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ABSTRACT Transfer Learning is a well-studied concept in machine learning, that relaxes the assumption
that training and testing data need to be drawn from the same distribution. Recent success in applying transfer
learning in the area of computer vision has motivated research on transfer learning also in context of time
series data. This benefits learning in various time series domains, including a variety of domains based on
sensor values. In this paper, we conduct a systematic mapping study of literature on transfer learning with
time series data. Following the review guidelines of Kitchenham and Charters, we identify and analyze
223 relevant publications. We describe the pursued approaches and point out trends. Especially during the
last two years, there has been a vast increase in the number of publications on the topic. This paper’s findings
can help researchers as well as practitioners getting into the field and can help identify research gaps.

INDEX TERMS Time series, transfer learning, domain adaptation, deep learning, survey.

I. INTRODUCTION
Time series data has recently emerged as a new application
area for deep learning and transfer learning [1]–[3]. While
transfer learning (TL) has been extensively studied within the
fields of computer vision and natural language processing [4],
applications within the research area of time series analysis
are still rare. Back in 2006, mining time series data was
identified as one of the ten most challenging problems in data
mining research [5]. Since then, it has gained high research
interest [1], [6]. There are various approaches to time series
classification (TSC) and other time series problems, that can,
for instance, be based on comparison of the whole time series,
on comparison of selected intervals or shapelets, or on dictio-
naries of pattern counts [6]. Beside these, also model-based
approaches are promising. Following the advances towards
deep learning in computer vision, there has also been an
increase in studies applying deep learning models with time
series data [7]. Recent examples of deep time series models
are InceptionTime [8] or TimeNet [3]. Two recent literature
reviews give an overview of deep learning in the field of TSC:
Fawaz et al. [1] compare several state-of-the-art deep learning
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models in diverse time series domains and provide a taxon-
omy for deep learning approaches in TSC. Ebrahim et al. [7]
analyze bibliographic metadata of publications found in the
electronic database Scopus and identify deep learning as the
number one topic in publications on TSC. In addition to this,
Wang et al. [9] provide an overview of deep learning advances
in the specific field of activity recognition based on low-
level sensor values. In the course of increasing interest in
deep learning, also, studies have come up, that address the
concept of TL in the context of time series data [2], [3], [10].
Typical applications of TL are object recognition or detection
in images, action recognition in videos, document catego-
rization, or text sentiment analysis [4]. Large pre-trained
models such as VGG [11] or AlexNet [12] are well-known
for TL with image data. However, regarding time series, such
as sensor readings, TL has not been widely investigated in
the past. Fawaz et al. [2] have shown that TL can effectively
improve a TSCmodel’s generalization capability and provide
better predictions. Further studies have also addressed TL
for other time series prediction problems, such as time series
forecasting [13], [14]. As the availability of data is limited
in many time series domains, TL can have a great impact in
diverse use cases. It has recently been applied for detecting
human occupancy in building rooms based on carbon dioxide
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measurements [15]–[17], for the prediction of wind power
or speed [18], [19], for human activity recognition based on
inertial sensor readings [20], [21], as well as for forecasting
financial time series data [22], [23].

To the best of our knowledge, to date, there is no literature
review on the work that has been done towards TL with
time series data. Several reviews have been published on
TL in general [24]–[27] and on deep learning methods in
the context of time series data [1], [7], [28], [29]. There are
also reviews on TL in specific time series domains, such
as human activity recognition [30], [31] or brain-computer
interfaces [32]. In this paper, we review literature on TL
approaches with focus on time series data, including univari-
ate or multivariate one-dimensional time series. We conduct
a comprehensive literature review in the form of a systematic
mapping study. According to Kitchenham and Charters [33],
a systematic mapping study, or scoping study, is suitable to
provide an overview over a broad topic and can help identify
more specific research questions. The overall goal of this
study is to provide an overview of the first work in this new
application field of TL and to identify research trends. The
review addresses the following research questions:

Q.1) What are the main application domains where TL with
time series data has been investigated?

Q.2) What TL approaches are used for transfer with time
series data?

Q.3) What machine learning model types are used within
approaches on time series TL?

The approaches covered in this review can help reduce
the required amount of data in systems for, e.g., building
automation, healthcare monitoring or financial forecasting.
Time series TL breaks with the current paradigm of collecting
as much data as possible for a specific purpose. It enables
the use of machine learning solutions in a wider range of use
cases involving limited amounts of sensor data or other time
series data.

The remainder of the paper is structured as follows: First,
in Section II, we provide an overview of the relevant terms in
this review. This includes the definition of TL and time series.
Section III describes our review methodology. Section IV
reports our findings in regard to the above research ques-
tions Q.1-3. After that, Section V points out important future
research opportunities, and Section VI lists potential threats
to validity of this study.

II. OVERVIEW AND DEFINITIONS
This section provides an overview of the relevant terms and
concepts used in this publication.

A. TIME SERIES
Time series data represents observations at different points in
time. The aspect of time sets time series data apart from other
types of data. It allows carrying information on temporal
patterns, such as trends or seasonality. We define a time series
as follows.

Definition 1 (Time Series): A time series T = [x1, . . . , xn]
denotes an ordered sequence of data points xi of length n,
where each data point is either a real value or a vector of real
values, and data points are regularly recorded at a constant
time step 1t after the previous point.

Note that in this paper, we do not consider irregular time
series without a regular 1t , where data points may appear at
any arbitrary time. In this case, data pointsmay refer to certain
events, e.g., social media postings. Instead, our definition
refers to data that can be continuously recorded, such as
sensor time series, or data that is interpolated in order to form
a regular time series. A dataset X in context of this work
can be a single coherent time series T with subsequences as
instances, or a set of time series {T1, . . . ,Tn}.

In accordance with the previous definition, we derive the
following two definitions for two types of time series data:
univariate and multivariate time series.
Definition 2 (Univariate Time Series): A univariate time

series is a time series where xi ∈ R.
Definition 3 (Multivariate Time Series): A multivariate

time series is a time series where each xi is a d-dimensional
vector of real values (x1i , . . . , x

d
i ), x

j
i ∈ R.

While univariate time series have a single time-dependent
variable, e.g., periodic sensor readings from one specific
sensor, or the price history of a certain financial asset, mul-
tivariate time series combine multiple time-dependent vari-
ables. These can represent, for example, different sensor
modalities, sensor channels, or values from sensors placed in
different locations. For the financial example, it can include
values of multiple assets in a market. Definition 3 allows
to address sensor data from multiple sensors placed in dif-
ferent locations, where the sensor locations are unknown or
documented in some metadata. This information is, however,
not contained in the time series data itself. We refer to data
that includes temporal as well as spatial aspects as spatio-
temporal data. With two space dimensions, spatio-temporal
data can be realized in form of a grid of values per time step,
i.e., x ji ∈ R×R. Such data is used for applications in remote
sensing or for the description of moving object trajectories.
This literature review addresses temporal data only.

B. TIME SERIES PROBLEMS
Time series problems that can be supported by TL include
time series classification, regression, and clustering. Prob-
lems may be defined on the whole time series or on sub-
sequences, where either each subsequence has a predefined
length, or an additional time series segmentation is involved.
We define the following problems.
Definition 4 (Time Series Classification): Time series

classification (TSC) denotes the problem of assigning a time
series or a subsequence within a time series to a class ci out
of a set of classes C = {c1, . . . , cn|n ≥ 2}.
Definition 5 (Time Series Regression): For a time series T ,

time series regression denotes the problem of predicting a
numeric value y or multiple numeric values y1, . . . , yn.
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Definition 6 (Time Series Clustering): Time series
clustering denotes the problem of assigning time series or
subsequences of time series to a set of clusters C = {c1,
. . . , cn|n ≥ 1} based on a similarity measure Sim(a, b), where
the number of existing clusters n is either pre-defined or to
be determined.

Beside these, there are frequently addressed subcategories
of TSC and time series regression, named anomaly detection
and forecasting, which we define as follows.
Definition 7 (Time Series Anomaly Detection): Time

series anomaly detection denotes the problem of assigning a
time series or a subsequence of a time series to one out of
two strongly imbalanced classes {cnormal, canomaly}. cnormal
represents the majority class of normal state observations,
while canomaly represents the class of rare observations, i.e.,
anomalies.
Definition 8 (Time Series Forecasting): For a univariate

time series T = [x1, . . . , xn], time series forecasting denotes
the problem of predicting the next value of the sequence xn+1,
or the next m values xn+1, . . . , xn+m. For a multivariate time
series, it denotes the problem of predicting the next value(s)
in at least one of the d dimensions.

C. TRANSFER LEARNING
Transfer learning (TL) refers to a concept used within the
field ofmachine learning to improve the generalization ability
of models [24], [26]. As machine learning models often
require large amounts of training data, TL can improve
prediction results by also leveraging related data. In many
use cases, it is costly to collect specific target data needed
to build an individual model, e.g., for a concrete human
being, machine, environment setting, or time period, while
more general data is readily available. While it is a typical
requirement in machine learning, that test data is drawn from
the exact same distribution as the training data, TL relaxes
this limitation by transferring knowledge from one domain
to another similar domain. Besides this, TL can also refer
to a knowledge transfer between different prediction tasks.
This is closely related to multitask learning, with the differ-
ence that tasks are not of equal importance. Instead, learn-
ing is optimized towards a specific target task. We formally
describe TL according to the following definition given by
Pan and Yang [24]:
Definition 9 (Transfer Learning): Given a source domain

DS and learning task TS , a target domain DT and learning
task TT , transfer learning aims to help improve the learning of
the target predictive function fT (·) in DT using the knowledge
in DS and TS , where DS 6= DT , or TS 6= TT .

Thus, there are two major subcategories of TL, which we
call domain adaptation for DS 6= DT , and task adaptation
for TS 6= TT . In rare cases, TL addresses a combination
of both, DS 6= DT and TS 6= TT . The most typical case is
the transfer between differing domains. The term domain
adaptation (DA) is commonly used in the literature to refer
to this form of TL. Literature surveys specifically dedicated
to DA can be found in [4], [34]. Domain differences can be

in the marginal as well as conditional distribution of the data.
In some cases, even feature spacesmay differ from each other,
which is addressed by heterogeneous TL [35]. We denote
input features from the domainsDS ,DT as XS , XT , and labels,
if available, as YS , YT . It is further possible that learning is
based on multiple source domains, which is widely referred
to as multi-source TL [27], [36] or multi-source DA [37].
Problem Settings: There are different problem settings in

TL, depending on the availability of labels in target and
source dataset. TL is typically applied when there is a lim-
ited amount of labeled data in the target domain, which is
often not sufficient for independently training an accurate
target model. In other cases, there is no label information
in the target domain at all. The latter case is often called
unsupervised TL. As the terms supervised and unsupervised
TL are not consistently used in the literature, we adopt the
naming conventions of Cook et al. [30]. They propose an
additional term informed or uninformed to refer to a labeled
or unlabeled target domain, while supervised or unsupervised
refers to the source domain. The most common TL setting is
the informed case, which is commonly known as inductive
TL [24]. In this case, label information is available for the
target domain, only the amount of available data is limited.
The source domain data can be either labeled or unlabeled.
Beside this, there are two different settings, transductive TL
and unsupervised TL [24], where no target domain labels are
available. In transductive TL, labeled data is only available
for the source domain. For the target domain, artificial labels
may be inferred, or the approach does not require labels,
as it is, for example, based on the alignment of feature
spaces. In unsupervised TL, labels are not available in either
of the domains. This changes which data mining tasks can
be addressed. While classification and regression are only
possible with at least some label information, unsupervised
TL builds on clustering or dimensionality reduction. Table 1
provides an overview of the introduced settings.

TABLE 1. TL settings based on [24], [30].

Solution Approaches: Pan and Yang [24] categorize
TL solution approaches into four categories: instance-
based, feature-representation-based, parameter-based, and
relational-knowledge-based. Instance-based transfer involves
the selection or reweighting of samples from the source
domain. This is based on the assumption that instances
from the source domain are more or less similar to the
set of target domain instances, hence, are more or less
useful for model training. Feature representation transfer
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transforms the data into a common feature space so that
learning can take place on features representing characteris-
tics of both domains. Parameter transfer reuses parameters
from a model pre-trained in the source domain for target
model building. It is also known under the more general
term model-based transfer. Relational-knowledge transfer is
dedicated to relational domains and not applicable to time
series. Tan et al. [25] provide an alternative classification
of solution approaches specifically addressing approaches
for deep TL: instance-based, mapping-based, network-based,
and adversarial-based. In this classification, instance, map-
ping, and network transfer correspond to instance, feature,
and parameter transfer in [24]. The term network transfer
specifies a parameter transfer with parameters of a deep neu-
ral network. Adversarial-based refers to a new deep learning-
specific approach, which utilizes a model architecture for
domain-adversarial learning [38] based on the idea of genera-
tive adversarial networks [39]. Time series TL is not restricted
to, but commonly involves deep learning (see Section IV).
Hence, we use a classification scheme that combines cat-
egories of both, [24] and [25], see Figure 1. According
to [27], the model-based perspective on TL can be further
extended by approaches involving an ensemble of models,
and by model control, which refers to changes to the model’s
objective function.

FIGURE 1. TL solution approaches based on [24], [25], [27]. The dashed
line denotes inapplicability to time series.

III. REVIEW METHODOLOGY
This literature review is designed as an exhaustive summary
with selective citation, according to Cooper [40, p. 111]. This
means, that all identified relevant publications are used to
draw general conclusions, while due to the extensive amount
of studies, only a selected subset of the included publica-
tions is directly cited. The review is designed and conducted
according to the guidelines by Kitchenham and Charters [33].
In the following, we describe the applied process for the
literature search, selection and data synthesis. A replication
package for this study is provided in [41].

A. SEARCH STRATEGY
1) SEARCHED LITERATURE SOURCES
In this study, we conducted a systematic search over mul-
tiple electronic databases. Indexing databases as well as
publishers’ databases of relevant academic publishers were
considered. We used a combination of multiple source

databases, as generally most publications cannot be found in
all databases. Bramer et al. [42] studied 58 published litera-
ture reviews and found that 16% of the included publications
were obtained only from a single database. We searched the
electronic databases listed in Table 2. In addition to the two
main bibliographic databases, Scopus and Web of Science,
we included multiple databases of scientific publishers of
which we found relevant publications in a prior initial litera-
ture search. These include, among others, the digital libraries
of ACM and IEEE, which are often considered as primary
sources in the field of computer science. Depending on the
provided search options and the obtained search results, the
above-listed databases were searched by either applying a
full search over the publication metadata and full-texts or by
a restricted search including some metadata. A full search
was applied on ACM and Wiley. A full metadata search was
applied onWeb of Science andArXiv, as these did not provide
a full-text search. For the other databases, we restricted the
search, due to the vast amount of search results. Therefore,
we applied a metadata search including at least title, key-
words, and abstract. As Springer Link does not allow this
search setting, for this system, we applied a specific search,
where at least one part of the AND-conjunction in our search
query (see Section III-A2) has to be contained in the publica-
tion title, while the other is only required to appear anywhere
in the document.

TABLE 2. Searched electronic literature databases.

2) SEARCH TERMS
Viewing titles and index terms of an initial set of 17 previ-
ously found relevant publications, we identified the following
frequently appearing keywords: ‘transfer learning’, ‘domain
adaptation’ and ‘time series’.While all inspected publications
contain either ‘transfer learning’ or ‘domain adaptation’ in
their title or index terms, there is not always a direct indication
that the application relates to time series data. Instead, publi-
cations may mention a concrete use case, such as occupancy
estimation, temperature prediction, or wind power prediction.
As it is impossible to consider all possible use cases in our
search query, we did not include alternative search terms
to indicate the focus on time series. Instead, we added a
snowballing procedure (see Section III-C) to obtain further
publications, that do not need to directly contain the keyword
‘time series’.
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For constructing a search query, we considered the identi-
fied keywords as well as alternative spellings. ‘time-series’,
a common alternative for ‘time series’ does not need to be
included, as search engines are not sensitive to the hyphen.
For ‘domain adaptation’, we considered the two alterna-
tive spellings ‘adaptation’ and ‘adaption’. We combined our
keywords with the Boolean operators OR and AND, which
are supported by most search engines. The basic search
query (SQ) used for the electronic literature search was:
SQ) (‘‘transfer learning’’ OR ‘‘domain adaptation’’

OR ‘‘domain adaption’’) AND ‘‘time series’’
This query was modified according to the syntax require-

ments and available search options of each individual source
database.

B. SELECTION CRITERIA
Following the electronic literature search, we conducted a
selection process to assess the retrieved publications in regard
to their relevance for this literature review. In this subsection,
we list our criteria applied in the selection process, to com-
municate the scope of the review and transparently report
what publications are regarded as relevant. As recommended
in [33], we separated the criteria into inclusion and exclusion
criteria. Inclusion criteria address formal characteristics of
publications and the general topic, while exclusion criteria
restrict the search results to specific content characteris-
tics. Publications that meet any of the exclusion criteria are
excluded from the set of relevant publications. Publications
that do not meet all of the inclusion criteria are not included in
the first place. We used the following inclusion and exclusion
criteria.

Inclusion criteria:
i.1) The publication is written in the English language.
i.2) The full-text is accessible to the researchers.
i.3) The publication is a primary study that presents a pro-

posed method or empirical results.
i.4) The publication describes a TL method for one or more

machine learning models.
i.5) If multiple publications refer to the same study, the

peer-reviewed publication is included. If there are mul-
tiple peer-reviewed publications on the same study, the
most recent one is included. If there is no peer-reviewed
publication, the most recent non-reviewed is included.

Exclusion criteria:
e.1) The applied TL method is not clearly stated.
e.2) The TL method is not one of the main contributions of

the publication.
e.3) The work refers to TL in general but does not focus on

univariate or multivariate time series data.
e.4) The work is entirely or partially based on non-time

series data, including, for instance, static attributes,
text data, or two-dimensional image data.

e.5) The work is entirely or partially based on spatio-
temporal data, respectively sequences of any matrix-
based data, or sequences of two-dimensional image
data (image time series).

e.6) The work simply applies a trained model in a different
target domain, without any further adaptation to the
target domain.

e.7) The presented TL method is proposed primarily for a
different purpose than the increase of prediction per-
formance for a certain learning task (e.g., for improved
data security).

e.8) The work describes a purely generative solution that is
applied other than for translation between source and
target domain data (e.g., for missing data imputation).

e.9) The work applies pre-trained models from the field of
image recognition, that were not trained on other time
series data.

e.10) Thework does not address a one-time transfer between
datasets, but a continuous adaptation to new instances
(e.g., reinforcement learning).

e.11) The work addresses the case of irregular time series
and therefore does not correspond to our definition of
time series data (see Definition 1).

C. SELECTION PROCESS & DATA SYNTHESIS
The electronic literature search was carried out on January 8,
2021 and yielded a total of 1329 search results. All retrieved
publications were imported into a reference management
software and duplicates were removed. The resulting arti-
cles were then reviewed in a three-stage process and either
included or excluded according to the reported selection cri-
teria. First, the title of each publication was reviewed, in order
to exclude publications that clearly do not meet our criteria,
such as publications from a different research field or non-
primary studies. Second, we reviewed the abstract of each
remaining publication. If a publication could not clearly be
excluded by the information given in the abstract, or if it
appeared to be relevant, the full-text was viewed for a detailed
decision. Each decision upon inclusion or exclusion and the
reason for each exclusion were documented. As it is argued
by Wohlin [44], a pure electronic search poses the difficulty
that results strongly depend on the quality of the used search
terms. It is therefore advisable to add a manual search to the
process of [33]. In our case, this allows to obtain publica-
tions that do not explicitly contain the keyword ‘time series’.
Hence, we added a procedure called snowballing. Within
the snowballing procedure, we reviewed all references in the
previously included publications, as it can be assumed that
these have cited further relevant publications. Note that stud-
ies identified by snowballing can be obtained from further
literature sources, different from the ones listed in Table 2.
In the snowballing procedure, we repeated the previously
applied review stages. However, for reasons of practicality,
the duplicate check was only applied for publications that
were not already excluded by title. Figure 2 presents the com-
plete selection process and the number of staged, included,
and excluded publications in each step. From the 1329 pub-
lications initially staged for reviewing, 304 duplicates were
removed. After a progressive selection by title, abstract, and
full-text, 132 publications were identified as relevant. From
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FIGURE 2. Selection process shown as PRISMA flow diagram [43].

these, a total number of 4696 references was collected and
reviewed in the snowballing phase, resulting in 91 additional
relevant publications. This lead to a final set of 223 included
publications.

All literature was processed by the first author of the paper.
To avoid subjectivity, regular consensus meetings were held
with other authors. Also, a validation on a sample of the
processed literature was carried out to ensure quality. For
this purpose, literature processed by the first author was
double-checked by the second author. This validation step
was carried out to find fuzzy criteria and to avoid personal
bias in the filtering process. As a sample, 10% of the included
papers, proportionally from main search and snowballing,
were reviewed by full-text analysis. In addition, 10% of the
excluded papers from the main search and snowballing were
selected for validation. In total, 46 papers were reviewed for
correct inclusion or exclusion.

For data synthesis, publication full-texts were analyzed and
relevant data was noted in tabular form. The tabular data was
used for further categorization. The content analysis approach
pursued was mostly inductive. However, regarding transfer
approaches, broad categories from previous literature reviews
on TL ([24], [25], [27]) were operationalized.

IV. RESULTS
This section presents the main findings of this review. First,
Section IV-A provides a basic metadata overview of the iden-
tified publications. Then, Section IV-B addresses research
question Q.1 (application domains). Section IV-C addresses
Q.2 (approaches) and Q.3 (models) from a quantitative point
of view. The following subsections provide further explana-
tions and concrete findings regarding the typically applied
approaches and models.

FIGURE 3. Number of included publications by year of publication.

A. ANALYSIS OF PUBLICATION METADATA
Based on the 223 included publications in this literature
review, a recent increase in research interest in TL with time
series data can be observed. Figure 3 shows the number of
publications found per year of publication. It can be seen,
that the majority of publications were published within the
last four years, and the trend is rising. So far, 2020 was
the year with the most relevant publications. Only few pub-
lications were identified for 2021, as the literature search
was carried out on January 8, 2021. Figure 4 shows the
number of publications for different scientific publishers.
Also, 14 pre-print publications from arXiv.org were included.
Two publications were jointly published by ACM and IEEE.
They were counted for both. The publishers with the most
relevant publications were IEEE, ACM, Springer, Elsevier,
and MDPI. Scientific journals and conferences were almost
evenly used for publication. We found 105 publications in
journals and 104 publications in conference proceedings.
The latter also include 8 workshop papers. The following
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FIGURE 4. Number of included publications by publisher.

FIGURE 5. Number of included publications by time series problem.

three journals were most frequently used for publication: the
MDPI journal Sensors (7 publications), the Elsevier journal
of the international measurement confederationMeasurement
(7 publications), and IEEE Access (5 publications).

B. ANALYSIS OF APPLICATION DOMAINS (Q.1)
This section reports application domains and underlying
types of time series data in the included literature. Further-
more, Figure 5 reports the addressed time series problems.
The identified research is dominated by time series classifica-
tion (TSC) problems. As shown in Figure 5, 164 of the found
publications address TSC. Among these, only a few specifi-
cally address the problem of anomaly detection. The typical
time series problem considered is the classification of regular
time windows. Only in rare cases, the TSC problem includes
a previous time series segmentation phase, as in [45]. Time
series regression is addressed in 61 publications. Among
these, the fraction of publications on forecasting problems is
around two-thirds. Time series clustering is hardly addressed;
only in three publications.
Application Domains: As shown in Table 3, there are two

main application domains, namely fault diagnosis, respec-
tively fault detection, and human activity recognition. These
are followed by research on brain-computer interfaces and
electric load forecasting. Applications of fault diagnosis and
fault detection are found especially in context of rotating
machinery to analyze bearing faults or gearbox faults. Fault
detection is addressed in [46] as an anomaly detection prob-
lem to distinguish between normal and abnormal states. The
other 34 publications address fault diagnosis, which attempts
to classify between fault types or health statuses. Since in the
industry data can only be collected under healthy conditions,
TL is important in this domain to leverage the very limited
amount of fault state data. Fault diagnosis is related to the

domain of remaining useful life (RUL) estimation [47], [48],
which has the goal of predicting the remaining time until
machine failure.

In human activity recognition (HAR), the second main
application domain, the goal is to classify activities of a
human being, such as activities of daily living. This is done
mostly by multimodal sensor data from an inertial measure-
ment unit carried by the subject, including, for example,
accelerometer, gyroscope, or magnetometer. Some literature
is based on dedicated body-worn sensors [20], [49], while
other publications use sensors of smartphones or wearable
devices [21], [50]. A less commonly investigated subdomain
is device-free HAR [51], [52], where no device is carried
by the subject. It can be based on smart home equipment
or Wi-Fi signal interference. TL is especially important in
the field of HAR, as personalized models can outperform
subject-independent models, but it is impracticable to collect
enough training data for each specific subject. Hence, there is
a need for subject-adaptation with little or no labeled training
data given for the target subject. Moreover, sensor placement,
including small changes between different sessions, can have
a critical negative impact on classification accuracy. A recent
literature review gives an overview of TL for HAR [31].
Several domains are closely related to HAR, including more
specific ones, such as fall detection or human identification,
as well as the more general human occupancy estimation or
detection.

Another frequently addressed domain involves research on
brain-computer interfaces (BCIs) [53]–[55], which addresses
electrical activities of the human brain, typically recorded via
electroencephalography (EEG). This includes several subdo-
mains, such as BCI-based emotion recognition [36], [56],
[57], attention detection [58], imagined speech decoding [59],
[60], or recognition of imagined hand gestures [61]. As in
HAR, models for BCIs do not generalize well across dif-
ferent subjects or sessions. Typically, a calibration phase is
required for new subjects or new sessions. To avoid this,
inter-subject transfer and inter-session transfer are widely
addressed in the literature. A review on TL in BCIs can be
found in [32]. Further application domains include, for exam-
ple, electricity load forecasting [62], [63], human occupancy
estimation in building rooms [15], [16], wind speed [19] or
wind power prediction [18], or acoustic emotion recognition
to estimate arousal and valence from music [64] or speech
recordings [65]. Also financial applications are frequently
addressed, which include crude oil price forecasting [23],
stock price forecasting [22] or stock classification [66].
A particularly topical application is epidemic forecasting,
including forecasts of confirmed COVID-19 cases [67] or
COVID-19 deaths [68]. While most publications address a
specific application domain, we also found 26 that refer to TL
with time series in general, and 3 that refer to TL with sensor
time series. Domain-independent publications typically use
evaluation datasets from different domains. A few even report
positive effects when transferring knowledge from several
arbitrary time series regardless of their domains [3], [69],
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TABLE 3. Number of publications by domain of application.

[70]. An often-used resource is the UCR time series classifi-
cation archive [71], which provides 128 datasets from various
domains.
Data Types: Table 4 gives an overview of the types of

time series data used as input data in the set of identified
publications. Here, publications are only counted if they
address a certain domain, not if they address time series or
sensor time series in general. The latter typically use multiple
evaluation datasets from diverse domains. As we can see, data
types correspond to the addressed application domains. The
main domains, HAR and fault diagnosis, are largely based
on measurements from inertial sensors, thus the largest part
of the research field uses this specific type of sensor data.
In case of HAR, this involves several sensor types, espe-
cially accelerometers, gyroscopes, or magnetometers, that are

TABLE 4. Number of publications by type of time series data.

carried by the subjects. In fault diagnosis, typically vibration
signals are used [72]–[74], from one or multiple accelerome-
ters attached to the examined objects. Physiological signals,
especially EEG, are widely used in publications on BCI, or,
for example, in case of electromyographic (EMG) data, also
for human gesture recognition. Measured electricity data is
mainly used for electricity load forecasting. In this research
branch, models may additionally consider climate data, such
as temperature [63], [75] or solar irradiance [76]. At the same
time, climate or weather data is used in further domains such
as wind power prediction [18] or room occupancy estima-
tion [16]. In addition to the actual time series, some pub-
lications include further information on the time dimension
itself. Di et al. [75], for instance, include weekend/weekday
information, Inoue and Pan [77] use the intraday minutes
as an additional feature, Banda et al. [78] use several time
features including year, month and week in a year, weekday,
etc.

C. ANALYSIS OF APPLIED APPROACHES AND MODELS
(Q.2 & Q.3)
This section reports the different approaches on TL found in
this review and the underlying machine learning models that
are applied. As shown in Figure 6, the majority of publica-
tions apply neural networks. If a neural network with more
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FIGURE 6. Fraction of publications applying deep learning methods, or a
neural network, for (a) all included publications and (b) publications on
model-based TL. If the method applies to a generic model and the
evaluation involves at least one other than a neural network, the
publication is counted as not based on neural network.

than one hidden layer is applied, we refer to this method as
deep learning. A deep learning model may be used as the pre-
diction model itself or, in some cases, as an auxiliary model
for the purpose of TL, while the actual prediction model
can still be a non-deep model. One of these possibilities is
the case for 62% of the publications included in this review.
30% do not, or not necessarily, apply a neural network. For
publications towards model-based transfer, there is an even
higher focus on deep learning, with 76%. Only 15% of these
do not focus on neural networks. The strong focus on deep
learning within the field of time series TL agrees with the
findings of Ebrahim et al. [7], who identified deep learning
as the primary topic in time series classification.
Transfer Approaches: Table 5 reports different approaches

on time series TL found in the included literature.
It also states the number of publications in which an

approach is pursued, to give an impression of its popularity.
The approaches are described in closer detail in the following
subsections. As in [24], [27], we differ between model-,
feature-, and instance-based transfer approaches. We classify
approaches as model-based if the transfer is carried out with
the help of model parameters, model objectives, or when an
overarching model dedicated to TL is applied for prediction
(i.e., ensemble model). The majority of approaches we found
for time series TL are model-based. Most of these retrain a
model that was previously pre-trained in a source domain.
Also, freezing certain layers during retraining is a common
practice. Less common are approaches that allow joint train-
ing with source and target data in a single training phase.
There is also a range of publications on feature-based transfer.
These include hand-crafted feature transformation methods,
but also neural network-based feature learning. In a relatively
high amount of publications, autoencoders are applied to
learn a feature representation used for transfer. Only few
publications address transfer in the sense of selecting useful
source time series instances. Several publications, however,
select useful source datasets among multiple alternatives,
which can be combinedwith other approaches. Some publica-
tions propose a hybrid method that combines two or three of
the identified model-, feature- or instance-based approaches.

TABLE 5. Number of publications by TL approach. Publications are
counted multiple times if results are reported for multiple approaches.
Approaches are ignored if not included in the evaluation or only
considered as a baseline.

TABLE 6. Number of publications on model-based approaches by model
type.

Model Types: While feature- and instance-based transfer
are widely model-independent, model-based transfer typ-
ically accompanies a specific prediction model. Table 6
reports different types of models applied in the included
literature on model-based transfer as well as their publi-
cation count. Just as in the field of computer vision, the
most common model type is the convolutional neural net-
work (CNN). In context of time series data, either 2D or
1D convolutions can be applied. The 2D convolution can
be used with multivariate time series to learn interdimen-
sional relationships of the data. It is also common to first
transform time series data into an image representation
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(see Section IV-I) before applying a 2-dimensional CNN.
The 1D convolution applies the convolution process to
1-dimensional sequential data and is therefore directly
suited for time series. 1D convolutions are used for
univariate [79]–[81] as well as multivariate [59], [63], [82]
time series. In case of multivariate time series, relationships
between the dimensions are neglected. An alternative to the
CNN is the recurrent neural network (RNN). RNNs allow
to capture the relation between consecutive input samples
and are therefore well suited for time series data. Within the
included literature, the long short-term memory (LSTM) [83]
is clearly more often used than any other type of RNN.
An LSTM uses a memory cell that avoids the vanishing
gradient problem in RNN training [83]. Several publica-
tions apply a combination of both, CNN and RNN, mainly
CNN and LSTM [84]–[86]. In a CNN-LSTM model, typi-
cally early convolutional layers are used as feature extractor,
while later LSTM layers are used to detect temporal relations
within obtained feature sequences. Furthermore, several pub-
lications apply classic multi-layer perceptron networks, also
known as feedforward neural networks. For 12 publications,
the proposed method is intended to work with a generic base
model, which is especially the case in ensemble-based trans-
fer. As it can be seen from Table 6, model-generic methods
account for a large part of non-neural network-based transfer,
which amounts to 15% in Figure 6-b. We found only five
publications on model-based transfer that include a specific
machine learning model other than a neural network. The
following subsections go into detail on the previously listed
transfer approaches.

D. MODEL-BASED TRANSFER
Most commonly, model-based approaches are used for time
series TL (cf. Table 5). The most typical form of model-based
TL is a parameter transfer, in which model parameters of a
model pre-trained in the source domain are reused for initial-
ization of the target model. In case of a neural network model,
this includes trained weights and biases. There are two main
approaches based on parameter transfer, which we call pre-
training & fine-tuning and partial freezing. This subsection
describes these two and further alternative approaches includ-
ing architecturemodification, adversarial learning, ensemble-
based transfer, and the use of an objective function specifi-
cally dedicated to knowledge transfer.

M.1) PRE-TRAINING & FINE-TUNING
Source domain pre-training and fine-tuning the trainedmodel
parameters in the target domain is the most frequently used
TL approach in the context of time series data (cf. Table 5).
In this approach, model parameters of a model pre-trained
on source data are fully or partially used to initialize a target
model, in order to enhance model convergence during target
training and improve prediction accuracy and robustness.
In many cases, all model parameters are reused for target
training. For example, in [58], an EEG-based CNNmodel for
BCI systems is pre-trained with data from several subjects

and directly retrained for a certain target subject. A second
commonmethod is transferring all weights to the targetmodel
except for the output layer, which is randomly initialized.
This is used in [87] in the context of bearing fault diagnosis.
When applying a CNN, another method can be transferring
weights of convolutional layers and training the subsequent
fully connected layers from scratch, see [88].
Adjusted Training Procedure: Apart from the basic

approach, where the model is simply retrained with the new
target data, fine-tuning often refers to controlled retraining,
where the training procedure is altered. This can involve a
modification of hyperparameters or the objective function.
In neural network training, fine-tuning may be conducted
with fewer training epochs or a decreased learning rate.
Changed training conditions can be beneficial if only scarce
target data is available. It may prevent forgetting of previously
learned knowledge, which is a common problem of model
retraining, known as catastrophic forgetting. For instance,
Wen and Keyes [89] reduce learning rates during fine-tuning
of a deep CNN.Moreover, they set specific learning rate mul-
tipliers for different layers within the network. The selected
multipliers are small values between 0.01 and 1, that become
larger towards the model output. This has a similar impact as
freezing early layers, which is covered in M.2.
Task Adaptation: TL by fine-tuning is especially applied

for adaptation between different feature distributions. In case
the target task differs from the source task, i.e., there is a
difference between the label spaces, the model architecture
needs to be adapted. In [2], an extensive study on fine-tuning-
based transfer for TSC tasks, this is done by dynamically
setting the number of neurons in the output layer toC , match-
ing the number of C classes in the target dataset. Another
example where the output layer is adapted according to a new
label space can be found in [74]. In this example, a model is
fine-tuned on a fault diagnosis task that contains two more
fault classes than the source dataset. We do not regard nec-
essary modifications of the input or output space of a model
as a different TL approach. In contrast, we subsume methods
that apply more than the required modifications to the source
model architecture under the term architecture modification,
which is described in M.3.
Specific Algorithms: Zhang and Ardakanian [15] introduce

an additional re-weighting phase between pre-training and
fine-tuning. Appropriate transform matrices are calculated
and multiplied with model weights and biases obtained from
source pre-training. The adjusted model parameters are then
used to initialize the target model. The proposed method
addresses the problem of occupancy estimation based on
indoor carbon dioxide rates and damper positions. Although
the calculation considers differences between building rooms
and is not generalizable to other application domains,
the idea may be reused with other handcrafted weight
transformations.

Apart from neural networks, pre-training & fine-tuning is
also applicable to other machine learning models. In [52],
a hidden Markov model (HMM) is used, which is often
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applied for HAR. The source model is learned via maxi-
mum likelihood, while the expectation-maximization algo-
rithm (EM) is used to learn the target model based on the
estimated source model parameters.

M.2) PARTIAL FREEZING
A prominent special case of fine-tuning, which is also reg-
ularly found in the time series literature, is partial freez-
ing (or partial fine-tuning). This is a method specifically
for neural network-based transfer. Instead of retraining the
whole model during a fine-tuning procedure, only selected
parts of the model are retrained. A subset of the model’s
neurons are kept frozen, i.e., their parameters are not changed
during fine-tuning. In most cases, this is realized as layer
freezing, which means that a subset of n < m layers of
a network with m layers are frozen. Parameters of frozen
layers are taken from the source model. The other, fine-tuned
layers are either initialized with source parameters or trained
from scratch. In many publications, only the output layer is
retrained, while the rest of the network is used as a fixed
feature extractor based on the source data [61], [63], [90].
When using a CNN model, a common approach is to freeze
the convolutional layers and only retrain fully connected
layers at the top of the network [91]–[93]. The idea is to keep
the original features, which may be the same for source and
target domain, while still adapting higher layers that are more
specialized towards the concrete source task. As errors are
not backpropagated through the whole network and only a
subset of the model parameters are updated, layer freezing
is computationally more efficient than fine-tuning the whole
network. Hence, freezing may save training time in the target
domain. Moreover, freezing layers lowers the risk of catas-
trophic forgetting, as it limits the impact of training with
scarce target data. However, full fine-tuning may result in
better predictions if weights in frozen layers are not suitable
for the target prediction task due to high differences between
source and target. As the performance of the two approaches
strongly depends on the data, several publications conduct
a comparison of full fine-tuning and layer freezing [63],
[69], [82], [86]. Several publications further test different
numbers of frozen layers [94] and different combinations of
frozen and trainable layers [86]. An alternative to the freezing
of complete layers is sparse learning. With this technique,
certain nodes within layers can be frozen, while others are
retrained. Ullah and Kim [95] apply sparse learning for TL
in driver behavior identification. They prevent the forgetting
of important knowledge by freezing strong nodes and retrain
weaker ones in the target domain.
Hybrid Approaches (Freezing & Full Fine-Tuning):

He et al. [13] propose a method for two source domains A,B:
First, a source model is trained with data from source A. The
first layer is frozen and the model is retrained with data from
source B. Subsequently, the new source model is used for
full fine-tuning on target data. Similarly, Wen and Keyes [89]
apply a single-source method in which they first freeze early
layers, before unfreezing all layers and performing a full

fine-tuning in a second step. Strodthoff et al. [96] apply a
more sophisticated method called gradual unfreezing for
ECG analysis. Gradual unfreezing has been proposed before
byHoward andRuder [97] in the context of text classification.
It allows to fine-tune the entire network, while still providing
benefits of layer freezing. Layers are successively unfrozen
during the training procedure: At first, only the output layer is
set as trainable and the rest of the network is kept frozen. After
each training epoch, the last frozen layer is set as trainable and
backpropagation is carried out with one more trainable layer.
This is repeated until no more layers are frozen. In the last
step, the entire network is fine-tuned until convergence.

M.3) ARCHITECTURE MODIFICATION
In some publications, the architecture of the model used
during source pre-training is modified for a subsequent
fine-tuning phase in the target domain [98]–[100].We refer to
this approach as architecture modification, and we delimit it
from conventional pre-training & fine-tuning by only consid-
ering modifications that go beyond an adaptation of the input
or output layer to bridge differences between data spaces.
Modifications may, for instance, include the removal or addi-
tion of certain layers in a deep learning model architecture.
Top Layers: An intuitive approach involves adding adap-

tation layers on top of the network, that are only trained on
target data. Mun et al. [98], for instance, propose an archi-
tecture adaptation method used for acoustic scene classi-
fication, in which they remove the output layer from the
source model and add two additional hidden layers and a new
output layer for target adaptation. A more flexible network is
proposed in [99]. The authors use a minimum mean squared
error (MMSE) criterion to decide on how many layers to
transfer and add a new output layer on top of the transferred
layers. For p transferred layers from a source model with n
layers (p ≤ n), the redesigned target network then includes
p + 1 layers. Martinez and De Leon [101] use a model built
for multi-class pedestrian activity recognition (ParNet) and
modify it for usage towards human fall risk classification.
The new network (FallsNet) is obtained by adding a pooling
layer and fully connected layer on top of ParNet. The original
output layer is removed, and a new output layer for binary
classification between high or low fall risk is added.
Inside Layers: Also, additional layers added between

certain layers of the source model can facilitate adapta-
tion. Matsui et al. [100] use a CNN for HAR to train a
subject-independent source model. For adaptation to a spe-
cific subject, they add an extra hidden layer after each fully
connected layer of the original network architecture and train
these on limited target data.

M.4) DOMAIN-ADVERSARIAL LEARNING
Domain-adversarial learning is a recent deep learning-
specific approach for TL, introduced by Ganin et al. in
2016 [38]. It is inspired by the generative adversarial network
(GAN) [39], and borrows the idea of having two adversarial
components in a deep neural network that perform a zero-sum
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FIGURE 7. DANN architecture according to [38].

game to optimize each other. As illustrated in Figure 7,
a deep adversarial neural network (DANN) consists of three
components: a feature encoder, a predictor, and a domain
discriminator. The feature encoder consists of multiple layers
that transform the data into a new feature representation,
while the predictor performs the prediction task based on
the obtained features. The domain discriminator is a binary
classifier that uses the same features to predict the domain
from which an input sample is drawn.

Unlike the previously described TL approaches,
adversarial-based transfer is not divided into two subse-
quent phases, for pre-training and adaptation. Models are
rather jointly trained on source and target data. The pre-
dictor is trained via standard supervised backpropagation
using the available label information from either of the
two domains. In parallel to this, the adversarial objective
is to generate domain-invariant features f such that based
on f no distinction between target and source domain can
be made. This is achieved by calculating an additional
domain discrimination loss, and connecting the domain dis-
criminator via a gradient reversal layer (GRL) that negates
the gradient during backpropagation. A notable advan-
tage of the adversarial approach over pre-training & fine-
tuning is its applicability even if only unlabeled target data
is available.

Since its inception, adversarial learning has extensively
been studied concerning time series data (cf. Table 5). Also,
the approach has been extended several times. Instead of
focusing only on domain invariance, Zhao et al. [85] further
extend the idea by additionally conditioning the discriminator
on the label distribution. The goal is to remove conditional
dependence on source domains. They propose an adversarial
CNN-LSTM model for sleep stage prediction designed to
ignore irrelevant subject- or measurement-specific informa-
tion. Guo et al. [81] propose a 16 layer deep adversarial CNN
for machine fault diagnosis. For domain adaptation, they
add a feature distribution discrepancy loss term measuring
the maximum mean discrepancy (MMD) between target and
source features.While the domain discrimination loss is max-
imized, the feature distribution discrepancy is minimized.
Adding an MMD term to the objective function is a com-

mon attempt also used in other TL approaches (see M.5 and
Section IV-E). Li et al. [102] extend the idea of the DANN
by a bipartite input layer to adapt it to a specific aspect
in neural emotion recognition: EEG data from the left and
the right hemisphere of a human brain are separately fed
into the network via two distinct LSTM layers. This allows
considering the two hemispheres’ asymmetry to emotional
responses. Jiang et al. [51] propose an adversarial CNN for
HAR. They incorporate an entropy minimization term into
the network’s predictor module to utilize information from
unlabeled data. In addition to this, they propose three addi-
tional constraints to prevent overfitting: a confidence control
constraint, a smoothing constraint, and a balancing constraint.
Purushotham et al. [103] propose variational recurrent adver-
sarial deep domain adaptation (VRADA) by adversarially
training a variational RNN. The method addresses general
time series problems with domain-invariant temporal depen-
dencies in a transductive TL setting without target labels.
Wilson et al. [37] propose another convolutional adversar-
ial model for time series data in general, named CoDATS,
and show that it outperforms VRADA on four out of four
evaluation datasets while requiring only a fraction of the
training time. CoDATS also allows a multi-source trans-
fer by using a domain discriminator that classifies between
n sources.

Apart from purely discriminative adversarial networks
such as the original DANN, a rather infrequent approach is the
application of a GAN to translate between domains, such as
in [104]. Here, a GAN is used to generate target from source
time series by training a generative model component against
a domain discriminator.

M.5) DEDICATED MODEL OBJECTIVE
As in domain-adversarial learning, and in contrast to model
retraining, model objective functions specifically dedicated
to TL allow using source and target data within a single
training phase. Hernandez et al. [105] investigate modified
objective functions for a support vectormachine (SVM) in the
context of stress recognition from skin conductance. While
source data is collected from multiple subjects, they lever-
age knowledge from unlabeled target subject data for model
personalization by (1) inserting suitable class weights for
misclassification types, and by (2) integrating an importance
weighting based on the similarity between the target subject
and source subjects. Other methods typically define a neural
network loss function that incorporates a feature distribution
measure [79], [84], [106], [107].
Feature Distribution Discrepancy: One way of realizing

TL is to force a model to produce similar feature representa-
tions for source and target input data. This can be achieved by
measuring the distribution discrepancy of features generated
when either source or target data samples are fed into the
model, and using this measure as a second model objective.
As in [106]–[108], an overall loss function L can be defined
by a simple summation of prediction loss Lp and distribution
discrepancy loss Ld , where the influence of Ld may be
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TABLE 7. Variants of MMD loss calculation in multi-layered neural
networks.

weighted by a trade-off parameter α ∈ R+:

L = Lp + αLd (1)

Besides the application in dedicated objective functions,
which we interpret as model-based approaches, distribu-
tion discrepancy measures are mainly used in feature-based
approaches, addressed in Section IV-E.
MMD: The most commonly used measure of distribution

discrepancy in the context of time series TL is the maximum
mean discrepancy (MMD) [109]. Other than the Kullback-
Leibler (KL) divergence, the MMD is a non-parametric dis-
crepancy measure that avoids the calculation of intermediate
density. It maps two distributions onto a reproducing kernel
Hilbert space H and calculates the distance in H. For a
non-linear mapping function φ(·) : X → H between the
original space X and H, the MMD between two datasets XS
and XT can be calculated as in [73]:

MMD(XS ,XT )=

∣∣∣∣∣∣∣∣ 1
|XS |

∑
xS∈XS

φ(xS )−
1
|XT |

∑
xT∈XT

φ(xT )

∣∣∣∣∣∣∣∣
H

(2)

Most publications, however, use a squared MMD formula-
tion instead [79], [106], [110].
Adaptation Layers: Within a deep neural network, each

network layer represents features on a different level of
abstraction. The MMD, or other discrepancy measures, can
be calculated on every layer. For a discrepancy loss Ld , such
as in (1), it must be specified which layers are included in
the loss calculation. Layers whose feature distribution dis-
crepancy between domains is chosen to take influence on
the model objective are called adaptation layers. The idea
of measuring a so-called domain loss in an adaptation layer
and to then add this to the model’s original loss function
was first published under the name deep domain confusion
in [111]. In this sense, in several publications, one model
layer is chosen as adaptation layer. There may be no need
to adapt early layers, as they only extract general features.
Wang et al. [84], for instance, calculate theMMD for features
from the last fully connected layer in a deep CNN. Other
publications use an earlier fully connected layer [112] or a
convolutional layer [14] instead.
Multi-Layer Discrepancy: While several methods in the

literature select one single layer as adaptation layer, others
consider discrepancies in multiple layers. Table 7 lists pub-
lications that use either a single- or multi-layer approach on
calculating an MMD-based discrepancy loss.

In case of multi-layer approaches, discrepancies measured
at different layers are combined into a single loss function.
Zhu et al. [107] calculate the sum of MMD discrepancies in

the last two fully connected hidden layers of their model.
They also use a trade-off parameter to balance each layer’s
impact. Li et al. [106] propose a method that defines a set of
adaptation layers L and calculate the sum of discrepancies
over all layers in L. This is equal to (3) with µl = 1.
As in [107], Xiao et al. [108] consider importance differ-
ences between layers. However, they include all six hidden
layers of the applied model and combine discrepancies using
a six-dimensional weight vector. Also, Yang et al. [79] cal-
culate a weighted sum over four hidden layers of a CNN,
including two convolutional and two fully connected layers.
Generally, for a set of adaptation layers L, and feature distri-
butions Pl , Ql for l∈L in source and target domains, as well
as a weighting factor µl ∈ R+, we find (3) to be a common
example of how to combine multi-layer MMD discrepancies.

Ld =
∑
l∈L

µlMMD(Pl,Ql) (3)

Beside the MMD, as the most typical measure, also other
measures may be applied. Khan et al. [21], for instance, min-
imize the sum of layer-wise KL divergences.
Joint Distribution Adaptation:While the MMD only con-

siders the marginal distribution of the data, joint distribution
adaptation (JDA) [115] is amethod that goes further than this,
and jointly reduces differences in marginal and conditional
distributions. For this, it integrates MMD-based marginal
distribution discrepancy as well as a reformulation of the
MMD tomeasure conditional distribution discrepancy. At the
same time, JDA also preserves principal components, as in
transfer component analysis (TCA), which is addressed in
Section IV-E, F.1. Although the original JDA can be regarded
as a feature-based TL approach, there are works integrating
a JDA regularization term into the model objective of a deep
neural network, which allows joint training with data from
both domains. This is done, for example, for time series TL
in fault diagnosis [10], [116].

M.6) ENSEMBLE-BASED TRANSFER
Another TL approach leverages the concept of ensemble
learning. Ensemble learning involves the combination of
multiple base learners, where each one is trained indepen-
dently on a subset of the available data. In general, ensemble
learning aims to reduce generalization errors. In TL, the
aim is restricted to target generalization errors. An ensemble
model’s final prediction is typically obtained from voting
between the individual base learners. These may be equally
weighted (bagging) or assigned a weight depending on their
individual prediction performance (boosting). Boosting is
frequently applied for TL using the prediction performance
in the target domain for weight calculation [117]–[119].
Boosting:One of the most prominent ensemble algorithms

for TL is TrAdaBoost [120], which is based on the original
AdaBoost [121] algorithm.As in label-based TL, TrAdaBoost
assumes that some source data instances are more useful
regarding target domain learning than others. It is a boosting
algorithm that assigns weights according to target domain

VOLUME 9, 2021 165421



M. Weber et al.: Transfer Learning With Time Series Data: Systematic Mapping Study

performance. The algorithm is frequently used in the context
of time series TL. Marcelino et al. [118] apply a modified
version of the algorithm for pavement performance predic-
tion. They leverage source data from roads in the USA as
well as data from the Portuguese road network, which is
defined as the target domain. Xu and Meng [117] apply a
TrAdaBoost-based regression algorithm for short-term elec-
tricity load forecasting. Khan and Roy [122] use TrAdaBoost
as part of a hybrid method for HAR. They apply the algorithm
to classify instances that are likely to belong to a known
activity class. In addition, to consider previously unseen
activities, k-means clustering is applied. Shen et al. [123] uti-
lize an extended version of TrAdaBoost for fault diagnosis.
Their method includes a transferability assessment, which
involves the similarity between label distribution and fea-
ture similarities per label. This assessment is used to further
reduce negative transfer. Just as TrAdaBoost, also similar
methods are applied, that weight base models based on their
target prediction error. Ye and Dai [119] propose an ensemble
of extreme learning machines (ELMs). In addition to the
weighting, they further replace source ELMs that exceed a
defined error threshold by newly trained ones. In a publi-
cation on EEG classification with a specific target subject,
Tu and Sun [124] go beyond the idea of boosting. Instead of
assigning static weights to base models, they apply a dynamic
weighting method that assigns specific weights to different
test samples. They propose a two-level ensemble method that
involves training multiple filter banks that are either robust
(subject-independent) or adaptive (subject-specific). Robust
and adaptive filter banks are combined into one robust and
one adaptive ensemble model, and weights are dynamically
assigned. On level two, the two ensembles are combined into
a final ensemble.
Model Stacking:A different type of ensemble learning that

can be applied for TL is called model stacking. In this variant,
the outputs of multiple models are used as input to a combiner
model that learns their optimal combination. An example can
be found in [125]. In this publication, two neural networks
trained on different datasets are combined by an additional
combiner network. The ensemble is used for wind intensity
prediction of tropical cyclones. While the target domain,
a certain geographic region, is covered by one of the two
combined networks, the other receives data from a different
region. Wang et al. [126] propose a multimodal model for
hand motion recognition, where the source domain contains
EMG data, whereas the target domain contains EMG as well
as inertial data. Parameters from an EMG-based model pre-
trained in the source domain are transferred to the corre-
sponding target model. A second target model is constructed
for the inertial input data. Both models are connected via a
new LSTM layer for feature fusion and trained in parallel on
target data.
Hybrid Approaches: Ensemble learning may be com-

bined with other approaches such as pre-training & fine-
tuning. Benchaira et al. [127] train 12 different CNN-RNN
networks, one for each of 12 source domain labels, and

fine-tune each one in the target domain. The resulting trans-
ferred networks are then combined via XGBoost [128] stack-
ing. Similar to this, Shen et al. [129] combine ensemble
learning with CNN fine-tuning for capacity estimation of
lithium-ion batteries. They train n CNN models on n distinct
folds of the source dataset and retrain them on target data.
The fine-tuned models are fused by adding an overarching
fully connected layer and a regression output layer on top.
An approach combining ensemble learning with pre-training
& fine-tuning as well as with autoencoders (AEs) can be
found in [130]. Without supervision, the authors train mul-
tiple stacked denoising autoencoders in the source domain.
Each of these is then fine-tuned in the target domain. Finally,
they apply a modified voting strategy to combine the trans-
ferred models.

E. FEATURE-BASED TRANSFER
Feature-based transfer is based on the reduction of discrep-
ancy between the feature spaces in target and source domain.
In contrast to model-based transfer, feature-based approaches
are independent of the prediction model. They encode data
from one domain into a feature representation that is more
similar to the other domain or transform data from both into a
common latent feature space. We coarsely divide approaches
into ordinary feature transformation approaches and feature
learning. In feature learning, a neural network encoder is
learned with the goal of encoding data into a more useful
feature space. Unlike in model-based approaches, here, the
feature learning network is an auxiliary model specifically
used for the purpose of transfer. It can be combined with
any arbitrary prediction model. In the following, we describe
methods that do not involve a neural network (F.1), methods
that are based on an autoencoder (F.2), and methods based on
a neural network other than an autoencoder (F.3).

F.1) FEATURE TRANSFORMATION
Apart from the application of neural networks for feature
learning, feature transformation with the intention of time
series TL may be based on signal processing techniques for
feature extraction. For example, Natarajan et al. [131] use
histograms of time series as transferred features in a study
on lab-to-field transfer in cocaine detection. Other methods
try to align feature distributions. This is often based on the
MMD [16], [132]. A prominent MMD-based method for
feature-based TL, that is used with time series, is transfer
component analysis (TCA).
Transfer Component Analysis: TCA is a method to reduce

domain differences in the marginal distribution. It seeks
a shared feature space by minimizing the MMD between
the domains. At the same time, as in principal component
analysis (PCA), it tries to preserve variance in the data.
TCA was originally proposed by Pan et al. [133] for TL in
general. In context of time series, TCA is, for instance,
applied in [134] for gearbox fault diagnosis. The authors
compare TCA performance under the application of four
different kernel functions. It is further applied in [57] for
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subject-to-subject transfer in the context of BCIs. In this
work, the authors compare different subspace projection algo-
rithms, namely TCA, kernel PCA (KPCA), and transductive
parameter transfer (TPT).
Seasonal Decomposition: Several methods perform a sea-

sonal decomposition of time series [16], [62]. Based on this,
TL can, for instance, be conducted by eliminating typical
time series patterns such as trends and seasonality, that may
be dataset dependent. Ribeiro et al. [62] apply trend and sea-
sonality removal for energy forecasting on related buildings.
Arief-Ang et al. [16] use a seasonal decomposition model for
occupancy estimation from carbon dioxide rates and pro-
pose an individual transfer method for each summand of the
regression function. The trend term’s distribution discrepancy
is measured and aligned viaMMD,while the seasonality term
is adjusted according to pattern sequence repetitions.
Manifold Learning: Several publications apply manifold

learning techniques [135]–[137]. In context of fault diag-
nosis transfer, Zhao et al. [136] apply manifold embedded
distribution alignment (MEDA), a method originally pro-
posed for TL with image data. Saeedi et al. [49] propose a
manifold-based transfermethod for cross-subject HAR. Their
method applies manifold learning in the source domain and
later conducts a manifold mapping from target to source data.
Rodrigues et al. [137] propose a method called Riemannian
Procrustes analysis (RPA) in the context of EEG data for
BCIs. This method uses symmetric positive definite (SPD)
matrices to represent the time series statistics. It estimates
the geometric means and re-centers the data in both domains,
then stretches the target dispersion and rotates the target SPD
matrices to match source dispersion and rotation.
Hybrid Approaches: Feature transformation can be com-

bined with other approaches such as ensemble learning. One
example is stratified TL [20], in which, at first, multiple
source models are trained and combined into an ensemble to
generate candidate labels for unlabeled target data. These are
then used to find an embedding into a shared feature space
based on the intra-class MMD, which is calculated for each
class in source data and target candidate data. Li et al. [36]
combine ensemble learning with a previously known trans-
formation method named style transfer mapping. The work is
based on EEG data used for multisource TL in personalized
emotion recognition.

F.2) AUTOENCODER-BASED FEATURE LEARNING
A popular approach for transforming time series data or
obtained input features into a new feature space is by using
an autoencoder (AE). An AE, also known as sequence-to-
sequence model, is a neural network where the number of
input nodes k equals the number of output nodes. The goal
is to compress the input into a latent representation z. This
is achieved by combining an encoder model with a decoder
model trying to restore the original data. These two are
connected by a bottleneck layer with less than k neurons,
containing the learned encoding z. During model training, the
network typically aims to minimize the reconstruction error

TABLE 8. Autoencoder types used for time series TL.

between input and output data. AEs can be used to transform
source domain and target domain features into the same
subspace [19], [138], but also to transform source domain fea-
tures into the target space, as in [139], or vice versa. Although
a model is trained for transfer, this is different from model-
based TL, as the model is only used to generate a feature
representation of the original data, while any model can then
use the new feature values to perform the actual prediction
task. Different AE architectures are applied for time series
transfer, including simple single-layer AEs [139], as well as
stacked AEs forming a deep model architecture [19], [140].
Table 8 lists specific types of AEs and exemplary studies.
Generally, we divide AE-based transfer approaches into two
basic strategies: sequential training and parallel training.
Sequential AE Training: In the sequential training strat-

egy, target and source data are used in two distinct training
phases. In some publications, two different AEs, one for the
source domain and one for the target domain, are trained one
after the other. Akbari and Jafari [149] first train a source
AE with labeled source data. In a second step, they train
a target AE by minimizing the KL divergence between the
output of the (fixed) source AE and the now trained target
AE. Faridee et al. [151] apply a similar approach using the
Jensen-Shannon divergence. Deng et al. [65] train a denois-
ing autoencoder (DAE) on target data and subsequently an
adaptive DAE (A-DAE). The A-DAE minimizes its recon-
struction error and at the same time forces model weights to
stay close to the weights obtained from the previously trained
DAE.

Other publications only use a single AE for either source
or target and use the remaining data and the trained AE
directly to learn the prediction model. Deng et al. [139] train
a single-layer AE with target data and use the AE to recon-
struct source data instances. The resulting source data repre-
sentations are then used to train a classifier, which is intended
to be used for target task classification.
Parallel AE Training: In the parallel training strategy,

a shared AE is trained for source and target domain simul-
taneously. This can include either the full AE architecture or
only parts of it. For instance, Chai et al. [140] feed source and
target instances into the same AE, which they call subspace
alignment AE. In contrast to this, Deng et al. [147] propose
a shared hidden layer autoencoder (SHLAE), which uses the
same hidden layer neurons for feature encoding, but different
output layer neurons for reconstruction. They first applied
the SHLAE in the field of acoustic emotion recognition.
Since then, it has been further studied with other time series
prediction problems, such as radar emitter recognition [148].
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Objective Functions: Defining reconstruction error min-
imization as the single training objective, an AE can be
trained in an unsupervised manner and does not require
labeled data. If labeled data is available, it can, however,
also be applied in combination with training an auxiliary
prediction model in order to ensure that relevant features
are obtained. In this case, a prediction loss function may be
integrated into the training objective. This approach can be
found in [65], [73], [149]–[151]. In the typical case of TSC,
the loss is measured as classification loss, e.g., the cross-
entropy loss, of an auxiliary classifier.

Several studies further penalize distribution discrepancy
between features generated for target and source data. This
is applied similarly if either features from source AE and
target AE are to be compared [149] or if a single AE is
used for both domains [73], [138]. Widely applied metrics
are MMD or KL divergence. Sun et al. [143] use a stacked
AE and apply MMD minimization for the output of each
layer. To prevent network weights from becoming small and
approaching zero to satisfy the distribution discrepancy term,
Lu et al. [138] introduce an additional weight regularization
term to strengthen representative features. A complete objec-
tive functionL for AE training can be denoted as theweighted
sum of multiple terms.

L = αaeLae + αpLp + αdLd + αwLw (4)

Equation (4) gives an example including reconstruction
loss Lae, prediction loss Lp of an auxiliary prediction model,
distribution discrepancy Ld such as an MMD term, and a
weight regularization term Lw. For each term, a coefficient
αi∈R+ determines the influence towards the other terms.

F.3) NON-RECONSTRUCTION-BASED FEATURE LEARNING
In addition to the autoencoder approach, there are also ways
to learn an encoder model that are not based on the recon-
struction of input sequences. An encoder may be trained
solely, i.e., without a connected decoder, by using an unsu-
pervised learning scheme as in [152]. Another approach can
be model truncation.
Source Model Truncation: Given a pre-trained source

model, a possibility to create an encoder is to truncate the
model at a certain layer and keep all previous layers. The
output of the last remaining layer is then considered as feature
representation. Training of the required source model can
take place in a standard supervised manner. In [153], [154],
and [70] source models are trained to perform a classifi-
cation in the source domain and the output classification
layer is removed to obtain the encoder. Zhou et al. [154]
conventionally train a CNN via supervised backpropagation
using the source dataset. In a second step, the output layer
is removed, and the rest of the CNN, including several con-
volutional layers and a fully connected layer, is used as a
feature encoder in the target domain. The encoded features
are then used to train an arbitrary classifier, such as a logistic
regression classifier or random forest. While Zhou et al. use
one source model, Meiseles and Rokach [153] train multiple

source models and further perform a source model ranking,
which allows selecting the one with the best encoding results.
Serrà et al. [70] apply amulti-head strategy where a dedicated
output layer is used for each of multiple source datasets. The
output layers are then dropped to obtain a general encoder
model. Similarly, Kashiparekh et al. [69] train on multiple
source datasets as well, but use two dedicated layers per
dataset, a fully connected layer and an output layer, which
are both truncated.

F. INSTANCE-BASED TRANSFER
Instance-based transfer involves the selection or weighting
of source instances according to their usefulness for target
training. In our case, the term instance refers to an individual
time series contained in a time series dataset. As the instance
weighting-based methods found in this literature review are
based on an ensemble model, we categorize these under
model-based transfer (see Section IV-D, M.6).
Instance Selection: The remaining instance-based methods

select a useful subset of the source data XS , which can be used
as auxiliary data X ′S to train an arbitrary target model. For a
selection I , X ′S can be defined as:

X ′S = {(xi)}i∈I ⊆ XS (5)

Most selection methods consider the similarity between
source instances and the time series contained in the target
dataset. Yin et al. [56] use instance selection for personal-
ized, EEG-based emotion recognition. Data from the target
subject is divided into two clusters for high and low emo-
tional states. Then, instances from source subjects are either
selected or discarded according to their distance to the two
cluster centers. Vercruyssen et al. [155] address TL for time
series anomaly detection and propose a cluster-based as well
as a density-based method to decide which instances to trans-
fer. In the cluster-based method, k-means clustering is carried
out on target data, and the resulting clusters are divided into
small and large clusters. The decision upon the selection of
source instances is then based on the label, the assignment to
either a large or small cluster, and the distance to the cluster
center. In the density-based method, they use a Gaussian ker-
nel to estimate the density of multiple subsequences of each
time series. Using a normalized sum of subsequence densities
as a weighting, the selection is made based on a defined
threshold. Shang and Wu [156] use a selection method based
on feature discretization. After discretizing all feature values,
they consider instances as sufficiently similar if they share
the same label and the same discretized feature value for
each dimension. Apart from comparing instance similarities,
another way of selecting useful instances can be, as in [77],
to test the prediction accuracy when using different subsets
of the source data, and form a union of the top-performing
subsets. This is, however, only possible if target labels are
available.
Symbolic Aggregation Approximation: Instance selection

can also be carried out by selecting representations of data
instances. Two of the identified publications use the symbolic
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aggregation approximation (SAX) representation for time
series data translating each time series into a word [157],
[158]. Such word representations can be collected into a bag
of words and in this way form a subset of the input data.
In [157], the authors construct bags of words for different
subjects in fall event detection. The transfer is conducted by
collecting a bag of common words, where commonness is
measured by the relative term frequency. Fañez et al. [158]
conduct a clustering of words and only select the cluster
centroids into the bag of transferred words.

G. SOURCE SELECTION
Similar to instance selection, which is addressed in the pre-
vious subsection, source selection denotes another procedure
to select useful source data. In contrast to instance selection,
this is not done on an instance level. Instead, out of a set of
n existing source datasets from distinct domains D1, . . . ,Dn
one or multiple datasets are selected as a whole to form the
final source data XS . For a selection I , XS can be defined as:

XS =
⋃
i∈I

Xi ⊆ {X1, . . . ,Xn} (6)

As source selection is typically an upfront procedure carried
out before the actual TL, we do not consider it as a method
of TL, but rather an additional step of data pre-processing,
that may be combined with TL. Analogous to (6), in source
task selection, a minor subfield of source selection, source
tasks YS are selected as a subset of multiple tasks Y1, . . . ,Yn.
An example can be found in [159].
Motivation: The idea of source selection is to only reuse

knowledge from domains with reasonable similarity to the
target. In an experiment with 85 time series datasets from
different domains, Fawaz et al. [2] show that TL can also
lower prediction performance. This negative effect is widely
referred to as negative transfer. For each pair of datasets, they
pre-train a CNN classifier on one dataset and fine-tune it on
the other, showing that for most pairs of time series datasets
TL has no significant impact on the accuracy. For some pairs,
however, it shows either a significant increase or decrease in
prediction performance compared to training the model from
scratch in the target domain. They conclude that similarity
between source and target dataset may play an important role,
and also show that choosing the source dataset with the lowest
dynamic time warping (DTW) distance to the target reduces
the risk of negative transfer. As the choice of a similar source
dataset seems to be an important prerequisite for TL, some
publications address the problem of how to select appropriate
sources from multiple alternatives. Approaches are typically
based on prediction performance in the target domain or on
the similarity between source and target data.
Target Testing: If labeled target data is available to some

extend, appropriate sourcesmay be selected via target domain
testing after training with different sources or combinations
of sources. Li et al. [36] use each source individually for
training a prediction model. They test each model in the
target domain and select the n top-performing models. The

selected models are then combined in an ensemble model.
Lotte and Guan [54] test performances for combinations of
sources. They apply a search algorithm to search over dif-
ferent combinations and, in each iteration, test target perfor-
mance when training with the currently selected subset.
Data Similarity: If only unlabeled data is available from the

target domain, source selection may be based on intra-dataset
similarities instead. While Fawaz et al. [2] apply the clas-
sic Euclidean distance-based DTW to measure source-target
similarity, Ye and Dai [14] also use DTW to align time series
lengths, but then calculate the Jensen-Shannon (JS) diver-
gence. Xiao et al. [160] divide each time series into multiple
segments and calculate the segment-wise Pearson correlation.
Wang et al. [84] argue that a simple distance measure is not
sufficient for their problem and propose a combination of a
general and specific distance, where the specific distance is
based on human annotation and kinetic aspects relating to
HAR. Chen et al. [161] propose a stratified distance (SD).
They calculate the MMD distance between source and target
for each class label individually. Pseudo labels are used for
the unlabeled target data. Based on this, the SD is defined as
the average distance over all classes. In the end, the source
dataset with the minimum SD is selected.
Feature Similarity: Meiseles and Rokach [153] propose

a method that is applicable even if only pre-trained source
models are available and no original source data. They trun-
cate each source model after a certain layer and compare
target encodings of the last retained layer in each model using
the mean silhouette coefficient (MSC) based on the cosine
distance. Source models are then ranked by their MSC score
from low to high.

H. OFF-THE-SHELF ENCODERS
As described in Section IV-E, encoder models can be used to
encode data into a feature representation that can then be used
as input to a target model. Assuming there are general patterns
that appear over diverse time series domains, encoders may
be applied to carry general knowledge from various hetero-
geneous datasets and use this knowledge to support an arbi-
trary time series prediction task. Recently, there have been
some attempts to provide such a general-purpose encoder [3],
[69], [70]. Already pre-trained in various time series domains
and ready to use, we can call these off-the-shelf encoders.
The idea is, that the off-the-shelf encoder generalizes well
and can be universally applied to extract more informative
features. A frequently used source for various time series
datasets is the UCR time series classification archive [71].
Prominent models pre-trained on datasets from the UCR
repository are TimeNet [3] and ConvTimeNet [69]. TimeNet
is a multi-layered RNN-based autoencoder pre-trained on
18 datasets. It showed improved performance compared to
a domain-specific model trained from scratch on 19 out
of 31 test datasets [3]. ConvTimeNet is a multi-layered
CNN, pre-trained on 24 randomly chosen datasets. Com-
pared to domain-specific training, it showed improved per-
formance on 17, and similar performance on 18, out of 41 test
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datasets [69]. While TimeNet was trained in an unsupervised
fashion, ConvTimeNet was trained using dataset labels. To do
so, two task-specific layers were added on top of the Con-
vTimeNet model for each dataset: A fully connected layer
and a softmax classification layer that matches the respec-
tive classification task. Another CNN-based encoder trained
with a dedicated output layer for each dataset is presented
by Serrà et al. [70]. It shows promising average results on
multiple train-test splits with 85 datasets.

I. TIME SERIES TO IMAGE TRANSFORMATION
As many TL approaches originate from the field of com-
puter vision and address two-dimensional image data, it is
a straightforward strategy to transform time series data into
a 2D representation and apply traditional approaches to the
transformed data. For multivariate time series, a simple trans-
formationmethod is forming amatrix by setting one time axis
and arranging the feature values at the second axis. For a time
series of length l with d dimensions, this leads to a matrix
of size d × l. After normalizing the features’ value ranges,
the matrix can be interpreted as an image. This method is
applied in [60], [91], [95]. Several other works transform
time series data into the time-frequency domain and use
the spectrogram as a visual time series representation. This
is also applicable to univariate time series data. Typically,
the time-frequency transformations are based on a wavelet
transform [113], [162] or a Fourier transform, such as fast
Fourier transform (FFT) [88] or short-time Fourier transform
(STFT) [163]. Hasan and Kim [87] propose the use of the dis-
crete orthonormal Stockwell transform (DOST) to improve
time-frequency resolution compared to STFT.

Numerous publications do not transform source and tar-
get time series but rather treat a time series dataset as the
target and general image data as the source. This allows the
application of well-known large CNN models pre-trained on
ImageNet, such as VGG [11] or AlexNet [12], in the context
of time series data. TL from image source data is not within
the scope of this review (see Section III-B, criteria e.9).
However, this can be a useful alternative if source time series
are not available. The following exemplary publications use
CNNs pre-trained on images to enhance model training for
time series data: [164]–[166].

V. FUTURE RESEARCH OPPORTUNITIES
Time series TL has developed into its own branch in TL
research and offers large potential for future research. In the
following, we discuss research opportunities from a method-
ological, contextual and topical view.
Methodological: Publications on time series TL mostly

propose a new method of TL or apply an existing method
in a specific domain. Despite the high diversity in the field,
only a few compare multiple approaches (e.g., [82], [94],
[167]). There is a lack of empirical studies that carve out the
advantages of approaches with certain types of time series
data or for certain prediction problems, which is necessary to
retrieve guidelines for approach selection or method design

FIGURE 8. Research opportunities from a topical view.

by practitioners. This review encourages future empirical
work that provides insights into context- or topic-related
differences and advantages of different approaches. In the
same time, both research and practice can benefit from more
extensive evaluations of different model architectures and
parameters. Evaluation results on multiple different datasets
can help find reference architectures.
Contextual: As shown in Section IV-B, research on time

series TL is still concentrated on only a few application
domains. Here, we expect more generalization in the future,
as well as an increase in publications in the context of
domains that have not yet been widely investigated, such
as, for example, occupancy estimation in building rooms.
With the application to a wider range of different domains,
domain-specific opportunities and impediments will need to
be considered. One major impediment for TL, in application
domains with personal data, such as in HAR, can be data
privacy. Though not within the scope of this review, privacy
issues regarding source data is an aspect that needs further
investigation. A straightforward idea is to not use source data
directly, but rather pre-trained source models, that provide a
higher level of data privacy. Ensemble-based TL even allows
to integrate models from multiple domains, yet it requires
high similarity between sources and target and may not be
successful with distant source domains.
Topical: Currently, research on time series TL is still

strongly influenced by approaches from other fields. This
can be seen from the large amount of publications aiming to
make models and methods for computer vision applicable to
time series. Further effort is required to findmore stand-alone
solutions that specifically take into account the nature of time
series data. Research opportunities can be found in applied
research to bring the current findings into practice as well as
towards new solutions. Figure 8 lists some important research
directions.

Given the variety of transfer approaches presented in the
previous section, selecting the right approach for a problem
is not a trivial task. Guidelines need to be found on how to
select a transfer approach.

Also, many of the current methods are tailored to a specific
prediction problem and need to be customized, for exam-
ple, in terms of the selection of adaptation layers or frozen
layers. Again, guidelines are needed on how to design a
concrete transfer method for a given problem, without relying
on personal experience or exhaustive testing. On the other
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hand, more adaptive methods need to be found, which can
be generally applied regardless of data and task.

More generalization is directly linked to the ability to
transfer knowledge from less similar data. As the transfer
from distantly related time series, however, carries the risk
of negative transfer, a key challenge is the estimation of
transferability. Useful source domains, or useful parts of a
source domain, need to be identified for transfer. As shown in
this review, only a small part of the literature deals with source
selection or instance-based TL, which is essential to allow the
use of a wide range of source data. Some publications address
general-purpose transfer and have led to achievements such
as the first off-the-shelf time series encoders. Research on
large pre-trained models, which can be used as a basis when-
ever dealing with time series, is still young in comparison to
the field of computer vision. Equivalents to models such as
AlexNet [12] and VGG [11] yet need to be found in the area
of time series data. InceptionTime [8] can be named as an
early attempt in this direction.

Furthermore, research in the field of time series TL mostly
assumes that labels are available in the source domain.
Mostly, approaches such as pre-training & fine-tuning are
used that require the availability of labels. These approaches
may not be applicable in practice, as the cost for data collec-
tion and labeling can be too high. Many time series domains
involve sensor data, which can be measured cheaply over
a long time but often need to be labeled manually. Hence,
a greater focus must be placed on transfer from unlabeled
sources.

Another opportunity is the combination with non-time
series data. In this literature review, we focus on approaches
purely based on time series data. These are not applicable
for use cases that involve complex objects consisting of time
series and other types of data as well. Moreover, it may
be beneficial to additionally use some metadata of the time
series. Hu et al. [168], for example, use information retrieval
approaches on web search results of activity names to calcu-
late a similarity between different activities in HAR. These
metadata similarities are then used for importance weighting
in an instance-based TL approach.

In summary, it can be said that research on time series TL
is still in an early stage. While at least some early literature
exists for most of the research opportunities pointed out in
this section, we could not find any publication that points
out the advantages of different TL approaches in different
application domains or concerning the nature of different time
series. This is a clear research gap, which could help bring
time series TL into practice.

VI. THREATS TO VALIDITY
The following threats to validity limit our findings:
Incomplete Selection of Literature: Our study does not

include the whole body of literature on the topic of time
series TL. Due to the vast amount of existing publications,
we only included a sample of the literature. This sample
contains 223 publications, which we assume to be sufficiently

representative. However, since the research field is rapidly
growing, at the time of publication of this study, some new
developments may already have come up that we do not
cover.
Literature Search Bias: In the electronic search process,

we included nine literature sources that we believe to cover
the main relevant literature. However, some relevant work
may not be included in any of them. In addition to this,
we may have missed some relevant literature that does not
contain our search terms. Especially, the keyword ‘time
series’ can not be found in all relevant publications, as they
may name the concrete type of data instead. The restriction to
the applied search query and the selection of literature sources
may cause bias in the retrieved search results. We reduced
this threat by including an additional snowballing procedure,
in which we performed a manual backward search over the
references of included publications.
Literature Selection Bias: The inclusion and exclusion

criteria applied in this study were elaborated to support the
research goal and provide a general overview over the current
state of the literature. Still, they pose a limitation to complete-
ness. Literature addressing very specific aspects in relation
to the research field, such as privacy issues for example,
was not considered. Also, related research fields involving
TL with other sequential data, such as image time series or
irregular time series, or continuous adaptation to changing
data instead of a one-time transfer were not considered. Very
active research fields that are not covered in this study are
remote sensing or natural language processing.
Researcher Subjectivity: The entire work including the

selection process and data synthesis has been conducted by
the first author of this paper. To avoid subjectivity, consensus
meetings with the other authors were held and a valida-
tion was carried out by the second author. Even though we
included this additional validation, subjectivity can not be
ruled out completely.

VII. CONCLUSION
In this paper, we have conducted a systematic mapping study
on the current state of the art in time series TL. In total,
we included 223 publications addressing either univariate or
multivariate time series. We presented solutions found in the
literature and discovered trends regarding threemain research
questions: (Q.1) what are the main application domains?,
(Q.2) what transfer approaches are applied?, and (Q.3) what
associated machine learning models are used? We showed
that the literature is dominated by deep learning and by
few application domains. Highly addressed domains are fault
diagnosis, HAR, andBCI.Many transfermethods are adapted
to time series but originate from other research branches
such as computer vision. The most dominant approach is
pre-training a CNN and fine-tuning it in the target domain.
For this, time series are, in many cases, first transformed
into an image representation. Other prominent approaches
are domain-adversarial learning or using autoencoders to
transform data into new feature spaces. Some of the reviewed
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methods are specifically designed for time series data, for
instance, by applying an LSTM model. The most frequently
applied model, however, is the CNN, originating from com-
puter vision research.

We see large potential for future work in this young
research branch and have pointed out some important
research directions. Especially, more research is needed
towards transfer between distantly related time series and the
assessment of transferability, which allows to select useful
source time series. Also, applied research is required to bring
the current advances in time series TL into practice.
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