204], as well as discrete time crystalline order [331]. We emphasize that
there exist many other promising platforms for quantum computing, including electron
semiconductor qubits [49], linear optics [332], and others [50]; we refer to the literature

for details on those approaches.

Quantum materials

Andersons’s original idea to describe the high temperature superconducting cuprates as a
spin liquid [243] sparked the search for realizations of spin liquids in other materials. To-
day, the list of candidate materials for spin liquids is long [258-262, 293, 333] and here we

do notattempt to provide a comprehensive survey. Instead, in the context of Chapter 5, let
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us highlight the presence of candidate materials believed to be well described by effective
spin Hamiltonians with strong Kitaev interactions 3, P, 5‘757 [293, 333-335]. The earli-
est example of such candidates is the family of iridiates, and more recently o@ — RuCls.
Both exhibit a Mott-insulating state of partially filled to, orbitals with layered honey-
comb structure. Common to these materials is the presence of strong spin-orbit coupling
which is necessary to induce the anisotropy of the Kitaev term [336]. Under realistic cir-
cumstances, the projected Hamiltonian also contains interactions of the Heisenberg-type,
which spoils the exact solvability of the pure Kitaev model and narrows the parameter
range for which a spin liquid ground state is expected [259]. Experimentally, neutron
scattering on a-RuCls has demonstrated signs of proximate spin liquid behavior [337, 338]
at elevated energies above an eventual magnetic zig-zag ordering at sufficiently low tem-
peratures [339, 340]. Remarkably, the magnetic order can be suppressed by the presence
of a magnetic field [341, 342]. In accord with this finding, thermal Hall measurements of
a-RuCls in a magnetic field revealed a half-quantized thermal Hall conductivity [343], in-
dicating the presence of Majorana edge modes in a field-induced spin liquid phase. How-
ever, the latter result is still under debate [344, 345], which renders alternative probes of
the spin liquid highly desirable. In this context it has recently become possible to exfo-
liate &« — RuCl3z down to monolayer thickness [346-348], which could pave the way for
novel, tunneling junction-based probes of the potential spin liquid phase [3, 349-351]. In
Chapter 5 we investigate how such a setup might reveal the presence of localized edge
modes through probes of local dynamical response functions. We further note that there
exist also materials, the pyrochlore oxides, which realize a classical version of a spin lig-
uid - spin ice [352]. The spin ice model can be treated within an emergent gauge theory
description [353] and we use a similar construction in Chapter 4 to describe the conserved

quantities in a non-planar dimer model.
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Emergent glassy dynamics in a
two-dimensional quantum dimer
model

This chapter is based on the publication

Johannes Feldmeier, Frank Pollmann, Michael Knap, “Emergent glassy dynam-
ics in a two-dimensional quntum dimer model”, Phys. Rev. Lett. 123, 040601
(2019)

Structure, text and figures have been adapted for the purposes of this thesis.

As we have outlined in our introductory chapter, far-from equilibrium states of
strongly interacting and non-integrable quantum many-body systems are generally be-
lieved to quickly relax to a local thermal equilibrium at infinite temperature. By contrast,
the experiment of Ref. [51] with one-dimensional ultracold atoms in the Rydberg blockade
regime has found that certain highly-excited states feature long-lived coherent oscillations
of local observables. Due to the Rydberg blockade [51, 354-360], a constrained quantum
many-body system is realized featuring exceptional eigenstates, entitled quantum many-
body scars [52-55, 361-363].

Interestingly, the one-dimensional Rydberg chain in the regime of nearest neighbor
blockade that was realized in these experiments admits a direct mapping to yet an-
other constrained model: the close-packed dimer coverings that we have introduced in
Sec. 2.3.1, but on a two-rung ladder geometry. The mapping between these two mod-

els is given in Ref. [364]'. This motivates our first example of constrained dynamics that

IThis also establishes a connection between the Rydberg model and the presence of gauge con-
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Figure 3.1: Dynamical phase diagram of the QDM (schematic). Quenches within and across the
columnar phase are accompanied by fast relaxation of local observables to thermal expectation values,
with a rate that is fixed by the microscopic parameter .J. Quenches across the 15t-order transition
show a '‘melting’ character, with thermalization times ~ £ given by the length scale of the staggered
domains. Within the staggered phase, the dynamics appears glassy with relaxation times bounded by
Teq. 2 exp(clog(V/.J) &*). Arrows are indicative of the different quench protocols considered.

we consider in this chapter, the far-from-equilibrium time evolution of a quantum dimer
model (QDM) in two spatial dimensions; see also Refs. [160, 366]. We determine the rich
dynamical phase diagram upon quenching the model far from thermal equilibrium (see
Fig. 3.1 for an overview) and identify initial states at finite energy density whose dynami-
cal relaxation is obstructed as a consequence of kinematic constraints. Moreover, for such
initial states consisting of a set of staggered dimer domains of length scale £, we analyti-
cally derive a lower bound on the local thermalization timescale that scales exponentially
in ¢*. This effect is induced by highly detuned processes involving ‘defects’ seperated
by a distance &, which surprisingly reveals a mechanism of slow dynamics that is in fact
similar to proposals of fractonic systems at low temperatures [269, 291]. We find arrested
quantum dynamics at 77 = 0 and extremely slow relaxation at finite energy densities,

reminiscent of the physics of classical glasses [149].

3.1 Model

We start by introducing again the QDM on the square lattice, where a hard-core constraint
enforces each site to be occupied by exactly one singlet dimer, see insets in Fig. 3.1 for the

illustration of a few dimer configurations. The dynamics is generated by the following

straints which we have described for the dimer model. Another gauge formulation of the Rydberg
chain in terms of a 1D U(1) link model has been provided in [365]
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Hamiltonian, originally introduced by Rokhsar and Kivelson (RK) [244],

H = Hv—f-fj[(]

Ay = vy (IH@N+ 1= @D (3.1)

plag.

Hy = =73 (IL0Q[+ 120 -

plag.

Here, Hy gives a constant energy-offset to each pair of parallel dimers, while the off-
diagonal kinetic term H flips a pair of resonant singlets. Importantly, the dimer model
features non-local conservation laws represented by winding numbers W, and W,, see
Eq. (2.21), which provide a staggered count of the number of dimers intersecting a given
straight line through the sample [242]. For the remainder of this work, we restrict to the
zero-winding sector W, = W, = 0, which constitutes the largest part of the full Hilbert

space.

The nature of the equilibrium phase diagram of the square-lattice QDM remains a mat-
ter of high interest, but seems to converge to a framework similar to the one depicted in
Fig.3.1 [251-257]. In particular, for T = 0, the model possesses an RK-point at V' = J,
where the exact ground state wave function can be constructed as an equal weight super-
position of all dimer coverings within each winding number sector [244]. The RK-point
separates two crystalline VBS phases, that show columnar order for V' < J and staggered
order for V' > J. Both VBS phases exist up to certain finite temperatures, before the transi-
tion to a disordered VBL phase, which is conjectured to extend all the way to the RK-point
atT = 0256, 367]. While the columnar-VBL transition is expected to be of BKT-form, and
thus continuous, the staggered-VBL transition is of 1%t-order [252, 254].

3.2 Columnar states: Thermalization

The BKT-transition can be captured by introducing an order parameter that detects the

spontaneous breaking of Cy-rotational lattice symmetry,

b= S (D AN - 12

plaq.

), (3.2)

which counts the imbalance between horizontal and vertical plaquettes on an L x L square
lattice. Restricting to the zero momentum sector on periodic boundary conditions (PBCs),
¢. distinguishes the two translational invariant columnar ground states |c4) and |cz),
related by a 7/2-rotation and ¢, lca/B) = £lca/p)-

To study thermalization in our system, we compute the relaxation of order parameters

in a quench protocol to their corresponding thermal expectation values. We thus consider
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Figure 3.2: Thermalization of columnar initial states. (a) Relaxation of the columnar order
parameter gZ;c both within and across the columnar phase. (b) Long-time averaged values of dgf for
different system sizes, starting from a columnar inital state and quenched to finite values of V/J.
Included are the corresponding thermal values for L = 8. Agreement between the two becomes less
accurate around the phase transition at V../J ~ —3.1, but is excellent deep within the phases. (c) The
crossing in the long-time averaged Binder cumulant Ug of qASC marks the corresponding finite-T" phase
transition. (d) The time-averaged dimer correlation functions C(r), starting from a columnar initial
state, agree well with the corresponding equilibrium values, even deep within the VBS phase.

the long-time averaged values

A : I / N A /
<0>q = tlggot/o dt’ ((t)| O |(t')) (3.3)
of a given observable O following a quench from an initial state [¢)(t = 0)) = |¢)g) on sys-
tems of linear size L € {4, 6, 8}, which we choose as a columnar state on PBCs, [¢)g) = |ca)-
The averages of Eq. (3.3) are to be compared with the corresponding thermal expectation

values

<O>ﬂ — Tr {e—ﬁﬁo} , <H>B L (ol H [tho) (3.4)

where the effective inverse temperature (3 is chosen to match the energy of the initial state.
For L = &, the system cannot be diagonalized fully, so we use the typicality approach [368]
where the expectation values of Eq. (3.4) are drawn from random (infinite temperature)
initial states, which are subsequently evolved in imaginary time up to 7 = /3 such that
the rightmost relation in Eq. (3.4) is fulfilled. We provide more detialed comments on the

effective temperatures obtained from Eq. (3.4) in Sec. 3.4.

As displayed in Fig. 3.2 (a+b), the columnar order parameter shows efficient relaxation

to thermal values for all values of the ratio V/.J after the quench, less accurate only in the

40



1.0+—— 1.0
! (®) Los
0'8— I (a) L N\ ______f/— 0.0 ::)
~J0.61 ! 05
& . . . . -1.0
044K A L= g 1 2 / 3 4
_ time tJ/L
=8
0.2— l e ?‘>L:8 100
0.0 } X. “« I [ ] | [ 7T T ]
0 RK 2 4 | | [ M10~!
coupling ratio V/J | + |l + ] -
I 11 110
i 1 1111073
-J
-J 17 —_J>
(C) i . i "

Figure 3.3: Localization of staggered initial states. (a) Long-time averaged values of the staggered
order parameter dgf starting from a staggered initial state. (b) In a quench across the transition to
the disordered regime (here: V/J = 0), the dynamics of ¢, scales with L=1. (c) The state |p4).
Excitations from this state containing four plaquettes are expected to delocalize along the diagonals of
the system. (d) The thermal expectation value of the potential energy landscape at an energy matching
the quench in (e). (e) The late-time plaquette densities obtained after quenching %(|p,4> + |pB)) to

V/J = 3 differ strongly from the thermal values in (d) at large distances from the center.

vicinity of the arising phase transition. The thermalization of order parameters allows
for the determination of finite-temperature phase transitions via finite size scaling argu-
ments, as has been done for ground state phases of the model [251]. Even though the exact
transition point between columnar and disordered phase may turn out quite inaccurate

in such small systems [251, 256], the qualitative picture is expected to hold, nonetheless.
As shown in Fig.3.2(c), the Binder cumulant Up o« 1 — <¢3§>q /3 <¢3§>Z shows a cross-
ing at V/J ~ —3.1, which signals the transition to the C4y-symmetry-breaking columnar
phase. Time-averages were converged at times tJ = 300 on L = 8, which supports a
quick thermalization of ¢, in a wide range of model parameters.

This fast thermal relaxation can be substantiated by investigating the behavior of local

observables. For this purpose, we define the dimer-dimer correlation functions C(r) as
C(r) = (fwhy) — (Ro) () , (3.5)

where 7, is the dimer occupation number at bond r. Quenches from |c4) even deep in-
side the columnar phase are accompanied by fast relaxation of C(r), save for spontaneous

symmetry breaking. The latter can be accounted for by choosing a rotationally invariant
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initial state [ig) = %ﬂc A) + |cB)), which leads to the results of Fig. 3.2 (d). The fast ther-
malization is due to the kinetic part H; of the Hamiltonian (3.1) being able to effectively

explore the phase space starting from the columnar initial state.

3.3 Staggered states

Having established efficient thermal relaxation for quenches from columnar initial states,
we now move on to consider the quench dynamics of staggered initial states. We first note
that the fully staggered state is part of a maximum-winding sector and entirely frozen.
Therefore, we construct instead the exact ground state in the limit V/J — oo within the
zero-winding sector, which yields a state of “pyramid’-like shape, where the tip of the
pyramid serves as a dynamically active defect between extended areas of staggered con-
figurations, see Fig.3.1 inset. In the thermodynamic limit on periodic boundaries, the
staggered ground state contains four such pyramidic domain walls [257]. For a quench
from the staggered phase to the disordered regime however, the dynamics will mainly
be governed by the behavior of individual pyramid states, which we can effectively cap-
ture by considering a single pyramid on open boundary conditions (OBCs). This choice
allows us to double the length scale ¢ of the initial state, given our finite size limitations.
On an OBC-geometry, there exist two pyramidic ground states |p4) and |pg), from which

we construct a Z, order parameter to distinguish them:

~ 2 R R
bs =13 D Tty =Y g g (3.6)
Ia g

Here, the indices [ 4 denote the bonds occupied in the |p4)-state, 7, |[pa) = |pa), and cor-
respondingly for Iz, such that again bs |pa /B) = T |pasp)- Even though the Hilbert space
is somewhat restricted on OBCs, we still expect the dynamics of the 15t-order transition to
be well captured in our approach, as the dynamics is initiated in the center of the pyramid.

As it turns out, our quench protocol starting from the pyramid ground state crosses a
phase transition at an infinitesimal distance from the RK point at V' = J, see Fig. 3.3 (a).
This is due to the vanishing energy density of the pyramidic initial state; we explain this
feature in Sec. 3.4. As a result, the dynamics of ¢, signals a 1%t-order transition at the RK-
point, with a sharp rise of <d§§> for larger systems. Quenching across the transition to
the disordered phase, the dynamqical order parameter in Fig. 3.3 (b) shows an approximate
collapse of its zero-crossings and extrema upon rescaling time ¢t — ¢/L. This character-
izes the melting dynamics proliferating around the initial dynamical center and implies a
timescale 7., of thermalization that is effectively set by the length scale ¢ of the initial stag-
gered domain. Interestingly, this scale also impacts the Loschmidt return rate that can be
used to characterize dynamical phase transitions [369]. We investigate the consequences

of the exotic dynamics in this model for the presence of dynamical phase transitions in
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Sec. 3.5.

3.3.1 Localization

While monitoring the order parameter suggests thermal behavior also within the stag-
gered phase, Fig.3.3 (a), this is not the case for local observables which indicate the ab-
sence of thermalization for such quenches. This can be demonstrated by mapping out the
potential energy landscape, i.e., the plaquette density, following a quench. Here, we start
from a symmetrized staggered state |¢)g) = %ﬂp 4) + |pB)), quenching to V/J = 3. We
find the thermal potential energy landscape to include delocalized plaquettes along the
system diagonals, Fig.3.3 (d). In sharp contrast, the distribution of plaquettes following
the quench, averaged up to ¢J = 300 on L = 8, remains localized around the center, see
Fig.3.3 (e). An analysis on L = 6, where the system may be diagonalized fully, also shows
no signs of thermalization at later times.

To understand this property, we can consider the large-V'/J dynamics around, say, |pa)
as an effective single-particle problem on a finite, one-dimensional lattice. Shifting the
plaquettes along the 2D diagonal in Fig. 3.3 (c) corresponds to a quantum particle moving
in 1D, where the position x of the particle relates to the position of the plaquettes, see
Fig.3.4. Therefore, x = 0 corresponds to |p4), © = 1 labels the second state of Fig. 3.3 (c)
with three flippable plaquettes, and all states with > 2have four plaquettes. The particle

then moves in an effective potential U(x) that is given by

V, z=0
U@)=<3V, z=1 |, (3.7)
4V, x> 2

which will host at least one bound state for finite V' > 0. It is then apparent that the single-
particle nature of the effective model induces the non-thermal behavior. In particular, in
a formal thermal average, all particle positions with > 2 contribute equally, leading
to the observed delocalization along the diagonal. In constrast, the wave function for a
particle starting at « = 0 will decay within the potential barrier. We note that we have
similarly observed dynamical arrest in columnar states containing string-like excitations,
composed of finite columns aligned perpendicular to the background state. These states
are strongly repulsively bound, leading to large relaxation time scales. It would be inter-
esting to consider these states in more detail in the future. In either case, constraints are

essential for the emergent slow quantum dynamics.

3.3.2 Thermodynamic limit

A natural question arising in the context of localization is its stability in the thermody-

namic limit, and whether the apparent localization on our finite systems has to be inter-
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Figure 3.4: Effective 1D system. (a) Shifting plaquettes along the diagonal of the square lattice
can be interpreted as an effective 1D model, with a potential well located around the origin, (b).

preted rather as a long-lived, prethermal plateau. In this regard, we distinguish two ways
to take the thermodynamic limit: (A) We take L,{ — oo such that L/§ — const., which
corresponds to a finite number of pyramids in the initial state and hence a vanishing en-
ergy density for V/J > 1. (B) We let £ = const. such that L/{ — oo, which leaves us with
a finite density of pyramids and thus a finite energy density in the thermodynamic limit.

We consider both cases seperately in the following

Case (A): Vanishing energy density

Case (A) is captured by the numerical results for small systems, where the appearance of
bound states within each pyramid ensures the localization around its respective center.
The independence of the pyramids with respect to each other is ensured by their diverging
lengthscale &, effectively protecting them against melting. This last point can be made
more specific by arguing that the matrix elements between certain states with different
¢ in a given energy shell are highly suppressed compared to their level spacing, similar
in spirit to arguments employed in the context of MBL [138]. In particular, there exist
states that are close in energy, yet not exactly degenerate, which can only be connected
via O(L?) consecutive plaquette flips that are off-resonant from the starting energy shell.
For example, in a system of size L x L, a state consisting of pyramids of fixed average
length ¢;, thus hosting (L/ ¢1)? active defects, is close in energy to a state with different
length scale & > &, which in turn has already melted up &3 /£? — 1 plaquettes per pyramid
(on average) in its interior. Since we have chosen £; ~ L of order system size, we need to
make O(L?) local plaquette flips in order to connect the two states. All of these plaquette
flips are off-resonant, and we can therefore estimate the matrix element connecting the

two states in perturbation theory,

O(L?)
A~J (;) = exp{—log(V/J) x O(L?*)}. (3.8)
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At the same time, the many-body level spacing between the two states is certainly
bounded by the total number of dimer configurations on the square lattice, which asymp-

totically goes as
€2 Jexp{—§L2}, (3.9)
™

where G is the Catalan’s constant [370]. Whether the two states under consideration can
hybridize is determined by which of the energy scales in Egs. (3.8,3.9) is dominant. In
particular, since both scales decay exponentially in L?, we can always find a value of
J/V such that A/e — exp{—O(L?)}, leading to non-hybridized states and thus, arrested
quantum dynamics at 7 = 0. This argument directly shows that the pyramid structure of
the initial state will be preserved in the post-quench dynamics, implying the existence of
localized eigenstates just above the ground state.

To illustrate these argument further numerically, at least within the bounds of finite
size limitations, we can investigate the supposed rearrangement {; = 4 — & = 8 on
L = 8. Fig.3.5 shows the potential energy landscape, as well as the dimer-density (7;)
on the bonds [ of the lattice for selected eigenstates in the rotationally invariant sector at
V/J = 5. The eigenstates of Fig. 3.5 are adjacent in the spectrum of H, chosen at an energy
that corresponds approximately to the presence of (L/£1)? = 4 plaquettes in the system.
Consistent with the argument presented above, we find that states with different &, £, are
not hybridized. We can extend these numerical considerations by changing from OBCs
to fixed boundaries that correspond to a staggered background of £ = 4. In this scenario,
we envisage the 8 x 8 system as a patch of a larger system prepared at £ = 4. As shown
in Fig. 3.6, the lowest energy eigenstate, with { = 4, has not hybridized with any states of

different &, consistent with our analytical arguments.

Case (B) Finite energy density

In case (B), at finite energy densities, we can provide similar arguments that now yield a
lower bound on the thermalization timescales of local observables. To this end, we start
from an initial state with a small, but finite energy density e ~ 1/¢2, distributed equally
over pyramids of length &, see Fig.3.7 (a). The thermalization time 7, is then bounded
by the largest matrix element A that hybridizes states with equal energies but locally
different £, which in turn is bounded from above by the lowest order in perturbation
theory at which such states of similar energy can be reached.

Given the initial state of homogeneous energy density, we ask at which timescale lo-
cal inhomogeneities can arise, leading to relaxation of local observables. In terms of the
staggered initial state, this time corresponds to the time needed in order to break up the
pyramids. To keep the overall energy balanced, all processes that lead to states of similar
energy necessarily need to break up pyramids of size £ and reassemble them as pyramids
of larger size ¢/, thereby reducing the local energy density. As shown in Fig. 3.7 (b), this

will create a number of defects along the boundary of this new formed pyramid in the
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Figure 3.5: Localization at vanishing energy densities. lllustration of both plaquette-density and
dimer-density for rotationally invariant eigenstates on L = 8 at large V/J = 5. All states (a)-(d) are
taken at energies E dominated by the presence of about four parallel plaquettes. (a),(c),(d) clearly
show the structure of a large pyramid with £ = 8 and the corresponding delocalization along the system
diagonal as discussed previously. On the other hand, (b) is localized around pyramids of size £ = 4.

background of the original staggered lengthscale £. The total energy difference of this

process can then be estimated by the difference in the number of parallel dimer plaque-

AB/V =~ {1 - <5€)} S e-n), (3.10)

where the term in the curly brackets originates from the reduced number of plaquettes

ttes,

within the larger pyramid, while the term in the square brackets is caused by the defects
along the new boundary. To reach states of similar energy, we set AE = 0 and obtain
%’ =&+ O(1/¢). The minimum size of the new pyramid is therefore given by

¢~ e, (3.11)

Due to the staggered nature of the system, this state can only be reached via un- and re-
folding the area of the new pyramid, which requires ~ ¢? plaquette flips, all off-resonant

from the starting energy. The matrix element can thus be shown to be at most propor-

A VY
An~J (V) = Jexp {—clog <J> £ } , (3.12)

46

tional to
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Figure 3.6: Staggered boundary conditions. Dimers on the outer side of the boundary (marked in
red) are fixed in a staggered configuration of scale £ = 4. The plaquette- and dimer-densities of the
lowest eigenstate at V/.J = 5 demonstrate the continuation of £ = 4 on the inner side of the boundary.

where c is a constant of order O(1). We observe that the implied lower bound for the
time scale 7oq ~ 1/A grows extremely fast with the staggered scale ¢ of the inital state for
V/J > 1. The system sizes required to observe the slow relaxation of Eq.(3.12) at large
V/J are numerically out of reach. Accordingly, small scale simulations of systems up to
L=8 sites with pyramids of size { ~ 4 show the absence of relaxation, as predicted by our
analytical formula and demonstrated numerically above. Eq.(3.12) should be regarded
as a lower bound for the relaxation time, which is why formally we cannot exclude full

localization.

Finally, let us remark that there is actually an intermediate case between (A) and (B)
when the number of pyramids is infinite, but the energy density is still vanishing. In this
case, starting from a length scale £ between pyramids and using the same arguments as

above, the new length scale £’ at which we can first reach states of similar energy becomes
¢ ~ min{L, £%}. (3.13)

However, we have already seen above in case (A) that for ¢’ ~ L the system localizes due
to the competition between matrix elements and level spacings. Therefore, we expect
localization in the thermodynamic limit even for an infinite amount of plaquettes in the
initial state so long as

L2 £, (3.14)

which does however still correspond to vanishing energy densities.
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(a) e (b)

Figure 3.7: Cost for local equilibration. (a) Starting configuration of pyramids of length &, with the
orientation of the central plaquettes indicated in blue. (b) Thermalization of local observables requires
the formation of larger pyramids of size &, which creates defects (red) with respect to the original
background at the boundaries.

3.4 Effective temperature

To gain a better understanding of the quenches indicated in the schematic dynamical
phase diagram of Fig.3.1, we investigate the effective temperatures as obtained from
Eq. (3.4). In the limit of V/J — Foo, both the columnar and staggered initial states yield
T = 0, as each of them correspond to the ground states in the respective case. By con-
trast, at V/J =0, <col/pyr

H is symmetric at this point, both states (just as every other product state) correspond to

fIV/ J—0 ’ col/ pyr> = 0 for both states. Since the spectrum of

infinite temperature. Varying V//J in between can give rise to finite 7.
While for the columnar initial state, the temperature will rise strictly monotonously
from 0 to co when lowering |V|/.J, the same is not true for the staggered ground state. In

particular, we show that for V//J > 0, the energy of a given state |1)) can be written as
(), = (Hpi)y + (V= ) (Hy)y, > (V = J) (Hy )y, (3.15)

where Hrx denotes the Hamiltonian at the RK-point V/J = 1, and we have used that
HRy is positive definite as it can be written as a sum of projectors. From Eq. (3.15) we
infer that for all V//J > 1, the system’s ground state cannot have an extensive amount of
flippable plaquettes. This follows from the energy of such a state being extensive, while
the pyramid state only has finite energy V for all system sizes and ratios V/.J. The energy
difference between the exact ground state at a general coupling ratio within the staggered
phase and the maximally staggered product initial state is thus only intensive, which
means that in the quench protocol to finite V//J > 1, the effective temperature is only
lifted infinitesimally.

At the RK-point, the ground state is the equal weight superposition of all dimer cov-

erings in the zero-winding sector and contains an extensive amount of plaquettes. Thus,
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Figure 3.8: Effective temperatures following a quantum quench. Schematic of the effective tem-
perature in the thermodynamic limit of the columnar and pyramidic initial states at the corresponding
quench parameters. Along V/J > 1, the staggered initial state carries only an intensive amount of
energy with respect to the ground state, and thus corresponds to an infinitesimal temperature.

upon crossing the RK point, i.e., for V/J < 1, the ground state energy is bounded from
above by
Egs(V/J <1) < —|V = J|(Hy) y_px » (3.16)

and is thus extensive. Hence, once the RK-point is crossed in the quench, the amount
of energy inserted into the system by the quench is extensive, and corresponds to finite
temperatures. This shows directly that the transition at the RK-point to the staggered
phase is discontinuous within the zero-winding sector.

Beyond these considerations, the effective temperature can in principle be extracted
numerically from Eq. (3.4) of the main text. A schematic of the effective temperature is
shown in Fig. 3.8.

As a final remark for this section, we stress that although quenches inside the staggered
phase starting from the pyramidic ground state add only infinitesimally to the temper-
ature in the thermodynamic limit, quenches from an initial state with finite staggered
scale ¢ do add an extensive amount of energy to the system and correspond to finite tem-
peratures. Therefore, the non-thermal dynamical properties of the quantum dimer model
found numerically above indeed correspond to a dynamical arrest at T = 0, characteristic

of structural glasses.

3.5 Dynamical phase transitions

As we have already indicated briefly in Sec. 3.3, we can use the theory of dynamical phase
transitions (DPTs) [369, 371] to further characterize and compare the BKT- and the 15
order transitions. A hallmark in the study of DPTs is the emergence of non-analytic, kink-

like structures in the return amplitude to the original ground state manifold following a
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quench, the Loschmidt rate, defined as

M) = —=log [ S [nlw) 2] (3.17)

ne{gs}

Here, the manifold {gs} consists of {|c4),|cp)} for the BKT, and {|p4), |ps)} for the 15t
order transition. The behavior of \(¢) upon quenching across the BKT-transition is shown
in Fig. 3.9 (a), where an initial columnar state is taken to the VBL phase at V' = 0. The time
evolution of ¢.(t) has already converged reasonably well for L = 6, 8, while A(¢) exhibits
significant finite size fluctuations which dominate the Loschmidt rate at late times. This is
evidenced by the suppressed magnitude of oscillations at late times on L = 8 as compared
to L = 6. Nonetheless, there exist two systematic crossings of the individual ground state
weights A4 /p5(t) = —2/L?log| (ca/pl¥(t)) |, at which sharp kinks are expected to form
for L — oo. The critical times of the kinks are in rough agreement with the zeros of the
order parameter ¢.(t), Fig.3.9 (b), linking the dynamical phase transitions in the order
parameter and the Loschmidt echo [372].

An analogous analysis carried out for the 15/-order DPT yields vastly different re-
sults, shown in Fig.3.10 (a), where the rate A(¢) is given for L = 4,6,8, in a quench of
Ipa) to V.= 0. Here, we can identify the following: First, the sharp features visible in
A(t), marked by black stars in Fig. 3.10 (a), correspond to resonances specific to the point
V = 0. They can be understood in a simplified picture of the pyramid tip as a single
plaquette embedded in a staggered, and thus anisotropic, mean field background. The
dynamics of the central plaquette is then described by an effective two-level Hamiltonian
Heg x —Jo, + Vo, which, for V' # 0, sustains a finite population of the inital ground
state at any time. For V' = 0, the background becomes isotropic and the central plaque-
tte undergoes coherent Rabi-oscillations, which depopulate the ground state with period
7/ J, roughly corresponding to the separation of the black stars in Fig.3.10 (a). The tem-
poral positions of the resonances are similar on all system sizes L, which indicates that the
short-time dynamics following the quench is dominated by only small regions around the
central plaquette. This again characterizes the melting dynamics proliferating around the

dynamical center of the initial state, which successively has to work its way to the outside.

The scaling of this process is revealed by the dynamical order parameter ¢4(¢) in
Fig.3.10 (b), which shows an approximate collapse of the zero-crossings and extrema of
¢s(t) upon rescaling t — t/L. Therefore, considering an initial state not composed of a
single pyramid covering the lattice, but rather multiple pyramids of average size ¢, the
timescale 7., of thermalization is effectively set by £. Relating to the phase diagram of
Fig. 3.1, this corresponds to a quench across the transition not from the ground state at
V/J — oo, but an initial state with energy corresponding to a finite-7" state at a finite ratio
V/J.

Finally, letting L — oo and £ — oo, the  L-scaling of the relaxation dynamics also
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Figure 3.9: Dynamical Phase Transitions: Columnar states (a) Loschmidt rate A(t) for L = 6,8
following a quench from of a columnar product state to V' = 0. The light blue dashed lines indicate
the weights A4, of the individual ground states |c4,). (b) Columnar order parameter dynamics for
the same quench. The dashed lines mark the zero-crossings of ¢.(t) and kinks of A(t), respectively.

shifts the crossing of A 4, 5(t) to increasingly late times. Hence, while L — oo canbe shown
to yield A\(¢) = min(A4(¢), A\p(t)), thus developing sharp features, the angle at which
Aa/B(t) cross becomes increasingly flat. If, based on the scaling of the order parameter,
we conjecture a corresponding « 1/L-scaling of this angle, a simple scaling analysis for
A(t) shows the cancellation of both effects and interestingly, no discontinuity develops in

O A(t) for & ~ L — oo for quenches across .

3.6 Conclusion & outlook

In this chapter, we have examined the dynamical phase diagram of the square lattice
quantum dimer model. We have found that inside the staggered phase, local relaxation is
lower bounded by an extraordinarily large time scale characteristic for glassy systems,
valid even in the thermodynamic limit for quench dynamics initiated at finite energy
densities. The associated mechanism employs emergent non-dispersing defects at low
energies, which are reminiscent to the physics of fracton models. It would be interesting
to see whether these connections can in fact be made more rigoros. In addition, we have
demonstrated how the structure of the low energy states in the staggered phase affects
the phenomenology of dynamical phase transitions.

Future lines of investigation may also address similar physics for quantum dimer mod-
els on different lattice geometries or in different winding sectors. In particular, dimer con-

straints that can be implemented in Rydberg quantum simulators are interesting in this
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Figure 3.10: Dynamical Phase Transitions: Staggered states (a) Loschmidt rate A(t) for L =
4,6, 8 starting from a staggered initial state, with light dashed lines corresponding to the weights
Aa/B(t) of [pa,p) in the vicinity of their crossing points, marked by arrows. Black stars mark resonances.
(b) shows t/L-scaling of the staggered order parameter dynamics.

respect. We will consider a different geometry in the following chapter, although therein

we are mostly interested in dynamics at high instead of low energies.
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Emergent fracton dynamics in a
non-planar dimer model

This chapter is based on the publication

Johannes Feldmeier, Frank Pollmann, Michael Knap, “Emergent fracton dy-
namics in a non-planar dimer model”, Phys. Rev. B. 103, 094303 (2021) (Editors’
Suggestion)

Structure, text and figures have been adapted for the purposes of this thesis. Sec. 4.2.1

contains material not included in the publication.

In this chapter we continue our analysis of nonequilibrium dynamics in dimer models,
which, as we saw in Sec. 2.3.1, can be mapped to lattice gauge theories in which a local
Gauss law constrains the system dynamics. In the previous chapter we have already expe-
rienced that, in general, understanding the effects of such gauge constraints on nonequi-
librium properties is a challenging task. In addition to the extremely slow glassy dynam-
ics derived in Chapter 3, recent efforts in this context have e.g. pointed out the possibility
of strict localization in coupled gauge-matter and pure gauge theories [174, 175, 178, 373],
through mechanisms akin to many-body localization (MBL) [27, 30, 31, 34]. As an im-
mediate related question, we can ask whether the presence of local gauge constraints can
also have a qualitative effect on the relaxation towards equilibrium even if the constraints
are not sufficiently strong to localize the system. In particular, pure gauge theories with a
static electric charge background, which can often be mapped to equivalent loop or dimer
models, lack an obvious choice of suitable observables (other than the local energy den-
sity) to probe the late-time relaxation dynamics due to the absence of charge transport.

In this chapter, we study a particular U(1) gauge theory at high energies, a bilayer
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dimer model, where this limitation can be circumvented due to the presence of topological
soliton configurations formed by the gauge fields. These solitons correspond to so-called
“Hopfions’ that exist more generally in the cubic dimer model [374-376]. We show that
the associated soliton conservation assumes the form of a usual U(1) conservation law in
the bilayer geometry, and thus provides a way to define a notion of transport via suitably
chosen local correlation functions. Due to its universality, the late-time emergent hy-
drodynamic relaxation can be studied qualitatively using numerically feasible classically
simulable circuits, as has recently been applied in other constrained systems [2, 205-207],
see also chapters 6,8,9 as well as Sec. A.3. Many of the results described below can thus
alternatively be viewed through the lense of lattice gases or cellular automata, but extend

to the late time behavior of quantum systems as well.

After introducing the bilayer dimer model and deriving the abovementioned global
U(1) conservation law in Sec. 4.1, we divide the analysis of its associated dynamics
into two parts: In the first part, Sec. 4.2, we consider the model with full quasi-two-
dimensional extension and study the dynamics of initial states hosting a finite density
of conserved fluxes. Most strikingly, the local charges associated to the global soliton
conservation law display fracton-like dynamics: While they are immobile as single par-
ticle objects, composites of these charges are effectively confined to diffuse along one-
dimensional tubes within the quasi-2D system. We provide an explanation of these re-
sults in terms of a large class of conserved quantities that exist in the system. Notably
however, the confinement to such effective 1D tubes is not due to subsystem symmetry
constraints. Rather, the timescale necessary for charges to escape the 1D tubes diverges
with increasing system size, providing an intriguing instance of non-ergodic behavior in-
duced by the local gauge constraints. In the second part, Sec. 4.3, we then go on to study
the dynamics of the model in a quasi-one-dimensional limit on an open-ended cylinder.
In this case, the Hilbert space is fragmented into an exponential (in system size) number
of disjoint subspaces and hosts statistically localized integrals of motion (SLIOMs) that
where introduced recently for constrained systems [237]. We determine the generic hy-
drodynamics exhibited by such SLIOMs and find subdiffusive decay of local correlations
that can be understood analytically through the mapping to a classical tracer diffusion
problem, which we will investigate in much more detail in Chapter 9. Having analyzed
the dynamics of the bilayer dimer model, we conclude with Sec. 4.4 by demonstrating
explicitly that the global U(1) charge is equivalent to a topological soliton conservation

law in the form of Hopfions.
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4.1 Model and conservation laws

4.1.1 Hamiltonian

The bilayer dimer model we consider is depicted in Fig. 4.1 (a): It is given by two coupled
layers of a square lattice, with bosonic hard-core dimers residing on the bonds, subject to
a close-packing conditions of exactly one dimer touching each lattice site. If ﬁ&d& € {0,1}
denotes the dimer occupation on a bond (r, o) with o € {+x, +y, £z}, this condition can
be phrased as

)

Z ﬁrda =1 forallr, (4.1)
ac{vertexr}

where the sum extends over five nearest neighbor sites in Eq. (4.1) on the bilayer lattice.
The Hilbert space of the system is then given by the set of all configurations satisfying
Eq.(4.1) at every site. The close-packing condition Eq. (4.1) can also be interpreted as a
local gauge constraint, which explicitly turns into a Gauss law in a dual formulation of the
quantum dimer model as an instance of a U(1) quantum link model [250, 377]. Details
on the associated mapping for the planar case, which can easily be generalized to the

(hyper)cubic geometry, can be found in Chapter 2.3.1 and the references therein.
With the Hilbert space at hand, we again consider the standard Rokhsar-Kivelson (RK)
model of elementary plaquette resonances between pairs of parallel dimers, which takes

the pictorial form

Hy=—JY hy==J> (0 +hc). (4.2)

Here, the sum extends over all elementary plaquettes p of the bilayer lattice. We can
further allow for a constant potential term yielding an energy offset for each parallel dimer
pair,

Hy =V () =V (12 I+ 0h a0 (4.3)

such that the full Hamiltonian is given by H = H; + Hy.

4.1.2 Transition graph mapping and flux sectors

We want to analyze the structure of the Hilbert space under the dynamics of Eq. (4.2) and
to this end introduce a description in terms of an effective loop model. Such a descrip-
tion is known as ‘transition graphs’, which we generalize here to the bilayer case. In this
mapping, we take the two dimer configurations on the upper and lower layer and form
their transition graph by projecting them on top of each other, see Fig. 4.1 (a). This yields a
model of closed, non-intersecting loops in the resulting projected two-dimensional layer.
The smallest possible loop of length two consists of two horizontal dimers in both layers
directly on top of each other. Notice that the loops can be assigned a chirality, which is

inverted upon exchanging the configurations of upper and lower layer.
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Figure 4.1: Construction of transition graphs. a) The dimer configuration on the bilayer geometry
is seperated into upper and lower layer, with interlayer dimers connecting the two marked as dots. The
two configurations are then projected on top of each other from a bird's eye view to give rise to a directed
loop model as explained in the main text. The interlayer dimers are assigned charges corresponding
to their sublattice. The shown configuration is also the simplest one hosting a single Hopfion. b)
Configurations with non-trivial fluxes W, and W, contain loops winding around the boundaries (other
loops/interlayer charges not shown to avoid cluttering). c) Loop-moves originating from the elementary
dimer plaquette flips.

The directed loop segments can be described formally by new occupation numbers
fzg)a € {0, 1}, which indicate the presence of a loop segment pointing from site r to 7 + e,
where r is now a two-dimensional vector and o € {+xz,+y}. A full loop L of length || is
then characterized by an ordered set {ro, 71, ..., 7|1 } of lattice sites, with r, ;1 = rpt-eq.
By convention, we choose the direction of a loop running through a site r = (r;,7) as
the orientation of the original dimer that occupies the site ' = (7, r,) with r, such that
r’ is on the even (or A) sublattice, see Fig.4.1(a). The dimers between the two layers
now appear as on-site particles for which we define the corresponding number operators
7" We then assign a charge to these particles depending on the sublattice they occupy,
i.e. particles on sublattice A(B) carry a charge +1(—1). The total charge in the system is
then given by Y (—1)"=*"v A = 0, and we refer to the #\"") as ‘interlayer charges’ in the

following. A simple example of this construction is displayed in Fig. 4.1 (a).

Importantly, on periodic boundary conditions, there can exist non-local loops winding

around the system boundaries, see Fig.4.1 (b) and Eq.(2.21). We can thus define global
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winding numbers or fluxes (these terms will be used interchangeably in this work) W, and
W, for a given configuration by summing up the windings of all individual loops along
both the z- and y-direction, respectively, see Fig.4.1(b). The fluxes W, and W, are in-
dependently conserved under the dynamics of H; and divide the Hilbert space into dis-
connected subspaces. In later sections, we will mainly be concerned with the additional
structure of the Hilbert space on top of these flux sectors.

Finally, we can also translate the elementary plaquette flips of Eq. (4.2) to the loop pic-
ture, which take the form H; = H gz) +H ((]h), where

]:[((]l) :Z[’m>ﬂ+|m>ﬂ+h.c.], (4.4)

p

and

A((]h) _ Z [|0—0> (>| + h.c.}. (4.5)

(r,r’)

f[gl) describes the dynamics involving loop segments only, while A gh) corresponds to

the creation/annihilation of a + interlayer charge pair on neighbouring sites, annihi-
lating / creating a length-two loop on the same sites. In the pictorial representation of
Eq. (4.5), the charges from interlayer dimers are marked as blue circles in the transition

graph.

413 A global U(1) conservation law

The transition graph picture provides an intuitive starting point for deriving a global con-
served charge Q that we later, in Sec. 4.4, associate with the presence of topological soli-
tons. Here, we first notice that under the loop dynamics of Eq. (4.4), the difference in the
number of A-and B-sublattice sites enclosed by a particular loop stays constant as long
as that loop does not split or merge with another loop. If such a split or merger occurs,
then the sum of the differences of A and B sites enclosed by the involved loops stays con-
stant. Thus, if vz C Z? denotes the interior of a loop L, see Fig. 4.2, then we can infer the

global conserved quantity

Q=) AN,p(v), (4.6)
/3

where the sum extends over all loops £ in the transition graph of a given dimer configu-
ration and AN , 5 (vz) is the difference between the number of A and B sites contained in
the set v,. We note that due to the Gauss law Eq. (4.1), each site in the transition graph is
either part of a loop or occupied by an interlayer charge. Since loops always contain an
equal number of A and B sites, AN ,z(v.) is just the total interlayer charge enclosed by
L.

Since the loops £ can become arbitrarily extended, Eq.(4.6) is not in the form of a
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sum over local terms. However, for any directed, closed, and non-intersecting loop
L = {ro,r1,...,7|z—1} on the square lattice, the difference in the number of A/B sites

within v can be expressed as (see Appendix B.1 for a proof)

£]-1
1 &l

Nag(ve) = 7 2 (“07 7 () A li(rn)), @7)

n=0

where £,(r),) = rp11 —ry and £,(ry,) = r, — 7,1 are the directions of the out- and ingoing
loop segments at r,,. The symbol ‘A" denotes the wedge product a A b = azby, — a,b,.
Eq. (4.7) is illustrated in Fig. 4.2 (a) with a specific example. Using Eq. (4.7) in Eq. (4.6), the

I
+
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|
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Figure 4.2: Loop interior and corner charges. a) The interior v; of a loop £ contains all sites
within the green shaded area, and turns into the complement upon inverting the chirality. In transition
graphs, the loop chirality can be inverted via the inversion operator I, which exchanges top and bottom
layer of the original dimer lattice. White and gray circles illustrate the corner charges Cr = j:i from
Eq. (4.8). The validity of Eq.(4.7) can directly be verified for this example. b) Dictionnary for the
corner charges C’r, modulo lattice Cy—rotations.

quantity O can finally be expressed as

S0 (B Ai(r)) = G, (4.8)

r r

=~ =

Q:

with the vector-valued operators

éo('r) = Z €qn ﬁg,)a

ac{tz,ty}
. 0 (4.9)
el(lr) - Z €q nrfe&,a'

ac{tz,ty}

Eq. (4.8) assumes a particularly useful form, as Q is now a sum over local terms C,.. Since

ér # 0 only when there is a corner of some loop at r, we refer to the ér as corner charges,
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see Fig. 4.2 (b) for the specific relation between loop corners and the corresponding charge
values. A more direct proof of [Hy, O] = 0, regardless of the boundary conditions, is
provided in Appendix B.2. Moreover, inspecting Fig.4.2 (a), we see that a local excess
of corner charges is directly connected to a local excess of interlayer charges. Finally, we
notice that the corner charges carry only a fractional charge of +1/4 and cannot move as

independent particles, thus featuring fracton-like mobility constraints.

414 Conserved chiral subcharges

8
-l
-

Figure 4.3: Construction of chiral subcharges. An interlayer charge enclosed by a chiral loop cannot
escape the loop under the dynamics of the Hamiltonian. We can then attach a string to an interlayer
charge which extends all the way to the system boundary and determine the total chirality ¢ of all
loops enclosing the charge. The sum of all interlayer charges with a fixed chirality ¢ then presents a
conserved quantity.

As it turns out, there exists an even larger set of additional conserved quantities on top
of the charge Q. To see this, let us recall that according to the previous considerations, an
interlayer charge enclosed by a loop cannot exit the loop under the dynamics generated by
Egs. (4.4),(4.5), see Fig.4.3. To each interlayer charge, we can then associate a chirality via
the total chirality of all loops enclosing it. Formally, we attach a string to the interlayer
charge which extends all the way to the left system boundary and count the directed

number of loop segments crossing it. For this purpose, we define the string operator

e = 3 1y = o) @10

that performs this counting, see Fig.4.3. We further define an associated chiral interlayer

charge operator

ir () = 2 5(dy — 9), (4.11)

that measures whether a given site r is occupied by an interlayer charge with chiral index
o.

As a given interlayer charge cannot exit the loops enclosing it, it cannot interact with
interlayer charges outside these loops. Thus, the only way to annihilate the interlayer

charge is via the interaction with an opposite interlayer charge carrying the same chiral
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index. Formally, in the notation introduced above, the following set of quantities are then

independently conserved under the Hamiltonian dynamics,

Oy = Z (=)™ G, (8) ; b € {—Lx, ...,Lx}. (4.12)

T

We call the quantities @ ‘conserved chiral subcharges’. The formal proof of the invari-
ance of Eq.(4.12), by direct computation of the commutator [H;, Qy), is given in Ap-
pendix B.3. Importantly, the (non-local) chiral subcharges Q, can also be related to the
global quantity Q via
Q=) ¢Qs (4.13)
¢

which we proof in Appendix B.4. The presence of these conserved subcharges will be
crucial to understanding the resulting dynamics of corner charges both in Sec. 4.2 and
Sec. 4.3.

A few remarks are in order. While the above construction of the Q¢ relied on open
boundary conditions (at least in the z—direction), similar arguments proceed essentially
analogously for periodic boundaries, where one can define relative instead of absolute
chiralities of interlayer charges. We further note that the conservation of the quantities
Q¢ and Q does depend on the dynamics being generated by elementary plaquette flips
through Eq.(4.2) and, in general, does not persist in the presence of longer-range up-
dates. However, such longer range updates are generally perturbatively small, and we
may speculate that key features of the discussed physics still remain even in the presence

of such terms.

4.2 Emergent fracton dynamics in the 2D bilayer dimer model

Having derived the conserved quantity Q in the form of Eq. (4.8), we are interested in how
the associated local corner charges C, are transported through the system under a generic

time evolution. Notice that any nonequilibrium dynamics within the dimer Hilbert space,
either from e~*#* or some other unitary evolution built up by elementary plaquette flips,
depends in general on the chosen initial state. In the following, we will focus on the real
time dynamics emerging from initial states that host a finite density |W,|/L = |W,|/L > 0
of fluxes, see Fig. 4.5. We remark that such initial states can also be generated thermody-
namically at low energies of a classical dimer model with energy function H v, which we

verify in the following using Monte Carlo simulations.

42.1 Phase diagram of the classical model
Any nonequilibrium dynamics within the dimer Hilbert space, either from e~/* or some

other unitary evolution built up by elementary plaquette flips, is in general dependent on
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the chosen initial state. In later parts of this section we will focus mostly on the real time
dynamics emerging from initial states that host a finite density of fluxes W, andW,. A
relevant question then concerns how such initial states can best be prepared. A convenient
way of achieving this task arises when the initial states of interest, or at least their most
relevant feature of a finite flux density, can be prepared in the low energy phase of some
local Hamiltonian. Here, we show that this is indeed possible in the bilayer dimer model:
For J = 0, V = 1 there exists a low energy phase that stabilizes a finite density W, /L =
Wy /L > 0 of fluxes.

Numerical approach: Directed loop Monte Carlo.

We notice that for the chosen parameters, H; = 0 vanishes whereas Hy —; provides an en-
ergy function that makes the model amenable to a classical Monte Carlo study of its finite
temperature phase diagram. We employ a directed-loop Monte Carlo scheme following
Refs. [378-382], which is ideally suited to treat classical constrained models like dimer
models, spin ice, or vertex models [367, 383], see also Appendix A.5 for further details.
In this approach, one randomly breaks up a dimer into two monomers and moves one of
the monomers through the system. The probabilities for the direction of the monomer’s
next respective step are chosen according to a local detailed balance rule defined via the
Boltzmann weights e~BHv=1_ This is done in a fashion that minimizes ‘bounces’, i.e.
the monomer retracing its previous path, thus improving the efficiency of the algorithm.
When the two monomers meet again, they recombine into a dimer and the loop closes. We
refer to the abovementioned literature for details on the implementation of this algorithm.

Importantly, the loop updates can be non-local and are thus able to explore different
flux sectors. In numerical practice, the emergence of a low energy phase with finite flux
density restricts the accessible system sizes to some degree, as the associated autocorrela-
tion times at low temperatures become large. This is due to the non-local updates neces-
sary to escape ‘local minima’ of the energy function. Nonetheless, the phase diagram of

the model can be resolved accurately as demonstrated in the following.

Results for the phase diagram.

The main results of the Monte Carlo simulations, performed on system sizes up to
L := L, = L, = 80, are displayed in Fig.4.4. In Fig.4.4 (a) we present the temperature-
dependent expectation value (E) . of the energy function E = Hy —;, which simply counts
the number of flippable plaquettes in the system. We clearly see a sharp, discontinuous
drop in the energy at a critical temperature T, = 0.457, indicative of a first order transi-
tion. This is confirmed both by the associated specific heat shown in Fig. 4.4 (b), which
exhibits a sharp spike at the critical temperature, as well as a bimodal energy distribution

at 7. characteristic for first order transitions [384].
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Figure 4.4: Phase transition in the classical limit J = 0. We investigate the phase diagram
of the dimer model at H; = 0 via a classical directed-loop Monte Carlo scheme for systems up to
L =L, = L, = 80. a) The temperature-dependent energy E displays a discontinuous drop at
T, = 0.457. Inset: The discontinuity sharpens for increasing system sizes. b) The associated specific
heat has a sharp spike at the critical temperature, indicative of a first order transition. This agrees
with the typical, bimodal energy distribution obtained for Monte Carlo simulations at 7, as shown in
the inset. ¢€) The flux density |W|/L = |W,|/L = |W,]|/L exhibits a jump at T, leading to a low
temperature phase with finite winding density. Inset: Again, the discontinuity sharpens for increasing
system sizes.

Most interestingly, this phase transition is accompanied by a discontinuous jump in
the flux density, which we here define as |W|/L = |W,|/L = |W,|/L. While for T" > T,
|W|/L — 0 approaches zero in the thermodynamic limit, we find |W|/L > 0 for T < T,
with [W|/L ~ 0.42 for T' — 0, see Fig. 4.4 (c). We show local snapshots of typical examples
of equilibrium configurations in the transition graph picture for both T > T,, T' < T, in
Fig.4.5.

While we established the presence of a finite temperature phase with finite flux density
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Figure 4.5: Initial states. Local snapshots of typical example configurations within the transition
graph picture, both for finite (W, /L, = W, /L, > 0) and vanishing (W,/L, = W, /L, = 0) flux
densities, corresponding to T' > T, and T' < T, respectively.

numerically only for J = 0, one might expect that this transition survives the onset of fi-
nite J > 0 due to continuity. As the Hamiltonian H=H;+H V>0 is positive definite as
long as |J| <V, every frozen state containing no flippable plaquettes is an exact ground
state of the quantum model in that parameter regime, in analogy to the 2D QDM. There-
fore, since ground states in the quantum model are equivalent to those in the classical
model, it appears reasonable to speculate that also the finite temperature transition will

survive in the quantum case.

4.2.2 Time evolution

Let us now introduce the unitary time evolution that allows us to study the dynamics of
corner charges. Ideally, one would like to consider the full quantum time evolution e~ iHt
for the closed system dynamics. This, however, is a challenging task due to the large
Hilbert space in our quasi-2D system. Instead, we use that for conserved quantities such
as Q, an effectively classical hydrodynamic picture at late times is expected to emerge [58—
60, 65, 66, 184, 189, 385]. Due to this universal late time decay, every sufficiently ergodic
time evolution that respects the system’s conservation laws is expected to result in the
same qualitative hydrodynamic tail. Details of the short time quantum coherent dynamics
would therefore merely enter the numerical value of an effective diffusion constant. Thus,
in order to capture only the qualitative aspects of the charge dynamics at late times, we can
construct an alternative, classically simulable unitary evolution built up by elementary
plaquette flips. This approach follows recent works on automaton circuits [205, 386-388],
that have been applied to study the transport properties of fracton models [2, 197, 205-207,
389], and can even be connected to the dynamics of more conventional random unitary

quantum circuits [103]. We refer to App. A.3 for an overview of this method.
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Figure 4.6: Time evolution. A single time step of the deterministic unitary evolution, built on the

elementary plaquette updates U, of Eq.(4.14). Within a fixed plaquette color, all associated local
updates commute.
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Figure 4.7: Relaxation dynamics of corner charge correlations. a)+b)+c) The spatially resolved
corner charge correlation function Gy (r,t) = (Co(0) ér(t))W/L at different times t. The initial
states in the average (...)W/L are sampled from random states within the fixed winding sector W, /L =
Wy /L = 0.4. We observe a clear restriction of the charge dynamics to an effective one-dimensional
‘tube’ along the diagonal. d) The dynamics along the diagonal is diffusive, demonstrated by the scaling
collapse to a one-dimensional (Gaussian) diffusion kernel. €) The return probability (C,.(0) ér(t)>W/L
is anomalously slow for a two-dimensional system with W/L = 0.4. In contrast, for a vanishing
winding density W/L = 0, the correlations decay fast. The system sizes are L, = L, = 200 and
L, =L, =1000 for W/L = 0.4 and W/L = 0, respectively.
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The elementary local unitary corresponding to a plaquette flip update is given by

~

Uy = [1= (hy)*] + . (4.14)

with 7, from Eq. (4.2). The action of Eq.(4.14) on a given dimer configuration [¢) (rep-
resented as a product state) is easily understood: If 1)) has a flippable plaquette at p,
then U, |1) = h, ), i.e. the plaquette is flipped and we obtain a new product state. If,
however, |¢) has no flippable plaquette at p, then U, [)) = [¢), i.e. the state remains
unchanged. We can then use the elementary updates from Eq. (4.14) as building blocks
for defining a discrete time evolution scheme that can be simulated as a classical cellular

automaton. To this end, we can define a deterministic Floquet time evolution, where

AL, L, t

oy= ] On| . (4.15)

=1

and the plaquettes p; are kept fixed throughout different instances of the time evolution.
Furthermore, the p; should be such that for i € {1,...,4L,L,}, each plaquette appears
exactly once within a Floquet period. We emphasize that alternative choices of update
schemes, such as stochastic updates, yield a qualitatively equivalent late time relaxation,
and throughout this work we employ a fixed deterministic evolution that is illustrated in
Fig. 4.6.

Using these unitary evolution operators, we can then compute e.g. the correlation func-

tion of the previously introduced corner charges,

Gg(r,t) == (Cr(t) Co(0)) gy » (4.16)

where the average (...) gy, is taken over dimer occupation number product initial states

within some predefined subset S C H of the full Hilbert space.

4.2.3 Reduced mobility of corner charges

Having defined a proper time evolution, we move on to study to dynamics of corner
charges via the correlations defined in Eq.(4.16). In particular, we will focus on aver-
ages over randomly chosen initial states hosting a finite flux density W/L = W, /L, =
Wy /L, = 0.4. The associated correlations are then denoted as Gy (r,t). The dynamics
within such flux sectors is particularly interesting: As we saw in the construction of con-
served quantities in Sec. 4.1, loops act as obstacles to the dynamics of both interlayer- and
corner charges. The presence of non-contractible loops carrying a finite winding number
should thus essentially trap charges in between two such winding loops. However, the
loops themselves are dynamical objects as well, and we require the time evolution intro-

duced above to resolve the ensuing system dynamics. We note that the resulting late time
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Figure 4.8: Thermalization process. The way to equilibrium, i.e. full delocalization of corner
charges across the 2D system, can be split into four distinct stages that are reflected in local correlation
functions: |: A stage of diffusive dynamics along effective one-dimensional tubes, with G ~ t=1/2_ |I:
A plateau where the charge is fully delocalized along the tube. Ill: The delocalization along the second
direction sets in. IV: The charge is fully delocalized across the whole system. The system size in this
example is L, = L, = 30 and the green curve corresponds to the moving average. This demonstrates
that the formation of 1D tubes is not due to disconnectivities, but rather bottlenecks in the Hilbert
space structure.
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Figure 4.9: Finite size scaling. For increasing system size, the correlations follow the diffusive decay
for increasingly long times, approximately scaling as ~ L? as shown in the inset. Therefore, the one-
dimensional tubes are expected to persist up to infinite time in the thermodynamic limit. The displayed
lines correspond to the moving average of the numerically sampled correlations.

relaxation should then be qualitatively equivalent to the closed system quantum dynam-
ics for Hy = 0, which, for product initial states at zero energy, corresponds to infinite

temperature due to the symmetric spectrum of H; (see Appendix B.5).
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Figure 4.10: Origin of reduced dimensional mobility. The numerical results presented in Sec. 4.2
can be understood intuitively in terms of bottlenecks in the Hilbert space structure: As the system
size increases, the bottlenecks become narrower, and the time needed to eventually pass through the
bottleneck in order to explore the full Hilbert space diverges.

Our main numerical results for a system of size L, = L, = 200 are presented in Fig.4.7.
Inspecting the spatially resolved Gy, (r,t) in Fig.4.7 (a-c), we find diffusion of corner
charges along effective, one-dimensional tubes within the 2D system. The diagonal di-
rection of these tubes within the system corresponds to the winding order of the initial
states, cf. Fig.4.5. In Fig.4.7(d), we show the correlations Gy, (r = (z,z),t) along the

tube direction. These follow a 1D diffusion kernel

1 2
G r=(z,2),t) = ——e * /D (4.17)
From the viewpoint of the site-local return probability Gyy,1,(0,t) ~ 1/v/%, this leads to
anomalous slow decay of local correlation functions, which would generically be expected
to relax as ~ 1/t for usual diffusion in two dimensions. This is demonstrated in Fig. 4.7 (e),
where we compare Gy, 1,(0, ) to the faster decaying correlations within the zero flux sec-

tor.

Remarkably, although the winding loops are dynamical as well and should in princi-
ple be able to move throughout the entire system, the effective 1D tubes do not appear
to broaden within the times shown in the correlations of Fig.4.7 (a-c). Therefore, an im-
portant question concerns whether in the thermodynamic limit, there exists a finite (but
potentially very large) timescale at which the localization of corner charges within sta-
tionary 1D tubes eventually breaks down. To this end, we consider the return probability
Gwy(0,1) within a smaller system of size L, = L, = 30 in Fig. 4.8, which reveals a mul-
tistage thermalization process in this finite size system: First (see (I) in Fig.4.8), charges
diffusive along the effective one-dimensional tubes. Then (see (II) in Fig. 4.8), the system
reaches an intermediate plateau where the charges are fully delocalized along the 1D tube,
but still remain localized with respect to the perpendicular direction. Eventually (see (III)
and (IV) in Fig. 4.8), the 1D tubes start to broaden, and charges are delocalized across the
entire 2D system. These results demonstrate that the winding loops are indeed in princi-

ple able to move through the system. To answer our question about the thermodynamic
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limit posed above, we then need to study how the different timescales involved in the
multistage thermalization process of Fig. 4.8 change as we increase the system size.

This analysis is perfomed in Fig. 4.9, where we show Gyy/1,(0,¢) for a range of system
sizes L € {20, 30,40, 60, 100,200}. As we increase L, the return probability follows the
1D diffusive decay for increasingly long times. In particular, the largest system size L =
200 still follows purely 1D relaxation at times when smaller systems have already fully
delocalized. This suggests that in the thermodynamic limit, the time scale required to
move the winding loops through the system indeed diverges. As a consequence, the
system exclusively exhibits effectively 1D dynamics in the thermodynamic limit, failing
to delocalize perpendicular to the winding direction. Intuitively, the diverging timescale
of eventual 2D delocalization can be understood by the fact that non-local winding loops
have to be moved as a whole for such a process to occur. Since the length of these loops
diverges with system size, the timescale of these processes diverges as well.

We emphasize that the reduced dimensionality found for the charge dynamics — a hall-
mark of fracton-like excitations — comes without the presence of subsystem symmetries
that would fundamentally restrict the charges to only move along one dimension, as is
evidenced by the eventual 2D decay in finite size systems. As the corner charges can in
principle move through the entire system, the generator of the dynamics is not ‘reducible’
in the language of classically constrained models [150]. Thus, instead of the Hilbert space
falling into disconnected parts in the form of symmetry sectors, the fractonic behavior in
the bilayer dimer model is rather due to bottlenecks in the Hilbert space, which become
narrower as the system size is increased, see Fig. 4.10 for a symbolic depiction of the situ-
ation. It would be interesting to see how such a Hilbert space structure effects the validity

of the eigenstate thermalization hypothesis (ETH) with respect to the Hamiltonian H.

4.3 The quasi 1D bilayer model

In the previous section we have numerically demonstrated the emergence of reduced di-
mensional mobility for the corner charges of Eq. (4.8) in translationally invariant 2D sys-
tems. In this section, we change the geometry and consider a quasi-one-dimensional, cylin-
drical system. There, we encounter a strong fragmentation of the Hilbert space into an
exponential in system size number of disconnected subsectors. In addition, the associated
conserved quantities that label the different Hilbert space sectors fulfill a recently intro-
duced concept of statistical localization [237]. We determine the algebraic long time decay
of the corner charge correlations by mapping to a classical problem of tracer diffusion in

a 1D system with hard core interacting particles.

4.3.1 Hilbert space fragmentation for large flux

We consider a quasi-1D system on a cylinder of length L, with open boundaries, whose

circumference L, is kept finite. In order to analyze the structure of the Hilbert space
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within this geometry, we investigate the relative size of the different disconnected sub-
spaces that each can be labelled by a set of values {Q }ye(1,.,] (With @, € Z) of the
conserved chiral subcharges of Eq.(4.12). Implicitly assuming the flux number W, to
be fixed, we denote the relative size of the {Q,}-subspace compared to the full Hilbert
space at flux W, by P({Q,}). We note that P({Q,}) is a probability distribution, i.e.
> (@} P({Qs}) = 1, which can be sampled numerically by randomly drawing states

from the full Wy—subspace. In addition, we can define the individual probabilities

P(Qs)= Y, PHQs}) (4.18)

{Qu t o 20

for the ¢—th subcharge Q4 to assume a value Q. It can be verified numerically through
Monte Carlo sampling that different Q are essentially uncorrelated, i.e. (QyQy) o 04 4,
which allows us to approximate P({Qs}) ~ [, P(Qy) for the following arguments.

P(Qy)
1.0

0.5

"5 6

Figure 4.11: Hilbert space fragmentation in a quasi-1D geometry. We display the probability
distributions P((Q)4) of the charges @, for randomly chosen states on a L, = 100, L, = 6 open-ended

cylinder. a) For vanishing flux W, = 0, almost all Q. are statistically fixed to zero, i.e. P(Qy) = 0G4,0-
Thus, a small number of large sectors dominates the Hilbert space, which is only weakly fragmented.
b) In contrast, for a finite winding density W, /L, = 0.4, there is an extensive amount (0 S ¢ < W)

of charges Q¢ with a finite width probability distribution. As a result, the Hilbert space is strongly
fragmented.

Choosing the flux-free sector W,, = 0 at first, we plot the distributions P(Q) in
Fig.4.11 (a). We see that for almost all values of ¢, the values @, of the subcharges are
statistically fixed to zero, i.e. P(Qy) = dq,0- This holds for all ¢ outside a range of order
O(VL;) around ¢ = 0, which is expected from generic fluctuations of the distribution
of winding loops even within the W,, = 0 — sector. Therefore, although an extensive

number of conserved quantities Q¢ exist, most of the associated subspaces are small, and
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the Hilbert space is instead dominated by a small number of very large sectors. In the
terminology of Ref. [235], the Hilbert space is only weakly fragmented.

In contrast, for a finite flux density W, /L, > 0 around the cylinder, the probability dis-
tributions P(Q4) obtain a finite width for an extensive number of ¢ between 0 < ¢ < W,
see Fig.4.11 (b). As a consequence, the relative size of every {Q4}-subsector is exponen-
tially suppressed with respect to the full Hilbert space: P({Qy}) = [, P(Qy) ~ e~¢ke,
since an extensive number of the P(Qy) in the product over ¢ is smaller than one. In par-
ticular, also the largest sector, {Q; = 0} for all ¢, is exponentially suppressed, which
is seen intuitively by multiplying all the probabilities P(Q4 = 0) along the ¢-axis in
Fig.4.11 (b). According to the definition provided in Ref. [235] the Hilbert space is thus
strongly fragmented.

4.3.2 Statistical localization of chiral subcharges

Having identified the strong fragmentation of the Hilbert space in the previous section,
we now turn to determine some of its consequences. In particular, the previous results
imply the applicability of the recently introduced concept of statistical localization [237].
Let us shortly describe this concept in a hands-on way: The conserved chiral subcharges
are given by Q = 3, (—1)"=*" (), where ¢,.(¢) checks whether there is an interlayer
charge at site r that is encircled by ¢ loops in total. Notice that within the cylindrical
geometry, the definition of the Qs remains well-defined. As there is a finite density of
winding loops, we would then generally expect the main contributions to Q4 to come
from interlayer charges located around the position of the ¢! winding loop. Where in
turn is the gbth winding loop located at along the cylinder? To get an estimate, let us
assume there to be exactly W, winding loops and let us further ascribe a one-dimensional
position z4 to the ¢! such loop. Then the probability p,(z4) of finding this loop at z, is
approximated by a simple count of the number of possibilities,
2y \ (La—zg—1
po(zg) ~ L) (Zvy_qH) : (4.19)
(1)

i.e. the number of possibilities to have ¢ — 1 winding loops to the left of x4 times the
number of possibilities to have the remaining W, — ¢ — 1 loops to the right of =4, divided
by the overall number of possibilities to distribute the one-dimensional positions of all
W, loops across the system of length L, [237]. For a winding loop in the bulk of the
system, p(z,) is a peaked distribution of width /L, centered around ¢L,/W,. Via the
line of arguments just provided, we then expect a very similar distribution py(z,) to
describe the locations of the operators Gy (¢). Therefore, the g, (¢) that constitute the Q,
are localized to a subextensive region of size \/L,, a feature termed statistical localization
in Ref. [237].
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To confirm this line of reasoning, we show in Fig.4.12 (a) the numerically determined
probability distributions py(z4) of the x4, = r, - positions of the operators g, (¢), for dif-
ferent ¢. More precisely, ps(x) is defined as

- (g, 0) DDy /1,
Polt) = S i @)

Tg

(4.20)
Wy/La

We indeed find the expected localization to a v/L, subregion within the system, for all ¢
scaling with system size. For ¢ not scaling with system size, the corresponding conserved

quantities (), are instead localized close to the boundary, shown in Fig.4.12 (a) for ¢ = 0.

From Fig. 4.12 (a) we also clearly see that the average positions _, x4 py(2¢) =: Ty <
T411 of the chiral subcharges are spatially ordered. This spatial ordering becomes even
more apparent when realizing that the probability distributions py(z4) for different ¢ are
not independent: We can compute the probability distribution py 4(77, — x4) of the dis-

tance between two chiral interlayer charges for independent ¢, ¢’. Formally, we define

]5(25/7(15(1‘;5/ - .’E¢) via

Za: <(j(33,0) (¢) qA(:l?-"-x;),—qu,O) (¢/)>

~ / Wy/La
Dy (T — xg) = - - (4.21)
D SRy RSP F T
We then consider the associated probability Py 4(zy > x4) = >,50D¢ () of

finding the chiral interlayer charge associated to ¢ to the right of the one associated
to ¢. In Fig.4.12(b), we see that there is a system-size-independent sharp step in
Py o(zy > xy) =~ 0(¢' — ¢) as a function of ¢’ — ¢. Therefore, the SLIOMs Q¢ are
sharply ordered along the cylinder and thus form a conserved spatial charge pattern.
Intuitively, this is understood from the fact that the G,(¢) that contribute to Q, are
predominantly located between the ¢ and (¢ + 1) loop, counting from the left end
of the system. In addition, the sharply peaked probability distribution fy,¢(z); — 2¢)
of the distance between two interlayer charges contributing to the same )4 shows that

in a given state, the (5 can be assigned a sharp position along the cylinder, see Fig. 4.12 (c).

Having confirmed the presence of the statistically localized integrals of motion
(SLIOMs) @4, a number of results obtained in Ref. [237] directly carry over to our sit-
uation. First, we notice that the inversion operator I, that exchanges the dimer configu-
rations of upper and lower layer induces the inversion of the chirality of all loops in the
projected transition graph picture. Therefore, {I,,$,} = 0 and hence also {I,,Q4} = 0
for all ¢. Since also [I., H] = 0, this implies that the spectrum of all Hilbert space sectors
(except for the sector with Q¢ = 0 for all ¢) is doubly degenerate.

We further notice that in particular, also {1, Q¢:0} = {L, Qd)zwy,l} = 0, i.e. both

leftmost and rightmost chiral subcharges are inverted by I.. These conserved quanti-
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Figure 4.12: Statistically localized integrals of motion (SLIOMs). a) Probability distribution of
the z-value x4, = 7, of the position of the chiral interlayer charges §.(¢) for fixed ¢. The system
size used for Monte Carlo simulations is L, = 100, L, = 6, as well as Wy/Lz = 0.4. For a given
¢ in the bulk, the ,.(¢) are generally localized to a subextensive region of size ~ v/L, see Inset. In
addition, there exist modes localized exponentially on the boundary, shown here for ¢ = 0. These
results demonstrate that the Q¢ are statistically localized integrals of motion (SLIOMs) according to
Ref. [237]. b) Probability of finding a chiral interlayer charge qA(%HO)(ng’) to the right of another such
charge (j(x¢70)(¢). The system-size-independent sharp step demonstrates the spatial ordering pattern of
the ¢r(¢) along the cylinder. c) Probability distribution of the distance between two interlayer charges
Gr(¢) of the same ¢. The sharply peaked distribution shows that the SLIOMs Q¢ can be assigned 1D
positions along the cylinder. d) The corner charge correlation function remains finite at the boundary
due to the presence of edge modes, while decaying in the bulk.

ties (as well as all other Q) with ¢ not scaling with system size) are localized close to
the boundary as seen in Fig.4.12 (a), and the formal similarity to so-called strong edge
modes [390-395] were pointed out in [237]. As a results of these edge modes, corner

charge correlation functions at the boundary will not decay but retain a finite memory,

e.g. limy o0 (C(0,4) (t) Clo,y) (O))Wy/Lm # 0, see Fig.4.12 (d).

In contrast to the correlations on the boundary, the bulk corner charge correlations do
decay as shown in Fig.4.12 (d). Therefore, the strong Hilbert space fragmentation due to
SLIOMs is not in general enough to prevent the system from thermalizing [237]. Exactly
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how the decay of bulk correlations ensues will be treated in the following paragraph.

4.3.3 Subdiffusive relaxation

As demonstrated in the previous section and in Fig. 4.12 (d), the bulk correlations in our
cylindrical geometry decay even in the presence of a strong fragmentation of the Hilbert
space due to SLIOMs. This induces the question of how these correlations decay qualita-
tively, and in particular how the presence of SLIOMs influences this decay process.

To answer this question, we present a (non-rigorous) analytical argument that yields a

prediction for the form of the quasi-1D correlation functions

G (@, 1) = (o) (1) é(O,O)(O»Wy/LI ; (4.22)

evaluated for finite flux densities w, = W, /L, > 0. For simplicity of notation, we assume
x = 0 to be located in the bulk here. As demonstrated in the previous section, the SLIOMs
Q, obey a notion of locality, i.e. they form a conserved pattern of charges along the cylin-
der, as was similarly the case for the SLIOMs discussed in Ref. [237]. This pattern conser-
vation can alternatively be interpreted as a hard core constraint, in that two different Q¢
can never exchange relative positions along the cylinder. If |¢)) denotes some initial prod-
uct state in the dimer occupation basis, we can then label this state |¢) = [{Qg, 24}, a)
by the values of its conserved quantities @, and their 1D-positions 4 (x4 < Z441), as
well as a remaining set of parameters « containing microscopic details. Of course, the
Q) are not actually site-local objects, but rather composed by all the ¢, (¢). Nonetheless,
from a ‘course-grained’ point of view, we can ascribe a single z-position x4 to each Qy,
see Fig.4.12(c). In the following, we assume the microscopic details encoded by the pa-
rameters « not to be essential for the transport of conserved quantities at late times, thus
omiting them from the notation, i.e. [¢)) ~ [{Q¢,z4}). The corner-charge operator CA(%O)

will then be sensitive to the SLIOM Q¢ that is located at x4 = z, i.e. we assume

Cia0) 1) = Clao) {@o: o }) ~ Y 0rya Qo { Qo 70}) - (4.23)
¢

Inserting this assumption into the expression Eq. (4.22) yields

GOD(z,t) = ($Cls0)(t) Co0) Oy, L,
P

~ > {Qeps}HCiu0)(t) Clo,0){ Qg 7o })
{Qozo}

~ 3T S 60,0 Qo Qo w6 (DCw0) | {Qun 24 (1)})

~ Z Z O (0),0 Oz (8),2 Qo Qo'
{Qexs(0)} 0,¢'

(4.24)
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where we have substituted -, — > Q) ANA shifted the time dependence to the states
in the last two lines. We now assume further that the position z,(t) of Q4 at time ¢ does
not depend on the value of ()4, thus again neglecting certain microscopic details. We can

then directly carry out the average "/ 1 QyQ@y ~ d5,4 to obtain

G(ld) fL’ t Z Z 5$¢(0) 0 5$¢(t) (425)
{ze(0)} @

Eq. (4.25) has an intuitive interpretation: Gy, (1d) , (z,t) describes the tracer motion of individ-
ual SLIOMs (), which move from 24(0) = O at time ¢ = 0 to x4(t) = x at time ¢. Notice
that the Q4 become effectively distinguishable particles due to the (initial state) average
Z{Qqa}' R
Recalling that the Q)4 obey an effective hard core constraint, we recognize that due to
Eq. (4.25), the motion of SLIOMs should effectively be described by the tracer diffusion
of hard core particles in one dimension. This problem has been studied within more di-
rect setups in the mathematical literature and admits an exact solution for the asymptotic
probability distribution of hard core tracer particles at long times [396-398] (see in partic-
ular Ref. [398] and references therein for an overview of the history of this problem). This
probability distribution directly carries over to the correlations G )(x, t) via Eq. (4.25),
and we thus predict
GO (z,t) = (Dt)™/* exp(—2®/VDt), (4.26)

for the long time hydrodynamic decay of correlations in systems hosting SLIOMs in gen-
eral, and our bilayer dimer setup specifically. For the latter, we can immediately verify
the validity of Eq. (4.26) numerically, as shown in Fig.4.13. Notice that the correlations
assume a Gaussian shape, but decay subdiffusively slow, with ng ) (0,t) ~ t=1/4 for the
return probability (cf. G(0,t) ~ t~'/2 for normal diffusion in 1D).

To conclude this section, we note that we expect the result Eq. (4.26) to be an a priori
consequence of the presence of SLIOMs in arbitrary systems under a sufficiently ergodic
time evolution. While we have explicitly used in Eq. (4.24) that at each point in time, the
system is in a product state in the automaton evolution, a similar reasoning in terms of
hard core tracer diffusion should apply equally well for any generic plaquette dynamics.
It would be interesting to verify this prediction explicitly in the future, e.g. for systems
such as the t — J.-model discussed in Ref. [237].

4.4 Connections to topological solitons

As announced above in Sec. 4.1, the global conserved quantity O, whose exotic associ-
ated transport properties we have investigated in the main body of this work, can be
interpreted as a topological soliton conservation law. More specifically, we will show

in this section that the total chiral charge Q corresponds to the bilayer version of a con-
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Figure 4.13: Relaxation of corner charges in 1D. Local correlations of the corner charge relax
subdiffusively in an effective 1D geometry (cylinder with finite circumference). The exponent of the
decay is 1/4 and the correlations assume a Gaussian form. This is in full agreement with the probabilty
distributions of hard-core tracer particles, expected to describe the late time decay of SLIOM correlation
functions.

served Hopf-invariant that exists more generally in the cubic lattice dimer model as de-
rived in Refs. [374, 375]. The correlation functions we considered previously can thus be
interpreted as characterizing the dynamics of Hopfions (i.e. three-dimensional topological

solitons) within the bilayer geometry.

4.4.1 Hopfions: A brief introduction

Before specifically analyzing the abovementioned reformulation of Q as a conserved
Hopf-number, let us first take a small detour to introduce the concept of Hopfions more
generally: Hopfions are three-dimensional topological solitons, originally introduced in
Ref.[399]. They can be defined in terms of the homotopy classes of maps between 3- and
2-spheres, n : 8% — §2. As & is isomorphic to R* U {oo} by stereographic projection, we
can think of n(r) as a unit vector field in R?* with a uniform limit n(|]r| — 0o) = ng. The
fibres of this vector field, defined as the preimages n=!(q) C R? of given points q € S
on the 2-sphere, form closed loops in R3. The linkage number Ny (n) of two such fibres
under the map n yields the directed number of times two such loops are winding around
each other, thereby providing an integer homotopy classification of n. Within this inter-

pretation of linking numbers of preimages, the necessity of a three-dimensional setting in
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order to provide a non-trivial Hopf-invariant is evident.
For practical computational purposes, the Hopf invariant Ny (n) can be expressed as

an integral,
Nyu(n) = / @ B(r) - A(r), 427)

where the ‘magnetic field” is given by B; = € n - (V;n x Vin) and the implicit vector
potential B = V x A. The expression of Eq.(4.27) is typically applied to classical field the-
ories where n(r) can be interpreted as a magnetization vector field in a solid state system.
As opposed to their two-dimensional Skyrmion counterparts [400, 401], the stabilization
of magnetic configurations with non-trivial Hopf-numbers have so far eluded experimen-
tal detection in solid state systems, and are subject to active research also in the context of

topological phases of matter [402—404].

442 Hopfions in the dimer model

For the present lattice dimer model, the connection to the Hopf invariant of Eq.(4.27) can
be made in two ways: Either by a suitable continuum limit which allows for a direct use
of Eq.(4.27) [374]. Or, by providing a discrete lattice version of the invariant Eq.(4.27)
[375], which is the approach we will adopt in the following. We emphasize that in order
to define a Hopf number, we have to assume OBCs (therefore, in the end, the quantity o)
reduces to the Hopf number upon choosing open boundaries).

Following Refs. [375, 380], we first have to choose a lattice magnetic field description

of our dimer model. For this purpose, we define a field on the bonds of the lattice,

Ba(r) _ (_1)m+ry+7‘z |:7A74rd,a — (5(172 5(_1)7«271 s (4.28)

with o € {z,y, z}, that can be verified to satisfy a zero divergence condition

V-B(r) =Y [Ba(r) - Ba(r — ea)] =0, (4.29)
see Fig. 4.14 for an example. Using Eq. (4.28), every dimer configuration maps uniquely to
a magnetic field configuration. We can then think of our L, x L, x 2 bilayer-system with
OBCs as being embedded within an infinite cubic lattice. Outside the bilayer system we
fix the dimers to a trivial configuration ﬁ% = 0q,z 0(—1yr=,1 for r ¢ [0, L] x [0, L,] x [0,1],
which implies a vanishing magnetic field B(r) = 0 on all bonds not part of the finite
bilayer system. Notice that this property is consistent with the condition n(|r| — o0) =
const. required in the usual continuum definition of the Hopf number mentioned above.

With a magnetic field living on the bonds (r,«) of the lattice at hand, the associated
discrete vector potential A(r) is defined on its plaquettes. If A, (r) denotes the vector po-
tential on the plaquette whose center lies at 7 + e,/2 + e5/2 ((o, 8,7) € Perm(z,y, z))

with normal vector e,, the relation between magnetic field and vector potential can be
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expressed as
Ba(r) = (V x A(r)), = o [A5(r) — A4 (r — e5)]. (4.30)

Hence, once the values of the vector potential are known, the corresponding magnetic
field values can simply be determined via a 'right-hand-rule’, see Fig.4.14(c) for an

illustration.

Equipped with these lattice definitions, the corresponding discrete equivalent to the

Hopf number Eq.(4.27) for a given dimer configuration was given in Ref.[375] as
1 _ 1 _
Nu= 3 S A(r) Blr) = {3 Aalr) Balr) =

1
=3 ,,ZO; Aq(r) [Ba(r) + Bo(r + eg) + Bo(r + €4)+ 431)

+ Bo(r+eg+ey)+ By(r—eq) + Bo(r —eq + ep)+

+Ba(r—ea+ey)+Ba(r—ea+eg+ev)],

where the term B, () in brackets can be considered as the average magnetic field adjacent
to the plaquette A, (r), providing an analogy to the form of Eq.(4.27). The invariance of

Eq.(4.31) either under gauge transformations of the vector potential,
Aa(r) = Aalr) + f(r) = f(r - eq) (4.32)

with some scalar function f, leaving the magnetic field invariant, as well as under ele-
mentary plaquette flips
Ag(r) = Ag(r) £ 1 (4.33)

with a correspondingly transforming B-field according to Eq.(4.30), was demonstrated in
Ref.[375].

4.4.3 Hopf-charge of conserved quantities

To show that in the bilayer geometry, Ny, is indeed the total chiral charge Q from Eq. (4.8),
we first recognize that according to Eq. (4.28), the magnetic field is non-zero only on bonds
that are part of loops within the transition graph picture (as well as on the interlayer z-
bonds along such loops), see Fig.4.14b for an illustration. If we characterize a certain
dimer configuration via the collection {£} of loops contained within its transition graph,
we can show that Ny ({£}) = > ¢z} Nu(L) can be expressed as a sum over the Hopf
numbers of individual loops: If a vector potential A, /;(r) and its induced field B (r)
lead to the (non-overlapping) loops L, , in the transition graph respectively, then A(r) =
Ai(r) + As(r) contains both {£} = {£1, L2} in its induced transition graph. According
to Eq. (4.31), the Hopf number of the dimer configuration described by A(r) is then given
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Figure 4.14: Lattice magnetic field description. A given dimer configuration containing a certain
loop in its transition graph in a) can be mapped to a lattice magnetic field B,(r) on the bonds of
the bilayer lattice according to Eq. (4.28) in b). The magnetic field can be derived from an associated
vector potential A, (r) living on the plaquettes of the lattice, see c). The values of the vector potential
for the example in b) where chosen according to Eq. (4.35) and Eq. (4.36). It can directly be verified
that this choice leads to the correct dimer occupation numbers, as well as a Hopf number N from
Eq. (4.31) that agrees with the total chiral charge Q from Eq. (4.8), evaluated for the loop in a).

by

Ny ({L£1,L2}) = Ny (L1) + Nu(L2) + %Z Ai(r)- By(r)+ é Z Ay(r)- Bi(r). (4.34)

Since the two loops are non-overlapping by virtue of the hard core constraint, A, /(r)
does not generate a finite field strength on all » where By, (r) # 0 is finite. Hence, by
application of a suitable gauge transformation Eq. (4.32), A;/5(r) = 0 can be chosen to
vanish on all such r and the cross-terms in the second line of Eq. (4.34) indeed vanish.
Therefore, we only have to show that Ny(£) = Q(L) for dimer configurations containing
a single loop L (all other dimers are then fixed along z-bonds) in their transition graph.
This is done most easily by providing a specific instance of a vector potential A(r) that
produces the loop £ in the transition graph, and subsequently inserting this A(r) into
Eq. (4.31).

To achieve this, let us first denote by p = p(r) = {r,r + e;,7 + e, + e,, 7 + e,} the
set that contains the four sites of an elementary plaquette on the 2D square lattice. Recall
that a given loop £ = {70, ..., 7||_1} is given by an ordered set of sites and the direction

of the ingoing loop segment at r,, is given by £;(r,) = r, — r,_1. Recall further, that
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v denotes the interior of the 2D loop L, see Fig. 4.2 and the discussion in Appendix B.4.
Then, the following vector potential will lead to a configuration that contains the loop £

in its transition graph:

e Forallr,r’ € Z?s.t. p(r) Nz = 0 and p(r') Nv, # 0, choose

A, (ry,ry,0) — A (rh,r),0) = 1. (4.35)

z 'y

e Forall r,, on the A-sublattice and « € {z,y} chosen such that e, - £;(r;,,) = 0, choose

L4+ £i(rn) - (ex +€y)
2

Ao(ra = ti(ra) ) = (ex +eg) - [6i(ra) x (st ey)]. (436)

e Choose A, (r) = 0 for all remaining plaquettes.

Using Eq. (4.28) and Eq. (4.30), it is straightforward to check that this choice of A(r)
yields the correct dimer configuration that produces the loop £. Furthermore, inserting
Eq. (4.35) and Eq. (4.36) into the expression Eq. (4.31) for the Hopf Number Ny, a lengthy
but straightforward calculation shows that indeed Ny, = Q is the same as the total chiral
charge conservation law of Eq. (4.8). It is very instructive to convince oneself of the va-
lidity of N3y = O through Fig. 4.14. In this Fig. 4.14b, we have entered the values of A(r)
according to Eq. (4.35) and Eq. (4.36) for a specific example. The associated magnetic field
values, dimer occupation numbers, and the Hopf number can then directly be read off.

As a results of these considerations, we conclude that the fractonic corner charges C,
carry a non-vanishing Hopf-charge. Similarly, the conserved chiral subcharges @, can be
viewed as independently conserved Hopfion-subcharges, which provides an intriguing
interpretation for the dynamics studied in Sec. 4.2 and Sec. 4.3. Since the Hopf charge
exists also on the fully three-dimensional cubic lattice, it would be interesting to study
which of our observed features, and under what circumstances, might carry over higher

dimensions.

45 Conclusion & Outlook

In this chapter we have investigated the nonequilibrium properties of a bilayer dimer
model using classically simulable automata circuits, adding to increasing recent interest
in the dynamics of dimer models [1, 160, 366, 405-408]. We have found fracton-like dy-
namics of objects we termed ‘corner charges’ that are associated to a globally conserved
chiral charge, which we have found to be equivalent to a topological soliton conservation
law. The dynamics of the full quasi-2D system for finite flux densities is characterized
by the formation of effective one-dimensional tubes that restrict the mobility of corner
charges, a hallmark of fractonic behavior. This leads to an anomalously slow decay of

local correlations, as charges can diffusive only along one instead of two independent
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directions. Since the 1D tubes can only be destabilized by moving non-local winding
loops through the system, they are stable up to a time that appears to diverge with system
size, leading to non-ergodic behavior in the thermodynamic limit. In addition, we have
identified the presence of statistically localized integrals of motion (SLIOMs) in a quasi-
one-dimensional limit of the model. The hydrodynamic relaxation of these SLIOMs was
found to be subdiffusively slow and can be described by the tracer diffusion of classi-
cal hard core particles. The applicability of this latter result extends beyond the specific
model studied in this paper and describes the hydrodynamic behavior of SLIOMs more
generally — provided they are not so strong as to localize the system as in Ref. [235]. De-
veloping these ideas further and applying them to other quantum many-body systems
will be in large part the content of Chapter 9.

Moreover, the results derived in this chapter should apply to bilayer versions of arbi-
trary dimer models on bipartite planar lattices, for which most of our constructions are
expected to proceed in an analogous way. Which of our results and under what circum-
stances might also generalize to dimer models in the fully three-dimensional limit is less
apparent. In particular, while the soliton conservation law utilized in this chapter exists
in the 3D cubic dimer model as well, the equivalent of corner charges and the effect of
finite flux densities is left as an open question.

Other than changing the lattice geometry, we can also vary the underlying static elec-
tric charge distribution of the lattice gauge theory that is dual to the dimer model [300].
Potential future work might conduct a systematic survey on the presence of soliton con-
servation laws depending on the underlying charge distribution. This could open a win-
dow for a more general glimpse into the thermalization dynamics of gauge theories via
the study of late time transport properties.

Finally, while proposals to study lattice gauge theories like dimer models experimen-
tally with Rydberg quantum simulators have already been put forward in [300] (although
for the planar 2D case), it will be interesting to see whether bilayer dimer models can also
potentially be obtained as realistic low energy theories in condensed matter systems such
as (artificial) spin ice, or in the strong coupling limit of correlated fermion models [409].
Naturally, interest then also extends towards the equilibrium properties of such mod-
els [410, 411].
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Local probes of topological edge states
in two-dimensional quantum magnets

This chapter is based on the publication

Johannes Feldmeier, Willian Natori, Michael Knap, Johannes Knolle, “Local
probes of topological edge states in two-dimensional quantum magnets”, Phys. Rev.
B 102, 134423 (2020)

Structure, text and figures have been adapted for the purposes of this thesis. The
numerical data on the dynamical structure factor of the Kitaev honeycomb model has

been obtained using code developed by Willian Natori and Johannes Knolle.

We have seen in the previous two chapters that constraints can induce very exotic
nonequilibrium dynamics. In this chapter, we investigate potential ways in which an
understanding of dynamics in constrained systems can aid with their detection in ex-
periment, especially with an eye towards the long sought-after material realization of
spin liquid states. These are characterized by their non-trivial topological properties, and
it is those properties that we will target with our approach. The search for topological
properties of insulating quantum magnets is an exciting, yet challenging task [261, 262].
While related electronic systems saw a swift verification of the bulk-boundary correspon-
dence [412-415] because surface sensitive probes like angle resolved photoemission spec-
troscopy (ARPES) and scanning tunneling microscopy (STM) were readily available, sim-
ilar smoking gun signatures have remained elusive for magnetic systems beyond one di-
mension [416, 417] due to the charge-neutral character of spin excitations. One route to
address this obstacle leads to spin-sensitive local probes, which have recently been pro-

posed as novel tools for identifying fascinating phases of matter such as quantum spin
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liquids (QSLs) [258, 418-421].

Moreover, recent technological advances in the fabrication of van-der-Waals het-
erostructures draw particular attention to magnetic quantum systems in two dimen-
sions [422, 423]. In this context, transport measurements of graphene on top of atomically
thin insulating magnets have been employed to measure thermodynamic properties of
the magnetic layer [424]. Here we propose similar heterostructures for tunneling-based
surface-spectroscopy in order to probe magnetic excitations [425]. A contender to over-
come the abovementioned challenges could thus be provided by spin-polarized scanning
tunneling microscopy (SP-STM), which is sensitive to local spin excitations through in-
elastic tunneling processes [426-429]. This technique has been employed to characterize
arrangements of interacting magnetic atoms, including the resolution of spin wave spec-
tra [430, 431], and might provide access to localized boundary modes [432, 433]. The most
direct application of our proposal may thus be the resolution of edge modes in topolog-
ical magnon insulators (TMIs), indirect signatures of which have been observed in 2D
magnets [434—439].

e — eV
lw
0
\|
substrate T a1
v 0(eV —w)n, Ny S*(w)

Figure 5.1: Spin-polarized scanning tunneling microscopy (SP-STM). We propose tunneling from
a metallic and magnetic substrate to an STM tip via inelastic spin flips of an insulating magnetic layer
(S) in between. A tunneling electron can excite a mode with energy w in .S provided the applied bias
voltage exceeds this energy. The resulting conductance is proportional to the spin-dependent densities
of states in tip, substrate, and the sample S, c.f. Eq.(5.8). Tuning the spin polarization in tip and
substrate allows for selectively probing different types of spin excitations in the sample.

Particular strengths of SP-STM include atomic resolution as well as the ability to in-
vestigate anisotropies via selective polarization of tip and substrate, making it in prin-
ciple well-suited for the study of highly anisotropic Kitaev spin liquids [241]. Conve-
niently, one of the prime material candidates [293, 334-336], the a-RuCl; compound,
can be exfoliated down to monolayer thickness [346] and first graphene heterostructures
have been reported [347, 348]. Although this material displays an ordered zig-zag ground
state [339, 340], there exists consistent evidence for the onset of a disordered state under
the presence of a moderate magnetic field [337, 338, 341, 342]. Most strikingly, thermal

Hall measurements on bulk samples show a fractional quantization of the thermal con-
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ductivity [343] indicating the presence of chiral Majorana fermion edge states, a result
whose origin is currently under debate [344, 345].

In the remainder of this chapter, after a brief summary of SP-STM, we first show that
it allows for observing topological magnon edge states of TMIs. As our main result, we
then determine qualitative features for potential SP-STM measurements of 2D magnets
described by an extended Kitaev honeycomb model. By evaluation of the dynamical spin
structure factor on open boundary conditions (OBCs) we find clear signatures associated

with the existence of fractionalized gapless edge modes and emergent Z, gauge fluxes.

5.1 Spin-polarized STM

51.1 Setup and model

We review some essential aspects of spin-polarized STM, largely based on the works of
Refs. [428, 429, 440]. The setup is as follows: A metallic tip of the STM device (t) is located
at a position » = (z,y) and at a vertical distance d above a metallic substrate (s). In
between, a layer of an insulating spin system (S) is placed on top of the substrate, see

Fig.5.1. The Hamiltonian takes the form

H=H,+H,+ Hg+ Hr, (5.1)
where
H = epoi),ipo (5.2)
po
and
Hy =" cpobl, ,bro (5.3)
k.o

describe the non-interacting electrons in tip and substrate, whose details are not crucial.
Hs({S;}) describes the interacting system of spins S; at positions r;. Finally, Hy models
the tunneling of electrons between tip and substrate in the presence of an applied bias

voltage V' via
fr = 3 |07 ] oby ™V 4 b (5.4)
p.k,o.0’

where 777" depends on the spin system via an exchange coupling,

TT‘_TU’ =10 O0po’ + Ztl (7’ — Ti) Lo SA'Z (5.5)
i

Here, t( is the bare tunneling rate, while for the spin-dependent second term we follow
Ref. [429] and assume the exponential form

ty(r — ;) = Tye W doemIr=ril/A, (5.6)
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with constants dj, \.

Within this setup, we focus on the tunneling conductance 0I/0V due to spin-
dependent contributions. We provide a detailed derivation of 01/0V in Sec. 5.1.2 below

and briefly state the main result here. Defining the dynamical structure factor
Sf‘ja(t) = <Sf‘(t)5§‘(0))s = /dw e’MtS%a(w), (5.7)

Fermi’s golden rule yields at zero-temperature [428, 429],

ol 262 eV o3
AR Z ti(r —ri)ti(r —rj) cap ; dw ;" (w), (5.8)

2,J,

which contains a spin-weight function

Cap = Y o(er)Noi(e F)oS ol . (5.9)

Here, the o® are Pauli matrices and n,(¢r)/N,(er) are the spin-dependent densities of
states at the Fermi level for both tip / substrate. The intuition behind expression Eq. (5.8) is
summarized in Fig. 5.1. Crucially, the prefactors ¢, 3 depend on the relative spin-polarization
of tip and substrate. This allows for a controlled selection of spin excitations that are to be
probed [428, 429, 441]. We highlight three important settings considered in this work: (1)
Non-polarized tip and substrate (n, = n_ and Ny = N_): c4g ~ 65 and independent
of a.. (2) Fully parallel-polarized tip and substrate (n_ = N_ = 0): cog ~ 0q,.03,., Where
z was chosen as the common polarization axis. (3) Fully anti-polarized tip and substrate
(n— =Ny =0): cap ~ (1 = a,2)(1 — dp.2)-

5.1.2 Derivation of conductance for scanning-tunneling-microscope

Before moving on to applying Eq. (5.8) to specific physical setups, here we provide some
details on its derivation. The derivation presented in this section is essentially a mix of
the derivations presented in Refs. [428, 429]. Let us describe the tripartite system laid out
above in terms of the eigenstates |¥) := |n) ¢ |¢), |¢) of its three unperturbed constituents
with respective energies By = EJ + Eé) + Ej,. The experimentally relevant tunneling
current I between tip and substrate at inverse temperature 5 can then be obtained most

directly by applying Fermi’s golden rule,

2e — T | oo’ A 7 2
I= % Z Z € By {’<\P’ Tr a;,obk,a’ ‘\PM 6(E\i1 - E\I/ - GV)—
phoo v (5.10)

!
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Eq. (5.10) consists of two terms which we are going to treat seperately. The evaluation of

the first matrix element can be decomposed into electron and spin sector via

- oo’ _BES ~oo! 2 _ t s ~ o~ ~ 2
e PEY (W T2 af, by oo |0) |7 = e7PER |(m| T2 |n) [Pe P Eo 0|, af, ,bg o0, 0) |-

(5.11)

Furthermore, due to the non-interacting nature of the metallic tip and substrate, the on-
shell condition becomes §(Ey — Ey — eV) = §(E5, — E5 + ep — e, — €V). As this does
not explicitly depend on ¢, 1), ¢, 1h, we can carry out the corresponding summations in
Eq.(5.10), i.e.

D> PEFED|(G, dlaf oby o0, 0)]” = D0 e P ETED (0 B, by ot ] o100 =
o 33 R

= (5270131@,005( polba) s = fer) (L= f(ep)),

(5.12)

where f(¢) is the Fermi distribution function at a given inverse temperature. We then
proceed by converting the momentum summations -, , — >, [de ny(e), Yoo —
>, | de Ny(e) into integrals over the densities of states n,(¢), N, (¢) of tip and substrate
electrons. We further assume that only electrons near the Fermi level contribute to tun-
neling, thus setting the densities of states n,(¢) — n,(er), Ny(¢) — Ny(er) constant.
Inserting this and Eq. (5.12) into Eq. (5.10) we obtain for the first term:

S e PP (BT, by, o0 10)|* §(Eg — By — eV) =

p.k.o,0" ¥ ¥
—an ep)Ny (ep Ze BEY ‘ m\TU” |n>‘
« /de de' F(e)(1 = f(2)) S(ES — ES +e—&' —eV) =
oo’ eV — (EE’L — Erij)
= Z"U(EF (er Ze m‘T |”>‘ 1 — o-BeV—(ES—EJ))’

o0’

(5.13)

where we carried out the integrals over de, de’ in the last step.

We now evaluate the remaining summations over the spin sector. Firstly, we find for
the tunneling matrix element, concentrating exclusively on the contributions ~ 7 due to

spin fluctuations,

Moo’ 2 _ R
(T )| =" ta(r = ri) ta(r = 75) 05,00, (n|SPm) (m|SF|n) .
arf

(5.14)

We can then use the Lehmann representation of the Fourier transformed dynamical struc-
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ture factor
S (w) = / dte™! (S (t) Ze % (n|S2m) (m|S|m) 8(w — (B — E5))
(5.15)

to realize that for an arbitrary function F'(w), the following relation holds:
f s @) = SR S (i) PES - Y. 5o

Using this relation upon inserting the matrix element Eq. (5.14) back into Eq. (5.13), we
obtain for the first term of Eq. (5.10),

ST N e B T 6], by o [ V)] O(Bg — By — V) =
p,k,0,0" q;q/
V- a
_ZZtl r— )t (r —r; (anep €F)0g1y i)/dwl_imec‘j@@jﬁ(w
iy ap

eV —w oo
—>ZZh(T—Ti)tl(T—Tj)Caﬁ/dw1_e_,w_w)Sz; (w),

(5.17)

where in the last step we identified the weight function ¢,z of Eq. (5.9).

Repeating the same steps for the second term of the Fermi golden rule expression, we

eventually arrive at the final expression for the current
2e . ao
=7 Z ti(r —riti(r —rj)ca | dwjv(w) Sij (w), (5.18)
1,7,
Eq. (5.18) contains the frequency weight function

eV —w eV +w

]V(w) = 1 — o-BleV—w) + 1 — eBleVtw)’ (5.19)

which reduces to jy (w) = (eV —w) 8(eV —w) at zero temperature. Derivation of Eq. (5.18)
with respect to V' yields Eq. (5.8).

5.2 Topological magnon insulators

As a first example, we apply Eq. (5.8) to topological magnon edge states appearing in

TMlI-layers. For concreteness, we consider the well known example of a 2D Kagome fer-
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romagnet featuring non-zero Dzyaloshinskii-Moriya (DM) interactions [442-444]:

H=Y" —J8, Spn+Dum(SnxSu)—h-Y S, (5.20)

(nm)

where D,,,,, is the DM interaction on the bond nm, and h is an external magnetic field
along z||[111]. Following Ref. [443], Eq. (5.20) can be brought into quadratic spin wave
form by applying a standard Holstein-Primakoff approximation, leading to

H =Y bl Hunb, + > Hunblb, + Eo. (5.21)

Here, H,,, = —S(J + iD) along all bonds oriented counter-clockwise within each ele-
mentary triangle and H,,,, = —S(J — iD) accordingly. The diagonal part is given by
H,p = hS + JSM,, with M,, the number of nearest neighbors of site n, see Fig.5.2 (a).

On a strip-geometry with periodic boundaries in the z-direction, see Fig.5.2 (a), H can

be block-diagonalized with respect to the k;-momentum quantum number. We obtain
H =" " bl (k) Hyr (ke )by (K Z Z ei(k )by (kz), (5.22)

where! € {0,...,6W} (W € IN)labels the sites within the unit cell as depicted in Fig. 5.2 (a),
and the eigenmodes

Z Uy (k)b (K (5.23)

can be evaluated numerically for finite W. The spectrum ¢;(k;) is shown in Fig.5.2(c)
and displays edge modes within the bulk gaps between bands with non-zero Chern num-
bers [442].

In this geometry, we can express the spin operators through their one-dimensional
Fourier transform, S%(t) = \/% > k. ethan Si¥ (kz,t), where z, is the x-position of the
Kagome-site n and [, is its position within the unit cell. Similarly, the local dynami-
cal structure factor can be expressed via a one-dimensional Fourier transform Sﬁ,ﬁ (w) =
>k, etka (“””*xm)Sf; ?m(km, w). Insertion into the expression Eq.(5.8) for the conductance
and using that >°, — >, yields

ol 262

W:Tn(gF)N@F) X Z glnlm(k:car)caﬁ/ dw3i€m(kz,w)a (5.24)

bl sk 0

with
g (kg 1) = (Z ezkza:nt (r— 1, > % (Z e—ikzxmtl('r - ’r'm)) (5.25)

The structure factor entering the differential conductance Eq.(5.24) can be determined
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Figure 5.2: Topological Magnon Insulator. a) Geometry of the Kagome TMI setup. We consider
open boundaries in y-direction, implying translational invariance only along the as lattice vector. The
number of sites within a unit cell is 6 + 1; the position of a site n is specified by (z,,!,), with
Z, labelling the unit cell and [,, € {0,...,6W} labelling the site within a unit cell as depicted here.
b) The STM tip is placed at the edge (pos A) or over the 2D bulk (pos B) of the Kagome layer,
with color gradients indicating the range of the response. For numerical evaluations, a unit cell of
L, = 181 sites along the y-direction is used. Inset: lattice vectors (green) and directions of the DM
interaction (orange). c) Energy spectrum for the magnon Hamiltonian with J = 1.0 and DM-term
D = 0.2, containing edge states within the gaps of the three bulk bands. d) Conductance 9I/9V using
Eq. (5.8). While the response at tip position B exhibits a flat conductance throughout all band gaps,
at the edge (pos A) a finite response within the first gap is acquired, yielding a clear signature for the
existence of topological edge magnons.

simply from its Lehmann representation at finite temperatures. Focusing on the
T = 0 limit and on the spin-diagonal components of the structure factor, we obtain
Siz), (kzyw) ~ d(w) and 8§ (ky,w) = S (g, w) with

TT
Siml

mn

(kpyw) = ZUZW DU (k) 6(w — es(kz)). (5.26)

Eq. (5.26) makes the coupling of the structure factor to the local density of the eigenmodes

manifest.

Furthermore, itis instructive to approximate the device function of Eq. (5.25) by turning
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the sum into an integral and inserting the form of ¢, (r — r,,) from Eq. (5.6) to obtain

Z etkang, (r—mrp) ~ /dmn eik”"tl(r —ry) =14 e~ d/do /dmn ¢than g =Ir=ral/X —
Tn

— 9T —d/do ikzx ’y_yn‘ K ‘y_yn| 1 )\2]{32
1€ e 7%1—#)\%%)( 1 N Vv1+ z |

(5.27)

where K (-) is a modified Bessel function of the second kind and all lengths are measured
in units of the lattice spacing. Kj(z) drops off exponentially for large arguments and
diverges as Ki(x) ~ 1/z for x — 0, as would be relevant for e.g. the case y = y,. We
therefore see that the response acquired through the device function g;, ;,, (kz, ) will only
pick up sizeable contributions from momenta k, < 1/A. Importantly, the edge state in
between the first and second energy band as displayed in Fig. 5.2 (c) of the main text is
located directly at k, = 0 and should therefore be able to contribute to the response as
measured by the local conductance. The presence of a k, = 0 edge state arises also for
boundaries shaped differently than in Fig.5.2 (a), see e.g. Ref [443]. We choose A = 1.0
(units lattice spacing) in the following. Accordingly, 0I/0V, evaluated for an unpolarized
tip on the boundary of a system containing 181 sites along the y-direction, shows a finite

response from topological magnon edge modes within the first band gap, see Fig.5.2 (d).

5.3 Kitaev spin liquid
We proceed to characterize our main example, the extended Kitaev honeycomb model,

H=Y J.6060+K Y 68676 (5.28)
(i) (i) s (75)

where (i, j) , denotes nearest neighbors, with o € {z,y, 2} labelling the three inequiv-
alent bond types, see Fig.5.3 for a schematic picture of the setup. Following Ref. [241],
the model can be solved by representing the spin operators 6& = ib2¢; in terms of four

different Majorana species, resulting in

H=iY Joiyy édj+iK Y g gy ék (5.29)
(i3) (i) 0 (7K)

Here, the 4, = z@?é}l are constants of motion with eigenvalues u ;) = +1. This prop-
erty renders the model of Eq. (5.29) exactly solvable. We further note that there exists a

local Zy gauge structure in the model since Eq. (5.29) is invariant under

(5.30)

U(igy, = Wil(g), Wi
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Figure 5.3: STM setup. Geometry of the STM setup and sketch of the Kitaev model Eq. (5.28).
OBCGs are introduced by setting the strength of the dashed bonds to J, — 0. Probing the local spin
noise in the bulk requires the creation of a gapped flux-pair (blue). Moving to the boundary, these
fluxes are gapless (orange), allowing for the detection of gapless Majorana edge modes.

for arbitrary w; € {£1}!. It is then straightforward to verify that the plaquette Wilson
loops

W, =[] tgu), (5.31)

(ij)ep

are gauge invariant quantities under Eq. (5.30), where the product extends over the edges
of an elementary hexagonal plaquette. The fluxes W, € {+1}, together with two addi-
tional non-local Wilson loops responsible for the topological ground state degeneracy on
a torus thus label the gauge sector of the theory. Within a fixed sector of u;;)4"s, Eq. (5.29)

reduces to a Majorana hopping problem.

A convenient description of the model Eq. (5.29) is obtained by pairing the Majoranas

into complex matter fermions

N

1. .
fr = §(CAT +1 CB'r) (532)

in each unit cell, and gauge fermions

. .o | 3

X<7:j>a = i(bl +1 b]> (5.33)
on thebonds, i € A, j € B. Then, the

-1 (5.34)

'We note that the Z, structure becomes apparent due to the decomposition into real Majorana
fermions. This is in contrast with a decomposition into complex auxilliary fermions with subse-
quent mean field approximation, for which one initially obtains a larger SU(2) gauge structure,
which may be broken down to Z, upon further inspection [445].
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can be expressed in terms of the gauge fermions, and the ground state is written as |0) =
|Mo)®|Fy), with | M) the ground state of the matter fermion problem defined by Eq. (5.29)
within the flux-free gauge sector | Fy), for which W), = +1 for all plaquettes. We can choose
u;zy, = +1 to obtain this flux-free state.

To obtain OBCs, we choose a line of ‘weak bonds’ around the torus (z-bonds w.l.o.g.)
whose strength .J, — 0 vanishes. This results in a degeneracy throughout the many-body
spectrum, as the insertion of flux pairs adjacent to bonds (ij), across the boundary comes

without energy cost. A general ground state for OBCs can then be written as
|0) = [Mo) ® |F) = |[Mo) ® | Fo) e @ |F)y (5.35)

where |Fp), ;i is the flux-free sector of all bulk plaquettes and | F), is a general superposi-
tion of 2! different boundary flux sectors for a boundary of length L. We will postpone

a proof of this last result to Sec. 5.4 and proceed for now.

In order to determine the conductance through Eq. (5.8), we have to compute the dy-
namical structure factor Sf‘jﬂ (t) = (0]o¢" (t)&f (0)]|0) from a given ground state of Eq. (5.35).
Following Refs. [446—448], the problem can be reduced to a Majorana quantum quench in

the matter sector,

Siajﬁ(t) = (Mple™ ez~ HVina)¢; | My) x (F| (X, + XLDQ)()A(@@ + XL ) IF).
(5.36)

Here, we chose both 7, j on sublattice A, and f/@% is the modification of the Majorana
model due to flux insertion u(; — —uy . For bonds (jk) 4 adjacent to bulk plaque-
ttes, the gauge sector of Eq. (5.36) reduces to Siaj'g ~ 0qp0ij, i.e. the structure factor is
ultra-local in the bulk due to the static nature of the gauge field [449]. In contrast, bonds
(jk)g = (jk), across the boundary can acquire longer-range contributions Sf;ﬁ ~ 0;; due
to the superposition |F'), of boundary fluxes. Nevertheless, while Eq. (5.36) thus gener-
ally depends on the choice of | F'),, the on-site contributions S*(t) are independent of the
chosen state |0); we show this property in Sec. 5.4. Since these contributions dominate the
STM response according to Eq. (5.8), any choice of |0) will lead to a qualitatively repre-
sentative conductance 91/0V. We choose |F), = |Fp), as flux-free in the following and
numerically evaluate Eq. (5.36) using a Pfaffian approach [447]. In practice, we introduce
a small but finite bond-strength J, < 1 across the boundary, which provides additional

physical insight on the emergence of a Majorana zero mode for J;, = 0.

Our main results are summarized in Fig. 5.4: In panel (a) we show the integrated den-
sity of states (DOS) for the matter fermions for J = 1, K = 0.2 in a background containing
a flux pair adjacent to a weak bond (ij), across the boundary. For .J, = 1 we recover the
result for periodic boundaries (PBCs) with an exponentially localized fermion bound state
at the flux pair, with an energy E = Ap + Ef' = 1.156J (grey dashed line), located in the

91



gap below the onset of a continuum band at E = A + Ef' = 2.819J. Here, Ap = 0.819.]

F
1/2

As we decrease Jp, Fig. 5.4b shows how the bound state delocalizes along the boundary,

is the two-flux gap in the bulk and E,, the first/second eigenstate of the matter model.
eventually turning into a zero mode. This is reflected in the DOS by an emerging contin-
uum of in-gap states (dashed blue lines in panel a), corresponding to a dispersive chiral

Majorana edge mode, as well as a vanishing flux gap.

Crucially, these spectral properties of Majorana-flux bound states and the chiral Majo-
rana edge modes are directly reflected in the local structure factor, displayed in Fig. 5.4 (c)
and evaluated for J, = 0.01J: Sper (w) at site i g in the bulk (see Fig. 5.3) reflects the spec-
trum of PBCs via a sole, sharp contribution at the bound state energy and a broad con-
tinuum at higher frequencies. Note, similar signatures for the Majorana-flux bound state
have been very recently predicted for planar tunneling spectroscopy [349]. In contrast,
the component S77; (w) (blue) at a boundary site i4 contains no sharp contribution and
instead exhibits a spectral response throughout the former excitation gap. This demon-
strates that the structure factor couples directly to the gapless Majorana edge mode. The

component S* (w) involves the insertion of a gauge fermion at a bond adjacent to the

TATA
system boundary, which results in the creation of a flux pair composed of one bulk and
one boundary flux (one blue and one orange plaquette in Fig.5.3). This induces a sharp
onset of S77; (w) ata reduced flux gap Ap = 0.499.J, above which dispersive edge modes
give a finite in-gap response.

The conductance derived from these results, see Fig. 5.4 (d), is evaluated via Eq. (5.8) for
a small A = 0.1 (units lattice constant), essentially focusing on the on-site response. For
tip position B, the polarizations entering c,s do not have qualitative effects due to sym-
metry of the bulk structure factor. The resulting conductance features a sharp step at the
bound state energy. At the boundary (position A), the conductance varies drastically with
changing c,4: An anti-polarized tip captures the features of S77;  (w) = 8/, (w) through
a sharp step for a bias voltage matching the reduced flux gap, followed by smaller steps
due to edge states. These smaller steps merge into a continuum in the thermodynamic
limit. Note, contrasting the response of the bulk and edge modes even enables the mea-
surement of single flux and nearest-neighbor flux-pair energies. The latter has a value
less than twice the single flux energy because of Majorana induced interactions. Finally,
for a parallel-polarized setting, where c,s exclusively picks up the S77; (w)-component,
the flux excitation has no effect, resulting in an approximately linear increase of 9I/0V
throughout the bulk-gap, in particular also at zero bias, providing a clear signature of the
chiral Majorana edge modes. We emphasize that the term ‘Majorana edge mode’ refers
to fractionalized excitations that can be described effectively in the language of Majorana

fermions, as is e.g. also the case in certain spin chains [450, 451].
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Figure 5.4: Kitaev spin liquid: Numerical results. a) Integrated DOS for the fermionic spectrum
in the presence of a boundary flux-pair, both for PBCs (J, = 1, gray) and OBCs (J, = 0, blue). The
gray-shaded area marks the gapped continuum band in the bulk, the dashed gray line the energy of
the bound state. The blue circles with attached dashed lines show the energies of the in-gap edge
modes at the given system size of 56 x 56 unit cells. For OBCs, the continuum band is shifted to
lower energies due to the vanishing flux gap. b) The wave function (x,y) of the fermionic bound
state on 40 x 40 unit cells delocalizes upon reducing the coupling J, across the boundary (located at
y = 0). c) Components of the local dynamical structure factor for 56 x 56 unit cells on OBCs; i4
and ip mark lattice sites on the boundary and in the bulk, respectively, see Fig.5.3. A finite frequency
broadening was introduced for the sharp delta-response from the bound state. d) Conductance for the
tip at positions A and B, and different polarizations of tip and substrate. In the bulk, the fermion
bound state creates a sharp step within the gap. On the boundary, the step is replaced by a continuum
due to the dispersive edge modes, starting from zero bias, see Inset.

5.4 The Kitaev honeycomb model with open boundaries

Before closing this chapter, we return to the subtleties that arise when combining the
extended Kitaev Honeycomb model with open boundary conditions, particularly with
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regards to its ground state degeneracy, which we have already hinted at in Sec 5.3. We
discuss in detail how the boundary conditions impact the computation of the dynamical

structure factor.

5.4.1 Physical Hilbert space

The decomposition of a spin-1/2 into four Majoranas introduced by Kitaev enlarges the
Hilbert space. The projection back onto the physical Hilbert space is obtained by requiring
that D; = —i676Y67 = bPbYb?¢; = 1 for all sites. This condition can be enforced in terms

of the bond and matter fermions via the projection operator

- 1+D; 1
pP= H o~ it (—1)Nr] (5.37)

where N /N, are the total number of matter /bond fermions. Eq. (5.37) demonstrates that
only states with even total fermion number parity lie within the physical spin Hilbert
space. As was shown in Refs. [452, 453], particular care needs to be taken within the gap-
less phase of the pure Kitaev model when projecting back to the physical Hilbert space.

5.4.2 Open boundaries

As outlined previously, open boundary conditions can be obtained by introducing a line
of “weak bonds’ as shown in Fig.5.5, where all terms in the Hamiltonian Eq. (5.28) of
the main text involving such bonds are multiplied by a factor J, < 1. The case of open
boundaries is then retrieved for J, = 0, which effectively cuts the system in half. For
the practical evaluation of structure factors, we choose the value of the weak bonds very
small, J, < 1, but finite. This allows us to directly use the numerical method derived for
periodic boundaries [447, 448]. In practice, we work on a cylindrical geometry, and ne-
glect a non-local ground state degeneracy due to invariant Wilson loops winding around
the cylinder, which does not affect our local probe results.

However, we emphasize that one has to be careful when taking the limit .J, — 0. We
discuss in the following how this limit impacts both the ground state structure as well as

the dynamical spin correlations.

Ground state degeneracy: Gauge sector

As discussed above, the ground state of the translationally invariant system .J, = 1 is
unique and lies in the sector of zero flux. This property remains true for any non-zero
Jy > 0, for which the minimal flux gap is of order ~ (J, - J), a property we have verified
numerically on finite size systems. However, for J, = 0 exactly, plaquette fluxes adjacent
to the weak bonds can be inserted at the newly formed system boundary without energy

cost. Formally, if we let (ij), denote one of the weak bonds as shown in Fig.5.5, this
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Figure 5.5: Kitaev model. The three types of bonds are labelled according to the anisotropic
exchange interaction of the Hamiltonian Eq. (4) of the main text. The interactions along a line of
z-bonds through the system are weakened by a factor J, < 1, yielding open boundary conditions for
Jp = 0. Inserting bond fermions (red bonds) flips the flux W), of the two adjacent plaquettes. In the
bulk, these flux excitations are gapped (blue plaquettes), while boundary plaquettes cost no energy and
lead to degeneracies in the spectrum (orange plaquettes).

can be expressed via [y, H] = 0. We notice however that in order to obtain a valid
transformation within the physical Hilbert space that respects the parity selection rule
of Eq.(5.37), we need to create/annihilate an even number of boundary gauge fermions,
starting from the original flux-free ground state. The set of transformations that relate
different ground states is thus given by

Wiig), Ty Uk, T TR, (5.38)
for an arbitrary pair of boundary bonds (ij),,(kl),. From this we can infer the total ground
state degeneracy Dy due to boundary fluxes for a system of linear length L along the open

L L L _
D:<O>+<2>+<4>+...:2L L (5.39)

We have observed this degeneracy due to boundary fluxes using exact diagonalization

boundary to be

methods for the original spin Hamiltonian Eq. (5.28) on small system sizes. We notice
further that this degeneracy applies to all eigenenergies throughout the entire many body

spectrum.

We can now write down the form of a general state within this degenerate manifold.
The gauge sector will then be flux-free in the bulk and consist of a general superposition

of fluxes on the boundary, leading to Eq. (5.35) of the main text,
|O> = |M0> ® ‘F0>bulk ® |F>b’ (540)
with | F'), a linear superposition of different boundary flux configurations.
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Ground state degeneracy: Matter sector

As demonstrated in Kitaev’s original work [241], the energy bands of the matter fermions
carry non-trivial Chern number for non-zero K, which implies the existence of chiral edge
states within the bulk gap and a zero energy edge mode on open boundary conditions.
An example was given directly in the Appendix of [241]. We notice that on finite systems,
the mode with zero energy might not be directly visible, as the exact momentum hosting
it might not be part of the reciprocal lattice. However, in the thermodynamic limit we are
guaranteed the existence of [ M) = &S |Mo) with E(My) = E(My).

Since | M) contains a matter fermion, we are now required to add an odd number of
gauge fermions to obtain a physical state. In order to remain in a ground state, we add

an odd number of boundary gauge fermions, for which there are in turn again

N L L L _
D:<1>+<3)+<5>+...:2L 1 (5.41)

different possibilities. A general ground state within this matter sector is then given as
0) = [Mo) & [Fo)puus, @ | F) (5.42)

with |F') a superposition of D boundary flux sectors.

Taken together both matter and gauge sources of degeneracy, we obtain the total

ground state degeneracy to be 2--fold.

a) b)

Figure 5.6: Majorana pairings: The Majorana fermions Bf‘ (colored according to «) are paired up to
form the the gauge fermions X, living on bonds (i, j), whose occupation numbers commute with the
Hamiltonian. If we introduce open boundaries by setting the exchange J, = 0 on the line of vertical
bonds shown here (dotted bonds), there arises an ambiguity in how to pair up the resulting ‘dangling’
Majoranas (shown in blue). a) The original pairing along the former bond is still valid, and produces
the usual ultra-local expression for the spin structure factor. b) The Marojanas can now also be paired
up in longer-range bonds (7, j), and the resulting fermion occupation numbers still commute with the
Hamiltonian, allowing for longer-range contributions to the structure factor. The different pairings are
related by a basis change within the degenerate ground state manifold.
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Open boundaries: Structure factor

After this detailed discussion of the open boundary limit J, = 0 in terms of ground state
degeneracies, we wish to know how these results merge with our numerical approach
of setting J, < 1 but finite. In particular we would like to discuss how the dynamical
structure factor differs between the unique ground state for .J, > 0 and a general ground
state for J, = 0 which is a superposition of 2% different states from a degenerate manifold.
Remarkably, while in general differences between the two cases do occur, the dominant
on-site contribution relevant for the STM response will turn out to be independent of the
chosen ground state, such that the limit .J, — 0 is indeed continuous for the on-site spin
correlations.

Let us take the system to be in one of the ground states |0) from Eq. (5.40) and consider
two sites 7, j € A which are both located on the boundary. We assume further, that the
weak bonds that were removed in order to obtain open boundaries are z-bonds. We then
compute the corresponding structure factor, using Eq. (5.36) of the main text and the fact
that [{ (i), H| = 0 for boundary bonds,

b

Si = (Mo\eitHéiefitHéj‘M@ X b<F‘ (f((m

F>b. (5.43)

Here, we have used that the bulk gauge sector remains unchanged, , ;. (Fo|Fo)p. = 1.
Because the boundary gauge sector |F'), is now a general superposition, the expression
Eq. (5.43) does not reduce to an on-site contribution ~ ¢;; like in the periodic case [446,
449].

An alternative way to see that there are indeed non-vanishing longer-range contribu-
tions beyond nearest neighbors to the structure factor for J, = 0 comes from ‘rewiring’
the b? - Majoranas on the boundary. As illustrated in Fig. 5.6, we can pair up the b7 in an

arbitrary way to form new gauge fermions x;;),, where (ij); need not be lattice nearest

)b’
neighbors. These new bond fermions still commute with the Hamiltonian and provide
equally valid labellings of the model’s gauge sector. Within this pairing, the new ‘nearest
neighbors’ can clearly provide non-vanishing spin correlations in full analogy to the pre-
vious nearest neighbor contributions derived in Ref [446]. Thus, the rewiring of boundary
Majoranas is equivalent to a basis change in the Fock space spanned by the occupation
numbers )ZL.M)Q i)y

While the spin correlations for off-diagonal site pairs ¢ # j are thus clearly dependent
on the chosen ground state out of the degenerate manifold, we see that for on-site terms
i = j the flux part in Eq. (5.43) simplifies due to (92<z‘l)b + )Z}Lmb)()Z(ik)b + XLM) = 1. We can

thus conclude that the on-site structure factor is independent of the chosen state and

Jim [S54(0)], | = 880 0)] o (5.44)

The limit .J, — 0 is therefore indeed continuous for this contribution and couples directly
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to the on-site Majorana correlation function, providing an in principle even simpler ex-
pression than the quench problem that needs to be solved for bulk correlations. Further-
more, we do not expect Eq. (5.44) to change when including the degeneracy due to the
zero energy matter mode |Mj): As the corresponding isolated mode is delocalized along
the boundary, its effect on the local structure factor is expected to decrease as ~ 1/L in
system size. Furthermore, effects of finite temperature will smoothen out the response
for w — 0 in any case.

We have verified Eq. (5.44) independently on small finite size systems that can be
treated with exact diagonalization and with matrix product state techniques [454]. The
relation is convenient, as it allows us to draw direct conclusions about expected experi-
mental signatures in open boundary conditions, while being able to formally work with

the technical benefits of a periodic system.

5.5 Conclusions & outlook

In this chapter, we proposed tunable SP-STM measurements for probing site-local and
spin-anisotropic characteristics of 2D quantum magnets. In particular, we obtained char-
acteristic tunneling signatures of topological magnon edge modes for TMIs. As our main
result, we established that fractionalized excitations described by visons and Majorana
fermions in the Kitaev QSLs can be measured via SP-STM by contrasting bulk and bound-
ary measurements. We emphasize that the idealized setup of perfectly (anti)parallel po-
larized tip and substrate is not crucial to our results: While it allowed us to isolate the
contributions of different components of the local structure factor to the conductance, a
more general situation with various contributions is still expected to show the main fea-
tures of our results. In particular, by tuning the relative polarization to some realistic
degree, the resulting accentuation/suppression of different features yields equivalent in-
formation about the system’s underlying anisotropy.

Our analysis further demonstrates the direct coupling of the spin structure factor to
the Majorana correlation function on the system boundary, leading to contributions be-
yond nearest neighbor separation due to a modified flux selection rule. In the future, it
would be desirable to investigate whether such longer range correlations can be probed
by spin noise spectroscopy measurements, possibly providing an even more direct probe
of the chiral nature of the Majorana edge modes. Furthermore, the gapless nature of the
edge response in the Kitaev model could open a route for a larger variety of spin-sensitive
spectroscopy tools. In particular, nitrogen-vacancy (NV) magnetometry, typically oper-
ating on energy scales of up to ~ 100GHz [455], well below the typical values of exchange
parameters of candidate materials in the THz-regime, might be used to further charac-
terize 1D edge physics in several bulk Kitaev materials, i.e. a-RuClz [293, 334-336]. In
conclusion, we have established the potential of local SP-STM probes for confirming and

qualitatively characterizing TMI and QSL physics. The observation of unambigous signa-
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tures of topological magnon edge modes for the former, and magnetic Majorana fermions
as well as gauge flux excitations for the latter, would provide a crucial step towards the

long time goal of their controlled manipulation.
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Part 11

Emergent hydrodynamics in fractonic
quantum matter with multipole

conservation laws
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Anomalous subditfusion in dipole-
and higher-moment-conserving
quantum systems

This chapter is based on the publication

Johannes Feldmeier, Pablo Sala, Giuseppe De Tomasi, Frank Pollmann,
Michael Knap, “Anomalous subdiffusion in dipole- and higher-moment-conserving
quantum systems”, Phys. Rev. Lett. 125, 245303 (2020)

Structure, text and figures have been adapted for the purposes of this thesis. Secs. 6.4,6.2
contain material not included in the publication. The numerical data for the small scale

quantum model presented in Sec. 6.6 was obtained by Giuseppe De Tomasi.

In this chapter we move on to study the nonequilibrium dynamics of fracton systems,
see the brief introduction in Sec. 2.3.2. To start, let us reiterate that very generally, ther-
mal equilibrium of many-body systems is characterized by only a finite number of con-
served quantities, such as energy, particle number or charge. A coarse grained nonequi-
librium time evolution that irreversibly leads to such an equilibrium state is therefore
expected to be dominated by transport of these quantities at late times, smoothing out
inhomogeneities of the initial state [385]. This framework also extends to closed, interact-
ing quantum systems, where the corresponding time scale of transport, separating ‘early’
and ‘late’ times, is usually marked by the onset of local thermalization. A phenomeno-
logical description of the ensuing dynamics can then be given in terms of a classical hy-
drodynamic description, with quantum properties merely entering the effective transport
coefficients [58-60, 65, 66, 184, 189, 456, 457]. For conventional global U (1) charge conser-

vation laws, the universality class of the emerging hydrodynamics is generally expected
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to be diffusive.

In fracton systems however, there exist intriguing conservation laws beyond such con-
ventional global U (1) charges, and we can wonder quite generally whether this might lead
to novel hydrodynamics beyond diffusion at late times. A particularly interesting exam-
ple is the combination of a global U (1) charge together with the conservation of one or sev-
eral of its higher multipole moments, such as the dipole- or quadrupole-moment. As we
have outlined briefly in Sec. 2.3.2, such higher-moment conserving models have attracted
much attention in the study of fracton systems [70, 269, 272, 274, 277, 279, 458, 459], and
are realizable in synthetic quantum matter [197, 320, 321] or solid state systems [460, 461].
Indeed, the intertwined relation between the internal charge conservation law and its
dipole moment has been shown to have significant impact on nonequilibrium proper-
ties [235, 236, 236-238, 462—464]. In the most severe cases, for short-ranged interactions
and small local Hilbert space dimensions, dipole-conserving systems can fail to thermal-
ize altogether due to a strong fragmentation of the many-body Hilbert space into expo-
nentially many disconnected sectors [235-237].

In this chapter, we study the late time transport in ergodic models of dipole- and even
higher multipole-moment-conserving one-dimensional lattice spin systems. We avoid the
abovementioned strong Hilbert space fragmentation by including longer range interac-
tions and sufficiently high spin representations. Building on the intuition of an effective
classical description in the regime of incoherent transport, we employ a cellular automa-
ton circuit approach to numerically study the long time dynamics (see e.g. [205, 387, 465]
for related approaches). We will show how the presence of conserved multipoles leads
to anomalously slow, subdiffusive transport of the underlying charge degree of freedom.
We find that the associated subdiffusive universality classes are described by a cascade
of dynamical exponents depending on the highest conserved moment. Furthermore, in
order to explain these results we provide a detailed construction of a novel classical hy-
drodynamic theory for multipole-conserving many-body systems, in full agreement with

our numerical results.

6.1 Higher-moment-conserving spin models

We start by introducing a set of spin models in one dimension that exhibit multipole-
conserving dynamics. Even though numerically we will be concerned with generic cir-
cuit/automaton models in the absence of energy conservation for large parts of this chap-
ter, the structure of multipole-conserving systems is most instructively illustrated using
Hamiltonian models. We thus begin by constructing generic spin Hamiltonians conserv-
ing arbitrary moments of the charge (which corresponds to the z-basis magnetization
here). The structure of these models serves as input for the definition of suitable automa-
ton dynamics without energy conservation and also sets the stage for the investigation of

energy-conserving quantum systems with multipole constraints in the subsequent chapter.
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Figure 6.1: Higher Moment Conservation Laws. a) Recursive construction: A charge-conserving
move (m = 0) creates a local dipole, which in turn is a charge-neutral dynamical object of a dipole-
conserving model (m = 1). This process is iterated to conserve higher moments. b) The late time

dynamics of charges exhibits subdiffusive decay, with algebraic exponents depending on the highest
conserved charge moment (here: m = 1).

Once we understand the construction of such models, we find that the derivation of an

effective hydrodynamic description ensues quite intuitively.

Our first goal is now to construct a spin Hamiltonian conserving both the total charge

(i.e. the 0-th multipole moment)

QY =3%"5;, 6.1)
as well as the dipole moment (the 1st multipole moment)

QW => z5: (6.2)

of the local magnetization. This definition of the dipole moment is not invariant under
translations on the lattice and so we restrict our analysis to systems with open boundary
conditions for simplicity in the following. We emphasize however that our results on
the dynamics in the bulk of the system will be independent of the choice of boundary
conditions. We implement the conservation of dipole moment recursively, starting from

a simple Hamiltonian of the form

10, + 1., (6.3)

m)
Il

with
10, = 3" (84 85,1 + hee) (6.4)

x
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hosting local XY-type terms of range » = 2 that conserve the total charge Q. H, con-
tains arbitrary local terms diagonal in the 5*-basis that render the model non-integrable.
The S, 52 are spin operators in a given spin representation S. Considering Eq. (6.4), an
elementary term

th) (z) S;_Sa:&-l (6.5)

moves a charge between sites + 1 and z. Alternatively, we can intuitively interpret these
elementary terms as creating a dipole against a homogeneous background, ,hgo) (z) ~ db’
(we note however that the dt,t /d, are not creation / annihilation operators that fulfill canon-
ical commutation relations). In this simple interpretation, a local term that conserves not
only the charge but also the dipole moment Q(!) can then be obtained by simply multi-

plying the operator hgo) (x) with its hermitian conjugate at some shifted position, e.g.

W) = (n (x))T WO (2 4 1). 6.6)

Building a model by summing over such local terms yields
A A A 2,
Y =387 (S5) Soe + hee, 6.7)
T

asystem that has been studied in the context of Hilbert space fragmentation [235, 236, 236—
238, 463, 464].

Having constructed a model in Eq. (6.7) that conserves both Q(*) and Q"), the above re-
cursion can straightforwardly be iterated to obtain models conserving arbitrary moments

of the charge,
QM = "am Sz, (6.8)

h

More formally, we consider an mt" moment conserving Hamiltonian of range r in the

form
H™ =3 " nm(2) + hec., (6.9)

whose local terms can be expanded as

Asgn|om (2 ‘Om(i)‘ . .
A (z) = (SQEH[ m( H) ,with 0,,(i) € Z, (6.10)
where by definition 0,,(0) # 0, oy, (r — 1) # 0, and sgn[-] € {+, —} is the signum function.
For the charge-conserving XY -terms, 0¢(0) = —o¢(1) = 1. Again, arbitrary terms diago-
nal in $% could be added to Eq. (6.10) without affecting the conservation laws. Analogous

to the argument above, given pim=h (x), we can then construct a (r + ¢)-range term that
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additionally conserves the m*" moment by imposing the recursion relation

O’m(Z) = —Om— 1( ) + Oom— 1(Z — 6) (6.11)

on the exponents of the spin ladder operators. Eq. (6.11) reflects the construction of fIﬁTg

via shifting an elementary m-pole by ¢ sites. As illustrated in Fig. 6.1 (a), the elementary
m-pole configurations have vanishing lower moments and a spatially independent m"
moment, similar to usual charges. However, their number is not conserved.

We notice that Eq.(6.11) can be rephrased as a discrete lattice derivative of spacing
b, 0m (i) = —Ay [om—1] (1), which implies 0, (i) = (—A;)™[00] (7). If the elementary XY -
terms are interpreted as a finite difference with spacing ¢ = 1, (—A;)[f](0) = >_, 00(4) f(3)
with some lattice function f(i), the exponents o,, (i) effectively correspond to a lattice

discretization of the (m + 1)% derivative

(=A™ f Z Om (i (6.12)

Using the spin commutation relations and Eq. (6.12), we see that

Q™ h{m) (s Zam (x40)" = (=A,)" 2" =0 (6.13)

for n < m, i.e. all moments Q<™ are indeed conserved. The same holds for longer
range Hamiltonians, using alternative discretization schemes of the involved deriva-

tives. We note that this is a discretized version of the field theory construction in Ref. [279].

6.2 Emergent hydrodynamics

Given the models of Egs. (6.9,6.10), we wish to understand the effective hydrodynamic
theory that governs the time evolution of the course-grained charge density (S2) = (5%(t))
at late times. Let us first emphasize the need for a hydrodynamic description beyond the

simple diffusion equation
d

dt

which we expect to be applicable in systems conserving a conventional global charge

(S2) = D2 (S2) =0, (6.14)

but without further multipole conservation laws. If we consider a closed system with
a domain wall initial state as depicted in Fig. 6.2, the diffusion equation Eq. (6.14) leads
to a broadening of the charge (magnetization) density into an error-function. However,
such a process clearly breaks the conservation of dipole moment, as there is a net current
of charge from one half of the system into the other. Hence we conclude that Eq. (6.14)
needs to be revised in the presence of dipole- or higher-moment conservation.

To understand how such a novel hydrodynamic description can emerge in the

107



t=20 Q) = const.
. QW £ const.
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8

Figure 6.2: Domain wall melting. Starting from a domain wall initial state in a closed system,
a simple diffusion equation gives rise to a broadening of the domain wall. This process breaks the
conservation of dipole moment as there is a net current of charge from right to left half of the system.
This demonstrates the need for a novel hydrodynamic description in the presence of dipole or higher
multipole conservation laws.

multipole-conserving systems of Egs. (6.9,6.10), we recall that the elementary terms of
Eq. (6.10) can be viewed as moving elementary multipoles through the system. This al-
lows us to define a local ‘multipole current’ J™ via

1

(m) ._
I = 2

(W™ (z) — h.c.), (6.15)

which reduces to the familiar charge current for the case m = 0 (in fact, this is a one-
dimensional version of generalized currents appearing in fractonic systems [466]). The
local multipole current J{™ characterizes the dynamics of the system and we wish to
derive the change of the local charge density due to the presence of these local currents.
To this end, we consider the Heisenberg evolution equation of the charge density SZ. This
yields .
Gz (B3 m Oz m m

250 = 3 ™, §7] = (= Ay, (6.16)
where we used the relation Eq.(6.12). We emphasize that this form of the time evolu-
tion applies to arbitrary Hamiltonians conserving the m!" moment of the charge, with
microscopic details only entering the precise form of Jim, Eq. (6.16) is a generalized ver-
sion of the continuity equation, which reads 457 = (=A2) 7YY in conventional charge-
conserving systems. Here, Eq. (6.16) implies that the charge current in the system is given
by the m-th derivative of an elementary multipole current [279]. Fig. 6.3 provides an in-
tuitive illustration of Eq. (6.16) for the dipole-conserving case m = 1.

To arrive at a differential equation, we now go to a course-grained description where we
consider the evolution of expectation values in the limit of long wavelengths, assuming

large enough variation lengths in space:

S5(t) = (55,
Ay — 0y

(6.17)
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Figure 6.3: Dipolar continuity equation. We consider the dynamics of the local charge density
resulting from the presence of local dipole currents J,S) in the system. This gives rise to a generalized
continuity equation which takes the form of second derivative on a lattice, turning into a second spatial

derivative in the limit of long wave lengths.

Insertion into Eq. (6.16) then leads to the continuity equation

C 82 = (-0 (), (6.18)

Let us emphasize here for clarity that (S?), corresponds to a course-grained — but nonequi-
librium — charge density as indicated by the subscript ¢ in the expectation value. In partic-
ular, in this instance the brackets (-), # (-) do not indicate an average over an equilibrium
ensemble, for which £ (5%) = 0 would clearly vanish. The relation between expectation

values in- and out-of-equilibrium will be addressed in further detail in Sec. 6.5.

To obtain a closed equation for the coarse-grained charge density (S?),, we require a
hydrodynamic assumption which relates the multipole current to the derivatives of the

charge density (see e.g. Ref. [467]). We therefore expand

(JIM)Y, = =D (8,)1™ (82), (6.19)

xT

and our task is to find the lowest possible (i.e. most scaling relevant) /(m) € N such that

n<m

) (In Sec. 6.5, we pro-

vide a scaling analysis that shows that non-linear terms in the expansion of (Jﬁm)h are

D # 0 is consistent with the conservation of all moments Q(

irrelevant). We emphasize that here we have neglected the potential impact of energy
conservation for simplicity. We return to the coupled hydrodynamics of charge and en-
ergy in the presence of multipole conservation laws in the next chapter of this thesis. For
charge-conserving interacting quantum systems (m = 0), known to generically exhibit
diffusive transport at late times [58-60, 65, 66, 184, 189, 456, 457], we should obtain Fick’s
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law
(JOY, = =D 3, (52),, (6.20)

ie. £(0) = 1, resulting in the usual diffusion equation for ($Z), upon insertion into
Eq.(6.18). However, as seen in the domain wall example of Fig.6.2, general solutions

of the diffusion equation break higher-moment conservation.

How can we thus generalize Fick’s law to higher conserved moments? We notice that
in a closed system with open boundary conditions and in the absence of sinks or sources,
the current

() g = (™), 00 =0 (6.21)

>t—>oo

is expected to vanish in equilibrium. Combining this condition with
(JE)y = =D (9:)" ™ (52), (6.22)

leads to the equilibrium charge distribution

(S2)eq. = a0+ @17 + .+ gy 2= D7 a2t (6.23)

Eq. (6.23) is a polynomial of degree {(m) — 1 and contains a number ¢(m) of independent
constants as; which characterize the equilibrium state. On the other hand, since we as-

sumed conservation of all moments Q=™

, we know that that the equilibrium state of
the charge density has to be characterized by m + 1 independent parameters. This im-
mediately determines ¢(m) = m + 1, and the natural generalization of Fick’s law is thus

given by

(JEm)y, = =D (0,)™ T (S2), . (6.24)

This coincides with the intuition of the finite difference construction of the multipole cur-
rent Jx(m): the dynamics balances out inhomogeneities of the m!" derivative of the charge
density.

Inserting the generalized Fick’s law Eq. (6.24) relation back into the continuity equation
Eq. (6.18) that determines the charge density dynamics, we finally arrive at the general-

ized hydrodynamic equation

82, = D) @) (53), (625)

valid for generic thermalizing systems conserving all multipole moments up to and in-
cluding m. We emphasize that our derivation not only predicts the hydrodynamic equa-
tion Eq. (6.25), but also the expected equilibrium distribution Eq. (6.23) in closed systems,
where the corresponding constants a, = a,(Q("="™)) are uniquely fixed by the charge mo-

n<m

ments Q=™ of the initial state. In systems of size L they typically go as |a,| ~ O(L~),
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but are manifest in e.g. observables involving macroscopic distances like (S%) — (S57).
We close the analysis of this section with the remark that usually, the hydrodynamic
description of a system conserving m + 1 quantities is given by a set of m + 1 coupled
equations for the associated densities and currents [385, 468, 469]. However the present
systems are described by a single equation Eq. (6.25) for the charge density. This is due to
the hierarchical structure of the conservation laws Eq. (6.8) that specify all Q™ in terms
of the fundamental charge density of the theory. In other words, the multipole conserva-
tion laws for m > 1 are not associated with an independent local density which would
contribute a hydrodynamic mode. This is because, as we have commented on below

Eq. (6.11), there is no conserved number of elementary local multipole objects.

6.3 Analytical solution and numerical verification

Eq. (6.25) is the central result of this chapter and it is worthwhile to consider its solutions in
detail. Introducing the short hand n(z,t) := (S5%), for the course-grained charge density,

Eq. (6.25) takes the following form in momentum space,

i _ 2(m+1)
Znla1) = = [ DDt nq, 1), (6.26)

which is solved by n(q,t) ~ exp(—Dg*™+Vt). The normalized fundamental solution in

real space is of the form

. (6.27)

1 - [ L2(m+1) }

d .
G(m)(x’t) :/;eXp(—DQQ(mJ’_l)t) GXP(_qu) = (Dt)l/Q(m—i-l)F

where F(™) is a universal scaling function which can be written in terms of generalized
hypergeometric functions [470]. We emphasize that Eq. (6.27) implies a dynamical expo-
nent

z=2(m+1) (6.28)

that relates the scaling of space and time under scale transformations. The time evolution
of a charge density profile starting from G (z,0) = §(z) should then be described by
Eq. (6.27). By standard linear response theory [385], the solution Eq. (6.27) should coincide

with the (infinite temperature) dynamical correlation functions
CM (1) = (S3(1)85(0)) , (629)

where (...) denotes an equilibrium average (notice the absence of the nonequilibrium sub-
script t) of S5%(t)SZ(0) over all initial states in the Hilbert space. A more detailed analysis
of the linear response arguments connecting Eq. (6.27) and Eq. (6.29) will be provided in
Sec 6.4.

We now attempt to compute the correlations Eq. (6.29) numerically for a given model
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in order to verify the qualitative prediction of subdiffusive hydrodynamics. In our
numerical approach we do not attempt to solve the full time evolution of a dipole-
conserving quantum Hamiltonian but instead focus on efficiently simulable automaton
circuits [205, 386-388] that respect the same conservation laws of Eq. (6.8); see App. A.3 for
an overview of this method. Since we anticipate the emergence of hydrodynamics at late
times, the crucial properties of our models should reside solely in the structure of their
conservation laws. Qualitatively, the hydrodynamic charge transport in the system at
late times should then be independent of the precise nature of the microscopic evolution.
Under the assumption that the conservation of energy is not crucial to understanding
the dynamics of charge in the system, we expect to capture the correct hydrodynamics
in these simple classically simulable circuits. We will return to verifying this assump-
tion in the next chapter. Loosely speaking, the discrete automaton time evolution that we
consider here consists of a sequential application of local updates mapping z-basis prod-
uct states onto z-basis product states. The updates are designed to mimick the action of
the Hamiltonian by updating between local strings of spins s(x) = (g, ..., Sgtr—1), With
si € {=5,..., S}, that are connected by the local terms of Eq. (6.10) and thus feature the
same conserved charge moments. We provide the full details of our numerical approach
in Sec. A.3.1. Furthermore, we emphasize here that throughout this thesis, different ways
of implementing such effectively classical automata are utilized. The qualitative hydro-
dynamics that we are most interested in is not sensitive to the precise nature of this imple-
mentation. We have verified this robustness numerically, which indicates that our results
are indeed representative of dynamical universality.

For concreteness, we study a dipole conserving model with S = 1 including interaction
terms of Eq. (6.10) of ranges r = 3 and r = 4 !, as well as a quadrupole conserving model
with larger spin representation S = 4 including ranges r = 4 and r = 5, both on system
sizes up to L = 10%. While generally the hydrodynamic tails for given m are expected
to be universal for sufficiently ergodic systems, in numerical practice, larger r and S will
provide faster convergence to this long time behavior. As the dynamics is expected to
become slower upon increasing m, i.e. the number of constraints, we choose a larger spin
representation S = 4 in the quadrupole case to allow for a more accurate determination
of algebraic exponents.

We show the results of the automaton evolution for the return probability C™)(0,t)
in Fig.6.4(b). In contrast to ordinary diffusive systems which possess the scaling
C©(0,t) ~ t~1/2 [385], we numerically estimate the algebraic late time decay exponents
tobe C1)(0,t) ~ t~0248 ~ t~1/4in the dipole-conserving model, and C?)(0,t) ~ t=0170 ~
t~1/6 for the conservation of quadrupole moment. These results are in very good agree-
ment with the predictions of Eq. (6.25) and thus Eq. (6.27). Furthermore, Figure 6.4 (b,c)
shows that indeed the full spatial profile of the scaling function Eq. (6.27) emerges at late

times in the dynamical spin correlations, displaying full agreement with our numeri-

'This model was shown to thermalize for typical initial states in Ref. [235].
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cal results for both m = 1,2 upon fitting the only free parameter D. In particular, as
demonstrated in Fig. 6.4 (c,d), C("™ (z,t) accurately follows the scaling collapse predicted
by Eq. (6.27).

~10 00 5 10
x/t1/4 x/t1/6

Figure 6.4: Hydrodynamics: Numerics. a) Return probability C(™)(0,t) for dipole- and quadrupole
conservation. The long time behavior approaches an m-dependent algebraic decay ~ ¢t=1/2(m+1)  The
numerical values of the exponents where extracted from fits over the latter three time decades (dashed
lines). b)+c) Scaling collapse for m = 1 and m = 2 according to the long wave-length description
Eq.(6.27). In addition to the numerical data, the fundamental solution of Eq. (6.27) (dashed line) and
the corresponding Gaussian expansion (see main text) up to order n = 4 (circles) are shown. The
system size is L = 10* and correlations were averaged over at least 103 random initial states in all
panels.

We notice that for m = 0, Eq. (6.25) reduces to the usual diffusion equation and C%) (z, t)
is a Gaussian probability distribution describing the movement of an initially localized
excitation through the system [385, 471]. In contrast, for m > 1, as shown in Fig. 6.4 and

more generally clear from a vanishing second moment
(@) gm) = / dr 2°G"™ (x,1) =0, (6.30)

O™ (z,t) cannot be interpreted as a probability distribution. Instead, the associated oscil-
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lations in the profile of C™(z,t) form a characteristic signature of higher-moment con-
servation that can potentially also be observed in quench experiments of domain wall

initial states, see Fig. 6.5 (b).

21 —_ initial state p— 1.0-
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Figure 6.5: Implications of higher moment conservation. a) In a finite size system with open
boundary conditions (gray dashed lines), the charge density relaxes to an equilibrium distribution that
is a polynomial of order m (here: S = 3). The black dashed lines are the analytical predictions from
Eq. (6.23). b) The melting of a domain wall in a dipole conserving system for sufficiently large spin
(here: S = 2) appears as the cummulative distribution function of C'")(z,t), with characteristic charge
density oscillations.

In addition, we notice that the central peak of C("™ (z,t) in Fig. 6.4 (c,d) is well approx-
imated by a Gaussian g(z,t) = exp (—22/0%(t)) /\/702(t) with o(t) = (Dt)}/20"+1). The
additional dressing density modulations can be understood heuristically if we interpret
the Gaussian distribution g(z, t) as describing the movement of an excitation through the
system as part of m-poles. Conservation of Q™>% implies that a surrounding cloud of
opposite charge has to be dragged along, see Fig. 6.1 (b). The effective length scale for this

process is given by o (t). This intuition can be formalized by making an Ansatz
C™ (x,t) = co ga, t) — ¢ [9(z + o (t) + g(z — o (t)] = g(x,t)[co — deaz® /a(t)?]. (6.31)

Thus, a positive charge moving to = &+ o(¢) implies an increased likelihood of simultane-
ously finding a negative charge at x. Generalizing this physically motivated Ansatz, we

can expand

2 n
™ (z,t) = g(x, t) chr;) <_U:2E(t)> . (6.32)

Fig. 6.4 (c,d) shows excellent agreement already at low orders of the expansion, where
each term provides an additional oscillation in the spatial profile of C(™)(z, ).
Finally, we emphasize that we cannot only verify the predictions of the hydrodynamic

equation Eq. (6.25), but also the prediction Eq. (6.23) of the form of the equilibrium charge
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distribution within our numerical approach. We do so in small systems by monitoring
the charge distribution resulting from a fixed inital state at very late times. Fig.6.5(a)
shows a chosen initial charge distribution in a system of size L = 20, as well as the late
time distributions obtained from evolving the system using both dipole- and quadrupole-
conserving automata. The resulting distributions are in very good agreement with the

predicted polynomials of Eq. (6.23), validating our approach.

6.4 Fluctuating hydrodynamics

The previous sections have demonstrated that the hydrodynamic equation Eq. (6.25) ac-
curately captures the dynamics in multipole-conserving many-body systems. However,
there remain two questions that we briefly raised previously and that we now address in
more detail: First, is Eq. (6.25) robust to adding additional multipole-conserving terms,
i.e., does Eq. (6.25) represent the most relevant contribution to hydrodynamis in the long
wave length scaling limit? And second, how is the relaxation of a nonequilibrium course-
grained charge density (SZ), as described by Eq. (6.25) connected to the dynamical corre-
lation function Eq. (6.29) taken with respect to an equilibrium ensemble?

In this section we first tackle the latter question: Eq. (6.25) describes the dissipation of
a nonequilibrium charge excitation while (SZ(#)5Z(0)) from Eq. (6.29) is related to fluctu-
ations in equilibrium, and so we clearly require a fluctuation-dissipation relation connect-
ing the two. This can be achieved following the approach of fluctuating hydrodynamics:
We include microscopic noise in the hydrodynamic equation Eq. (6.25) with the goal of
extending it to include fluctuations in equilibrium. The following derivations are analo-
gous to the standard diffusive case [59, 472]. Let us return to the generalized continuity

equation of Eq. (6.18),

% (52), = (=0a)" (™), =0, (6.33)

valid for systems conserving all multipole moments Q<™. We now extend the expan-
sion (J;gm)>t = —D (9y)™*! <§§>t discussed previously to include microscopic noise fluc-

tuations £(z, t) of the multipole current, i.e.
(M), = =D ()" (S5), + & (1), (6.34)
We take the noise £(z, t) to be uncorrelated,

(€(z,1) (2", ¥)) = B2 8(x — 2) 6(t — 1)

(6.35)
(€(qw)é(d,w")) = B*6(q+ ) 6w + ),

where we have also provided the corresponding form of the correlations in Fourier space.

As we will see, the strength B of the noise is tied to the correlation functions of the charge
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density in equilibrium [59, 472] and is of microscopic origin. Using Eq. (6.34), the equation

of fluctuating hydrodynamics for multipole-conserving systems becomes

C 82+ D ()@, (82), = (-0 e 1), (6.36)

For ease of notation, let us at this point introduce the short hand
n(z,t) := (S2), (6.37)
for the course-grained charge density, such that Eq. (6.36) reads

%n(:ﬂ, t) + D (=1)™ (9,2 (2, 1) = (—9,)" T e(x,t). (6.38)
The solution of Eq. (6.38) is readily found by switching to momentum and frequency vari-

ables, )
—ig)™mt
n(gw) = — =)

- m &(q,w). (6.39)

With Eq. (6.39) at hand we can compute the correlations of the course-grained charge den-

sity n(z,t) = (S%), with respect to an equilibrium ensemble (at infinite temperature),

dgdq' dwdw’ ;0w
(nfen(0.0) = [ HEEEE - (g (o)) =
o 2(m—+1)
_ dqdw ezwt—zq:c q B2 = (640)
(272 w2 + D2 Am+D)
B2 dq _. 2(m+1) B2
_ 2 Y —iqx ,—Dgq t_ 2 (m)
oD ) ¢ € op & @)

where G (z, t) is exactly the fundamental solution Eq. (6.27) to the hydrodynamic equa-
tion Eq. (6.25) in the absence of a fluctuating term. From the first to the second line we
made use of Eq. (6.35) and we used the theory of residua to obtain the third line. We re-
call that n(z,t) = (S2), is the course-grained charge density, and so the left hand side of
Eq. (6.40) corresponds to (SZ(t)S%(0)) in our previous spin models. Therefore, we indeed
find )

= EG

which we have used in the numerical benchmarks of our hydrodynamic theory. Further-

Ct™ (@, t) = (S5(1)S5(0) ) (a, 1), (6.41)

more, in the static limit ¢ — 0 Eq.(6.40) gives rise to a fluctuation-dissipation relation

(FDR) )
(n(x)n(0)) = o

which relates the static correlations in equilibrium to the diffusion constant.
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6.5 Scaling analysis

Within the framework of fluctuating hydrodynamics we can now answer the question
initially posed in the previous section; whether our hydrodynamic equation Eq. (6.25) is
robust to adding additional multipole-conserving terms? The key approximation in the
derivation of Eq. (6.25) is the hydrodynamic assumption, stated in Eq. (6.34) within the
fluctuating hydrodynamic description. Our goal is now to determine the relevance of
additional terms in this expansion, provided that the required multipole conservation

laws remain intact. Therefore, we set
(M), = (™), [0V ((S2),)°] =D aig () ((S2),)" + €(x, 1), (6.43)
g

with i,j € N in a more general expansion of the coarse-grained multipole current. We
present a general scaling analysis in the following, demonstrating that the term j = 2(m+
1), i = 1is indeed the most relevant term consistent with conservation of all Q<™ in
such an expansion. Again, the analysis closely follows the standard diffusive scenario
laid out in Refs. [59, 472].

The starting point of our scaling approach are Eq. (6.36) and Eq. (6.35) and we consider
a scale transformation  — /X with A\ > 1. The scaling dimension of z under this rescal-
ing, denoted by square brackets [z], is thus given by [z] = —1. Upon demanding that
Egs. (6.36,6.35) be a fixed point under this rescaling, i.e. [D] = 0 and [B] = 0, the scaling

dimensions of ¢, &, (SZ), can be determined. First, we obtain
(] = —2(m +1) (6.44)

from the left hand side of Eq. (6.36), which reflects the dynamical exponent z = 2(m + 1)
of the hydrodynamic theory Eq. (6.36). Second, integrating Eq. (6.35) over space and time

leads to

/ dvdt (€ (2, 1)E(0,0)) = B2. (6.45)

As the right hand side of this relation is scale invariant, [B] = 0, the scaling dimension of

¢ (in one spatial dimension) must be
(€] = (—[t] — [2])/2 =m + 3/2. (6.46)

Finally, inserting the scaling dimension of £ into Eq. (6.36) implies that both left and right
hand side of Eq. (6.36) must have dimension 2m + 5/2, and therefore

[(S2),] = 1/2. (6.47)

Given these scaling dimensions, we can now assess whether additional terms included
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in the expansion of <J9(3m)>t in Eq. (6.43) are relevant or not, provided they be consistent
with multipole conservation laws. In particular, since both sides of Eq. (6.36) have a total
scaling dimension 2m + 5/2, we see that the term «; (8,)7 (SZ)" in Eq. (6.33) implies a

scaling dimension

o] =m+ 1=+ 3 (1) (6.48)

of the corresponding coefficient «; ;. Therefore, all terms with j > m + 1, i > 1 as well as
j=m+1, 1> 1 areirrelevant under the flow of the scaling.

How about potentially relevant/marginal terms, which have j < m+land 1 < i <
2(m 41 — j) + 1?2 For j = m + 1 we are back to the term (9,)"*! (5%), which results
in our hydrodynamic equation Eq. (6.25). All other relevant/marginal terms necessar-
ily have j < m + 1, and thus fewer derivatives than the number of m + 1 independent
constants necessary to characterize equilibrium. As a consequence, integrating the con-
dition ( (m)>eq.

sufficiently many freely adjustable parameters for the equilibrium charge distribution.

= 0 of a vanishing multipole current in equilibrium does not provide

In other words, for terms with j < m + 1 it would always be possible to find initial
states such that the conservation of some Q"< is broken. All such term must thus
be excluded in the expansion of Eq. (6.43). Overall, we indeed find that the expansion
<Ja(;m)> ~ —D(0,)™"! <§§>t captures the unique, most scaling relevant term consistent

with all multipole conservation laws.

6.6 Small scale quantum model with dipole conservation

As described in the previous section, we performed large scale numerical checks of the
hydrodynamic theory Eq. (6.25) using effectively classical automaton-type dynamics. In
this section we demonstrate that our results are also consistent with the full quantum time
evolution of a dipole-conserving Hamiltonian. Although we are restricted to considering
relatively small system sizes, our results are consistent with the subdiffusive dynami-
cal exponent z = 4 predicted by our hydrodynamic theory. Larger scale simulations of
Hamiltonian quantum dynamics will be addressed in the next chapter.
Here, for numerical feasability, we choose spin S = 1/2 and study the Hamiltonian
given by
=8+ ah, (6.49)

on open boundary conditions, where

L-3
Y = =N 185815705 5 + huel, (6.50)
r=1
and
L—4
A = = N1 S5150,555 4 + heel. (6.51)
r=1
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The parameter L corresponds to the length of the chain and it is readily verified that H

conserves the total magnetization and dipole moment, i.e.,
[H,Y57]1=0 (6.52)
x

and

[H,> 257 =0. (6.53)

We focus on the largest sector of the Hilbert space connected by the Hamiltonian, which
has Y, §2 = 3 8% = 0. We remark that the structure of the Hamiltonian H in Eq. (6.49)
has been analyzed in detail in Refs. [235, 464], which demonstrated that His ergodic and

its Hilbert space is only weakly fragmented.

~0.25
0.5

100 10! 102 103
time ¢

Figure 6.6: Return probability C()(t), defined in Eq. 6.54, for several system sizes L € {16, 20, 24, 28}.
CM(t) decays to zero algebraically C™M)(t) ~ t~, with a consistent with a subdiffusive relaxation
a =~ 1/4. The dashed-lines ~ t=%-5 and ~ t79-25 serve as guides for the eye.

Here, we focus on the dynamics of the return probability of the spin correlation func-
tions, which we define as
CO(t) = (657 (1)857 15(0)). (6.54)

In Eq.(6.54), (-) = #&Tr[] is the normalized infinite-temperature trace, where A corre-
sponds to the dimension of the connected Hilbert space sector that we restrict ourselfes
to. Furthermore, we defined 5§i /Q(t) = 5”2 /Q(t) - (S”E /2(t)>, which removes a potential
offset (S7 /Q(t) due to finite size effects.

Figure 6.6 shows C'!)(t) for several system sizes L € {16,20,24,28}. For small sys-
tem sizes L € {16,20}, C(V)(t) has been computed using exact diagonalization, and for
L € {24,28} using Chebyshev polynomials techniques for time evolution [473, 474]. As
expected, already after a short time of order O(1), C™)(t) ~ ¢t~ decays algebraically.

The slow relaxation towards equilibrium is subdiffusive, o < 1/2. In agreement with the
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results obtained above, the observed decay appears to be consistent with the expected ex-

ponent « = 1/4 for ergodic dipole-conserving Hamiltonians (blue dash-line in Fig. 6.6).

6.7 Unrestricted movement of multipoles

As a final undertaking in this chapter, we address how elementary multipoles move in
generic systems with multipole conservation laws. In the simplest case m = 0, charges
themselves correpond to the elementary mobile objects and they undergo diffusive dy-
namics. It is thus natural to ask whether in the case of m-pole conserving dynamics —
where the charge is now subdiffusive — the unrestricted elementary m-pole objects per-
form diffusive motion as well. As we have argued above, there is no local multipole den-
sity beyond the charge density S2. However, we have provided a consistent definition
of the local multipole current Jém) in our models through Eq. (6.15). We can thus check
for a diffusive process by means of a Kubo formula: Let 7™ (t) = 3" Jim (t) be the
total multipole current in the system, then we can define a mean squared displacement
<(X (m))Q(t)> via the current correlations

t

m))2 1 m m

((X)20) = 2 52 3T @) 7™ ). (6.55)
t=01""=0

In the standard diffusive charge-conserving scenario this mean squared displacement

scales linearly in time,

(xO)*w) ~t. (6.56)

We can thus speak of unrestricted, diffusive multipole motion if the scaling of Eq. (6.56)
extends to higher multipole moments m > 0.

In order to verify that this is indeed the case we compute Eq.(6.55) within the
automaton dynamics described in the previous section. In particular, the local up-
dates of the automaton where chosen to mimic the action of the local Hamiltonian
terms h{"™ (z) and (hfnm) (:c))T, which move an elementary multipole either to the left
or right, respectively. Therefore, each application of an update corresponding to
w2/ (hﬁm) (:zc))T yields a positive /negative contribution to 7™, respectively. Fig.6.7
shows that the mean squared displacement rapidly approaches a linear growth for both
dipole- and quadrupole-conserving automata. Formally, this can be associated with a

finite multipole-conductivity

6.8 Conclusions & outlook

In this chapter we have studied the long-time dynamics of higher-moment conserving
models, obtaining a generalized hydrodynamic equation relevant for fractonic systems

that leads to subdiffusive decay of charge correlations. We emphasize that for dipole-
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Figure 6.7: Multipole conductivity. The multipole mean squared displacement as defined in

Eq. (6.43). The linear growth is indicative of a finite multipole conductivity.

conservation, our results are in agreement with the subdiffusive scaling experimentally
observed in Ref. [197]. Therein, an initially prepared k-wave density mode of interacting
fermions was found to decay as ~ exp(—k*t) in the presence of a strong, linearly tilted
potential. As we outlined in Sec. 2.3.3, the linear potential couples directly to the cen-
ter of mass ), x 7, (see also [475]) and thus enforces an effective dipole-conservation on
long length scales. The observed subdiffusive decay agrees with Eq. (6.25). We note fur-
ther that the analysis of the present chapter suggests that an effective conservation of the
quadrupole-moment may be obtained in a similar manner by application of a harmonic po-
tential. We point out that independent works on the hydrodynamics of dipole-conserving
fracton systems [206, 322, 389] appeared at the same time as our Ref. [2]. In particular,
Ref. [389] derived the hydrodynamic equations, in agreement with our results, from an
effective field theory approach [476-478]. Since then, a number of works have considered
the hydrodynamics of systems with fracton mobility constraints [6, 103, 207, 479-483].

In addition to the subdiffusive decay of the return probability, we have identified os-
cillations in the spatial density profile both for delta and domain wall initial conditions.
These oscillations are a characteristic property of the hydrodynamic universality class
for multipole-moment-conserving fracton systems and should be detectable in quantum
quench experiments. Furthermore, in the context of consed matter systems, the presence
of higher-moment conservation would lead to a modified scaling of the full-width-half-
maximum of the Lorentzian line shape as ~ k**1) in Fourier space, which could be
detectable in scattering experiments [484]. Finally, we emphasize again that we expect
our results to be applicable to the long-time dynamics of closed quantum systems. We
have obtained indications consistent with this expectation by studying a small system

size quantum lattice model. However, a larger scale approach that also takes into ac-
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count the conservation of energy — which we have not included in the hydrodynamic
theory presented here, neither in our automaton circuit numerics — is desirable. In the

following chapter, we will tackle these challenges.
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Coupled hydrodynamics in
dipole-conserving quantum systems

This chapter is based on the publication

Ansgar Burchards, Johannes Feldmeier, Alexander Schuckert, Michael Knap,
“Coupled hydrodynamics in dipole-conserving quantum systems”, Phys. Rev. B
105, 205127 (2022)

Structure, text and figures have been adapted for the purposes of this thesis. Secs. 7.2,7.3
contain material not included in the publication. The 2PI field theory approach and the
associated numerical data presented as part of Sec. 7.3 have been devised and obtained

by Ansgar Burchards.

Upon concluding the previous chapter, we posed the question of emergent hydrody-
namics in closed quantum many-body systems that in addition to their fracton constraints
also feature conservation of energy. Our previous numerical approach of random cir-
cuit time evolution was able to capture the novel hydrodynamic universality exhibited
by multipole-conserving models and we formulated two key expectations: On the one
hand, the universality class of subdiffusively slow charge dynamics persists upon includ-
ing conservation of energy. And on the other hand, such hydrodynamics indeed emerges
at late times from a unitary closed system quantum time evolution, of which we saw at
least small scale numerical evidence. Both of these expectations require verification and
we set out to achieve this goal in this chapter.

Specifically, in this chapter we investigate the nonequilibrium dynamics of a one-
dimensional system of lattice bosons with charge-, dipole- and energy-conservation. We

first derive a general set of equations within the framework of linear fluctuating hydro-

123



dynamics — similar to Chapter 6 — that take into account couplings between charge- and
energy-excitations in the presence of dipole conservation; Sec. 7.1 and Sec. 7.2. As a re-
sult of this analysis we find that the dynamics of the model should exhibit a subdiffusive
mode of mixed charge-energy excitations as well as a diffusive mode of pure energy ex-
citations; a schematic example of the decay of general energy excitations — which have
overlap with both modes — is illustrated in Fig.7.1. We then go on to compare this ef-
fective hydrodynamic picture with the quantum time evolution of a specific bosonic lat-
tice model, which is studied by means of nonequilibrium quantum field theory using a
2-particle-irreducible (2P1) effective action. Within this framework, we verify the appli-
cability of our mode-coupled hydrodynamics in Sec. 7.3.3 and extract all components of
a generalized diffusion matrix. An outlook and a discussion of how our results can be
related to quantum simulation experiments are provided in Sec. 7.4. For details on the

2PI approach we refer to the publication of Ref. [6].

104+ space x N

10° 103 10° 10° 1012
time ¢t

Figure 7.1: Coupled hydrodynamics in fractonic quantum matter. The decay of a generic local
energy excitation in a dipole-conserving closed quantum system generally has overlap with both hydro-
dynamic modes present in the system: a diffusive mode with dynamical z = 2, visible at earlier times,
as well as a subdiffusive mode with z = 4 which dominates the late time approach to equilibrium. The
shown curve was obtained from the coupled hydrodynamic theory of Eq.(7.18). Insets: The full spatial
profiles of the energy excitation at intermediate (lower left) and late (upper right) times.

7.1 Mode-coupled hydrodynamics

Building on the results of the previous chapter, we derive the fluctuating hydrodynamics
of dipole- and energy-conserving systems within a mode-coupled Ansatz. As we restrict
to dipole-conserving systems in this chapter, we adapt some of our notation accordingly.

We consider a one-dimensional quantum system whose time evolution is generated
by a microscopic lattice Hamiltonian H that conserves a global U(1) charge Q as well as

its associated dipole moment P. Expressed in terms of microscopic charge and energy
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densities i, and h,, the conserved quantities read

H=Y hyy Q=) ftzy P=) ziy (7.1)

Our goal is to formulate a long-wavelength description of transport for the set of con-
served quantities (7.1) within linear fluctuating hydrodynamics. In this approach, hy-
drodynamic equations for the conserved macroscopic densities are combined with noise
terms accounting for fluctuations that are generated by the underlying microscopic de-
grees of freedom.

Let us first consider the continuity equation of a single conserved quantity, such as

energy
oe(z,t) = =0, J¢(z, 1), (7.2)

where e(z,t) and J¢(x, t) are the coarse-grained energy and current densities. Taking the
long-wavelength limit, a gradient expansion of the current can be performed. The first

order term leads to Fick’s law
J(xz,t) = —D.0ze(x,t). (7.3)

Including microscopic current fluctuations £°(z,t), we obtain the fluctuating hydrody-

namic equation for a single diffusive mode,
Ore(x,t) — DO2e(x,t) = Bo0yt®(,t) (7.4)

where space and time are related by the dynamical exponent z = 2. We have absorbed

the noise strength into the prefactor B,, such that
(€ (@, )€ (2", 1)) = 6(z — a")o(t = 1) (7.5)

describes uncorrelated Gaussian white-noise of unit strength.
As we have seen in the previous chapter, the time evolution of the coarse-grained
charge density n(z,t) is drastically modified by dipole conservation. We recall that the

fundamental dynamical objects in the system are dipoles, a fact we can incorporate by in-

a) . b)

! I
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Figure 7.2: Symmetries of local current densities. a) The energy current is odd under inversion I.
b) Under inversion a positive dipole moving to the right is turned into a negative dipole moving to the
left. As a result, the dipole current is even under inversion.
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troducing a coarse-grained dipole current J¢(x,t). We emphasize the change in notation
JM) — J¢ compared to the previous chapter. We have derived the fluctuating hydrody-
namics of a single conserved charge combined with general multipole conservation laws
previously. Nonetheless, we will find it very helpful in the following to briefly recount
the most direct way of obtaining the correct equation specifically for dipole conservation.
Importantly, as opposed to a more conventional charge current, J¢(z,t) is even under

spatial inversion I ,seeFig.7.2,i.e.,
1IN, ) = JY(—x, 1). (7.6)

Thus, the current transforms under inversion in the same way as the underlying charge

density n(z,t), and the corresponding continuity equation assumes the form [2, 389]
on(x,t) = 02J%x, t). (7.7)
In the absence of energy conservation, the generalized Fick’s law
JU(z,t) = —D,8n(x,t) (7.8)

then preserves inversion invariance of the resulting hydrodynamic equation, see
Eq.(6.38),
on(x,t) + Dpdin(z,t) = B,0%¢d(x,t). (7.9)

Here, we included dipole-current fluctuations £4(x, t) with
(€, )2 1)) = 6(x — 2)o(t — t'). (7.10)

In systems exhibiting the full set of conserved quantities (7.1), we must find a descrip-
tion that combines Eq.(7.4) and Eq.(7.9) while taking into account possible couplings
between the charge and energy densities. This amounts to including cross-terms in the

derivative expansion of the currents J¢ and J¢:

J = —Dpnd*n — D,.0%
J¢ = —D¢pn0in — DO e.

(7.11)

Eq. (7.11) includes the most relevant (i.e. fewest derivatives) terms compatible with inver-
sion symmetry of the resulting hydrodynamic equations. A potential coupling between
the microscopic current fluctuations vanishes: £°¢? is odd under inversion according to

our previous considerations, such that the expectation value
(e =0 (7.12)
in an inversion invariant equilibrium ensemble. Combining Eq. (7.11) with the continuity
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equations (7.2, 7.7) and switching to momentum space, our Ansatz becomes

[0, + k2D (k)] (") = ikB(k) ('fd) , (7.13)

where we have defined the matrices

(k) = (k;Dnn k;Dne>7 B(k) = (ian o>' 714)

As dipole conservation implies a diagonal matrix B(k) due to Eq. (7.12), only two of the
diffusion constants entering D (k) will turn out to be independent. The details leading to
this conclusion are presented in Sec. 7.2. In essence, this can be seen by considering the

fluctuation-dissipation relation associated with Eq. (7.13):

D(k)C* + C* DT (k) = B(k)BT (—k), (7.15)

where C* is the matrix of static equilibrium correlations, see Eqs. (7.23,7.24) for the formal
definition. The Onsager relations for kinetic coefficients require that D(k)C* is symmetric

(see Sec. 7.2 below). Using Eq. (7.15) this is equivalent to

| CivDen + C5,Dec = 0, (7.16)

which further implies
Cs,Dnn + C5,Dye = 0. (7.17)

When the static equilibrium correlations are known, Egs. (7.16, 7.17) can be used to deter-

mine two of the diffusion constants entering Eq. (7.14).

Solving the coupled hydrodynamic equations (7.13) in the long-wavelength limit pre-
dicts the existence of two independent modes, a diffusive energy-only mode as well as a

subdiffusive energy-charge mode. In particular, inhomogeneities of the initial state decay

k,t 0 5 1
R A G N (7.18)
e(k,t) 1 -

where D,,, = Dyyp— D’gii@” is the renormalized subdiffusion constant governing the decay

of the mixed energy-charge mode and the constants a, b are fixed by the initial state. In the

according to

next sections, we will discuss in detail the arguments leading to the fluctuation dissipa-
tion relation of Eq. (7.15) and the conditions of Egs. (7.16,7.17). Following this discussion
we study the dynamics of a specific, strongly interacting bosonic system using nonequi-
librium quantum field theory. Within this approach we verify that Eq.(7.18) provides

an accurate description of the quantum evolution emerging at late times. Furthermore,
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comparing the microscopic dynamics to Eq. (7.18) we can extract the two constants D,
and D,,,,. Together with Egs. (7.16, 7.17) this allows us to directly link all entries of the

diffusion matrix (7.14) to model parameters of the microscopic Hamiltonian.

7.2 Solving the hydrodynamic equations

In the previous section we gave a brief overview of the most important aspects of the hy-
drodynamic equations in Eq. (7.13). This overview is sufficient to move on to the analysis
of a specific quantum field theory with dipole-conserving dynamics in Sec. 7.3 below.
Here, we give a detailed analysis of the solution of Eq.(7.13) and the derivation of the

associated fluctuation dissipation relations.

7.2.1 General solution

Let us consider the mode-coupled hydrodyamic equation Eq. (7.13) in more detail. Intro-

ducing the vector notation
o= (0). o= (S).
Eq. (7.13) is written as
[0y + k2D (k)| u(k,t) = ikB(k)&(k, t)., (7.20)
which becomes in frequency space
[iwl + k*D(k)|u(k,w) = ikB(k)&(k,w). (7.21)

We have introduced the 2 x 2 identity matrix 1 in Eq.(7.21) to make its matrix structure

explicit. The formal solution to Eq. (7.21) is thus given by
u(k,w) = ik[iwl + k*D(k)] " B(k) &(k,w). (7.22)

Using this result, we can obtain the matrix of dynamical correlations between the local

densities. They are defined as

Oty = [Cn@ D) Cuclat)) _ ((n(an(0,0)) (n(z,1)e(0,0))) _
o ' )e(0,0))  (e(x, t)e(

Cen(z,t)  Cee(z,t) (n(x,t)e(0, (e(z,1)e(0,0)) (7.23)
= (u(z, t)u’(0,0)).
The static equilibrium correlations are obtained from Eq. (7.23) via
C%(x) = C(x,0). (7.24)
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In Fourier space, the dynamical correlations accordingly read

2

C(k,w) = / drdt ikt Clx,t) = / dk'du’ (u(k,w)u” (k') . (7.25)
Using Eq. (7.22), the matrix C(k,w) can be evaluated as

Clhk,w) = / Ak du (— k')

x {[iw]l + K2D(K)] ' B(k) (€(k,w)€T (K ,w")) BT (k) [iw'1 + () 2DT (k)] *1}.

(7.26)
Making use of the diagonal nature of the noise correlations,
(€(k,w)E" (K, ")) =158(k+ k) 6(w + '), (7.27)
Eq. (7.26) becomes
C(k,w) = K2[iwl + k*D(k)] " B(k)BT (=k) [—iwl + (k)>DT (k)] ", (7.28)
where we made use of the symmetry D(—k) = D(k).
7.2.2 Leading order solution
We now diagonalize the diffusion matrix D(k),
D(k) = V(k)Q(k)V " (k), (7.29)
where
Qk) = (wlék) w;z k)> (7.30)

is a diagonal matrix containing the dispersion of the two hydrodynamic modes. Explicitly,

using Eq. (7.14), we obtain to leading order in k:

(k) = (Dan - D’gi@”)k? +O®kY
WQ(k) = Dee + O(kZ) (7.31)
V(k) = (_; ?) +O(k?).

We obtain a subdiffusive mode k*w; (k) ~ k* of coupled charge-energy excitations, corre-
sponding to the first column of V (k), as well as a diffusive mode k?ws (k) ~ k? of pure en-
ergy excitations, corresponding to the second column of V (k). The leading order solution

of Eq. (7.31) is sufficient to determine the decay of inhomogeneities in the course-grained
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charge and energy densities, resulting in Eq. (7.18). Interestingly however, the leading
order will not be sufficient to derive the fluctuation-dissipation relations, for which the

exact diagonalization of D(k) needs to be considered.

7.2.3 Conductivity and Onsager symmetry condition

We consider the conductivity matrix defined by the current correlations

oap(k,w) = g (5 (k,w) 52—k, —w)), (7.32)

where j*=™¢ are now the current densities of charge (whose current is obtained from the
dipole current through a derivative) and energy. Due to the usual continuity equations,

the conductivity matrix is related to the dynamical density correlations via

pu®

Wcab(kaw)' (733)

Uab(k, w) =

In particular, using the leading order results from Eq. (7.31) for the density correlations of

Eq. (7.37), we can directly evaluate the zero-momentum conductivity in the static limit,

. (o0
ul)lg%] ok =0,w) = 5 <0 B§> . (7.34)

As expected, only the diffusive energy mode sustains a finite conductivity. Furthermore,
due to the reversability of the microscopic time evolution, the Onsager symmetry relations
require that the conductivity matrix o(k,w) be symmetric. Within an exact diagonaliza-

tion of the diffusion matrix in Eq. (7.28) for the dynamical correlations, we obtain
One(k,w) = Oen(k,w) & B2Dpe — B2D,y, (7.35)

and must therefore set
B2’D,. = B>D,, (7.36)

in order to obtain a symmetric conductivity matrix.

We remark that we can formally also define a “dipole conductivity’ via the correlations
of the dipole current J%, 044 := lim, 0 limy o g (J4k,w)J4~k, —w)). Evaluating this
expression yields a finite dipole conductivity o4q = gBEL, consistent with a diffusive mo-
tion of dipoles through the system as observed in the automaton dynamics of the previous

chapter.
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7.2.4 Static correlations

By inserting the diagonalization of D (k) from Eq. (7.29) into Eq. (7.28) we obtain

Ck,w) =
= KV (k) [iwl + Q)] V1 (R)B(R) BT (—k) (VT (k) [—iwl + B2Q(k)] VT (k).
(7.37)
We now define
=W+ w -1
[p1(w) = iw + w1 (k)] (7.38)
[p2(w) :=iw + wz(k)]_l,
as well as the symmetric matrix
M=V (R)B(R)BT (—k) (V)" (k). (7.39)
We can then express Eq. (7.37) as
Clh.w) = V(E) (Mn p1(w)p1(—w) Mz p1(w)p2(—w)> VT (). (7.40)
Moy p2(w)p1(—w)  Maz pa(w)p2(—w)
Now, from Eq. (7.40) and using that
2
[ demtoms-o) = St 7.41)

the static equilibrium correlations become

C*(k) = /dwC(k,W) =V (k) (

2Miy [wi (k)] Mg (w1 (k) + WQ(k)]—1> VT
Moy [wi(k) + w2 (k)] 2 Mg [wa (k)] 1 -7

(7.42)
Explicitly, the components of C*(k) read
Cs (k) = BgD%ekQ + B%(Dge — DypeDepk? + DmDeekQ)
nn N (DnnDee - DneDen)(Dee + Dnnk2)
B2D? + B2(—DpeDep + DppDee + D? k2
Cle(k) = ——72 Bl T + D) (7.43)

(DnnDee - DneDen)(Dee + Dnnk2)
B%DenDee + BgDnnDnek2

Cen(k) = Cne(k) - (DnnDee - DneDen)(Dee + DnnkZ) .

Inspecting Eq. (7.43) we might be led to think that the static correlations have a non-trivial
momentum-space dependence, which would lead to a spatial profile at time ¢ = 0 that
is not a sharply localized delta distribution. However, we see that the k-dependence

in Eq.(7.43) is removed upon taking into account the Onsager symmetry relations of
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Eq. (7.36), such that

S Br2LD€€
Cnn =
DnnDee - DneDen
2
Cs, = Be Drn (7.44)
DnnDee - DneDen
€2 = Oty = —5—DoDen

o _DnnDee + DneDen

The static correlations are thus independent of k as required.

7.2.5 Fluctuation dissipation relation

In order to state the fluctuation dissipation relation for this systems of coupled hydro-
dynamic modes, we point out that we can interpret Eq. (7.20) as two coupled diffusive
modes in which the charge mode has a scale-dependent diffusion constant. The natural
candidate for the form of the fluctuation dissipation relations in our setup is then given
by

D(k)C® + C* D" (k) = B(k)B" (—k), (7.45)

which differs with respect to the more conventional case of two diffusive modes only
through the additional k-dependence of D(k) and B(k). It can readily be verified
that Eq. (7.45) indeed holds by inserting the static correlations C* derived in Eq. (7.44).

Eq. (7.45) thus represents the fluctuation dissipation relations in the system.

We remark that Eq. (7.45) also holds when inserting the (formally k-dependent) static
correlations C*(k) of Eq.(7.43), even before making use of the symmetry condition
Eq.(7.36). This shows that the fluctuation dissipation relation and Onsager symmetry
are a priori independent: The fluctuation dissipation relation follows from the hydrody-
namic equations Eq. (7.20) alone, while Onsager symmetry is a more general consequence
of microscopic time reversal symmetry. An equivalent form of the Onsager symmetry
condition in our system demands that the matrix D (k)C* (k) of kinetic coefficients be sym-

metric. This leads to the equations
Cfm(k)Den + an(k)Dee =0, (7.46)

and
CS.(k)Dpyp + C2.(k)Dpe = 0. (7.47)

By inserting the form Eq. (7.43) of the static correlations it can then be verified explicitly
that the condition of Eq. (7.46) and that of Eq. (7.36) are in fact equivalent. Eqs. (7.46,7.47)

determine two of the four constants entering the diffusion matrix D (k).
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7.3 A bosonic quantum field theory

In the previous two sections we derived a coupled hydrodynamic theory for a subdif-
fusive charge mode in the presence of dipole-conservation as well as a diffusive energy
mode. In this section we verify the accuracy of this hydrodynamic description in a bosonic
quantum system with conserved dipole moment. The time evolution of the bosonic lattice

model is evaluated using nonequilibrium quantum field theory on the Keldysh contour.

7.3.1 Model

We study a bosonic one-dimensional lattice Hamiltonian with dipole conservation,

H= J(Zgﬁj,ld??gijﬂ +he) FU Y il — 1), (7.48)

H, pair Hy

where (;ASZT / #; denote bosonic creation/annihilation operators at site i and n; = Q@Iqﬁl are
the corresponding occupation number operators. The first term describes a short-ranged
and dipole-conserving hopping of bosons which can be interpreted as a kinetic term for
particle-hole pairs. The second term constitutes a local repulsion between bosons. We
note that the equilibrium phase diagram of this dipole-conserving Bose-Hubbard model
has recently been discussed in Ref. [485]. We consider fillings above unity, where hy-
drodynamic behaviour is not expected to be inhibited by effects such as localization due
to strong Hilbert space fragmentation [206, 235]. This regime is challenging to investi-
gate by numerical methods such as exact diagonalization and matrix product states due
to the unrestricted local Hilbert space dimension, the rapid build up of entanglement, as
well as the large systems and late times that are in general required to reach the hydro-
dynamic regime. In the following we consider a nonequilibrium field theoretic approach

that overcomes these limitations at the expense of approximating interaction effects.

7.3.2 Nonequilibrium field theory approach

We provide a brief, high level overview of the field theoretic approach employed in Ref. [6]
to study the the time evolution of charge and energy in the model of Eq. (7.48). For details
on the method and its implementation for the dipole-conserving system at hand we refer
to Ref. [6].

We start from the microscopic action
Stol = [ &t 3 Gidi0s - H(.0), (7.49)
¢

where the time integral runs along the Schwinger-Keldysh contour C and H (¢, ¢) denotes
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the normal-ordered Hamiltonian. The operators ¢; ((ﬂ) have been replaced by complex
fields ¢; (¢;). All quartic terms are removed by a Hubbard-Stratonovich transformation,
which introduces a complex decoupling field x for the correlated hopping term Hp,;, as
well as a real decoupling field A for the onsite interaction term Hy;. The action is expressed

as

3 _ I T

7

(7.50)
— \/i(yiai@ﬁrl + @i 10X + G dil\;) },

with the matrix V;; = $(6; j+1 + 6;j—1). In order to characterize the dynamics of charge

and energy density we would like to compute the connected correlation functions

Gij(t1,t2) :<Tc ai(t1)¢j(t2)>, Dij(ty, t2) = <Tc E(tl)xy‘(t2)>

(7.51)
Oij(t1, t2) =<TC Ai(tl)Aj(t2)>’

where T¢ denotes time ordering on the Keldysh contour. The nonequilibrium field theory
approach is now based on deriving effective equations of motion for the correlations in
Eq.(7.51). This is achieved via the 2PI effective action I'*"!, which generates such equa-

tions of motion through a stationarity condition [486]

ST G, D, O]

— 2 =, 7.52
0K;j(t1,t2) (7.52)

for K = G,D,0. Thus, the central object of this approach is the effective action T'?,
which can be decomposed into 1-loop mean field contributions I'1°°P) and higher or-
der contributions I'; that are given by the sum over all vacuum 2PI diagrams [487, 488].
Approximating this by a subset of 2PI diagrams respects the underlying microscopic sym-
metries and global conservation laws [489], which in our case is crucial as we are inter-
ested in transport properties. For our model, I's is approximated in a 1/N expansion in
the number of real field components (N = 2 here) to next-to-leading order, which con-
stitutes a non-perturbative approximation including arbitrarily high orders in the inter-
actions [457, 486, 488, 490-499]. Within this approximation the equations of motion are
derived through Eq. (7.52). They are then solved numerically, see Ref. [6], with a complex-
ity that generally scales quadratically in the simulated time and in the number of lattice

sites.
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7.3.3 Numerical analysis: Coupled hydrodynamics
Initial states

In order to verify the predictions made by the coupled hydrodynamic theory of Eq. (7.18),
we want to study the dynamics of charge- and energy-inhomogeneities independently.
Within the above 2PI field theory approach this can be achieved by constructing the initial
states [6]

p= () exp {—Bi(Uni(hi — 1) — pifq)}. (7.53)

Due to the uncorrelated nature of these states between different lattice sites, they have
vanishing energy with respect to the correlated hopping term of the Hamiltonian. At
the same time, f3; controls the local density fluctuations which carry energy under the
density interaction term of the Hamiltonian. Therefore, adjusting the spatial profiles of
inverse temperature 3; and chemical potential 1; in the states Eq. (7.53) allows us to vary

the energy and charge profiles of the initial state independently.

Charge subdiffusion

With the nonequilibrium quantum field theory and the possibility to implement the initial
states Eq.(7.53) at hand, we can probe the dynamics of charge excitations. To this end,
we start from an initial with an excess charge at site ¢ = 0 on top of a homogeneous
background with charge density np, leading to a profile (n), (¢t = 0) = np + 6;9. We
then follow the profile n;(¢) as a function of time, see Fig.7.3. We find that already after
relatively short time scales ¢ > O(1) (in units of the correlated hopping .J) hydrodynamic
behavior starts to emerge. Performing a scaling collapse of the charge profile, the dynamic
exponent is indeed z = 4 as expected. In addition, the charge profile is clearly non-
Gaussian and exhibits the oscillations characteristic of dipole-conserving hydrodynamics
as derived in the previous chapter. In practice, the subdiffusive dynamical exponent z = 4
is very robust within the numerical quantum field theory simulations, both upon varying

the background density np as well as the strength U of the onsite interactions.

If we set the bosonic density interaction U > 0, we expect that a local charge excitation
also leads to a local excitation in the energy density. Upon varying U, we find that the
charge dynamics merely experiences a renomralized diffusion constant; see Eq. (7.18). In
contrast, for finite U the energy density couples to the charge density and is consequently
dominated by the same subdiffusion at late times. This confirms our expectation that a
subdiffusive mixed charge-energy-mode should exist. We then naturally expect that the
strength of this mixing is proportional to U for small values of the onsite interaction, i.e.
Den/Dee ~ U.
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Figure 7.3: Charge dynamics. a) The time evolution of the charge profile at different times starting
from an initial state with a localized excess charge on site x = 0. b) The rescaled charge profile collapses
to the expected scaling function F(1) for dipole-conserving systems. The scaling collaps clearly shows
a dynamical exponent z = 4.
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Figure 7.4: Energy dynamcis. a) The profile of the energy density at different times starting from
an initial state with localized excess energy at * = 0 but with homogeneous charge density profile.
b) A scaling collapse of the energy density profile reveals a Gaussian shape broadening according to a
dynamical exponent z = 2.

Energy diffusion

In order to verify the predicted emergence of a second, diffusive pure energy mode, we
now prepare initial states with homogeneous charge density np but a highly localized
energy inhomogeneity at site ¢ = 0. Intuitively, these are states where locally, parti-
cle number fluctuations are enhanced although the average occupation remains at np.
The time evolution of the energy profile is depicted in Fig.7.4. The height of the pure-

energy excitation decays as ¢ /2

sian F(O)(z) = \/%e*ﬁ/ 2 as expected. These results qualitatively confirm the validity of

while the profile exhibits a scaling collapse to a Gaus-

the coupled hydrodynamic description of Eq. (7.18). Physically, the diffusive pure energy
mode, which becomes the only energy mode for U = 0, is consistent with the diffusive
motion of dipoles in the system: While there is no microscopic local dipole density in the
system that directly reflects this process, diffusive dipole motion formally manifests itself

in a formally finite dipole-conductivity as discussed in Sec. 7.2.3.
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7.3.4 Numerical analysis: Elements of the diffusion matrix

As we have seen the microscopic model considered in this chapter allows us to directly
connect the microscopics of the Hamiltonian with the macroscopic emergent hydrody-
namics. We can therefore use our approach to extract the elements of the diffusion matrix
D(k) of Eq.(7.14), and connect them with the microscopic parameters entering the lattice
Hamiltonian Eq. (7.48). Before considering the numerical results of the 2PI field theory
approach, we formulate some qualitative expectations for the scaling of the elements of

D(k) with the parameters of our model.

Proper units

As our goal is to extract the elements of the diffusion matrix D(k) of Eq.(7.14) in the
following, let us briefly discuss the proper units in which these elements should be given.
Inspecting the decay of inhomogeneities in Eq.(7.18) and taking into account that the
lattice spacing (as well as /i) was set to unity, it is clear that both D,,,, and D.., and thus

also D,,,, can be measured in units of the correlated hopping energy scale J,
[Dnn] = [Dee] = [J] (7.54)

The units of the remaining two constants D,,. and D, can then be inferred from the On-

sager symmetry conditions Eqs. (7.46,7.47),

[Den] = [C2] + [Dee] = [Cpn] = [J] +[J] = 0 = [J7]

(7.55)
[Dnel = [C2u] + [Dun] = [C2] = [J] + [J] = [J%] = 0.

Here, we have used that [C5,] = [J], [C5.] = [J?] and [C%,,] = O for the static correlations.

Scaling with correlated hopping J

Egs. (7.54,7.55) provide us with the correct units of the diffusion matrix elements but are
also indicative of the expected scaling of these elements with J. In particular, if we write
the Hamiltonian Eq. (7.48) at some fixed ratio of U/.J as

H =73 { (01103041 + bia (8D + Siulis = 1)}, (7.56)
J becomes the only energy scale in the problem. Hence, on purely dimensional grounds

we expect
Dpn < J, DeexJ, DepxJ?, Dpeox J. (7.57)

Eq. (7.57) can also be demonstrated explicitly: Let us consider a rescaling of J in Eq. (7.56)

as J — c¢J with some constant ¢ > 0. This rescales the Hamiltonian H — cH
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and thus also the local energy density e(z,t) — ¢'(x,t) = ce(x,t). Starting from a
given initial state, the rescaling of the Hamiltonian is equivalent to a rescaling of time,
exp{—i(cH)t} = exp{—iH(ct)}. The decay of inhomogeneities in the local charge density
n(z,t) and rescaled energy density €' (x,t) = ce(x, t) is thus given simply by rescaling the

time in Eq. (7.18) and multiplying the second line on its right hand side by the constant c:

n(k’ t) _ ae—Deek}2ct 0 + bC_DkaACt 1 ) (758)
e (k,t) c fg—:c

At the same time, the dynamics of n(z,t) and €'(z,t) should be characterized by new

effective diffusion constants D;,,, D! ,, D., , D., , and new initial conditions a’, ¥/,
n k}, t ’ 0 N/ 1
( ) _ al e—De,e,k2t + bl e—Dnnk‘4t D, ) (759)
e'(k, 1) 1 -5

Direct comparison of Eq. (7.58) and Eq. (7.59) leads to the relations

/
ad=ca, b=0

) b Dy, D (7.60)
D;n = D, Dle’e’ = cDee, DZ/:/ = CDZ: '

The latter two relations in the second line of Eq. (7.60) then imply
D)., = c*Dep. (7.61)
Together with the first relation in the second line of Eq. (7.60) this leads to
D! =cDyn, D.. =Dy, (7.62)

Together, Egs. (7.60-7.62) reproduce our expectation Eq. (7.57).

Static correlations

The static infinite temperature correlations C'¥, can be calculated analytically for the model

of Eq. (7.48). They are given by

Cfm = <ﬁ”l’fll>7 sze = CSn = <élﬁ’b>> Cee = <élél>7 (763)

ee

Here, the local energy density has been defined as

1 .- ~ 1.
& =h{ + Z(h;‘]—l +hig) + ihZ], (7.64)
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with

hY = Uny(i; — 1)

L (7.65)
hl =Jél |24l |+ hc.

Notice that 3", é; = H as required. The density matrix at infinite temperature is given by
p= %e‘f’“ 2ini, with B (for B — co) such that (n;) = np. From this density matrix we

can compute the static correlations,

Cr, = HQB +np
Con = Cre = Uldn + 4nf) (7.66)
Cs. = 4U?(5nh 4 6n% + n%) + 4J°n%(n% + 2ng + 1)

Extracting the diffusion matrix from numerical data

Finally, we consider the numerical results from our quantum field theory approach. From
the time evolution and the decay of initially localized charge- and energy-excitations, we
can fit the (sub)diffusion constants D,,,, and De. according to Eq. (7.18) upon Fourier trans-

forming the k-space solutions back to real space.
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Figure 7.5: Diffusion matrix. The numerically determined values of the entries of the diffusion matrix
Eq. (7.14) at infinite temperature, as functions of the local interaction strength U/J and for different
average charge densities ng. The different panels show a) D,,, b) D,., ¢) D.,, and d) D... a)
Charge-charge diffusion constant D,,,, governing the subdiffusive decay of charge excitations. The entry
D, in b) was obtained using the Onsager relations. Dashed lines are obtained by applying Eq. (7.17)
to a linear interpolation between the available numerical data points.

There are then several ways to extract the off-diagonal diffusion constant D,,,. Here
we choose to take an initial state with non-zero (but small) dipole moment and evolve to
very late times, such that the steady state is reached. Similar to our arguments of Sec. 6.2
in the previous chapter, the steady state profile of both charge and energy density can be
derived by setting the currents J¢ = J¢ = 0 to zero in equilibrium. Using this condition in
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the hydrodynamic expansion of (7.11) results in linearly tilted charge and energy profiles

in the long time limit, i.e.

Neq(T) = np + tpx 7.67)
€eq(T) = €p + tet.

The ratio of the two tilts t,, and ¢, if non-zero, is related to elements of the diffusion matrix

as D ;
e 7.68
Dee tn ( )

Due to the minus sign in this relation, we see that D.,, < 0. Numerically, we can ex-
tract both the charge and energy density tilt and obtain the off-diagonal constant D.,,
through Eq. (7.68). We numerically find a parameter dependence of steady state tilt ratios
as Dey/Dee = —t./t,, & —4Unp. This result coincides precisely with what is predicted by
the Onsager symmetry Eq. (7.16) upon inserting the static equilibrium correlations at in-
finite temperature that we have calculated. We have thus demonstrated the emergence of
the Onsager relations from our microscopic approach. Accordingly, within our hydrody-
namic model we can then use Eq. (7.17) to determine also the diffusion constants D,,,,, D¢
in terms of the numerically extracted value for Dy Dee, Den. We show all entries of the
diffusion matrix as functions of interaction strength U and background charge density in
Fig.7.5.

Keeping the filling fixed, Fig. 7.5 shows that both diagonal entries of the diffusion ma-
trix eventually become small as the interaction strength U becomes large. This agrees with
our expectation that U — oo corresponds to a Mott limit where the dynamics comes to a
halt entirely. In addition, we see our expectation confirmed that the off-diagonal entries
of the diffusion matrix vanish at U = 0. In this limit, charge and energy modes decouple.

In contrast, keeping the interaction strength fixed as we vary the charge density np of
the system, excitations becomes more mobile and we find that within our numerics, both
diagonal diffusion constants increase approximately linearly with np for np > 1. We
interpret this feature as a result of Bose-enhancement for increasing filling.

Finally, we remark that in principle, if the filling np is sufficiently small, effects of
Hilbert space fragmentation in this dipole-conserving model should become relevant as
the bosons can no longer find nearby particles to coordinate their movement with, lead-
ing to extremely slow relaxation or even localization [206, 235]. However, such features

are beyond the field theory approach used here.

7.4 Conclusions & outlook

In this chapter we have studied the emergent, coupled hydrodynamics of charge and
energy in a system of dipole-conserving lattice bosons at infinite temperature. We have

confirmed the presence of a subdiffusive mode of mixed charge and energy excitations,
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as well as a diffusive pure energy mode. The quantum field theoretic results were found
to be well captured by an effective hydrodynamic model, which allowed us to extract
the dependence of the generalized diffusion matrix on the parameters of the microscopic
Hamiltonian.

We emphasize that our general hydrodynamic description is qualitatively independent
of microscopic details. In particular, as noted in previous works on dipole-conserving hy-
drodynamics [2, 389] and in the previous chapter, the subdiffusion of charge with z = 4
is in agreement with an experimental study in a two-dimensional fermionic system in
the presence of a tilted potential [197]. The associated Hamiltonian, described also in
Sec. 2.3.3, is given by H = Hpy + F > Tzity, Where Hpy is the usual Fermi-Hubbard
model. More generally and independent of whether we consider bosons or fermions and
1D or 2D, the center of mass (or dipole moment) in such a tilted setup is expected to be a
conserved quantity up to times 7 ~ exp(F/t), i.e., exponentially long in the tilt strength,
by the arguments of prethermalization [236, 320-322] (¢ is the usual single-particle hop-
ping). Within this timescale the dynamics is governed by a dipole-conserving effective
Hamiltonian, such as Eq. (7.48), with correlated hopping strength J ~ U(t/F)? in a basis
obtained from the Schrieffer-Wolff transformation. Both the number of particles as well
as their non-tilt energy are conserved densities in this basis. If the prethermal timescale 7
is longer than the local thermalization time of the resulting effective dipole Hamiltonian,
the coupled hydrodynamic theory of Eq. (7.13) will be applicable to these two modes. Our
results should then be viewed as the system’s ‘prethermal hydrodynamics.” Whether the
above condition is satisfied might be verified in quantum gas microscopes by measur-
ing the fluctuations of the dipole moment. In addition, it is an interesting open question
how the dynamics of the off-diagonal correlated hopping, and thus the energy, could be
measured in cold atom quantum simulation experiments.

After the timescale of prethermalization the dipole moment is no longer strictly con-
served; tilt energy and non-tilt energy of the effective Hamiltonian will then be converted
into one another. Therefore, at the longest times the diffusive non-tilt energy ceases to be
a well defined hydrodynamic mode as shown in Ref. [389]. Nevertheless, in this late-time
regime the coarse-grained charge dynamics is still governed by an emergent hydrody-
namic description equivalent to the hydrodynamics of dipole-moment conserving sys-
tems, leading to a subdiffusive mode with z = 4 [197, 389]. It is an interesting question
for future work to determine whether this dynamical crossover has an impact on the value

of the charge subdiffusion constant Din.
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Critically slow operator spreading in
constrained many-body systems

This chapter is based on the publication

Johannes Feldmeier, Michael Knap, “Critically slow operator spreading in con-
strained many-body systems”, Phys. Rev. Lett. 127, 235301 (2021)

Structure, text and figures have been adapted for the purposes of this thesis.

The previous chapters have demonstrated that fractonic systems with dipole-
conservation laws indeed feature exotic out-of-equilibrium dynamics, characterized by a
novel universality class of hydrodynamic transport. However, in recent years it has been
realized that hydrodynamic descriptions apply not only to emergent transport in generic
interacting quantum many-body systems, but also to entanglement growth [61, 62, 225—
227] and operator spreading [63-66, 189, 224]. The key characteristics of these processes
at late times and long length scales are qualitatively independent of microscopic de-
tails [61, 63, 64]. As such, they can be captured in minimal models of random unitary
circuits, which we have already seen to be simpler to handle — both analytically and nu-
merically — than microscopic Hamiltonians. Once again, the central ingredient entering
such models is the structure of their conservation laws which can qualitatively affect the
aforementioned processes. For example, random unitary circuit studies have shown that
the ballistically moving front of out-of-time-ordered correlations (OTOCs), which char-
acterize the spatial spreading of operators, is augmented by algebraic tails caused by
global U(1) charge conservation [65, 66]. Given this impact of charge conservation on
OTOCs and our results from previous chapters, it is natural to raise the interesting ques-

tion whether the presence of a fractonic dipole conservation law may also affect the uni-
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Figure 8.1: Dynamical phase diagram of operator spreading. Our dipole conserving system
exhibits a localization transition at a critical density n.. In the limit of long time scales, operators
spread ballistically on the ergodic side n < n., and are frozen on the non-ergodic side n > n. of the
transition. At the critical density, the operator front spreads sub-ballistically as ~ ¢'/2% with z = 4.
The lower panels show the associated OTOC; Eq.(8.3). The sub-ballistic spread is visible also away
from the critical density at finite times within a ‘critical fan’, bounded by a crossover time that diverges
as |n — n.|~%* upon approaching the transition.

versal aspects of operator dynamics.

In this chapter, we find such new behavior in the operator dynamics of a one-
dimensional, dipole-conserving chain. As demonstrated in Ref. [206], such systems can
be tuned from an ergodic phase with subdiffusive transport to a localized / strongly frag-
mented phase as a function of density. As the dynamics of operators is expected to exhibit
universality, we can resort to the use of classically simulable automaton circuits [205, 386—
388, 500] to determine the spread of the operator front in these different regimes. For more
details on the numerical evaluation of OTOCs in such classically simulable circuits we re-
fer to App. A.3. We find that while the OTOC front propagates ballistically at long times
in the ergodic phase and freezes in the localized phase, the critical point between the two
phases is characterized by a sub-ballistic spread, see Fig. 8.1. We provide a phenomenolog-
ical model that explains these numerical results via the effects of long-lived and localized
rare regions, leading to a description of the moving operator front in terms of a biased

random walk with long waiting times.

8.1 Model and automaton circuit evolution

We focus on a one-dimensional chain of length L with 3-state onsite Hilbert space. The
computational basis states are denoted by |n) = |(n_r 2, ..., n1/2-1)), Wwhere n, € {0,1,2}

labels the local qutrit basis. Defining the occupation number operators Z, via Z, |n) =
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ny |n), we can construct a global U(1) charge Q= Yow Z, as well as its associated dipole
moment P = S, & Z;. In the following, we are interested in unitary time evolution oper-
ators U (t) that commute with both Q and P simultaneously. We decompose U (t) = [, U;
in terms of a layered circuit structure of local 4-site gates U, see Fig.8.2. The local gates
U; in turn are chosen randomly, subjected to the condition of preserving @ and P. As
selecting the U;’s from the full set of Haar random unitary gates proves challenging
for large-scale numerical simulations, we again work with randomly chosen automaton
gates [205, 386-388], see App. A.3 for further details, which satisfy the condition

Ui [n) = e |n/). (8.1)

Thus, product states within the computational basis |n) are, up to a phase 6,,, mapped to
new product states within that basis. Such circuits can effectively be simulated as classi-
cal cellular automata and are valuable tools to capture universal dynamical properties at

infinite temperature.

Let us reiterate that through the use of such random circuits subdiffusive transport can
be established in the above model [2, 206, 207, 501], see Chapter 6, as observed in the

(connected) charge correlations:

~

(Zs(t) Z(0)),,_, — 1 ~ t7Y*F (2 1). (8.2)

Here, z = 4 is the dynamical transport exponent, F(-) is a universal scaling function,
“~ is an explicit notation for the circuit average and (-),, denotes an ensemble average
over initial states at a chemical potential x(n) that fixes an average charge density n. Fur-
thermore, Ref. [206] showed the existence of a localization transition at a critical density
close to (and possibly exactly at) n, = 1.5. Due to particle-hole symmetry there is another
critical density n. = 0.5. Here, we restrict our analysis to 1 < n < 2 and work with

n. = 1.5 exactly in the analysis of our numerical results. For n > n, the charge corre-

lations (Z,(t) Zg (0)) psn, — n? — const. # 0 no longer decay towards their equilibrium
value.
T / /
a) b) My Mpy1 Mgy Ngg3

Ny Mg41 Nx4+2 Ngy3
Figure 8.2: Time evolution. a) The time evolution is given by a layered circuit structure consisting of

random unitary automaton gates of range four. b) The gates map local strings of occupation numbers
to other such strings under the constraints of charge- and dipole-conservation.
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8.2 Out-of-time-order correlators

We now proceed to study the spreading of operators. This can be done via out-of-time-

ordered correlation functions (OTOCsS). In particular, we consider the correlations

CER 1) = ([Za(8), Xo(0)][Za(0). Ko O)]1) 33)

where we have defined a shift operator Xy = |2), (0] 4 |0), (1] + 1), (2| that modifies the
charge at site 0. We now make use the automaton evolution Eq. (8.1) introduced in the
previous section to simplify the expression Eq.(8.3) of the OTOC to a form suitable for

efficient numerical evaluation (see App A.3.2),

n eflu’zz Nz “ R R R 2
CPR (. t) = > [(nlZ(In) - (r] Xo Zo(t) X{ )]
= Z — C,x(x,t;n). (8.4)

Here, we introduced a ’single-shot’ OTOC C, y (x, t; n) for a single initial state |n) and a
single circuit realization. This quantity is efficiently evaluated numerically and amounts
to the local charge difference at site  between two initial states |n), X g |n) that are evolved
in parallel up to time ¢ via the same circuit realization. The remaining sum over ini-
tial states |n) in Eq.(8.4) can be sampled stochastically. We emphasize that the OTOC
C(Z"))( (x,t) for automaton time evolutions has been shown to reproduce the expected fea-
tures of more general random unitary circuit structures [205, 386, 502, 503]. In the follow-
ing, we consider the spread of the OTOC as a function of time by evaluating the expres-
sion of Eq. (8.4). We study how varying the average density n affects the dynamics of the
OTOC. We first analyze the two limiting cases of densities n either deep in the ergodic or
deep in the localized regime before discussing the fate of the OTOC at the critical point

Ne.

8.3 OTOC in the ergodic regime

Let us first focus on the qualitative dynamics of the OTOC, Eq. (8.3), at long times deep in
the ergodic phase. At half-filling n = 1, Fig. 8.1 (b) shows the common light-cone struc-
ture, with a ballistically propagating OTOC front. We can analyze the spatio-temporal
form of the OTOCs in this regime in more detail. In particular, following the consider-
ations of Refs. [65, 66], in the ergodic phase the OTOC C(Zg)((ac, t) is expected to feature
algebraic tails behind a ballistically propagating front. This is due to the overlap of the
7 - operator with the conservation laws in the system, which implies the presence of a
conserved operator weight in the Heisenberg time evolution that relaxes only hydrody-

namically slow. With the subdiffusive transport properties of Eq. (8.2), the expected shape
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of the arising tails is
1— CP(2,t) ~ (vpt — ) V% = (vpt — 2) "4, (8.5)

where v is the ‘Butterfly’ velocity, that is the speed of the propagating front. Eq. (8.5) de-
scribes an algebraic relaxation of the OTOC towards its stationary value (which has been
normalized to unity here) and should be valid for vt > z, along time after the front has
passed the point at . While we generally expect the tails Eq. (8.5) to emerge at very long
times on the ergodic side of the localization transition, we note that the proximity to the
localization transition at n. = 1.5 can severely affect the dynamics on the numerically ac-
cessible timescales even at half-filling n = 1 (see e.g. Fig. 8.6 (a) below). Thus, within our
accessible timescales, the chosen three-state local Hilbert space does not lie deep enough

in the ergodic phase to verify Eq. (8.5).

Instead, here, we choose to go even further into the ergodic regime by increasing the
local Hilbert space dimension to 5 (only within this paragraph) while remaining at half-
filling (n = 2 here). Fig. 8.3 (a) displays the associated spatial shape of the corresponding
ZX - OTOC for several instances at late times. We identify a clear tail behind the ballis-
tic front, and the expected relation Eq. (8.5) provides a good fit to this tail. In addition,
we verify in Fig. 8.3 (b) that the OTOC relaxes in time as ~ t~1/4 behind the front as pre-
dicted by Eq. (8.5) as well. Furthermore, we notice that the ballistically moving front itself

broadens diffusively according to

n —vpt
1 —C’(Z))((x ~ vpt,t) ~ erf(x B ),

Vit

see the inset of Fig. 8.3 (a), where erf(-) corresponds to the error function. This diffusive

(8.6)

broadening is expected to be independent of the system’s conserved quantitites and is in
agreement with previous results for systems with either no conservation laws or charge

conservation only [63-66].

8.4 OTOC in the localized regime

We now consider the automaton circuit evolution of our model with three-state local
Hilbert space deep in the localized regime n > n.. Here, find that the OTOC freezes
in time, see Fig.8.1(d). Similarly to the ergodic regime, we can determine the spatial
shape of this OTOC in the localized regime for n > n.. In this regime, a finite density of
‘eternally frozen’ sites exists [206] whose charge value can never change during the circuit
evolution, presenting a hard barrier to the spread of operators. As a consequence, the op-
erator spreading is frozen. The localized phase can then be characterized by a correlation

length ¢ ~ |n—n.|~2[206] that constitutes the relevant length scale in the problem. Hence,
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Figure 8.3: Algebraic tails from conservation laws. a) Spatial shape of the ZX — OTOC at several
instances at late times; here for a dipole-conserving circuit with five-state local Hilbert space. The
OTOC features an algebraic tail behind the ballistic front. b) In the region where the operator front
has passed, the OTOC relaxes algebraically in time ~ ¢t~ /4.

we naturally expect the freezing of the OTOC to take place at the scale &, and further

CUm (@, t) 22 e/, (8.7)
with some constant c. We verify Eq. (8.7) in Fig. 8.4 (a), where we show C(Z";"“) (z,t) after
convergence at long times and for different densities n > n.. The exponential shape of
Eq.(8.7) is clearly visible and one can also check the expected scaling & ~ |n — n.|72,
see Fig.8.4 (b). The exponential form Eq.(8.7) should be a general feature of localized
systems that are characterized by strong Hilbert space fragmentation, as has recently also

been observed in [504].

8.5 OTOC in the critical regime

Finally, at the critical density n = n. = 1.5, Fig. 8.1 (c) indicates a sub-ballistic spreading of
the OTOC front. This pointis an intriguing result: What is the mechanism behind the sub-
ballistic spread? Can we understand the sub-ballistic exponent that describes the moving
front? And how does this critical property affect the dynamics away from n = n.?

To answer these questions, we consider the single-shot OTOCs C,  (z, t; ) of Eq. (8.4),
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Figure 8.4: Exponential profile of OTOC in the localized regime. a) In the localized phase
n > n,., the OTOC assumes an exponential form. b) The decay is characterized by a correlation length
¢ which diverges as ~ |n — n.| =2 towards the critical point.

see Fig.8.5(a) for a typical example at n = 1. Importantly, if we denote by z,(t) the
rightmost site where C, - (z, t; n) # 0inFig. 8.5 (a), we notice the presence of long waiting
times 7 that slow the propagation of the OTOC. Thus, in order to understand the long-time
dynamics of the OTOC front in terms of the propagating boundary (z,.(t)), we require to
understand the origin and the probability distribution p,,(7) of these waiting times. In
the following, we develop a phenomenological model for the propagating boundary with

waiting times, which we then verify numerically using automaton circuits.

8.5.1 Phenomenological model

Let us consider a toy example that illustrates the presence of waiting times in the spread-
ing of the OTOC: Take a small patch of seven fully filled sites, described by a state
Im) = [2222222). Upon inserting e.g. the operator X; at the central site, we obtain
the state Xg [m) = [2221222). There are now no dipole-conserving, 4-site gates acting
within the patch that can change this charge distribution. This observation crucially de-
pends on dipole-conservation: For charge-conservation only, one could always randomly
shift the site with reduced charge, leading, for generic systems, to a diffusively spreading
OTOC within this patch [66]. Here, instead, the OTOC is ‘trapped’ inside the localized
region, implying a waiting time 7 that lasts until the localized region is breached from the
outside.

We can develop this argument more systematically as depicted in Fig. 8.5 (b): We as-

sume a localized region of length ¢ in which the average charge density exceeds the critical

zo+4—1

ory  (nz —ne) > 0, embedded in a system with average density below the

value, i.e. )
critical value. We then expect that an operator inserted into this region implies an OTOC
that is effectively ‘stuck’ until the localized region has melted from the outside. The latter
is a transport process that is governed by the subdiffusive exponent z = 4 of Eq. (8.2), and
we therefore predict the mean waiting time associated to a localized region of length ¢ to

be 7 = 7(f) ~ (* = (%, For the purpose of this argument, we assume that the prefactor
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Figure 8.5: Origin of waiting times for operator spreading. a) The single-shot OTOC, shown for
a randomly chosen initial state at half-filling n = 1.0, experiences waiting times that slow its spread.
b) A generic state chosen at an average density n < n. locally features regions of size £ whose density
exceeds the critical value n.. An operator inserted into such a localized region cannot escape from
within — a property inherent to the fractonic constraint of dipole-conservation. Instead, the operator is
subject to a waiting time 7 ~ £ = {* set by the time required for transport to melt the frozen region
from the outside.

in this relation stays finite for all background densities at and below n.. Now, given 7(¢),
we are required to determine the density-dependent distribution p,,(¢) which yields the
probability of a localized region having length ¢. This can be achieved using an argument

based on random walk theory: Consider a small localized region of length ¢’ with

:to-i-f/—l

N():= Y (na—nc)>0. (8.8)

T=x0

If we increase this region by one site to the right, we obtain N(¢'+1) = N(¢') +n—n.+9,
where n is the average density of the system and ¢ is a random variable with mean zero.
Therefore, N (¢') performs a biased random walk and we obtain a closed, localized region
of length ¢/ when N(¢') = 0 crosses zero. We are thus interested in the probability distri-
bution of the lengths ¢ of first passage of zero, which assumes the asymptotic form [505]

pn(0) ~ €732 exp(—0/¢,). (8.9)

Herein, ¢, ~ |n — nc]*Q close to the transition, i.e. the system “sees’ the non-critical value
of the density only above a length scale where typical density fluctuations on ~ 1/v/¢
of a region of length ¢ are comparable to |n — n.|. Equipped with the distribution p,,(¢)
of localized regions and the waiting time 7(¢) associated to such regions, we can make

a qualitative estimate for the probability distribution p, () of waiting times by setting
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pn(T) dT = pp(4(7)) d¢, which yields

pn(T) ~ r—(1+1/22) exp{—(T/Tc)l/Z}, (8.10)

where

Te ~ |n— nc|_2z, z =4. (8.11)

Eq.(8.10) and Eq.(8.11), valid for n < n,, are the central predictions of this work. From
the tail of this waiting time distribution [506], which enters the biased walk performed by
the OTOC boundary z,(t), and from the localization of the system for n > n. [206] , we
can predict the long-time dynamics of the OTOC front

<$T(t)> ~ ¢ with o= i’ n = Ne¢ . (812)

In particular, Eq. (8.12) agrees with the limiting cases studied in Fig. 8.1 (b-d), where a sub-

ballistic spread with exponent 1/2z separates a ballistic and a frozen long-time regime.

8.5.2 Numerical analysis & discussion

We can verify the predictions made in Egs. (8.10-8.12) in more detail by numerically eval-

uating the OTOC front (z,(¢)) and the waiting time distribution p,(7), which is acces-
sible through the single-shot OTOCs C, y (z,t;n). Fig.8.6 (a) shows the propagation of

the front (z,(t)) for different densities n. For densities n < n. below the critical point,
(z,.(t)) first enters a sub-ballistic regime but starts to bend upwards at late times. Close
to half-filling, the simulated times are sufficient to observe the bend continue until ballis-
tic propagation is reached, Eq. (8.12). The time at which the upwards bend sets in grows
larger upon approaching the critical point. This is due to the algebraic contribution to the
waiting time distribution that impacts the dynamics prior to the timescale on which the
stretched exponential in Eq. (8.10) becomes fully relevant. At the critical density n = n,,
no such bend is visible on the accessible timescales and our numerical findings follow
the ~ /22 = ¢1/8 spread predicted in Eq. (8.12). We further note that Eq. (4) additionally
predicts a t'/?*~scaling of the broadening of the OTOC front, which we have also verified
numerically. In the localized phase n > n,, Fig. 8.6 (a) demonstrates that (z,(t)) < const.
remains bounded and the OTOC freezes at long times.

We show the numerically sampled distributions p,, () in Fig. 8.6 (b) and indeed find a
decay ~ 7~ (141/22) — 7=9/8 at the critical point. For n < n,, the distribution p,, (1) follows
the critical line for some time and eventually crosses over into a faster-than-algebraic de-
cay. We check that this faster decay corresponds to the stretched exponential of Eq. (8.10)
by plotting the quantity g,,(7) := py(7)/pn. (), which we expect to go as exp{ —(7/7.)1/*}
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Figure 8.6: OTOC front and waiting time distributions. a) Average (x,(t)) of the position of the
OTOC front as defined in Fig.8.5(b). For n < n., an upward bending towards an expected ballistic
growth can be observed on the simulated timescales for densities deep in the ergodic phase. At the
critical density n, = 1.5, the dynamics of the front shows the sub-ballistic power law (z,.(t)) ~ /8,
and the spread remains bounded (z,.(t)) < const. in the localized phase. The densities shown are
n = 1.0 — 1.5 in steps of 0.1 (light to dark red), as well as n = 1.7. b) Probability distributions p,,(7)
of waiting times in the automaton circuit dynamics evaluated at densities below and at n. (same values
as in a)). The distribution p,, () at the critical point follows an algebraic decay ~ 7=%/%. For values
n < ng in the ergodic phase, p,,(7) bends downwards to a faster-than-algebraic decay. c) This faster
decay is of the form of a streched exponential, as confirmed by inspecting ¢,(7) = pn(7)/pn, (T) ~
exp{—(7/7.)"/*}. Plotting this quantity as a function of 7|n — n.|® leads to a scaling collapse at late
times, consistent with 7, ~ [n — n.|=2* = |n — n.|~8. The densities shown are n = 1.2 — 1.4 in steps
of 0.05.

for long times; Fig.8.6(c). Plotting g,(7) as a function of 7|n — n.|® leads to a scaling

collapse at late times, in agreement with Eq. (8.11).

Having collected numerical evidence in favor of the phenomenologically derived dis-
tributions p,(7), we summarize our results via a dynamical phase diagram that captures
the spread of the OTOC front in Fig. 8.1 (a): In the long time limit, the spread is described
by Eq. (8.12). For finite times and below the critical density, we predict the OTOC to cross
over from a sub-ballistic to a ballistic spread on a time scale given by the crossover time
7. of the distribution p,(7) in Eq. (8.11). We expect a similar crossover time scale to arise
on the frozen side of the transition, as the longest but finite waiting times are of order

€% ~ |n —n|??, with ¢ the correlation length in the frozen phase [206]. We emphasize that
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due to the approximation of neglecting potentially parameter-dependent prefactors in the
relation 7 ~ ¢?, which we assumed in our phenomenological argument, the spreading of
the OTOC at the critical point can in principle experience corrections. However, on our

numerically accessible timescales, the Eqs. (8.10-8.12) appear fully consistent.

8.6 Conclusions & outlook

In this chapter, we have analyzed the dynamics of operators in a dipole-conserving chain
through the spreading of out-of-time-order correlators (OTOCs). The exotic fracton-like
mobility constraints lead to an intricate phase diagram of operator dynamics, Fig. 8.1 (a),
that features a critical point where the OTOC front spreads sub-ballistically. From the scal-
ing properties of this critical point we derived a ‘critical fan’, within which operators
spread sub-ballistically at finite times even away from the critical density. The slow op-
erator spread ~ t!/® also bounds the growth of entanglement as well as charge transport,
which is obstructed by the same localized regions. Our results suggest for the associated
critical transport exponent z;, > 8, consistent with the numerical findings of Ref. [206].
The exact transport properties at the critical point are an interesting open question.

While we numerically studied specific automaton circuits, the two main ingredients
of our phenomenological description, an ergodic dynamical phase with = = 4 and
a localized dynamical phase, can be found more generally for systems with dipole-
conservation [2, 197, 235, 236]. Scaling properties at the critical point should not be af-
fected by specific model parameters. We therefore expect the same critical operator dy-
namics to apply universally to dipole-conserving chains. Furthermore, while we focused
on the C(Z@){-OTOC, the sub-ballistic spread is expected to be robust to an arbitrary choice
of local operators in Eq. (8.3). Specifically, in App. A.3.3 we demonstrate that for automa-
ton circuits, the front of the X X-OTOC is bounded up to a factor of two by the front of
the ZX-OTOC.

We conjecture that our results also generalize to systems conserving all multipoles up
to the m-th moment, where the above findings should be amended simply by substituting
the subdiffusive transport exponents z — 2(m + 1), derived in Chapter 6, Refs. [2, 389].
Our results pave the way for finding new universality classes of operator growth, which
might bear relevance to fractonic models in higher dimensions [4] and other constrained

systems.
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Emergent tracer dynamics in
constrained quantum systems

This chapter is based on the publication

Johannes Feldmeier, William Witczak-Krempa, Michael Knap, “Emergent
tracer dynamics in constrained quantum systems”, Phys. Rev. B 106, 094303
(2022)

Structure, text and figures have been adapted for the purposes of this thesis.

Throughout this thesis we have established how the presence of constraints can lead
to exotic thermalization dynamics in quantum many-body systems. In particular, the
presence of dynamical constraints can lead to the emergence of novel subdiffusive hy-
drodynamic universality classes [2, 4-6, 103, 104, 197, 205-207, 322, 389, 479-481, 507].

In this chapter, we study the emergence of another classical process in the dynamics of
interacting quantum many-body systems: the tracer motion of tagged particles. While at
first sight the notion of a tagged particle appears to be at odds with the indistinguishabil-
ity of quantum particles in many-body systems, here we show how the effects of kinetic
constraints can nonetheless lead to the emergence of such tracer motion. For this purpose
we focus on the dynamics of one-dimensional systems with a conserved pattern of effec-
tive spins or charges throughout much of this work, see Fig. 9.1 for an illustration. This
setup is similar to certain nearest-neighbor simple exclusion processes in classical two-
component systems, where tracer motion describes the local component imbalance [508].
Similar constraints have recently also been discussed in the context of fractonic quantum
systems in terms of “Statistically Localized Integrals of Motion” (SLIOMs) [237], which

can be interpreted as an effective conserved pattern. We also point to Chapter 4, where we
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have already seen how such a conserved pattern can lead to exotic dynamical properties,
albeit in a model with very complex underlying microscopic structure. In this chapter
we make the concepts alluded to in Chapter 4 concrete, formulating them in a rigorous
manner, extending them and applying them to realistic microscopic systems that can be
implemented in current quantum simulation platforms.

More generally, in this chapter we investigate the dynamics of local spin correlations
in one-dimensional systems featuring a conserved number of spinful particles. The setup
is similar to the ¢.J — model, which consists of spinful fermions with the condition of no
double occupancies. In our case, the usual Heisenberg spin exchange is substituted by
constrained spin interactions: We require that some or even all multipole moments of the
spin pattern formed by the particles are conserved. For much of this work we focus on
random unitary circuits that satisfy these constraints. We will therefore call the systems
studied in this work “¢t.J — like’. We find that the anomalously slow tracer diffusion of
hard core particles in one dimension plays a vital role in describing their dynamical spin
correlations.

The mapping between spin correlations and tracer dynamics becomes exact for systems
with an exactly conserved spin pattern, where the tracer motion gives rise to a subdiffu-
sive dynamical exponent z = 4. Such systems are similar in structure to the ¢.J, - model,
where spin interactions diagonal in the z-basis preserve the spin pattern. We thus call
such systems ‘t.J, —like’. This framework yields a unifying picture to understand the dy-
namics of constrained lattice models studied in recent works that can be mapped—either
directly or effectively—to a t.J, — like structure [4, 104, 237, 509, 510]. We use this picture
to derive the full long-time profile of the dynamical spin correlations in a random unitary
tJ, — circuit model and a random XNOR circuit [104].

Although our main focus is on the dynamics of generic systems, we demonstrate that
the tracer picture is applicable also to certain integrable quantum systems. These feature
an effective conserved spin pattern but their dynamics per se is insensitive to this pattern.
As examples we consider the integrable J, — 0limit of the t.J, —model and the folded XXZ
chain [511-514]. Through the tracer picture we are able to reproduce their spin diffusion
constants at infinite temperature and predict the full profile of their spin correlations at
late time, in agreement with our numerical simulations.

We then consider models in which only a finite number of moments of the spin pat-
tern are conserved. The resulting spin correlations are given by a convolution of the
tracer motion and the internal dynamics of the pattern. As a consequence, we find that
the tracer-motion universality is robust to breaking the pattern conservation if all mo-
ments up to at least the quadrupole moment of the pattern are conserved. In addition,
for dipole-conserving spin interactions we uncover a competition between two hydro-
dynamic processes that both have dynamical exponent z = 4 but that exhibit different
scaling functions. The long-time profile of the spin correlations is then described by a

non-universal mixture of these two scaling functions. We argue that this intriguing situa-
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Figure 9.1: Tracer diffusion in constrained quantum systems. a) We consider one-dimensional
systems with a pattern of effective excitations (blue and red squares) which is conserved during the
time evolution. Infinite temperature dynamical correlation functions in such an ensemble map directly
on the tracer probability distribution of hard core random walkers. The fundamental objects of tracer
diffusion are the effective excitations of the conserved pattern. b) Solving the tracer problem provides
us with quantitatively accurate descriptions of transport in a number of generic random unitary circuit
models as well as integrable quantum systems. The effective conserved patterns can assume a complex
structure as in the quasi one-dimensional dimer model studied in Ref. [4].

time

tion is reminiscent to phase coexistence at a first order transition between a Gaussian and

a non-Gaussian hydrodynamic phase.

The remainder of this chapter is structured as follows: In Sec. 9.1 we introduce the ¢.J —
like models studied in this work and derive a general expression for their spin correlations
atlate times. We apply these results to specific random unitary circuit examples in Sec. 9.2,
treating in detail the random XNOR model [104]. We consider two integrable models in
Sec. 9.3 and discuss cases where only a finite number of multipole moments of the pattern

are conserved in Sec. 9.4.

9.1 Models and spin correlations

We introduce a novel class of ¢tJ — like many-body systems of spinful particles in one di-
mension with constrained spin interaction terms. The constraints are such that either the
entire spin pattern or a finite number of multipole moments of the pattern are conserved.
We derive a general expression for the infinite temperature dynamical spin correlations

at late times in such systems.
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9.1.1 Constrained tJ — like systems

We are interested in conservation laws inherent to models of the form

L/2—1

ﬁm - _t Z Z(él_,'_l’géx’g + hC) + E[S’m
e=—L/2 0 9.1)

[ﬁ&m,Zaj”g;] =0 Vn<m.
x

Eq.(9.1) describes a constant number of spinful fermions with nearest-neighbor hopping
on a one-dimenional lattice, with the usual ¢J - constraint of no double occupancies (in-
dicated by the tilde over the fermion operators; the fermionic nature of the particles is
not essential here). A spin pattern is then formed by the fermions in a squeezed space
where all empty sites are removed. The spin interaction Hg,, between the fermions is
generalized to not only conserve the total magnetization but potentially higher moments

of this spin pattern (all up to the mth moment) as well. Examples for Hg,, include
‘HS,O == ngx . Sx+1 + ...

Hgy=J) (575,118,455 +he)+ ..
v (9.2)

Hgoo=JY SiSi+ ..
xr

s

where ‘... refers to diagonal terms in the z—basis or to longer-range off-diagonal terms
that fulfill the conservation law of Eq.(9.1). We note that ﬁo = H’t 7 is a conventional ¢.J
— model while 7, = H, 7. is atJ, —model in which the entire spin pattern is a constant
of motion. Lattice spin models such as Eq.(9.2) provide a novel way of interpolating

between these two limiting cases; one can construct such models recursively [2].

The Hamiltonians of Egs. (9.1,9.2) serve as our starting motivation and we can qual-
itatively determine their universal late-time dynamics at high energies by considering
generic many-body systems with the same Hilbert space structure and conserved quan-
tities. To introduce a model-independent notation we expand any state |¢) with a fixed

number Ny of particles as |[¢)) = 3, , ¥(x, o) |z, o) in terms of the basis states
l,0), @1 <..<wzy, o€ {£l}. (9.3)

Here, x labels the positions of the particles on the chain from left to right and o their

respective spins in the z—basis. The time evolution represented by the unitary U,,(t)
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should then fulfill

Ny
[Un(t),) §"65] =0 ¥n<m, (9.4)
j=1

and can be Hamiltonian, such as in Eq. (9.1), or generic, such as in random unitary quan-
tum circuits or classical stochastic lattice gases; either case is expected to exhibit the
same universal dynamical behavior. We emphasize that the conservation of moments
in Eq. (9.4) applies to the squeezed-space variables of the pattern, which are related to
the original spins non-locally. In particular, the moments 3" z™S? in the original spin
space are not conserved due to the hopping part of Eq. (9.1). We will make use of the non-
local property Eq. (9.4) throughout our work and show that various constrained models

studied recently are part of this effective description.

9.1.2 Generic structure of dynamical spin correlations

We derive a general expression for the dynamical spin correlations in a system described
by Egs. (9.3,9.4) under the assumption of chaotic, thermalizing dynamics at infinite tem-
perature. Integrable dynamics will be considered in Sec. 9.3. We will assume open bound-
ary conditions in a system of length L containing a fixed number of N 7 particles, i.e. den-
sity p = Ny /L. The spin operator 5”;? at site r can then be expressed in terms of the pattern

spin operators 7; via
Ny
SE=>"6; .05 (9.5)

J=1

The time evolution U,,(t) applied to a basis state |x, o) is given by

Un(t) l2,0) = ) a(@'d’|zo;t) |2’ o), 9.6)

x' o’

with the matrix elements a(z'c’|zo; t) normalized to Y, . la(z'o’|zo;t)|> = 1. Using

Egs. (9.5,9.6), the dynamical spin correlations read

C(r,t) == (S5 (t)S5(0)) =
1
=N Y 05016 10n0la(@'o’ [z L), 9.7)

iy
where the normalization V' = N, is given by the number of different particle position
N = ( ]éf) on the lattice and the number of different spin patterns Ay = 2/Vs. The expec-
tation value (-) is taken with respect to an ‘infinite temperature’ ensemble over all basis
states. Under U,,(t), both the number of particles as well as the total magnetization of
the spin pattern are conserved and we expect both of their local densities to contribute a

hydrodynamic mode at long length scales and late times. In general, the precise transport
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coefficients of the particle mode and the spin pattern mode are determined by a mode-
coupled Ansatz and the details of the microscopic time evolution. Nonetheless, we expect
that qualitatively, we can describe the hydrodynamic behavior of the two modes indepen-
dently at late times in thermalizing systems. We therefore make the approximation to

set

la(x'o’ |xo;t)|? ~ pu (2|2 t) ps(o|o;t) (9.8)
in Eq. (9.7), where we introduced the particle and spin path distributions p,,(«'|z;t) and
ps(o’|o;t); they fulfill >, pp(a/|z;t) = 1 = 3 ps(o’|o;t). The spin correlations of
Eq.(9.7) are thus determined by the following two expressions which describe spin pat-

tern dynamics and particle dynamics, respectively:
F(j—1,t): NZUUZPS o'|lo;t)
K(] Z r; t Zdaz T :BwOpn |$7t) = (99)

= P(jaT’i7O; t) P(i,0).

In the last step we introduced the probability P(i,0) to find the ith particle (counted from
the left) at site z = 0, as well as the probability P(j,r|é,0;t) to find the jth particle at site
x = r at time ¢ given that particle  was located at site z = 0 at time 0. We can rewrite the

latter probability as

P(j,r|i,0;t) ZP (7,74, 4;0) P(3, 4|7, 0;t). (9.10)

We notice that P(j, r|i, ¢; 0) in Eq. (9.10) is simply the probability to find particle j atr given
that particle i is at £ at the same time. It has the exact expression (6(-) is the Heaviside theta

function)
P(j,7i,4;0) = 0i—j00r—r0+

(o) (V)
(v)
(s iy 9.11)
(v)
li—j[>1 1

; v“<1;>jie“{5;1)}qj}

2

FO(—i—1)0(r — € — 1) +

F 00— —1)0(6 —r —1)

where in the last line we made an approximation for large |i—j| > 1, leading to a Gaussian
centered around r — ¢ — 2 = 0 with width proportional to \/|i — j .I' For the second

'The last line of Eq. (9.11) actually follows in a grand canonical setting with average density p
of particles. Nonetheless, the location of the center and the scaling of the width remain valid for
fixed particle number.
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expression on the right hand side of Eq. (9.10) we define
P(i,0]i,05t) =: Gy (£, 1), (9.12)

since P(i, /)i, 0; t) traces the motion of particle 7, which we assume to be in the bulk of the
spin pattern. G, (¢, t) thus corresponds to the time dependent tracer probability distribu-
tion of a bulk particle. Using Eqs. (9.11,9.12) in Egs. (9.9,9.10) we obtain

K= irit) = P.0) [ d0PGorli,0) Gur(6,1) = o
9.13

:P(i,O)GtT<r—j;i,t>.

The last line follows since Gy, (¢,t) is in general a probability distribution whose width
increases in time while the width of P(j, 7|i, ¢;0) is a constant of order /|5 — i|. There-
fore, at late times Gy, (¢,t) is much broader and we can substitute the approximation
P(j,r|i,0;0) ~ 6(r — £ — %) into Eq.(9.13). Finally, inserting Eq.(9.13) and Eq.(9.9)
into Eq. (9.7) we find

C(T‘, t) = /dj F(jvt) Gtr("" - j/pvt) = [F * Gtr](ra t)7 (9.14)

with F(j,t) = pF(pj,t). The dynamical spin correlations C(r,t) at late times are thus
given quite generally as a convolution between the internal dynamics of the spin pattern
and the tracer distribution of a distinguishable particle on the lattice. Since Gy, (¢,t) fol-
lows the trajectory of the ith particle (with some i in the bulk) counted from the left, the
relevant tracer problem is one of hard core interacting particles that can never swap rel-
ative positions. We note that in reciprocal space Eq.(9.14) represents two independent

decay processes of long wavelength k-modes.

9.2 Random unitary circuits with conserved pattern

We use the result of Eq.(9.14) to study a number of ¢J, — like models with a spin pat-
tern that is a constant of motion. We remark that the results of this section should apply
very generally to models featuring recently introduced “Statistically Localized Integrals
of Motion” (SLIOMs) [237], which can be interpreted as a conserved pattern.
If the entire pattern is constant, the spin dynamics becomes trivial, F'(j,t) = d(j) for all
times in Eq. (9.14) and thus
C(r,t) ~ G (r,t) (9.15)

maps directly to a tracer problem. Due to the trivial pattern dynamics, our initial approx-
imation Eq. (9.8) simply becomes |a(z'co|xzo;t)|? =~ p,(z'|z; 1), i.e., the matrix elements of

the time evolution can be considered approximately independent of the underlying spin
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pattern when inserted into Eq. (9.7). In fact, with a conserved pattern the correlations of

Eq. (9.7) can be recast as
C(r,t) = G (r,t) + R(r,t), (9.16)

where R(r,t) is the difference between the exact correlations and the tracer distribution.

It reads explicitly
1
R(r,t) = N w;g 0j0; 51,;_,7" by, ola(x'o|zo; t)|?, 9.17)
i#]

and captures contributions to C(r,t) due to spins j # ¢ moving to site 7 at time ¢, given
that spin ¢ started at site = 0 initially. Due to the summation over the spin values o,
R(r,t) acquires both a positive and negative contribution from o; and —o;, respectively.
We then expect generically that contributions to R(r, t) from spins j with |j —i| > 1 van-
ish approximately due to cancellation of positive and negative contributions, justifying
Eq. (9.15). In this section, we will consider generic systems where R(r, t) = 0 exactly upon
averaging over the random time evolution, and in Sec. 9.3 integrable quantum systems
in which R(r,t) = 0 exactly since the time evolution is indeed independent of the un-
derlying pattern, hence in both cases |a(z'a|zo;t)[* = p,(z'|z;t). In either case, since
C(r,t) = Gy (r,t) exactly, we will be able to use existing results from the theory of tracer

dynamics to obtain full long-time spin correlation profiles.

Here, we first consider systems subject to a random time evolution, such as a classi-
cal stochastic lattice gas or random unitary quantum circuits. Averaging over the ran-
dom evolution (denoted by ~~) we are interested in the associated averaged correlations

C(r,t). For certain models that we consider, R(r,t) = 0 (see below) and thus the mapping
to tracer dynamics is exact upon averaging over the random evolution, C(r,t) = Gy, (r, t).
The resulting tracer problem we have to solve is one of particles hopping randomly on a
one-dimensional lattice subject to a hard core exclusion principle. The hard core property
is a direct consequence of the pattern conservation. Of particular interest to us is the near-
est neighbor simple exclusion process in one dimension, for which the long time tracer

distribution function is known to be [396-398, 515]:

1 2
G (4, t) — Gimh 0t) = ————7 ——, 9.18
wlt:t) > GE (1) = qop exp{— 1 9.18)
where the superscript (nl) indicates that we are considering generic, non-integrable sys-

tems. Gt(?l) (¢,t) takes the form of a Gaussian that broadens subdiffusively slowly,

(AL(t)?) = 2VDt. (9.19)
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Figure 9.2: Random t.J, — circuit. (a) In the random t.J, — circuit we consider a three-state local
Hilbert space and two-site local random unitary gates. The local gates connect states with spins hopping
between neighboring lattice sites. (b) The mean squared displacement (MSD) associated to the spin
correlations C(r,t) agrees with the tracer prediction of Eq.(9.25) for particle density p = 2/3 and
single particle hopping rate ' = 1. (c) The form of the correlations C(r,t) at time ¢ = 7000 of the
circuit evolution. It assumes a Gaussian shape as expected from the tracer distribution. We obtain
these numerical results by sampling the discrete stochastic Markov process of Eq. (9.23). The data was
averaged over 1000 randomly chosen product initial states of the Markov process in a system of length

L = 5000.

The generalized diffusion constant D is determined via the density p of particles on the

chain and the bare hopping rate I per time step of an inividual particle,

D= g(,f1 —1)% (9.20)

We consider two examples in detail in the following, the random ¢.J, — model and the
random XNOR model, for which Egs. (9.18,9.20) will provide us with the exact long time

spin correlations after identifying conserved spin patterns in the appropriate variables.

9.2.1 Random circuit tJ, — model

Circuit model

Our first example is a direct implementation of a random version of the ¢.J, — model. We

consider a chain with local Hilbert space spanned by the states |¢) = |—1), |0), |1). Each
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basis state can be written as |q) = |z, o) and we demand that the pattern o of £1-spins

be a constant of motion. We then consider a random unitary time evolution given by

tL

Ut =[]0 (9.21)

(=1

where individual two-site gates Uy are arranged spatially as shown in Fig. 9.2. Each of the
Uy is given by
U = Z Py UpsPy s, (9.22)

where s labels the symmetry sectors of the two-site local Hilbert space that are connected
under the constraint of keeping o constant. Specifically, there are five sectors that contain
only a single local configuration, {|—1,—1)}, {|-1,1)}, {|1,-1)}, {|1,1)}, and {]|0,0)}, as
well as two sectors that contain two states each, {|0,1),[1,0)}, {|0,—1),|—1,0)}. P, is
a projector onto these connected sectors. The unitary operators Uy, acting within each

sector are then chosen randomly from the Haar measure.

Mapping to classical Markov process

Averaging the time evolution over the random gates, the associated circuit-averaged
probabilities required to compute the spin correlations C(r, t) are given by a classical dis-
crete Markov process [65, 66, 68, 104]. Specifically, we follow Ref. [104] in introducing the
notation |z, o) := |z, o) (x, o| for the projector onto the state |x, o), as well as an asso-
ciated inner product (4|B) := Tr [ABT} for operators. The matrix elements for the time

evolution are then given by [104]

a(z'o|zo;t)]2 = (2, | T |z, o), (9.23)

with a transfer matrix 7~ given by
L
T=Q7
=1

T=Y 0 3 sl

S S81,52€8

(9.24)

where d; is the size of the local two-site symmetry sector s. A brief review of the derivation
of Egs. (9.23,9.24) is provided in App. A.2.

We see that Egs. (9.23,9.24) describe the averaged probabilities |a(z'c|xo; t)|2 in terms
of a stochastic lattice gas: For each applied gate a particle hops with probability 1/2 to

an empty neighboring site and stays at its position if the neighboring site is occupied by

another particle. In particular, |a(2'o|xo;t)|? = |a(’|2; t)|? is independent of the spin pat-
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Figure 9.3: Random XNOR circuit. In the random XNOR circuit we consider a two-state local
Hilbert space and four-site local random unitary gates. The allowed moves under these gates connect
local configurations by exchanging nearest neighbor states, conditioned on the two surrounding sites
being in the same state.

tern o. Thus, the contribution R(z,t) of equation Eq. (9.17) vanishes due to cancellation
of positive and negative spin contributions. The long-time mean squared displacement
of the tracer process is in turn exactly described by the simple nearest-neighbor exclusion
process through Egs. (9.18-9.20). In our case, the density of particles is given by p = 2/3
at infinite temperature. Furthermore, for a single time step consisting of two layers as
shown in Fig. 9.2 (a) there are two attempted moves at rate 1/2 per particle, such that we
can effectively set I' = 1. This yields D = 1/4rx for the random circuit ¢.J, — model, see
also Fig.9.1. The theory of tracer diffusion of hard core particles in one dimension thus

predicts a mean squared displacement

o?(t) == Zr2 C(r,t) =+/t/m (9.25)

T

at long times ¢ with a Gaussian shape of the averaged correlations C(r,t). The mean
squared displacement thus grows subdiffusively ~ /¢ as opposed to conventional dif-
fusive growth ~ t. We confirm this prediction by numerically sampling the stochastic

Markov process Eq. (9.23) which yields the spin correlations in Fig. 9.2 (b+c).

9.2.2 Random circuit XNOR model

We consider a second example of generic unitary quantum dynamics where we can use
the tracer formulae Egs. (9.18-9.20) to derive the long-time behavior of local spin correla-
tions, the random XNOR circuit [104]. The model is an effective spin S = 1/2 system with
Hilbert space spanned by the local states |1) , | ). The local unitaries Uy that generate the
time evolution are four-site gates that conserve both the total magnetization M = 357
as well as the number of Ising domain walls D = 3" (SZ,, — 5%)2. Therefore, Uy can ex-
change the central two spins only if the outer two spins have the same value, see Fig.9.3.

Writing Uy = 3, P,U,Ps as in Eq. (9.22), the only symmetry sectors s that contain more
than a single state are {|1, 1,1, 1), |1, 4. T, 1} and {|, 1, 1. 1), 4, 4, 1, 1) }. We refer to this
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Figure 9.4: Conserved charge pattern in the random XNOR circuit. a) Mapping between original
spin-1/2 degrees of freedom and an effective conserved superspin pattern. Going from left to right,
two neighboring aligned spins are mapped to a corresponding superspin f} or |}, while two neighboring
domain walls map to a vacant site 0. The pattern of non-zero superspins is conserved under random
XNOR dynamics. In the domain wall picture (empty and filled circles), the mobile vacancies correspond
to domain wall pairs ( &—e ). Furthermore, in the domain wall picture the objects that form a conserved
pattern are given by single bonds of aligned spins ( 0 ) as well as single domain walls paired up with
a neighboring aligned bond ( 6 ). This domain wall conserved pattern is obtained by removing all
mobile domain wall pairs ( e—e ) see also Fig.9.5. b)4c) Elementary XNOR moves within the above
mapping. In superspin language, vacancies 0 and superspins {} / |} exchange positions. In domain wall
language, a mobile domain wall pair exchanges positions with one of the objects contributing to the
domain wall pattern (i.e. oor € ®).

system as the random XNOR model following Ref. [104], which established that spin cor-
relations in this model show subdiffusive transport with z = 4. While the dynamical
exponent is in agreement with the tracer picture, the t.J, — like existence of a conserved
pattern is not immediately apparent in the random XNOR model. We first describe the
mapping to such a conserved pattern using the original spin variables S € {1,l}, see
also Refs. [509, 516]. We then construct an equivalent mapping using domain wall vari-
ables S‘j b1 §§, see also Refs. [510, 513, 517]. Combining both pictures, we will be able
to explain the full form of the spin correlations C(r, t) at long times.

Conserved pattern: spin picture

Let us consider a state |s) with s, € {1,]} in a system of length L. We map this state
(bijectively up to boundary terms) to a state | ) of effective ‘superspin’ degrees of freedom
7 € {1},0,{} on a chain of length L(s) which explicitly depends on the state |s) in the
original spin-1/2 picture, see also Refs. [509, 516]. We start at the leftend 2 = —L/2 of the
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original chain and consider the bond between the first two spins s_; /5, s_1,/21. There

are two possibilities:

1. Ifs_pp = s_jo41, weadd 7 = and 7 ={ to the superspin configuration, for

s_rs2 =1 and s_r, 5 =], respectively.

2. If s_p 3 # $_r241, consider the next bond between S_r/2+1>S—p242: U s_ 001 =
S_r,/2+2, We again accordingly add 7 = or 7 =} to the superspin configuration
for s_r 041 =1 and s_j /5,1 =], respectively. On the other hand, if also s_7 /5,1 #

5_1,/2+2, we add the superspin 7 = 0.

The above steps determine the first element (from the left) of the superspin configuration.
The next superspin is determined by moving to the next bond between two spins and
repeating the above steps. This process is reiterated until all bonds in the original picture
have been accounted for, yielding |7) = |7(s)). An example of this mapping is illustrated
in Fig. 9.4 (a).

With the superspin description |7) we are back to a ¢tJ — like Hilbert space structure.
Under the random XNOR dynamics described above (see also Fig.9.4) the number and
the pattern of non-zero superspins are indeed conserved: On the one hand, every bond
of aligned spins contributes a non-zero superspin and the total number of aligned near-
est neighbor spins is constant due to domain wall conservation. On the other hand, two
opposite superspins located next to each other, e.g. |... ff{} ...), translate into a local con-
figuration of four spins, |... )] ...), on which the XNOR gates of Fig.9.3 can only act
trivially. Hence, 1 and | can never exchange relative positions. If we write |7) = |z, o)
as before, the pattern o is conserved. Through this mapping we are led back to the random
circuit ¢.J, — constraints considered in the previous section, accounting for the dynamical
exponent z = 4.

In addition, we also analyze in the following how the conserved superspin pattern
translates quantitatively into the correlations of the original spin variables. To this end, we

define the quantities
1 - A
ho = (854 S24) (9.26)

within the spin-1/2 picture, which detect whether the bond between the spins at =,z + 1
contributes a non-zero superspin to |7). The dynamic correlation function (s, ()fo(0))
then probes how a non-zero superspin excitation initially located between sites 0, 1
spreads to the bond between 2r, 2r 4 1. Crucially, according to the random XNOR gates
depicted in Fig. 9.4, the non-zero superspins 1, || only move by steps of length two with re-
spect to the original lattice. At the same time they move only by a distance r within the
compressed superspin pattern 7. Since the superspin description reduces to the random

tJ, —model analyzed above we can write
TR N~ /AN 1 n
(Rar (DR0(0)) = S G (). 9.27)
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Here, the prefactor 1/2 corresponds to the probability of finding a non-zero superspin
between sites 0, 1. The hopping rate of superspins entering Eq. (9.27) through Eq. (9.20)
can again effectively be set to I' = 1 for the circuit geometry of Fig. 9.3. On the other hand,
care needs to be taken to determine the density p of non-zero superspins, as the infinite
temperature average in the original spin variables s, does not transfer directly to an infinite
temperature average in the superspin picture. We will derive this density below in the
domain wall picture, see Eq.(9.39); for now we quote only the obtained result p = 3/4

entering Eq. (9.27).

Inserting the definition Eq. (9.26) of &, back into Eq. (9.27) we obtain

~

LG = 1 (185, (0F0)) + 205,05 0) + 55,1 (05 0)), 629

where we made use of translational invariance in the bulk. We could have performed an

equivalent calculation for the correlation (#2,+1(¢)%0(0)) and thus

~

SG0) = 1 (185, 0550)) + 2055, 2 05 0) + (55,05 0)), 629

which will be relevant for resolving the A/B-sublattice structure further below. From

Eq. (9.28) we then obtain the mean squared displacement at long times,

o*(t) =D r}(Sx(1)S5(0))

~ ~ ~

2L S {851 (0850) + 2055, (0550) + (55, (S50 L = 030

T

nl nl 8
=S "@n26i () = Z}QG; )(r, 16t) = 5= ﬁ\/i,

r

where we used Eqgs. (9.19,9.20) with p = 3/4 and I" = 1. We can absorb the factor of 16
in Ggﬂ)(r, 16t) into the effective (sub)diffusion constant to obtain D = 16/97, see also

Fig.9.1. Again the dynamics is subdiffusive with z = 4.

To verify this prediction we simulate the circuit of Fig.9.3 numerically, again using
the mapping to a classical Markov process. The derivation of the associated transfer ma-
trix T proceeds in full analogy to the t.J, — case. Fig.9.6(b) demonstrates the validity
of Eq.(9.30). In addition, Eq.(9.28) predicts a Gaussian enveloping shape of the charge
correlations, which we numerically verify in Fig. 9.6 (a). Intriguingly however, Eq. (9.28)
in principle allows for additional sublattice structure. We indeed find sizeable staggered
oscillations on top of the Gaussian in Fig. 9.6 (a). These oscillations do not decay at large
times and thus hint at additional structure in the model. In order to explain and quantita-
tively describe these short-distance oscillations, we will switch to a domain wall picture

in the following.
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Figure 9.5: Sublattice symmetry. In the domain wall picture, we obtain a conserved pattern by
removing all mobile domain wall pairs (illustrated as e—e ). The resulting pattern is formed by single
aligned bonds (o ) and pairs of a single domain wall with an aligned bond to its right ( € ® ). The
pattern is subject to an exclusion constraint of nearest neighbor domain walls, i.e. every filled circle
necessarily has at least two empty circle neighbors (one to the left and one to the right). The sublattice
charge of all charged domain walls & that are not part of a mobile pair is then conserved. This is due to
the mobile pairs having a spatial extension of length two, such that single domain walls exchanging their
position with such pairs only move by steps of length two at a time, hence preserving their sublattice.
They also preserve their charge value since the domain wall charges are perfectly anticorrelated globally.

Conserved pattern: domain wall picture

An alternative description of the Hilbert space structure can be given in terms of the do-

main wall charge variables
1

R 1= 5 5Z.1 — S2), (9.31)
which ascribes a sign depending on whether the local configuration is |... |1 ...) or
|... T} ...). After fixing the leftmost spin, a complete description of a spin configura-
tion is also given in terms of the locations of its domain walls, (f%x)Q, regardless of their
sign. We can construct a domain wall version of the conserved charge pattern, see also
Refs. [510, 513, 517]: Starting from the left of the system, neighboring domain walls are
paired up into mobile pairs e—e, see Fig.9.4 (a). The remaining single domain walls are
paired up with their corresponding right neighbor bond that connects two aligned spins,
¢ > . Defined in this way, the dynamics in the system is generated by mobile domain
wall pairs ( e ) moving through the system, exchanging positions with single bonds
of aligned spins ( o ) and with the pairs of domain walls and aligned bonds (¢ ®). The
elementary dynamical processes are depicted in Fig.9.4 (b+c). By removing all mobile
domain wall pairs, see e.g. Fig. 9.5, we obtain a conserved pattern in the domain wall de-
scription formed by single aligned bonds o and the pairs ¢ ® of domain wall and aligned
bond. The conserved pattern thus exhibits a blockade of nearest neighbor domain walls.
The number of conserved patterns with such a blockade grows as a Fibonacci sequence in
system size. This Fibonacci number then also corresponds to the number of disconnected
subsectors in the Hilbert space [509, 510].
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Figure 9.6: Random XNOR model: Numerical results. a) Spatial shape of the spin correlation
function at time t = 10* of the random circuit shown in Fig.9.3. The black dashed line corresponds
to the Gaussian of the tracer probability distribution predicted by Eq.(9.44). b) The mean squared
displacement o2(t) of the spin correlations agrees with the late time prediction of Eq.(9.30). c) The

absolute value |C(r,t) — GE?D (x,16t)| of the oscillations on top of the Gaussian shape as seen in
a). The black dashed line corresponds to the prediction of Eq.(9.44). The results demonstrate the
quantitative accuracy of the tracer description. The data was averaged over 12800 random initial states
of the associated stochastic Markov process in a system of length L = 5000. An additional average
over +r was taken in a) and c), yielding symmetric profiles.

Due to the two-site spatial extension of the domain wall pairs, the total A/B sublattice
charge of all domain walls 7, that are not part of a mobile pair is a conserved quantity,

see Fig. 9.5. Formally, we can express

A A~

fop = I%g(gsingle) + R(pair)7 (9.32)

T
where #{') is the domain wall charge operator for single domain walls while fpair) g

the operator for domain walls that are part of mobile pairs. The two sublattice charges

QA/B = Z fggfmgle) = const. (9.33)
z€A/B

are conserved quantities. The operator &, thus separates into a part that has overlap

with the sublattice conservation laws of Eq. (9.33) and a part not associated to any such
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conservation law (3~ 4 /B /%:9’ air) # const.). The domain wall charge correlation function

on the even sublattice at late times will thus be dominated by the transport associated to

the conserved quantity Q 4, 1.e.

(Rar(DR0(0)) "2 (R (035 (0)). 034

Corrections to Eq. (9.34) are expected to decay quickly (generically exponentially fast) in
time. Since the single domain wall charges are part of a conserved pattern as described

above their dynamical correlations are again given by the tracer distribution,
eae (8)F0(0)) "2 Co G (1, 8), (9.35)
tr

with constant prefactor Cj to be determined. The density p and the hopping rate I enter-
ing Eq. (9.35) are the same as in the spin picture above.

To compute Cy we equate Eqs. (9.34,9.35) and take the sum over r,

Cy = Z <égiingle)éésingle)> , (936)

T

resulting in a simple static (notice the absence of the circuit average) correlation function

at infinite temperature. We can express Eq. (9.36) as
~ . ~ . /
Co = <(R(()smgle))2> Z <Rgizngle)> : (9.37)

where (-)" denotes a modified infinite temperature average with a single positive domain

wall fixed to sit at site 0. The factor <(fs(()smgle))2> is determined within the mapping to

a conserved pattern from Fig. 9.4: <(f;(()smgle))2> = #(¢7®)/L corresponds to the density
of single domain walls paired up with a neighboring aligned spin bond. Using that the
overall density of domain walls is 1/2 and that by symmetry # (6 ®)/L = #(e—e)/L, we

obtain

T2 o) £ H(60) =3 H(6D)

gt (9.38)
= ((E™19)?) = #(60)/L =1/6.

With this result we can also compute the density p of hard core particles (corresponding

to the density of non-zero superspins of the previous section) that we used in Eq. (9.30):

# (o) L/6
=1-———=1—-———=3/4 9.39
p #(o—e) + #(0) L/6+L/2 / 9-39)
(o /
The remaining correlation function <F;gffng le)> in Eq. (9.37) refers only to single domain

walls and can thus be computed within the ensemble of possible conserved domain wall
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patterns, see Fig. 9.5. Making use of this property we derive the exact value of this corre-

lation function in Sec. 9.3.3 and quote here our final result

Co =59 1) (9.40)

for the constant C, where ¢ = (1++/5)/2is the golden ratio. Then, inserting the definition
Eq.(9.31) in Eq. (9.35) yields

~

Co G (r1) = 1 (2055, (085(0)) — (55,1 (0550)) — (55,1 (055(0))). O

~

Performing the equivalent derivation for the correlations (&9, 1(t)%0(0)) gives us the ad-

ditional relation

~Co G ) = 1 (20851 (055 0) — (55,055 0) — ($5,.05(0)).  ©42)

Adding Eqgs. (9.28,9.41) as well as Egs. (9.29,9.42) finally yields the long time correlations

(55,155 0)) = 5 (1 +2C0) G (r, )
(9.43)

~ ~

(35,1 (055(0)) = 51— 2C0) G200 1),

which we can rewrite as

~

C(r.t) = (S2(t)S2(0)) = [1+ 2Co(~1)"] G (r, 161). (9.44)

Eq. (9.44) explains the staggered oscillations observed numerically in Fig. 9.6 (a). To check
that our quantitative description (i.e. the constant Cy of Eq. (9.40)) is accurate, we show
in Fig. 9.6 (c) that the quantity |C(r,t) — GE?I) (z,16t)| agrees well with the prediction of
Eq. (9.44) (additional corrections cannot be excluded, however). We emphasize that the

staggering of the correlations decribed by Eq. (9.44) persists up to infinite time.

9.2.3 Random circuit dimer model

Let us recap only briefly a third example of ¢.J, — like dynamics in the dimer model on
a bilayer square lattice geometry that we have encountered in Chapter 4, Ref. [4]. The
system has a short direction along which periodic boundaries are chosen, making the
geometry quasi one-dimensional, and the time evolution is generated by local plaquette

flips of parallel dimers,

H=-7> (1) Z+hec). (9.45)
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The model is equivalent to a model of closed directed loops and site-local charges on a
square lattice cylinder with short circumference. The existence of a conserved charge pat-
tern and its role in inducing a dynamical exponent z = 4 due to the emergence of a hard
core tracer problem has been discussed already in Chapter 4. We reiterate that intuitively,
the site-local charges in the model are dimers that go in between the two layers, positive
or negative depending on which sublattice they occupy. When a charge is enclosed by a
loop, it cannot escape the loop under the dynamics of Eq. (9.45). In the presence of a finite
density of loops that wind across the circumference of the cylinder (with the same chiral-
ity), a conserved pattern is formed by the summing up charges always in between two
such loops, see Fig.9.1 and Chapter 4 for the details. The tracer prediction of z = 4 and
the Gaussian shape of the dynamical charge correlations have been verified numerically
in Chapter 4. Only the precise values of effective (sub)diffusion constants are unknown

since the mapping to a conserved pattern is an effective one.

9.3 Integrable quantum systems with conserved pattern

The presence of a conserved charge pattern can also be of use in integrable t.J, - like quan-
tum systems and, in certain cases, provides an alternative route to determine the long
time profile and diffusion constant of their spin correlations at infinite temperature. The
associated tracer motion relevant for the correlations C(r,¢) from Eq.(9.14) is one with
ballistically instead of diffusively moving particles. As single particles move ballistically,
the many-body tracer distribution will be diffusive. A similar situation was considered in
Refs. [465, 518], where the spin diffusion constant of an interacting deterministic classical
cellular automaton with invariant spin pattern and pattern-independent dynamics was
computed exactly. According to Eq.(9.14), this spin diffusion is directly associated with

a Gaussian tracer distribution with the same diffusion constant,

exp{—f;t}. (9.46)

1
G (1) — G0, 4) =
t ( ) tr ( ) \/m
The superscript (I) indicates an integrable process which implies a broadening of Gy, as
~ v/t (instead of ~ t'/* which we have obtained for generic systems in Sec. 9.2). Using
the result of Ref. [465], the diffusion constant D of Eq. (9.46) is determined by the density

p of particles along the chain as well as their effective velocity v,

(Ax?) = 2Dt
9.47
D=2k -1). 4

In the discrete time cellular automaton considered in Ref. [465], all particles have a fixed

velocity of veg = 2.
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9.3.1 Integrable ¢/, — model

The above connection can be put to direct use in the integrable .J, — 0 limit of the ¢.J, —
model [519],

2 1 24 2
Hy=— D (@1 gty + hec), (9.48)

which features only the hopping of spinful fermions with forbidden double occupancy.
The matrix elements a(x'c|xo,t) = a(x'|z,t) of the time evolution obtained from
Eq. (9.48) do not depend on the pattern o, so R(r,t) = 0 in Eq. (9.17), and the mapping to
a tracer problem is exact at all times. At infinite temperature, the density of particles is
p = 2/3 and we can determine the effective velocity v by noting that H; can be mapped

to a problem of spinless free fermions [519],
Hy == cos(k)fl fi. (9.49)
k

We give an intuitive argument for why this is possible: Since the dynamics is oblivious
to the conserved spin pattern, for a given inital basis state we can simply i) ‘write down’
the invariant spin pattern for bookkeeping purposes, ii) remove the fermions’ spins, iii)
perform the time evolution with a Hamiltonian of spinless fermion hopping (of same
hopping strength), and then iv) reintroduce the pattern afterwards. Steps i) and iv) in this

mapping are of course highly non-local.

At infinite temperature we then expect all momentum modes of Eq.(9.49) to be oc-
cupied with equal probability. While Ref. [465] derived Eq.(9.47) for an automaton in
which every particle has the same absolute velocity, here we need to consider a distribu-
tion of different momentum modes. We expect that the mean displacement of the equiv-
alent tracer process depends only on the average of the absolute velocity and thus predict
the effective velocity for Eq.(9.47) to be given by the average absolute group velocity of
Eq. (9.49):

™

1 2
Veff = — dk |0y cos(k)| = —. (9.50)
2w T

—Tr

This leads to the infinite temperature spin diffusion constant
D, = — (9.51)

for the quantum model H; of Eq.(9.48). Eq.(9.47) also yields the diffusion constant at
infinite temperature but with fixed density p # 2/3 or chemical potential x such that
By = const. as § — 0.
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Figure 9.7: Folded XXZ chain. Profile of the dynamical spin correlation function for the folded XXZ
chain of Eq.(9.53) (blue curve, A — o0) at time ¢ = 18 in a system of length L = 30. The black
dashed line shows the prediction of Eq.(9.55), there are no fit parameters. The red line shows the
profile obtained for the XXZ chain Eq. (9.52) at anisotropy A = 4, illustrating good agreement with
Eq. (9.55) at intermediate times, even for moderate values of anisotropy.

9.3.2 Folded XXZ spin chain

As a second example we consider an integrable version of the random XNOR model, the
folded XXZ chain. It is obtained from the integrable XXZ model

] 1 - -G Gz Qz
HXXZ = - Z 7(S‘+S‘+1 +5; Sl—:-l) + AS?, i+1 (952)

in the limit of large anisotropy A — oo, which using a Schrieffer-Wolff transformation
yields

Hixxz = — Z(% + 87 1875) (S S + S S ). (9.53)
i

Hixxz remains integrable and many of its thermodynamic and dynamic properties
have been analyzed in recent works [511-514]. We note that Hixxy, consists of four-site
spin- and domain wall-conserving terms and thus features the same effective conserved
pattern of superspins as the random XNOR model above. In particular, it can be demon-
strated that in the superspin picture, the folded XXZ chain becomes equivalent to the
integrable limit of the ¢.J, — model from Eq. (9.48), Hixxy — H; [516]. As a consequence,
the spin diffusion constant Dexxyz of the folded XXZ chain can be obtained from the dif-
fusion constant D of superspins determined by the Hamiltonian H; of Eq. (9.48). In order
to relate the two, we recall that the infinite temperature average in the original spin pic-
ture implies a density p = 3/4 of superspins in the associated integrable ¢.J, — model.

Furthermore, in the original lattice superspins always move by two sites. The variance
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(Az?) = 2Dxxyt of the original spin correlation profile is thus determined by

2Dgxcxz t _ <A$2> — oDt

4 A 4 (9.54)
— Dixxz = 5,
3T

where we have used that D = 1/37 for p = 3/4 and veg = 2/7 in Eq.(9.47). The value
of Dixxz in Eq. (9.54) is in agreement with previous analytical results [456, 520], obtained
using generalized hydrodynamics [182, 183], as well as numerical results for the XXZ
chain [521, 522]. In addition, following the analysis of the sublattice domain wall charge
in the XNOR model, see Fig.9.5, we predict the full long time profile of the dynamical
spin correlations for the folded XXZ chain to be

C(r,t) = [1 4 2Co(~1)"1GP (r, 1). (9.55)

Here, Gg) (r,t) is from Eq.(9.46) with D = Dixxy. In particular, the long time profile

features characteristic staggered oscillations of strength 2Cy with Cj from Eq. (9.40).
These oscillations also lead to a distinct contribution to the spin conductivity o (k,w) =

g (j(k,w)j(—k, —w)), with spin current j(k,w). Using the continuity equation 9;SZ%(t) +

0,j(z,t) =0, we relate o (k,w) = %C(k,w) and obtain

ok = 70— 0) = @DD{XZ. 9.56)

The finite momentum conductivity of the folded XXZ chain thus exhibits a finite contri-
bution at k = 7.

We verify Eq.(9.55) numerically for the folded XXZ chain of Eq.(9.53) in systems of
finite size and at intermediate time scale in Fig.9.7. We consider a chain of size L = 30
spins by making use of the conserved pattern and employing sparse matrix evolution.
The infinite temperature average for the spin correlations was approximated by averag-
ing over 10° randomly chosen product initial states for the time evolution. We find good
agreement with Eq. (9.55) already at a time ¢ = 18 in Fig.9.7. Furthermore, we note that
the anisotropic XXZ chain of Eq. (9.52) has recently been implemented in quantum sim-
ulation experiments [200]. In a simple perturbative argument, the Hamiltonian Hixxz
should provide a good estimate for the time evolution of Hyxz up to times t ~ A? in
the anisotropy. Signatures of Eq.(9.55) should thus be visible at intermediate times al-
ready at moderate anisotropy strength. We demonstrate this numerically in Fig. 9.7 by
time-evolving an infinite temperature density matrix perturbed by a spin excitation in
the center of the chain. We use matrix product state methods with a bond dimension
X = 1200 for the time evolution with the anisotropic XXZ Hamiltonian of Eq. (9.52) [454].
We find good agreement with the folded limit and the expression in Eq. (9.55) already for
A =4atatimet = 18in Fig.9.7.
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We conclude this section with the following remark: As discussed previously, the
folded XXZ Hamiltonian Hexxy, maps to the integrable limit H, of the t.J, — model in the
superspin picture. Similarly, one can apply the reverse of this mapping to the ¢.J, — like
deterministic cellular automaton studied in Refs. [465, 518], which is effectively a local
automaton for the superspins. Under the reverse mapping we then obtain an automa-
ton for spin-1/2 variables that is able to mimic the long-time dynamics of the folded XXZ
chain. A different cellular automaton mimicking the folded XXZ dynamics, which ex-
hibits different left- and right-mover velocities, has recently been studied in Ref. [523]. In
our prescription outlined above the automaton obtained from Ref. [465] by inverting the
mapping from superspins to spin-1/2 is non-local in the spin-1/2 variables and features

symmetric left- and right-movers of equal speed instead.

9.3.3 Strength of staggered oscillations

In this section we derive the exact analytical expression Eq. (9.40) for the constant Cj de-
fined in Eq. (9.35). This constant determines the strength of the staggered oscillations on
top of the Gaussian enveloping shape for the dynamical spin correlation profile in both
the random XNOR circuit and the folded XXZ model, ¢f. Eqgs.(9.44,9.55). We recall that

according to Eq. (9.37), Cp can be written in the domain wall picture as
A (ai 2 ek !
Co= <(fa§f”‘9le>> >Z (R, 9.57)

where the expectation value (-)’ is taken with respect to an ensemble where a domain

wall with positive charge #{""¥'®) = 1is fixed to sit at bond 0. We have already evaluated

2 (si 2
< <F;ésmg le)) > = 1/6 in the main text and so we focus on the correlation function

<QA>/ _ Z <,,%ésringle)>/. (9.58)

r

<Q A>/ counts the A-sublattice charge of single domain walls provided a positive domain
wall is located at the origin. The sublattice charge Eq. (9.58) refers only to single domain
walls and is conserved in the time evolution. In particular, <Q A>/ can be calculated en-
tirely within the ensemble of all possible conserved domain wall patterns, see Fig.9.5,
where mobile domain wall pairs have already been removed. This is our approach in the
following.

We first recall that the ensemble of possible conserved patterns in the domain wall
picture is subject to an exclusion principle of nearest-neighbor domain walls, see Fig. 9.5.
That is, a bond with a domain wall must have two aligned bonds as its neighbors. For
simplicity and without loss of generality we can always assume the leftmost domain wall

in the system to have positive charge, fixing a Z, degree of freedom for the staggering.
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The exclusion property then gives rise to a Fibonacci sequence for the number N, (¢) of

possible conserved pattern configurations for a number ¢ of bonds:

Ny(6) = Ny(€ — 1) + N, (£ — 2). (9.59)

Given that a (positive) domain wall is fixed to sit at the origin, let us move to the right
of the origin and derive the probability p(r) to encounter the next domain wall exactly at

a distance r. We find p(1) = 0 due to the exclusion principle and

N 5—7“ {—00 —r
p(l—1) ;

p(r>2) = N, @) :

(9.60)
with the golden ratio ¢ = 1+T‘/5 As required, > 02, p(r) = 1/(p* — ¢) = 1. Let us then
further derive the probability p(A|A) that as we go to right from a domain wall located on
the A sublattice, the next domain wall we encounter is again located on the A sublattice,
1 1

S (9.61)

pA[A) = p2n) =2y 7" = —

n=1 n=0 14
where we used the defining equation of the golden ratio in the last equality. From this
result, we also obtain the probability p(B|A) = 1—p(A|A) to find the next domain wall we
encounter on the B sublattice, given that the previous one is located on the A sublattice.
Similarly, we have p(B|B) = p(A|A) and p(A|B) = p(BJA).

We now take into account that the charges of the domain walls have to be perfectly
anticorrelated, i.e., if there is a positive domain wall at the origin, the next domain wall
we encounter to the right must have negative charge. Therefore, moving to the right from
the positive domain wall at the origin, we can determine the charge of the next domain
wall that we find at an A sublattice bond by counting the number of B sublattice domain
walls in between. The probability p(A,np = 0, A) to find no other domain wall between
two consecutive A domain walls is p(A,np = 0, A) = p(A|A). The probability to find a
number ng > 1 of B sublattice domain walls between two consecutive A domain walls

is given by

p(A,np > 1, A) = p(A|B) [p(B|B))]""'p(B|A) =

(9.62)
= [1 - p(A]A)]*[p(A] )]

If the number of B sublattice domain walls between two consecutive A domain walls is
even, the two A domain walls have opposite charge. If the number of B sublattice domain
walls between two consecutive A domain walls is odd, they have equal charge. Therefore,

the probability to find two consecutive A sublattice domain walls with opposite charge is
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given by

P = Zp(A,nB =2n, A)

n=0
= p(A|A) + [1 - p(A]4))*p(A]4) 3 [p(A]A)]*" (9.63)
n=0
p(Al4) 2

2
=p(AlA)+ [1 —p(A|A)|" —————— = —;,
where in the last equality we inserted Eq. (9.61). Accordingly, the probability to find two

consecutive A sublattice domain walls with equal charge is given by

2
Pr=1-P =1-—. (9.64)

¥
We note that P_ ~ 0.764 > 0.5, i.e. two consecutive A domain wall charges are anticorre-
lated. This is a ‘remainder’ of the perfect anticorrelation between two consecutive domain

walls irrespective of the sublattice.

Let us finally take a randomly chosen conserved domain wall pattern configuration
with a positive domain wall fixed at the origin and consider the r-th A sublattice domain
wall to the right from the origin. The charge of the r-th A domain wall is then deter-
mined by a sequence of exactly r pairs of two consecutive A domain walls. The proba-
bility to find ' < r anticorrelated consecutive A domain wall pairs in this sequence is
(") (P_)"(P.)"~", where the binomial coefficient accounts for the reordering of the anti-
correlated pairs in the sequence. Since the domain wall at the origin is positive, a sequence
containing 7’ anticorrelated consecutive domain wall pairs implies a charge of (—1)"" for
the r-th A domain wall. Perfoming a sum over the possible number 0 < ' < r of anti-
correlated pairs in the sequence and summing over the charge contributions from all A

sublattice domain walls we obtain

<QA>/ =142 f: Z (;) (=) (P (P =

rir=o , (9.65)
P
:1+2Z(P+—P,)T:P—+:%—1.
r=1 -

In the first line of the above equation, the first term of unity is due to the positive contribu-
tion of the positive charge fixed at the origin, while the factor of two is due to symmetric
contributions from right and left of the origin. According to Eq.(9.58), Eq. (9.65) yields

e /
the correlation function ), </%gf,mg le)> . Inserting into Eq. (9.57) finally we obtain

00:1(“32—1)21@—1), (9.66)




completing our proof.

9.4 Broken pattern conservation

In this section, we return to random unitary circuit models but relax the condition of an
exactly conserved spin pattern. In particular, we consider constrained ‘t.J,,, — like’ models
in which only a certain number m of moments of the spin pattern remains constant, see
Egs. (9.1,9.3). Remarkably, breaking the pattern conservation does not immediately imply
conventional diffusion but the resulting dynamics sensitively depends on the number of
conserved moments. To see this, we note that the pattern-internal spin dynamics in the
presence of m conserved multipole moments is governed by the following hydrodynamic

equation for the coarse-grained spin density (5,(t)) [2, 389],
O (62) + (=1)™D; 922 (5,) = 0. (9.67)

Eq. (9.67) describes (sub)diffusive dynamics with dynamical exponent z = 2m + 2 and its
fundamental solution, which corresponds to the spin part of Eq. (9.9) via linear response,

reads in momentum space:

F(k,t) = exp(—Dy k*™2t), (9.68)

1
V2m
normalized such that [ dx F(x,t) = 1. Using Eq.(9.68) in Eq.(9.14) we obtain the spin
correlations in momentum space,

Ok, t) = Gor(k, £) F(k, t) = % exp{ D, K"t — VDI, (9.69)

which we will analyze for different values of m in the following. While m = 0 leads
to conventional diffusion, m > 2 preserves the tracer mapping at long times. The case
m = 1 turns out to be special, with a competition between two processes that have the

same dynamical exponent but different scaling functions.

94.1 m = 0: Diffusion

For m = 0, under rescaling space and time in Eq. (9.69) according to k — k/\, t — A\t =

A2t, we obtain
2 2 A—00 2
Ok, t) ~ exp{—Dsk: t — Dtk /A} Aoo, exp{—DSk: t}. (9.70)

This implies that the dynamical exponent is z = 2. Therefore, if only the total spin of
the pattern is conserved the correlations C(k, t) are described by conventional diffusion

as expected. We verify this result numerically in ¢.J — like random unitary circuits with
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Figure 9.8: Moment-conserving random circuit evolution. a) We consider t.J,,, — like random
circuits with spin terms that conserve a given number m of multipole moments (in the depicted example
the dipole moment m = 1) of the spin pattern. The spin terms are applied with some probability -,
the particle hopping terms with probability 1 —~. b) The dynamics of random circuits with multipole
moment conserving spin pattern depends on the number m of conserved moments. If only the total spin
of the pattern is conserved (m = 0), the mean-squared displacement o2(¢) ~ t follows conventional
diffusion. If all moments up to the quadrupole moment (m = 2) or higher are conserved, o2(t) ~ /1
remains dominated by anomalously slow hard core tracer motion.

charge-conserving two-spin gates, see Fig.9.8 (a). The mean squared displacement o(t)

of the resulting real space correlations C(r,t) indeed scales diffusively o?(t) ~ ¢ at long

times as shown in Fig. 9.8 (b).

9.4.2 m > 2: Tracer diffusion

On the other hand, rescaling k — k/), t — A\*t = A1t for m > 2 in Eq. (9.69) yields
Ok, t) ~ exp{—Dsk2m+2t/)\2m_2 — VDt k:2} 200, exp{—\/Dt k2}, (9.71)

and the dynamical exponent is z = 4. Thus, if all moments of the spin pattern up to at
least the quadrupole moment are conserved the long-time correlations remain dominated
by the anomalously slow tracer motion of Eq. (9.18). Again, we verify this numerically by
computing the mean-squared displacement ¢(t) = 3, 72 C(r,t) of a random time evo-
lution with m—pole conserving spin interactions, see Fig. 9.8 (b). In practice, we have to

make sure to avoid localization of the spin pattern dynamics due to a strong fragmentation

181



Q0.06-
X
Q
_5 0.04 4
=
=
3 0.021
Q
(&)
g
5 0.00 A
0 20 40 60
distance r
1.00 — 10" 7~k
21 ‘5 2% K /
0.75- - %)01071 ”// }/ l/
= = | £ Py
k.\ 5 L L L
UO'SO = 3x107" 6x 101 109
<t U 1/4
I 801 - momentum ¢'/%k
2
c)
27Ny
L L 0_7 .’ L
0 1 2 0.0 0.5 1.0

1/4 momentum ¢'/4k

distance r/t
Figure 9.9: Hydrodynamic phase mixing. a) The profile of the spin correlations at different times
for a probability v # 0 of random circuit updates that conserve the dipole-moment of the spin pattern.
Inset: A scaling collapse of the profiles determines the dynamical exponent z = 4. b) The scaling
function associated to some 0 < v < 1 is neither the Gaussian, that is associated to hard core tracer
diffusion, nor the fundamental solution of the dipole-conserving hydrodynamic equation Eq. (9.67). It
is instead given by a convolution of the two. Here, the scaling functions are normalized such that
their value at » = 0 is equal to one. ¢) Logarithm of the Fourier transform C(k,t) of the real space
correlations C(r,t). The momentum axis has been rescaled independently for different -y, defined in
such a way that all curves coincide at t'/4k =1, |log C'(k,t)| = 1. This allows us to directly compare
the relative strengths of the (kt'/4)2— and (kt'/*)%- contributions to |log C(k,t)| for different . We
see that increasing the probability v of dipole-conserving spin updates leads to an increasing weight of
the (t'/4k)*-term in Eq.(9.74). Inset: On a double logarithmic scale the crossover from (kt'/4)%- to
(kt'/*)*~ behavior becomes visible.

of the Hilbert space into disconnected subsectors, which can occur for all m > 1[235-237].
This is achieved by choosing spin-gates of sufficient range, which ensures ergodicity of
the spin dynamics. As expected, the system is described by z = 4 subdiffusive tracer

dynamics in the case of quadrupole conservation m = 2, i.e. a2(t) ~ /1, see Fig.9.8 (b).

943 m = 1: Hydrodynamic phase coexistence

For the special case of m = 1, both terms in the exponent of C(k, t) are equally relevant
under the rescaling k — k/\, t — M\,

Ok, t) 22 exp{—DSk:4t — VDt kQ}. 9.72)
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The correlation function C'(k, t) is thus subject to a competition between two inequivalent
dynamical processes that both have z = 4 but that have different forms of their respec-
tive scaling function. Notably, although C(k,t) = C(kt'/4) is a function of kt'/4, it can
not be written in terms of some universal scaling function K(-) that is independent of

microscopic details. Instead,
Clk,t) = IC(k:(Dt)l/4, D, /@), (9.73)

i.e. the form of C'(kt'/*) depends non-trivially on the ratio Dy/v/D which determines the

mixture of the two universal processes. Specifically, we can express

log C(k, 1) = —(Dy + VD) [u (RtYN 4 (1= p) (kY42 (9.74)

D
the long time and length scale profile of the spin correlations, is sensitive to microscopic
details of the time evolution, reminiscent of UV-IR-mixing [482, 483, 524-528]. This results

in a continuously varying hydrodynamic universality class controlled by the microscopic

where . = u(D,/VD) = \Dﬁ(l + %)_1 and 0 < p < 1. The specific mixture, and thus

mixing parameter ;. Here, we identify a hydrodynamic universality class with both the

dynamical exponent and the scaling function.

We confirm these theoretical considerations numerically in Fig. 9.9, where we consider
a random unitary time evolution with dipole-conserving dynamics within the spin pat-
tern, see Fig. 9.8 (a). To ensure ergodicity, we use dipole-conserving spin updates ranging
over eight sites. For any given probability v at which non-trivial spin pattern rearrange-
ments occur the dynamical exponent is z = 4, as demonstrated by the scaling collapse
of C(r,t) evaluated at different times in Fig.9.9 (a). However, varying this probability
v effectively controls the ratio D,/+/D and leads to different scaling functions as shown
in Fig. 9.9 (b). In particular, the limiting distributions are a Gaussian for v = 0 and the
dipole-conserving hydrodynamic scaling function of Eq. (9.68) (for m = 1)as v — 1. In
addition, we numerically compute the Fourier transform C'(k, t) of the correlation profile
to verify the prediction of Eq. (9.74). Fig. 9.9 (c) shows that increasing the rate y of the spin

dynamics leads to an increasing contribution of the (kt'/4)*—term to log C'(k, t).

The arbitrary mixing of two distinct dynamical scaling functions as in Eq.(9.74) can
be viewed as phase coexistence of two hydrodynamic phases, in analogy with more con-
ventional phase coexistence occuring at first order equilibrium transitions. To make this
analogy more tangible, let us imagine a situation in which the dynamics of the spin pat-

tern is given by

Folk,t) = exp(— D, |k|°1), (9.75)

1
s
now with some general exponent 0 < o < oo whose value is governed by some un-

derlying model (e.g. through the power-law decay of a long-ranged spin term in the
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constrained ¢J — like models). Using that C,,(k,t) = F,(k,t)G-(k,t), we obtain the dy-

namical exponent z as a function of «:

a, fora < 4
2(a) = . (9.76)
4, fora >4

In particular, o > 4 corresponds to Gaussian tracer motion while a < 4 is associated with
non-Gaussian scaling functions. In addition, for a # 4 we can always write the real space
correlations Cy(r,t) as

Colr,t) = (DY)~ YAF, (r(Dt) =14, (9.77)

with a normalized universal scaling function [ dz F,(z) = 1. If we thus consider o = 4
to separate a Gaussian and a non-Gaussian dynamical phase, we can accordingly define
an order parameter that quantifies the non-Gaussianity of the scaling function for a given

o via

h(a) := min/dx ()\ Fa(Ax) — L exp(—gc2))2 =

A>0 \/7?
% min [ dk (e—(\k\/x)a _ e—k2/4)27 o<d (9.78)
> .

0, a>14

We have evaluated h(«) numerically in Fig.9.10, where we see a clear discontinuity at
a = 4. The central property Ah(c = 4) > 0 can also be demonstrated analytically. In par-
ticular, the variance of the & — 4~ scaling function vanishes, as opposed to a Gaussian [2].
This jump in the order parameter suggests that we can indeed interpret the point o« = 4 as
a first order dynamical transition, with Eq. (9.74) describing the Gaussian/non-Gaussian

phase mixture.

9.5 Conclusions & outlook

In this chapter, we investigated the emergent hydrodynamics of general ¢.J — like many-
body systems in one dimension with constrained spin interactions. We found that for
chaotic, thermalizing systems the dynamical spin correlation function at infinite temper-
ature is given by a convolution of the dynamics of the underlying spin pattern and the
tracer motion of hard core particles. In ¢.J, —like systems all multipole moments of the spin
pattern are constants of motion and spin correlations are given by tracer dynamics alone.
This allowed us to demonstrate the emergence of subdiffusion with dynamical exponent
z = 4 in several random circuit lattice models that feature a (effective) constant spin pat-
tern. Using results from the theory of tracer motion we provided expressions for the full
long-time profile of dynamical spin correlations in these models. It will be interesting to

see in the future whether additional one-dimensional systems fall under this dynamical
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Figure 9.10: Hydrodynamic order parameter. The order parameter h(a) of Eq. (9.78) quantifies the
deviation of the charge correlation profile from a Gaussian. « labels the exponent of the spin pattern’s
internal dynamics, see Eq.(9.75). There is a clear discontinuity at « = 4, where long-time dynamical
correlations switch between Gaussian tracer motion and a non-Gaussian dipole-conserving profile. As
a consequence, o = 4 can be interpreted as a first order dynamical transition, which allows for phase
coexistence of distinct hydrodynamic universality classes.

universality class. We also remark that although we mostly focused on situations with a
conserved o; = £1 spin pattern, our results generalize to patterns of higher effective spin

o; = —|S|,...,|S|. In such an instance, all odd power spin density correlations of the form

((S30)™ " (S5(0)™"*) 9.79)

with integer n, reduce to the same tracer process up to a global prefactor. We emphasize
that our results apply to infinite temperature correlations. Whether extensions to finite
temperatures are possible depends sensitively on whether the average charge of the pat-

tern vanishes also at finite temperatures for a given model.

We further established a connection to integrable ¢.J, - like quantum systems which fea-
ture conserved spin patterns and a time evolution that is independent of the pattern. By
mapping to a tracer problem of ballistically moving particles, we were able to reproduce
the spin diffusion constant of the folded XXZ chain and provided its full long-time corre-
lation profile. The characteristic staggered oscillations of the resulting correlation profile
can be verified in quantum simulation experiments on XXZ chains already at moderate
anisotropy. We further point out a connection to the anomalous full counting statistics of
current correlations that were recently reported for the XXZ chain, the XNOR circuit, and
for a deterministic classical automaton with conserved pattern, Refs. [529, 530]. Ref. [529]
provides a picture in which such correlations can be understood as the effective tracer
motion of a single domain wall. Our unifying picture on the intrinsic structure of these
models shows that their anomalous counting statistics has the same underlying mecha-
nism. We therefore expect that such anomalous statistics appear in all pattern-conserving

systems.

Moreover, it is interesting to study non-integrable Hamiltonian quantum systems with
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conserved patterns, e.g. via the t.J, — model at finite J, or via adding diagonal interac-
tions to the folded XXZ model. For example, a stochastic spin chain closely related to the
folded XXZ model is the so-called Ising-Kawasaki model [531, 532], taken in a particu-
lar limit: the Hamiltonian Hexxyz is supplemented by nearest-neighbor (NN) and next-
nearest-neighbor (NNN) Ising terms. The name derives from the fact that the quantum
Hamiltonian is obtained from the Markov operator of a classical Ising chain undergoing
Kawasaki magnetization-conserving dynamics. The NNN Ising coupling does not com-
mute with Hexxyz, leading to integrability breaking in many sectors [510] while preserv-
ing the pattern conservation described above. Such systems should fall under the same
universality class as the generic random circuits considered in this work and we expect
them to exhibit z = 4 subdiffusive hard core tracer dynamics. A version of the folded
XXZ model in which integrability is broken by noise was recently studied in Ref. [533],
concluding z = 4 as well.

In addition, we investigated the dynamics of generic systems in which only a finite
number of multipole moments of the spin pattern remains conserved. We found that the
characteristics of tracer dynamics survive if at least the multipole moments up to and
including the quadrupole moment are constant. Intriguingly, if only the moments up to
the dipole are conserved there emerges a special scenario in which spin correlations are
subject to a competition between two hydrodynamic processes with dynamic exponent
z = 4 but different scaling functions. The resulting shape of the long-time correlations are
then susceptible to microscopic details of the time evolution and we find the situation to be
reminiscent of the coexistence of different hydrodynamic phases at a first order transition.
How such a scenario may qualitatively arise in systems other than the ones considered

here is an interesting open question for future research.
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10

Summary and outlook

To conclude, let us take stock and summarize the main findings of this thesis, put into
the context laid out in the introductory Chapters 1,2. We started out posing general ques-
tions about the interplay between the out-of-equilibrium quantum dynamics of many-
body systems and the presence of dynamical constraints. This program was motivated
by advances in quantum simulations experiments, whose unprecedented degree of con-
trol over interacting quantum systems allows for evermore direct access to their exotic
nonequilibrium properties. Our guiding questions concerned the possibilities of absence
of thermalization and presence of slow relaxation in constrained systems. These questions
were formulated in a very open-ended way and so our trajectory in this thesis has led us
to many answers, scrambled over a diverse set of exciting many-body problems: From
ergodicity-breaking and glassy relaxation dynamics to novel hydrodynamic universality
classes and emergent tracer problems. From quantum dimers on various geometries over

spin liquids to exotic fracton models.

In the Part I of the thesis we studied nonequilibrium dynamics in many-body systems
with local gauge constraints. Such constraints are fundamental in physics and their im-
plementation in quantum simulators is at the forefront of many experimental efforts. We
demonstrated in Chapter 3 that the quantum dimer model on a square lattice features an
intriguing low energy phase dominated by dispersionless, immobile excitations. Due to
the restricted mobility of these excitations, the system can reach thermal equilibrium only
after extremely long times, for which we provided a lower bound. On the system sizes
accessible to numerics, thermalization was even found to be absent altogether. Although
the numerical tools to evaluate the question of thermalization in this system are limited to
small lattices, it is nonetheless interesting to ask what the actual thermalization time in the

quantum dimer model turns out to be. While we provided a lower bound for this time,
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we indeed expect it to be even larger in practice since other causes of slow relaxation such
as prethermalization might play a role as well. Furthermore, Refs. [406, 407] suggested
the presence of a localized phase in a disordered dimer model, based on numerical re-
sults. Although it is difficult to infer properties of the thermodynamic limit from results
on small lattices and although “avalanche” arguments suggest instability of many-body-
localization in dimensions d > 1 [138, 534], it would be interesting to explore whether
there could be ways to escape these arguments in constrained systems such as the dimer
model. This could be an exciting question to study in the future. Another exciting direc-
tion is the investigation of quantum many-body scars, which have been demonstrated to
exist in quantum dimer models [535, 536].

In Chapter 4 we uncovered the rich structure of a dimer model on a bilayer geometry,
deriving its many conservation laws analytically. We investigated the dynamics of this
system under a random unitary time evolution and found a number of exotic features
that resemble the physics of fractons. Most notable, for initial states featuring extensive
non-local winding numbers, the thermalization process separates into several stages: The
system first relaxes along a quasi one-dimensional tube and only then appears to show
non-trivial dynamics along the second direction perpendicular to the tube. The timescale
at which relaxation in this perpendicular direction sets in was found numerically to di-
verge algebraically in system size, providing a possible novel form of ergodicity-breaking
— within a connected sector of the Hilbert space — due to non-local winding numbers. It
would be interesting to see whether similar conservation laws and dynamical phenomena
occur in other non-planar dimer models or link models with U(1) gauge structure more
generally. In this context, we have seen that a global Hopf-charge in the bilayer dimer
model assumes a somewhat complex form in terms of the original dimer operators. It
could thus be an interesting undertaking to develop an algorithm that ‘learns’ such con-
servation laws from snapshots of the time evolution, which could then be applied to other
dimer models'.

In Chapter 5 we investigated how local probes — spin-polarized scanning tunneling
microscopy (STM) in particular — might aid in the detection of topological edge modes
of magnetic insulators. Our main example concerned the Kitaev honeycomb model, an
exactly solvable Zj spin liquid. We calculated the local dynamical structure factor of the
Kitaev model on open boundary conditions, which is the relevant quantity entering the
tunneling conductance. We determined qualitative signatures of the presence of edge
modes and how the underlying anisotropy of the Kitaev model might be revealed by
tuning the spin-polarization of the STM setup. It will be interesting to see in the future
whether such a setup can be implemented in experiment and whether alternative local
‘qubit’ probes — for example nitrogen vacancy centers — can investigate the dynamics of
gapless chiral edge states [537].

In Part IT of the thesis we turned our attention to fracton systems in which several mul-

'The author thanks Annabelle Bohrdt for insightful discussions and first steps in this direction.
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tipole moments of a global U(1) charge are conserved. While models with such a com-
bination of symmetries can show a strong fragmentation of the Hilbert space [235-238],
here we focused on a generic setting in one dimension where the system does thermalize.
In Chapter 6 we found that this thermalization proceeds in an anomalously slow, subdif-
fusive manner using random circuit time evolution and we derived an associated model
of linear fluctuating hydrodynamics. These considerations generalize to higher dimen-
sions as well [389]. The subdiffusive relaxation of spin/charge excitations is in agreement
with cold atom experiments in the presence of a strong tilted potential [197]. We then
proceeded in Chapter 7 to discuss in detail a coupled hydrodynamic theory of charge-,
dipole- and energy-conservation as is relevant to Hamiltonian dynamics. We found a sub-
diffusive mode of mixed charge and energy excitations as well as a diffusive pure energy
mode. This general model was then demonstrated to be in agreement with a nonequi-
librium quantum field theory study of a Bose-Hubbard model with dipole-conservation.
We emphasize that our investigations considered the dynamics of multipole-conserving
models at high energies, and the associated hydrodynamic universality classes of course
also apply to classical systems with the same conservation laws. It would also be highly
interesting to study the properties of multipole-conserving quantum systems at low en-
ergies and how they could be realized in experiment.

In Chapter 8 we investigated how the presence of dipole-conservation can also con-
strain the spreading of quantum information. By evaluating out-of-time-ordered correla-
tions (OTOCs) in classically simulable automaton circuits we demonstrated the presence
of a sub-ballistic light cone of operator spreading at a critical point separating an ergodic
and a localized, strongly fragmented phase. We constructed a phenomenological model
for the scaling behavior of the OTOC near the critical point, which we found to be in
agreement with our numerical results. The sub-ballistic light cone was demonstrated to
impact operator dynamics within a ‘critical fan” even away from the phase transition point
on very long time scales. A particularly interesting feature of our investigation was the
use of ‘single-shot OTOCs” within our numerical approach, providing access to the long
waiting times in the spread of the operator front. Analysis of such single-shot OTOCs
yields more information than that of the average OTOC on its own, and it is an interest-
ing research direction for the future to determine how this can be made use of beyond our
results of Chapter 8.

In Chapter 9 we investigated the dynamics of one-dimensional chains of spinful
particles with conventional hopping but constrained spin interactions. We derived a
general expression for the late-time dynamical spin correlations, which assume the form
of a convolution of a hard core tracer distribution function of a tagged particle and the
internal hydrodynamics of the spin pattern. If the spin pattern is conserved, subdiffusive
tracer motion dominates the late-time dynamical correlations in generic systems. We
use this connection to derive exact expressions for transport coefficients in a couple

of random circuit models. We further find that our results apply to certain integrable
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quantum systems, providing a simple way to reproduce their diffusion constants.
Finally, we studied a novel way of interpolating between a conserved spin pattern and
diffusive hydrodynamics within the pattern by allowing only for dipole-conserving spin
interactions. We found that such a setup gives rise to intriguing novel hydrodynamic
behavior in which details of the microscopic evolution explicitly enter the long-time
scaling form of the profile of dynamical spin correlations. It would be very interesting
to see whether a similar situation can arise in different setups than the one studied
in Chapter 9. It is further interesting to note that tracer dynamics could provide a
novel tool to study localization in disordered one-dimensional many-body systems. In
particular, the availability of snapshots in quantum gas microscopes could provide direct

experimental access to the tracer motion studied in Chapter 9.

To summarize, we encountered a rich phenomenology of nonequilibrium dynamics in
constrained systems. We found that there can indeed be novel ways of avoiding ther-
malization and that slow relaxation occurs in many different settings. In particular, in
line with general expectations, the emergence of hydrodynamic transport constitutes an
example of universality out of equilibrium and we uncovered the presence of novel uni-
versality classes in constrained systems. We also found what appears to be a new kind of
critical behavior in the dynamics of operators. Much of the investigations in this thesis fo-
cused on the relaxation of local observables. In the future, it could be interesting to study
the physics of constrained models from a perspective of quantum information. For in-
stance, it would be exciting to investigate in more detail the interplay between constraints
and the dynamics of entanglement. Recently, immense interest arose in combining uni-
tary time evolution with local projective measurements [538-542]. Adding measurements
as a new element to the dynamics of many-body systems with constraints could be a
highly interesting line of investigation in the future. Quite generally, there are exciting
new questions waiting to be tackled at the interface of quantum information and many-

body physics with constraints.
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Overview of methods

A.1 Exact diagonalization and sparse matrix evolution

In principle, the most direct way to solve for the dynamics of a quantum system is to
compute all eigenstates and eigenvectors of its Hamiltonian exactly. Since the size of the
Hilbert space |H| = 2! grows exponentially with the system size (here for qubits) and the
time complexity for diagonalization of a matrix t = O(|H|?) scales with the third power
in the size of the matrix (in practice), this approach quickly becomes unfeasible once the
system size exceeds about L ~ 16 spin-1/2’s [384]. Usually however, the Hamiltonian will
correspond to a sparse matrix. In this case, if one is interested in the dynamics starting
from some initial state |¢/), fast matrix-vector multiplication can be used to perform time
evolution on somewhat larger system sizes L ~ 26, based on a Trotter decomposition

/6t
).

In addition, it is often possible to exploit the presence of symmetries in the problem

e e t
eszt ’w> ~ (esz(St)

in order to reach larger system sizes. Symmetries lead to a block-diagonal structure of
the Hamiltonian and one can then focus on a specific symmetry sector, which is smaller
and therefore more efficient to work with than the full Hilbert space. In practice, one can
often make use of lattice symmetries or the presence of a conserved total particle num-
ber. It is also worth noting that many of the problems studied in this thesis feature local
constraints. Due to the local nature of the constraints, the resulting connected subspaces
may not have tensor product structure, i.e. we cannot view them as being composed of
many independent local Hilbert spaces'. This implies that the Hilbert space dimension
of connected subsectors in constrained systems may grow asymptotically with a differ-

ent exponent than the original spin-1/2 Hilbert space. The prime example for this is the

! A non-tensor-product structure of the Hilbert space can have interesting consequences for the
entanglement properties of random quantum states [543]
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nearest-neighbor blockaded chain in which two neighboring qubits cannot both be in the
|1)-state. This constraint is directly relevant for Rydberg atom systems [51] and we also
touch upon itin Chapter 9. The Hilbert space in this model grows as a Fibonacci sequence
|H| ~ %@L asymptotically for large L, where ¢ = 1*—2‘/5 is the golden ratio. We notice that
this is not the case for typical subsectors of global symmetries. For example, the largest
connected sector in a qubit model with conserved global magnetization is just the cen-
tral binomial coefficient ( ].52) ~ \/%2% whose dominant exponential growth is still 2%.
Similarly, a reduced Hilbert space size due to local constraints occurs in the dimer models
whose dynamics we consider within exact diagonalization and sparse matrix time evolu-
tion in Chapter 3. In particular, the number of dimer coverings on a square lattice with
open boundary conditions is known to grow asymptotically as || ~ eCL?/m ~ 1,347,
where G is Catalan’s constant [370]. Due to this feature we can reach a square lattice of

size 8 x 8 using sparse matrix time evolution in Chapter 3.

Importantly, the local constraints that lead to this reduced Hilbert space dimension can
also help us in practice to construct a basis set of constrained subspaces. This means that

92L*=2L pogsibilities of having a dimer/having no

we do not need to iterate through all
dimer on each of the 212 — 2L links of a square lattice with open boundaries in order to
decide for each possibility whether itis a valid dimer configuration. For an 8 x 8 lattice this
would in fact be practically impossible. Instead, we start from the full set of valid dimer
configurations for a small lattice. We then expand the system size by adding a new lattice
site with a dimer attached to it. For all configurations already within our set we then find
the possible orientations of this new dimer such that all local constraints are fulfilled. The
procedure is then iterated until the desired system size is reached. Instead of building the

system ‘qubit-by-qubit’, we thus construct it ‘one local Gauss law at a time’.

Such a local construction scheme to generate the basis states of a constrained sub-
space no longer works in general for global constraints such as the conservation of the
total dipole moment. In particular, due to Hilbert space fragmentation [235-237], dipole-
conserving systems have more disjoint subspaces than is indicated by the global charge
and dipole conservation laws. For such cases one must to use a different scheme to obtain
the basis of a connected subspace, for example by constructing the Krylov subspaces of
given seed states through repeated applications of the Hamiltonian. In practice, finding
the basis of a connected subsector can be a numerically costly task, sometimes even more

so than the actual time evolution once the desired subsector basis has been obtained.

Exact diagonalization and sparse matrix evolution are ultimately limited to small sys-
tems and therefore have clear shortcomings. However, in lack of more efficient and con-
trolled numerical tools such as for ground states, they are nonetheless vital in making
progress towards understanding quantum dynamics out of equilibrium, especially in the

context of thermalization and its absence.
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A.2 Haar random unitary circuits

The use of random circuit unitary time evolution as a proxy for generic non-integrable
quantum dynamics has led to many exciting insights over recent years. In particular, it
was demonstrated that universal processes such as operator dynamics [63-66, 189, 224],
growth of Rényi entanglement entropies [61, 62, 225-227] as well as transport [65, 66, 68]
can be captured within such simplified models, both with and without U(1) charge con-
servation. Unitary circuits can also be used to construct time-periodic Floquet dynamics
by periodically repeating layers of random unitary gates. Such a procedure allows for
calculations of the spectral form factor (SFF), which contains information about the level
statistics of the Floquet unitary and thus serves as a diagnostic for the emergence of quan-
tum chaos [67, 68, 87, 103, 104], ¢f. Sec. 2.1.2. From a technical perspective, one makes use
of averages over the Haar ensemble of unitary matrices. In many cases this simplifies
the quantities of interest, sometimes even allowing for analytical results and often eas-
ing the complexity of their numerical evaluation. In this appendix, we provide a brief
review of the properties of random unitary circuits that are most relevant to this thesis.
Specifically, based on work of Refs. [65, 66, 68, 104], we review below how dynamical
charge/spin correlation functions in systems with conserved quantities can be evaluated
as stochastic discrete Markov processes.

To start, consider a unitary time evolution U (t) that is composed of local unitary gates
in a one-dimensional system of qudits; we have in mind the ‘brickwork’ circuit structure

that appears repeatedly throughout the thesis. We can therefore write

ctL
Ut =[]0 (A1)
/=1

where the U, are local gates, L is the system size and ¢ is some O(1) constant that depends
on the precise definition of a single time step; we use, ¢ = 1 in the standard brickwork lay-
out. We will choose the local Uy as random unitaries all independently of each other (this is
therefore not a periodic Floquet time evolution). Let us now assume that the system has
symmetries that are diagonal in the computational z-basis?, inducing a block-diagonal
structure in the local gates. Formally, if P is the projector on the local symmetry sec-
tor s at the sites where the gate Uy acts (and simply the identity on all other sites), we
have [0, P;s] = 0. For example, the local symmetry sector s could correspond to the
total charge on the sites that the gate Uy acts on. U, can thus be written in an explicitly

block-diagonal form
Uy = Z P, U Py . (A2)

The Uy, acting within a symmetry sector in Eq. (A.2) are then chosen randomly from the

2This is the case for all models we consider in this thesis
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space of unitary matrices of size ds x ds with respect to the Haar measure, where d; is the

dimension of symmetry sector s.

Within this setup, let us consider two states |z), |z’) in the computational z-basis. In or-

der to characterize transport properties in the z-basis, we are interested in the amplitudes
a(Z'|z;t) == (Z'|Ut)|2), (A.3)

and our goal is to compute the associated probability
|a(2'|z;1)[%, (A4)

where 7~ denotes an average over the random unitary gates U 1, from Eq. (A.2). We can

recast Eq. (A.4) in a ‘path integral” form, such that

tL
EEDIEE ) § (AT (A5)

{z¢} €=1

with zg = z and z;;, = 2z’ fixed. The matrix elements <Zg|Ug|Zg_1> appearing in Eq. (A.5)
are each either zero or just a single complex entry of one of the random matrices Uy ;. We

can then use the property of averages over moments of random unitary matrices,

1
(UK,S)fj(UZ,s)mn = jéimdjn- (A.6)

S

Using Eq. (A.6) we conclude that if z, # 2z or zy_; # z;_,, then

= elze—1)]" {Z4lDelzj_y) = 0. (A7)

Therefore, only the diagonal parts of the path integral history in Eq. (A.5) survive upon
expanding the amplitude squared,
- t N )
a1z 0F = 3 [T |(zl0ilze-)

{z} =1

(A.8)

At this point, let us introduce the notation of Ref. [104], |z) := |z) (z| for the projector on
the state |2) as well as the inner product (A|B) := Tr[AB'] for operators. We can then

recast the above diagonal terms as

A 2 = = A
(zelUrlzes)| = Tr[l20) (a1l Ot |zes) 2| 0| = (el Tilzecn),  (A9)
where the transfer matrix 7; is determined by evaluating the left hand side of Eq. (A.9).
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Doing so using Eq. (A.6) once more, this results in

ﬁzzdi S Is1)(sal, (A.10)

s
S1,52€8

where crucially, the sums over sy, so are over local z-basis configurations that belong to
the local symmetry sector s. In particular, 7, acts as the identity outside the sites that Uy

acts on. Inserting Eq. (A.10) back into Eq. (A.8), we obtain
L
la(z'|z:6) = (/| [] Tel2)- (A11)
/=1

Notice that there is no circuit average on the right hand side of Eq.(A.11), and so the

transfer matrices repeat after one brickwork layer, such that one can define

L
T=1]T (A.12)
=1
and therefore
la(2']z; 1)) = (2| T"|2). (A.13)

We used this result in Chapter 9. Inspecting the form Eq. (A.10) of the local transfer ma-
trices, we see that the probabilty to go from state |z) to |z’) within time ¢ in the circuit is
(upon circuit averaging) given by a classical stochastic Markov process in which z-basis
product states are updated locally by rearranging the configuration randomly, with the
constraint that the symmetry sectors are preserved. Such a discrete Markov process can
be sampled efficiently. With a way to numerically sample the Markov process of Eq. (A .4),
we can determine the dynamical z-basis charge correlations in a straightforward manner
via

(Za(t) Z0(0)) = % S 2ozl la(2|2, D)2, (A.14)

z,2’

where N is a normalization factor. Numerically, N corresponds to the number of initial

|z)-states that were sampled.

A.3 Quantum automaton circuits

Apart from the Haar random unitary circuits described above, throughout this thesis we
often use so-called automaton circuits [205, 386-388]. Automaton-circuits are unitary quan-
tum circuits in which there exists a special basis, by convention the computational z-basis,
that is left invariant under applications of automaton gates. Formally, for a z-basis state

|z) and an automaton gate U, we have
Ulz) = = |2/). (A.15)
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Thus, automaton gates act as permutations within the computational z-basis up to a phase
factor. Clearly, if we have an initial state |¢)) = |z) that is a z-basis product state, the
time-evolved state |1(t)) = €® |z(t)) will remain a z-basis state up to a global phase.
The dynamics within the z-basis is therefore comparable to a cellular automaton, hence
the nomenclature. We emphasize that for product initial states that are not in the compu-
tational z-basis, gates of the form Eq. (A.15) do generate entanglement.

Automaton circuits have recently become popular tools to study the thermalization
process of quantum many-body systems [2, 205-207, 229, 388, 502]. As is the case with
Haar random unitary circuits, the central idea is to use automaton circuits as a proxy
for generic Hamiltonian dynamics. Due to their simple automaton form in the z-basis,
many quantities of interest can be studied in a numerically efficient way in these circuits.
For example, transport properties such as dynamical charge/spin correlation functions
can be obtained in a straightforward manner by sampling over z-basis initial states for
the effectively classical automaton time evolution. This yields similar expressions to the
ones derived in the previous Sec. A.2, see Eq.(A.14). However, if we restrict ourselves
to automaton circuits we can essentially skip the derivation that was necessary for Haar
random unitaries, as the automaton condition Eq. (A.15) immediately implies that z-basis
correlation functions can be sampled in a classical way. Automaton circuits and Haar
random unitary circuits thus yield equivalent results for transport properties in the z-
basis. Automaton circuits have been employed to study transport in a number of lattice
systems, see Refs. [2, 205-207], as well as Chapters 4,6,8 of this thesis.

A comment is in order: In Chapter 9 we use the discrete Markov process that results
from Haar random unitary gates to compute dynamical correlation functions while Chap-
ters 4,6,8 use an automaton approach. This has mostly “historic’ reasons (apart from Chap-
ter 8, see discussion about OTOCs below), and we have verified that both approaches
provide equivalent results (i.e., the same hydrodynamic universality classes), as expected
for the universal processes studied in these Chapters. One can in fact use random au-
tomaton circuits for which dynamical correlations in the z-basis also quantitatively agree
with the Haar random unitary case. Again, mostly for historic reasons we employ slightly
different implementations of the unitary automaton time evolution. We emphasize again
that our results do not depend on such details of the microscopic implementation. Be-
low, in Sec. A.3.1, we describe the details of the automaton evolution that was used for
the multipole-moment-conserving spin chains. Qualitatively however, as far as transport
properties are concerned, we can think of the evolution in the same way as for the discrete
Markov process of Sec. A.2.

We point out that automaton circuits are very useful also beyond studies of transport.
In particular, automaton circuits allow for an efficient numerical computation of out-
of-time-ordered correlations (OTOCs), see Ref. [205], which are important quantities in
the context of quantum information dynamics. For automaton circuits the computation

of OTOCs is significantly simpler than for Haar random unitaries. In addition, it has
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been demonstrated that automaton circuits — despite being less generic than Haar ran-
dom unitaries — reproduce the qualitative features of operator dynamics that are expected
in a generic time evolution [205, 386, 502, 503]. This is also demonstrated in Chapter 8.
We show below in Secs. A.3.2,A.3.3 how OTOCs can be evaluated in automaton circuits.
These results are essential to the investigations of Chapter 8.

Finally, we mention that automaton circuits have also been used to study the dynamics
of entanglement for non-z-basis product initial states. Ref. [229] chose a setup in which the
local gates —in addition to fulfilling the automaton condition Eq. (A.15) — where also Clif-
ford gates, i.e. preserving the generalized group of Pauli matrices. Clifford circuits allow
for a classically efficient way to compute Rényi entanglement entropies in large scale sys-
tems [539, 544]. Ref. [229] studied circuits with a U(1) charge conservation law and found
diffusive growth of Rényi entanglement entropies S, (t) ~ v/, Eq.(2.17), for n > 1, ver-
ifying results obtained in Haar random unitary circuits [62, 228]. We comment here that
the combination of U(1) charge conservation and the defining relation of Clifford gates
to leave the Pauli group invariant is sufficient for the automaton condition Eq. (A.15) to
hold. In other words, all charge-conserving Clifford gates are also automaton gates. In to-
tal there remain only 64 two-qubit Clifford gates with charge conservation®. Remarkably
however, this set of gates is able to capture the generic features of entanglement growth.
A larger set of automaton gates in the absence of conservation laws has recently been em-
ployed in a study of unitary dynamics with interspersed projective measurements. As in
Haar random unitary circuits, a measurement-induced transition between a phase with
low, area-law entanglement and a phase with high, volume-law entanglement has been

found upon tuning the frequency at which measurements are peformed [500].

A.3.1 Automaton circuit used in Chapter 6

Let us provide the details on the stochastic automaton scheme that we studied numer-
ically in Chapter 6 of this thesis. The automaton evolution can be expressed in terms
of a classically simulable circuit where the updates are represented as unitary operators
o™ (x) of range r, acting on local strings of z-basis configurations |s(x)) =[Sz, ..., Sz4r—1)

and conserving all Q("=™). These operators connect two states |s(z)) and

|8/ () = U™ (@) |s(x)) (A.16)
defined such that [205]
U™ () |8 () = |s(x)) . (A.17)

Therefore, U™ (x) acts as a usual o Pauli matrix in the subspace spanned by |s(z)) and

|s'(x)). For states that are locally frozen due to the boundaris of the chosen spin represen-

3The author thanks Zack Weinstein for many fruitful discussions on the topic of Clifford cir-
cuits.
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tation, Uqgm) (x) acts as the identity. For a selected hgm) (x) of Eq. (6.10), there are potentially

two possible updates for a given |s(z)), namely
|8'(x)) = hi™ (2) [s(x)) (A.18)

and
.|.

8" (@)) = (™)) Is(@)) (A19)

Therefore, we require two independent unitary gates Uﬁz) () and Ufjg) (x) describing all
possible updates associated to a local term of H™ . These update operators are the build-
ing blocks of the automaton evolution. The definition of a single time step in terms of

these gates for the case m = 1, taking into account only H. (1 is illustrated in Fig. A.1.

Figure A.1: Automaton circuit evolution. a) lllustration of a single run in an automaton circuit
for m = 1 using dipole-conserving updates of range four between product states (spin representation
S = 1). With some finite probability, updates are either applied (yellow gates) not (grey gates),
yielding effectively stochastic updates. b) Detailed definition of a single time step of the automaton
circuit evolution as described in the text, here for dipole-conserving updates of range three.

We can further provide a more explicit construction of the two local unitaries Uf?/ 5(T)

in the following way: let us define the elementary unitary operators U, s,s/» which act as

Us.or |8(2)) = |8/ (2)) (A.20)
and
Us.s |8 (x)) = [s(2)) (A.21)

and as the identity on all states outside the two-state subspace spanned by
{Is(x)),|s'(x))}. We can define such an elementary unitary for every pair (s(z),s'(x))
of local spin configurations that are connected by the Hamiltonian H{™. Because in gen-
eral, as described above, a given |s) can be connected to two other configurations by H ﬁm),
we can seperate the set of all possible pairs (s(z), s'(z)) into two subsets A and B, such
that a given s(x) appears only at most once as part of a pair (s(z), s'(z)) in A4, and analo-

gously in B. We can then define the abovementioned (775?/ () in terms of the elementary
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unitaries acting only on pairs within one of the two sets A and B via

0% = [l Uss (A.22)
(s,8")eA

)

and analogously for Uyg . Due to the construction of the sets A and B, the unitaries in

the product of Eq. (A.22) all commute.

The relation of the circuit dynamics to the Hamiltonian A, (™) can then be expanded even
further by endowing each application of an update between |s(z)) and |s'(z)) with an
acceptance probability p ~ ’(s’ ()] (hgm) (x) + h.c.)|s(x)) ‘2 proportional to the associated
Fermi-golden-rule rate. According to this probability, the update gate is either applied or

substituted by an identity operator. This turns our circuit into a stochastic automaton.

A32 TheZX-0OTOC

Here we demonstrate how the numerical evaluation of out-of-time-order correlations can
be performed efficiently in automaton circuits, see also Ref [205]. In particular, our goal
is to show that the simple expression of Eq.(8.4) of Chapter 8 for the form of the ZX
— OTOC can be derived from the automaton condition. For concreteness, let us restrict
to the same setup as in Chapter 8, i.e. a three-state onsite Hilbert space |0), |1), |2) and
expectation values (...), evaluated at a chemical potential corresponding to an average

density 0 < n < 2. Recall that we consider the correlations

G, ) = ([Z:(1). Ko(0))[Z (). Zo(0)]1) . (A23)

with the shift operator Xy = |2), (0| + [0), (1] + |1), (2| acting at site 0. We first expand
the commutators in Eq. (A.23) to obtain

CF(at) =(Zo(O X)X (0) () + (Xo(0)Zo(0)Z:()X](0))

i (A.24)

~(Z:()X0(0)Z: (1) X{(0))

n

The first two terms on the right hand side of Eq. (A.24) are time-ordered contributions
while the latter two are out-of-time-ordered. Using that XOXg = 1, the first term of
Eq. (A.24) evaluates to

N N ~ A~ e_p'(n) Zz Nz = =
(Z:0 XX 2:(0)) =D {0l Za(t) 22 (1) In) =
" (A.25)
(D) SR — _ e—h(m) yng ————————
S Zuta) ) Gl 20 ) = 32 S (2ot )



where in the last equality we have explicitly made use of the automaton condition
Eq. (8.1), which fixes |m) = |n) in the sum over m. Analogously, we obtain for the second
term in Eq. (A.24)

A - - e—H(n) X, nae — -
(%0 Z:(0)Z0X{(0)) =3 (] XeZu®) X Im)”, (A26)

Z,
n - n

——— () e —— S
<Z$(t)X0(0)Zm(t) 5(0)> _Z”anzz(t) In) (n] XoZs(H)X] ). (A27)

The fourth term of Eq. (A.24) is equal to Eq. (A.27) after using cyclicity of the trace as well

as [Z(t),>_, nz] = 0. Collecting all terms and inserting them into Eq. (A.24), the OTOC

takes the convenient form

—BY N . . . .
Rt = 3 S [z i) - (ol X Z 0 X (A28)

n

which corresponds to Eq. (8.4) of the main text.

A3.3 The XX-0OTOC

In Chapter 8 we focused exclusively on the dynamics of the ZX — OTOC. Here, we argue
that our results are indeed more general and should generalize to other OTOCs as well.
In particular, we show that for automaton circuits, the spreading of the front (zxx(t)) of
the OTOC Cg?_; (2,t) can quite generally be bounded by (xxx (t)) < 2(z,(t)), with (z,(t))
the front of the ZX — OTOC CJY) (x, ).

To show this, we first write down the expression for the X X — OTOC,

. Qe H Py Na ~ — =
CPx(@t) = 3 = (1= Re (m|X. () XX () X[ Im)) (A.29)

and consider its out-of-time-ordered part. We notice that for a given |n) there is always a

region r(t) C Z of size |r(t)| around the origin z = 0 such that both

U(t) In) = [n(t)),) © In(t))r

(A.30)
U)X In) = [0/ (6)),4) ® (1)) 5y

hold true, where 7(t) = Z\r(t) is the complement of r(¢) and |n(t)), ) denotes the restric-
tion of a state |n(t)) to the region r(¢). According to Eq. (A.30) the two states only differ
r

)
inside the region r(¢). Furthermore, we are guaranteed the existence of an xxx (t) > 0
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such that for all z > zx x(¢t) and all ¢’ € [0, ¢] we can write

UT()XIU (1) In) =|n(t =),y ® [m(t 1)y, 0y © 00 = )i, )
UT(t/) aT: (t )XT In) =|n'(t - t/)>'r(t—t’) ® |m(t’t/)>sm(t,t’) ® [n(t —t'); (t—t")\sz(L,t")
(A.31)

where s, (t,t') C Z is some region of size |s,(t,t')| around x, see Fig. A.2 for an illustration.
It can be verified that for all z for which Eq. (A.31) holds,

1 — Re (n| X (t) X} X.(t)Xo|n) = 0 (A.32)

in Eq. (A.29). Thus, xxx (t) constitutes the boundary of the single-shot OTOC that is as-
sociated to C’E?))((:c, t). We emphasize that Eq. (A.31) will hold for some ¢’ in general only
if it also holds for all " < ¢/, i.e. if the two regions r(t — t") and s,(¢,t”) do not overlap
for any ¢ < . This is why we are generally required to demand that Eq. (A.31) hold for

all ¢’ € [0,¢] and not only for ¢’ = ¢.

The above requirement that the two regions do not overlap implies that the boundary
zx x (t) should fulfill

1
wxx(t) % 3 (It = )]+ [sex o (6 1)]) (A33)
for all ¢’ € [0,t] and therefore
1
rxx(t) = 5 max [Ir(t = )] + sz 0y (& )] - (A.34)

In order to obtain (zx x(t)), we now make the following approximations: 1) The regions

r(t —t') and s, (1)(t, ') are expected to evolve approximately independently and thus

oxx O % 5 ma (7= 201) + Tsan 60 - (A.35)

t/

2) After averaging, the region s, (t,t") should grow only as a function of ¢/, indepen-

dently of t and zx x (t) (see Fig. A.2). In particular, it should grow at the same rate as the

region 7. We therefore set (|s,, . «)(t,#')[) = (|7(#')]). Using these two approximations

as well as the growth (|r(¢)|) = 2(z,.(t)) = 2vpt® of the region r which is given by the
boundary of the ZX — OTOC, we obtain

(oxx ) = g (=) + (o @))| =

= max [vp(t —t)* +vp(t)*] =2 Y vpt* = (A.36)
t'€(0,t]

= 2T, 1)) < 2(a, (D).
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The above argument is expected to hold whenever the ZX — OTOC is described by an
algebraic growth (z,(t)) = vpt® with @ < 1. In particular, we see that the XX — OTOC

spreads with the same algebraic exponent, which concludes our argument.

A ta xXX(t) — 21—ozta

> T

Figure A.2: Bounding the XX — OTOC. The forward and backward time evolution, up to ¢ and ¢’
respectively, define two regions r(t — ') and s, (t,t) around the positions 0 and = where X-operators
have been inserted in Eq. (A.29). The front of the OTOC has not yet reached position 2 when the two
regions have no overlap.

A.4 Matrix product states

A numerical technique underpinning many breakthrough advances in the study of quan-
tum many-body systems over the last decade are tensor networks and — more specifically
— matrix product states (MPS). The MPS Ansatz provides access to controlled results on
large scale systems that are often beyond the reach of other methods. In this thesis we
use matrix product states only on a couple of occasions — using the TeNPy library [454]
— to verify some of our analytical conclusions about dynamics in the Kitaev honeycomb
model on open boundaries in Chapter 5, as well as in Chapter 9 to compute the dynami-
cal spin correlation function of the X X Z spin chain at finite anisotropy strength. As the
method appears sparingly in this thesis, we refer to some of the many excellent reviews
in the literature for details [18, 19, 454, 545].

In order to briefly sketch some key aspects of the MPS Ansatz [19], we note that any
quantumstate [¢)) =3, . Vi, iy |i15 ., in) (i € {0, 1} for qubits) can be represented
as

Yiy, iy = AL Alzl | Alin] (A.37)

azogy” Q2N—-102N
[in]

where the convention of summation over repeated indices is adopted. Here, the Ay}, a0,
are matrices of ‘bond dimensions” x,,—1 X X». In principle, in order to capture a general
quantum state, the maximum bond dimension appearing in the expression Eq. (A.37) has
to be exponentially large in the system size N. This is because the amount of entanglement

that can be captured within the Ansatz Eq.(A.37) scales logarithmically with the bond
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dimension and a general quantum state exhibits volume law entanglement. However,
ground states of gapped local Hamiltonians in one dimension satisfy an area law [546]
and can be captured using a finite amount of entanglement and thus a finite maximum
bond dimension y. Given the MPS Ansatz Eq. (A.37) and a Hamiltonian, the ground state
can be found efficiently using the density matrix renormalization group (DMRG) [16-19].

Most important in the context of this thesis, there also exist methods to perform time
evolution with MPS states, such as the time-evolving block decimation (TEBD) [547], the
time-dependent variational principle (TDVP) [548, 549], or performing Heisenberg time
evolution by evolving a MPS representation of operators instead of states [186]. In gen-
eral, the entanglement of an MPS and thus the required bond dimension will increase
during the evolution, such that the reachable times are limited. In practice one truncates
the bond dimension at some maximum value [19]; however, such truncations usually
lead to the violation of conservation laws, such that transport properties may be chal-
lenging to extract. Recent works attempt to resolve this issue and find conserving trun-
cation schemes which are able to give reliable numerical values for the transport coeffi-
cients [186-188, 191, 192].

A.5 Monte Carlo simulations

In Chapter 4 we showed results from a Monte Carlo simulation of the classical dimer
model on a bilayer geometry with an energy function E = Hy that counts the number of
flippable plaquettes in the system. In this appendix we provide the details on the loop-
update Monte Carlo algorithm that was used to obtain these results. We also point to
Refs. [378-382], where the algorithm is described in detail, of which we give a brief review
in this section.

For simplicity, let us illustrate the algorithm on a planar square lattice dimer config-
uration, see Fig. A.3. The generalization to the bilayer geometry is straightforward. We
start by randomly selecting one of the sites in the system, which we label as r. There
is a dimer emanating from ry and connecting it to a neighboring site r;. From the per-
spective of rq, the dimer emanates in one of the four directions +x, +y, —z, —y, which
we label as ¢ = 1,2, 3,4 respectively, see Fig. A.3. Next, we remove the dimer from its
current orientation ¢ and insert it into a new orientation k into which it emanates from r;.
The new orientation k is selected with a probability Py, (3, Pr, = 1) which satisfies de-
tailed balance locally and can be obtained from a subroutine described below. Once a new
orientation k has been selected, we follow the dimer along this orientation to a new site
labelled by 7. The site 72 in turn is also connected through another dimer to a site r3, and
we move to r3, remove the dimer emanating from it, and reinsert it in a new orientation as
in the previous step. This process is then reiterated until we reach the starting site ro and
the loop closes. The loop update is accepted with probability min{1, exp[—3AE]}, where
f is the inverse temperature and AE = V(Nanal — Ninitial) i given by the difference in
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the number of parallel dimer plaquettes between final configuration and initial configu-
ration, ensuring detailed balance. Fig. A.3 shows that this algorithm works by effectively
breaking up a dimer into two monomers and moving one of the monomers through the

lattice until they reunite to form a dimer.

. - detailed
balance
7~ a 2 7~ a
3

T's
detailed
r, balance
V' L) P Vi

Figure A.3: Monte Carlo loop updates (see text for detailed description). The algorithm proceeds by
randomly selecting a site g which is connected to 71 by a dimer. This dimer is removed and reinserted
in a new orientation around r; that is selected probabilistically, based on a local detailed balance rule.
This elementary step is iterated until the loop closes. The new configuration is accepted or rejected
with a probability given by detailed balance.

Let us now describe how the probabilities Py to shift a dimer that originally emanates
into direction ¢ to a new direction k are selected. In principle, detailed balance has been
ensured upon accepting/ rejecting the update once the loop closes as describe in the pre-
vious paragraph. However, by adjusting the probabilities Py, that decide locally which
direction the loop takes next, the performance of the algorithm is significantly enhanced.

One first introduces the dimer fugacities
We—1,...4 = exp[—BV N, (A.38)

where N is the number of flippable plaquettes that the dimer in orientation ¢ is part of.
Notice that N; depends on the local surrounding configuration. Demanding that detailed

balance be fulfilled locally can be expressed as
Py, wp = Py wy,. (A.39)
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Using this relation and the fact that ), Py, = 1, one can define the weights
agk = Py w, (A.40)
which satisfy

Z Aok = We
k

Qe = Qke-

(A.41)

The first line of Eq.(A.41) provides us with a set of 4 linear equations for the ay;, of
which 10 are independent after using the detailed balance condition in the second line of
Eq. (A.41). For the bilayer geometry, where there are ¢ = 1, ..., 5 possible orientations, we
obtain 5 equations for 15 independent weights ay;. These equations are underdetermined
and so one can optimize the weights a, further by minimizing the number of ‘bounces’,

in which the loop retraces the path that it came from. This can be done by demanding

Z 7, = min. (A.42)
l

The minimization procedure Eq.(A.42) under the condition of Eq.(A.41) constitutes a
linear programming task. In our numerical implementation we used the open source
Ip_solve package to perform it [550]. In practice, for a fixed inverse temperature /3, we can
determine the weights as and thus the probabilities Py, in advance and tabulate them for

all possible values of N, that determine the fugacities via Eq. (A.38).
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Additional calculations for the bilayer
dimer model

B.1 Proof of Eq. (4.7)

We first restate Eq. (4.7) from Chapter 4 of the main text in a more formal version in order

to set up the proof.

Claim: Let us consider an arbitrary directed loop £ = {r¢,r1,...,n_1} on the square

lattice that fulfills the following two conditions:
(i) Lisclosed: |ry+1 —ry| =1foralln € {0,...,N — 1}, with ry = ry.
(i) L is non-intersecting: vy, = rpy, <= n=m.

Furthermore, let us denote by v, C Z? the set of lattice points that form the interior of the
loop £ as shown in Fig.4.2 (a) (see also a more formal definition of v, in the discussion
around Eq. (B.23) of Appendix B.4).

Given these definitions, the following identity holds:

N—-1
ANap(oe) = 7 D0 (<170 (£,(r) A Li(r)). (B.1)

n=0

W

where AN 4p(v.) is the difference between the number of A/B sublattice sites contained
within the set vz, and £, (7y,) = 7y 41— 70, £;(rn) = T —Tn—1. Note that E,L./O € {*e,, te,},
and r_; = r( by definition. The symbol ‘A" denotes the wedge-product, which yields a
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scalar for the two-dimensional vectors considered here: a A b = azby — ayby.
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Figure B.1: Proof of Eq.(4.7). a) A closed, directed loop £ (black) encloses a region V. (green
shaded). The difference in the number of A (blue) and B (red) sublattice sites contained within V. can
be traced back to the corners of £. b) Changing the direction of £ exchanges interior and exterior of L.
c) For every corner, there exist two plaquettes p; and p, that potentially obtain a non-trivial difference
of A and B sublattice sites. Which of these plaquettes is contained within the area V. enclosed by £
is determined by the chirality of L.

Proof: Let us first denote by
p(r) ={r,7+es,r+es+ey,T+ey} (B.2)

the four sites contained within an elementary plaquette p of the square lattice. Since

U p\ﬁ =g, (B3)

pC(veUL)

we can rewrite the left hand side of Eq. (B.1) as

1
ANap(ve) = § > ANap(p\L), (B.4)
pC(veUL)

with the sum running over all plaquettes contained within v, U £. The factor 1/4 com-
pensates for the overcounting that results from each site being adjacent to four different

plaquettes, see Fig.B.1 (a).

We see that for those plaquettes in vz U £ that are not touched by £, i.e. p\L = p, we
have ANsp(p) = 2 — 2 = 0 immediately, see Fig.B.1 (a). Thus, it is sufficient to focus on
plaquettes with a non-vanishing intersection p N £ # (). Crucially, we then recognize that
a non-vanishing AN4p(p\L) # 0 can only be realized if there is at least one connected

section of £ passing through an odd number of sites in p, see Fig.B.1(c). We can then
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N-1
ANAB(p\ﬁ) _ Z (_1)m+ry — Z (_1)rz+ry — Z(_l)anrynHrn} N0 p‘ —
rep\L repnNLl n=0

= >0} 0 p| [[{rasa} 08 [{ra-a} ol

n=0
= (U= [raa} ) (1= [} 0] .
(B.5)

where |...| denotes the number of elements contained within a given set, and [{r} Np| €
{0, 1} determines whether r is contained in p or not. The first term in the square brackets of
Eq. (B.5) corresponds to a section {r,,_1, 7y, "h4+1} C L running through three sites of the
plaquette p, while in the second term only the site r,,, and not the sites r,,_1, 7,11, is part
of p. These contributions correspond to p; and p in Fig. B.1(c), respectively. Including

thesum 3, . ) from Eq. (B.4) we obtain

N—
ANap(ve) Z D7 ST Ky gl [[{raed gl ok 0l -

pC(veUL) (B.6)
= (U= [{rara} ) (1= [{racak o)) .

»JMH

Two evaluate the sum over p in Eq. (B.6), we look at the two terms in the square brackets

seperately. For the first term, we have

>} 0wl [{raea} npl[{raa} 0] = 6(Eo(ra) Alirn) = 1). (B.7)

pCVe

This relation can be understood in the following way: since all three r,_1, 7y, 7,41 are
supposed to be part of one plaquette p, the loop £ needs to have a corner at r,, see
Fig.B.1(c). Thus, £,(7y,) A £i(r,,) # 0 needs to be finite. Furthermore, if there indeed is a
corner of £ at 1, there exists exactly one plaquette p C Z? such that {r,_1, 7, 711} € p.
However, this plaquette will only be contained in vz U £, and thus in the sum over p in
Eq.(B.7), if £,(7y) A £;i(ry) = 1, giving rise to the delta function. Note that changing the
direction of £ (via the inversion operator L) nominally exchanges in- and outside of £,
see Fig. B.1 (b).

Analogously, we obtain for the second term of Eq. (B.6)

Z ‘{rn} ﬂp| (1 — ‘{Tn+1} ﬂpD (1 — ‘{rn 1} ﬁp‘) ( (rn) AN Li(1ry) + 1). (B.8)

pCVe
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Inserting both Eq. (B.7) and Eq. (B.8) into Eq. (B.6), and using that
6 (Lo(rn) AN i(rn) — 1) — 6(Lo(rn) A i(ry) +1) = Lo(1r) Ai(1y) (B.9)

due to £,(r,) A €i(ry,) € {—1,0,1}, results in Eq. (B.1) and thus completes our proof.

B.2 Proof of Eq. (4.8)

As stated in the main text, independent of the chosen boundary conditions, the following

quantity is invariant under the dynamics of H:

~ ~

Q=" (—1) v (Ly(r) N i(r)), (B.10)

where

éo(r) = Z ey ﬁg)a

ac{tz,ty}

él(r) = Z €a ﬁ‘g‘l)—ea,a'

ac{tz,ty}

(B.11)

From the form H; = H gh) +H 5-[) givenin Eq. (4.4) and Eq. (4.5), we notice that any local

term in H Sh) creates or annihilates a trivial loop of length two that contains no corners. It

is therfore directly verified that [H gh), Q] = 0.

0
J

To show that the remaining H;’ also commutes with O, let us consider a local plaquette

move A\ from H y) and show that [A", O] = 0. Here, p = {rp1,7p2,7p3,7pa} labels the
four sites of a given plaquette p in counter-clockwise order (starting at the bottom left site)

as defined in Eq. (B.2). According to Eq. (4.4), the local term fzz(gl) is given either by

WD = 50 & ¥+ hec, (B.12)

or
WD = 200 & K+ hec., (B.13)
and the following arguments proceed analogously for either choice. Using

A~ A~

1), £o(r) A L)) = (A, o ()] A i) + Lo(r) A [RD, £3(r), (B.14)
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we can compute

where we have grouped the arising terms into two contributions marked by round brack-

ets, which we are going to consider separately.

For the term in the first round bracket of Eq. (B.15), the hard-core constraint implies,

through direct evaluation,

(WD, 8 (rp1)] =
!

(B.16)

see Fig. 4.1 (c) from the main text for an intuition about the terms appearing in Eq. (B.16).
Inserting Eq. (B.16) into the first term of Eq. (B.15) yields

(6or) AT, )]+ Bolrya) 1 [0 )]

= WD ((Eoltry) = £olry)) A (e = €2) + (
X [(5(&(7},,1) + ew) 5(@0(7'1,,,2) -+ ex) 5(&-(7"1,73) — ex) 5(@0(1“1,74) — em) —
= 0(Eilrpa) + e4) 6(Eo(ry2) — €y) 8(Ei(rys) — €y) 8(Eolrpa) + ey)]
(B.17)
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While arranging the terms in Eq. (B.17) we have used the fact that
(1) £io(1)] # 0 = [, £oyi(r)] = 0. (B.18)

Let us now focus on the round bracket of the right hand side of Eq. (B.17): There are in
total 34 different possible (i.e. compatible with the hard core constraint) combinations of

eigenvalues of the four operators £, (7,1), £o(7p.3), £i(7p.2), £i(7p.4) appearing in Eq. (B.17):

16 possibilities from £,(7,1) € {—ex, —ey}, £o(1p3) € {€x, ey}, £i(Tp2) € {—es, €y},

Li(rp4) € {ez, —e,} independently.

* 4 possibilities from lfo(rp,l) = e, él‘(’l“pg) = e, éo(Tp’g) € {es, ey}, él-(rpA) €
{es, —ey}.

e 4 possibilities from £,(r,1) = ey, Li(Tpa) = ey, Lo(rps) € {es, ey}, Li(rya) €
{—es, ey}

e 4 possibilities from £,(ry3) = —ey, £i(1p4) = —€x, Lo(Tp1) € {—€s, —€y}, Li(rpa) €
{—es, ey}

e 4 possibilities from £,(rp3) = —e,, £i(Tp2) = —€y, Lo(rp1) € {—€s, —ey}, bi(rpa) €
{ex,—ey}.

A~ A~

1 possibility from £,(rp1) = s, £i(1p2) = €, £o(Tp3) = —€q, £i(T)4) = —es.

[ ]
<
=

~ ~

1 possibility from éa(rp,l) =ey, lfi(rpA) =ey, Uy(rp3) = —ey, i(rp2) = —ey.

It is then a straightforward task to go through all 34 listed possibilities and check that in
each case, the round bracket on the right hand side of Eq. (B.17), and thus the left hand
side of Eq. (B.17) itself, vanishes.

We can then repeat this derivation analogously for the second round bracket on the
right hand side of Eq. (B.15), which consequently also vanishes, such that overall, we in-
deed find [h,, Q] = 0, proving Eq. (B.10).

B.3 Conservation of chiral subcharges

In this Appendix we formally show the invariance of the chiral subcharges @, under the
Hamiltonian H; = H y) +H gh) given in Eq. (4.4) and Eq. (4.5), as argued for in Sec. 4.1.

Taking care of H y) first, we verify through direct inspection of the possible loop moves
in Eq. (4.4) that [A'), G,(¢)] = 0 for all 7 and ¢, with ,(¢) from Eq. (4.11). This immedi-

ately implies [fI y), Q ¢] = 0 for all ¢.
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) I

r+eq,

s @] = 0 and thus also

[0} 0f ten.—ar Gr(#)] = 0 for all 7, 7'. We can then compute the commutator

Moving on to H f,h from Eq. (4.5) next, we use that [lia

.00 = b 3 (e 6) = (6. - )] |+

£ S (et {z Irteaa bl ie, [6(6r=0) =6 (rre = 0)] }
’ (B.19)

To demonstrate that Eq. (??) indeed vanishes, we have to show that

ilr ilr—&-ea (i'r = ]Al'r ilr+ea (Zgr—I—ea (B~20)

for both o = z,y, which directly yields zero upon insertion into Eq. (??). Setting o = z,
we see from the definition of ¢, in Eq. (4.10) that

> s s 7 5o NOBENC
b By b — b gy ren = b e, (RS, — Al iéyﬁy) — 0. (B.21)
The last equality in Eq. (B.21) is due to the hard core constraint: if there is a charge at site r,
then there cannot be a loop segment running through r. This proves Eq. (B.20) for a = .
For a = y, Eq.(B.20) can be verified in the following way: Assume ﬁgﬁ) &

interlayer charge occupies the site at r+e,, (otherwise, Eq. (B.20) yields zero immediately).

= 1,1ie. an

Consider a loop segment that gives a contribution +1 to ¢,. This segment enters the
horizontal string to the left of r + e, from below and has two options: 1) It leaves the
string going upwards, therefore also giving a contribution +1 to <;3T+ey. 2) It leaves the
string going downwards, thus giving no contribution to (Z)Hey, but yielding an additional
contribution —1 to d%, and therefore net contribution zero. In both cases, d;,, = ¢A>,«+ey. The

same argument holds for loop segments running in the opposite direction. Note that this
(h)  _

r+ey —

leaving it, by running directly through site r + e,. This proves Eq. (B.20) for oo = y.

argument relies on 7. 1, otherwise a loop might enter the horizontal string without

Intuitively, the proof can be summarized as follows: Loop-dynamics can deform the
shape, position, and number of loops in the system, but never change the net charge con-
tained inside the interior of the loops. The dynamics of charges occurs as creation and
annihilation of oppositely charged interlayer dimers on neighboring lattice sites, which

thus are both enclosed by the same net chirality.

B.4 Proof of Eq. (4.13)

In order to prove Eq. (4.13) of the main text, we first introduce a formal definition of the

‘interior” v of a closed loop £ on open boundaries, as illustrated in Fig. 4.2. To do so, let
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us first define a string operator

re—1

AL N0 N0

T ,Z [n(".’wy)vy Tt ry+1),—y | (B.22)
(rfiry)EL

which is similar to Eq.(4.10), but sums only over sites contained in the set £ =
{ro,...;7|z|-1}. We can then define oy = {r ¢ L : ]¢§1ﬁ)| = 1}, which gives us a set
of sites enclosed by L (but excluding L itself) on open boundary conditions, see Fig.4.2.
Notice however that due to the chirality of £, its interior should become the complement
of vz upon reversing the chirality (again excluding £ itself). Ona V = [0,L,] x [0, L,]
lattice, the interior of L is thus given by

1 o V. 1
ve =5 (14002, ) oe UG (102, ) VG U L), (B.23)
Note that d)’I‘EvL € {—1,+1} is independent of the chosen r € .

With these definitions, we can start from the right hand side of Eq. (4.13) and rewrite

D6 Qo= (~1T Y dan(0) = D (=1) ; brits, [} N i (g og)
¢ T ¢

T

where |{r} Noz| € {0,1} measures whether site r is contained within the set o or not.
Again, gi)
within the transition graph of a given dimer configuration. Rearranging the sums in
Eq. (B.24) we obtain

Z¢>Q¢—Z¢T@LZ 1)t [} o] Al =

T

Z% 2. [NA(32) = NE(32)] = > [Nalve) — Na(vg)] = €,

L

€ {—1,41} is independent of r’. The sum ) . extends over all loops £

TE’U

(B.25)

where N 45 (s) denotes the number of A/B sublattice sites contained within a set s C Z2.
From the first to the second line, we have used that an imbalance in the number of posi-
tive /negative charges ﬁﬁf‘) on the sites within o, is directly reflected in the imbalance of
the number of A/ B sublattice sites within 0. This is due to the fact that all loops £/, which
may potentially be contained within ¢ for a given transition graph, are of even length
and thus contain the same amount of A/B sublattice sites. From the second to the third
line in Eq. (B.25), we have used that the system has even lengths L, L, in both directions,
which implies Na(V) — Np(V) = 0 for the entire lattice V under considerations. This

completes our proof of Eq. (4.13).
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B.5 Symmetry of H,

The Hamiltonian H; = —J Zp ﬁp of Eq. (4.2) can be demonstrated to have a symmetric

spectrum: We define an operator

~ a(d) | 5 (d)

P = <_1)E{r| rg+ry=0mod 2} (”T»I+”T»2) , (B.26)
which yieds the parity of the total number of dimers emerging into either z- or z-direction
from lattice sites r = (74, 7y, 7.) that fulfill r, 4+ r, = 0 mod 2. It can straightforwardly be
verified that each plaquette of the lattice contains either one or three, i.e. an odd number of
bonds that contribute to the parity of Eq. (B.26). Therefore, { P, h,,} = 0 for all plaquettes
p and thus the operator P anticommutes with the Hamiltonian, {P, H;} = 0. Hence,
for every eigenstate [ 1)) = Ey |1)) there exists a corresponding state |¢/') = P [¢) with
opposite energy H [¢/') = —Ey [¢'). Note that this argument is independent of the spatial
dimension of the dimer model.

As a consequence of the symmetric spectrum, each product state in the basis of dimer
occupation numbers has energy expectation value zero, and thus formally corresponds

to ‘infinite temperature’.
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