
Department of Informatics

Technical University of Munich

Master’s Thesis in Informatics

Evaluating the Impact of
Knowledge Aggregation with

Subjective Logic on the Overall
Systems Adaptivity in

Multi-Agent Self-Adaptive
Cyber-Physical Systems

Tamer Temizer

Department of Informatics

Technical University of Munich

Master’s Thesis in Informatics

Evaluating the Impact of Knowledge
Aggregation with Subjective Logic on the

Overall Systems Adaptivity in Multi-Agent
Self-Adaptive Cyber-Physical Systems

Evaluierung des Einflusses der
Wissensaggregation mit Subjektiver Logik
auf die Adaptivitat des Gesamtsystems in

Multiagenten Selbstadaptiven
Cyber-Physical Systems

Author: Tamer Temizer

Submission Date: February 15, 2022

Supervisor: Prof. Dr. Alexander Pretschner

Advisor: M.Sc. Ana Petrovska

I confirm that this master’s thesis is my own work and I have documented all sources and
material used.

Garching, February 15, 2022 Tamer Temizer

Acknowledgments

First and foremost I want to thank my supervisor Ana Petrovska for her constant support
and understanding throughout the thesis. Her genuine willingness to assist and guide
made this thesis a very pleasant and fulfilling experience. I want to thank Malte Neuss,
Sebastian Bergemann and the others that have contributed on laying the groundwork
this thesis is built upon. I want to thank Nour Bouzid for her major contributions in the
development and debugging of the system.

I also want to thank my family and friends for their continuous support and encour-
agement. Without their support, this thesis would not be possible. Finally, I want to thank
Dr. Hande Bekmez for her love and keeping me sane throughout the thesis.

Abstract

The role of cyber-physical systems (CPSs) in the modern world is immense. As they operate
in the physical world, they encounter both internal and external uncertainties constantly.
A successful CPS should compensate for these uncertainties to operate in a robust and
reliable way. Self-Adaptive Cyber-Physical Systems (SACPS) adapt during run-time and
manipulate their internal state to overcome internal and external uncertainties.

Even though the research fields of adaptivity and self-adaptive systems (SASs) are
growing rapidly, there is a lack of consistent formal definitions of what system adaptivity
means. This gap in the literature led to research that aims to formally define system
adaptivity and a model problem that can be used evaluate multi-agent self-adaptive
cyber-physical systems (MA-SACPS). The predecessors of this thesis implemented and
simulated this model problem. One interesting aspect of this implementation is the
Knowledge Aggregation (KA) between the different agents using Subjective Logic (SL).
This functionality aims to close another gap in the SAS literature on knowledge and
uncertainty representation, and reasoning under uncertainty to update the knowledge
during run-time.

Another recent advance in the research fields of adaptivity and SASs is the introduction
of an adaptivity metric called the Q-Score that can be used to measure the adaptivity
of a system. A predecessor of this thesis implemented a wrapper called the evaluation
framework to calculate this adaptivity metric.

This thesis aims to bring together these two components to evaluate the impact of
Knowledge Aggregation with Subjective Logic on the overall system’s adaptivity in sim-
ulated MA-SACPS. This is done by merging the two different subsystems implemented
by the predecessors of this thesis. One major contribution of this thesis is creating this
merged system. There were several challenges in merging these systems that were solved
in the scope of this thesis.

Merging these subsystems allowed for a sophisticated, new experimental tooling system
that can automate and improve the experimentation process. The new tooling allows
automating the configuration, execution, storage, and evaluation steps and reduces the
previously required manual labor greatly. The new tooling also allows distributing the
execution of the experiments to greatly reduce the long computational time required to
explore the vast parameter space.

After the implementation for these two main contributions were done, the evaluation
of KA with SL started. Several experiments were designed to thoroughly evaluate the
impact of KA with SL from an adaptivity perspective. We found KA with SL improves
the adaptivity and the performance of the system significantly in certain scenarios. These
scenarios are presented and validated through experimental results.

vii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 1
1.3 Aims and Contribution . 2
1.4 Outline . 3

2 Background 5
2.1 Adaptivity and Self-Adaptive Systems . 5

2.1.1 Definition . 6
2.2 Subjective Logic . 8

2.2.1 Knowledge Aggregation with Subjective Logic 10

3 Previous Work 13
3.1 The Model Problem . 13
3.2 Implementation of MA-SACPS . 15
3.3 Evaluation Framework . 20

4 Related Work 25
4.1 Evaluating Self-Adaptive Systems . 25
4.2 Mitigating Uncertainties in SAS . 25

5 Experimental Infrastructure and Implementation 27
5.1 Implementation Related Vocabulary . 27
5.2 Previous State of the System . 28
5.3 Merging the MA-SACPS Subsystem and the Evaluation Framework 30

5.3.1 Data Collection . 31
5.3.2 False Positive Dirt Generation . 32
5.3.3 False Positive Completion Penalty . 35

5.4 New Experimental Tooling . 38
5.4.1 Motivation . 38
5.4.2 Design Goals . 38
5.4.3 System Architecture . 39
5.4.4 Worker Containers . 40
5.4.5 Choosing the Cloud Provider . 43
5.4.6 Cloud Storage . 44
5.4.7 Experiment Designer . 45
5.4.8 Task Queue . 47
5.4.9 Version Control . 49
5.4.10 Debugging . 50
5.4.11 Analysis . 50

ix

Contents

6 Evaluation 53
6.1 Experimental Setup . 53
6.2 Quality Function . 54

6.2.1 Business Goals . 55
6.2.2 Adaptation Goals . 56
6.2.3 Metric Selection . 58

6.3 Experimental Results . 59
6.3.1 Experiment 1: Impact of False Positive Probabilities 61
6.3.2 Experiment 2: Impact of False Positive Penalty 62
6.3.3 Experiment 3: Impact of False Negative Probabilities 64
6.3.4 Experiment 4: Impact of Threshold 65
6.3.5 Experiment 5: Impact of Dirt Distribution 67

6.4 Discussion . 68

7 Conclusion 71
7.1 Summary . 71
7.2 Threats to Validity . 72
7.3 Future Work . 72

Bibliography 81

A Additional Code Snippets 85
A.1 Score Functions . 85

A.1.1 Configuration . 85
A.1.2 Implementation . 87

A.2 Experiment Configuration Files . 88
A.2.1 Experiment 1 - Impact of False Positive Probability 88
A.2.2 Experiment 2 - Impact of False Positive Penalty 89
A.2.3 Experiment 3 - Impact of False Negative Probability 89
A.2.4 Experiment 4 - Impact of Threshold 90
A.2.5 Experiment 5 - Impact of Dirt Distribution 94

x

1 Introduction

1.1 Context

Cyber-physical systems (CPS) are becoming more and more impactful in today’s world.
These systems have to operate in a robust and predictable way when faced with internal
or external uncertainties which are plenty in the real world. Internal uncertainties can
be malfunctions or unplanned changes in the agent. The external uncertainties can be
unforeseeable changes in the environment (context) the CPS operates in. Self-adaptive
cyber-physical systems (SACPS) or self-adaptive systems (SAS) can adjust their behaviour
in run-time to compensate for these uncertainties. In this work we study benefits and
drawbacks of Knowledge Aggregation (KA) with Subjective Logic (SL) for Multi-Agent Self-
Adaptive Cyber-Physical Systems (MA-SACPS) from the perspective of system adaptivity.

1.2 Motivation

To understand the motivation for this work, one has to look at the gaps in the state-of-the-
art literature on adaptivity and self-adaptive systems. The first gap this work is motivated
from, is the fact that there is no consistent definitions of system adaptivity in the literature.
Having consistent definitions are a must to discuss whether a system is self-adaptive or
not. Petrovska [37] introduces a framework and formalisms to close this gap. This work is
built upon that framework and formalisms. The definition of adaptivity that we are using
for this thesis can be seen in Section 2.1.

Furthermore, Petrovska [37] proposes a model problem from the CPS domain to explore
system adaptivity. The model problem was implemented in the predecessors of this
thesis [34, 40]. This implementation includes many configureable internal and external
uncertainties. The self-adaptive agents try to compensate for these uncertainties using
Knowledge Aggregation (KA) with Subjective Logic(SL). We are using this implementation
of the model problem to explore another gap in the SAS literature. This gap is the lack
of solutions for knowledge and uncertainty representation in the adaptation logic and
reasoning under uncertainties to update the knowledge during run-time. The model
problem is explained in detail in Section 3.1.

A Master’s thesis by Bergemann [5] implements a wrapper called the evaluation frame-
work around the implementation of the model problem to measure adaptivity using
Petrovska’s [37] definitions of adaptivity metrics. The details of the previous work can be
found in Chapter 3.

The motivation for this thesis is to evaluate the impact of KA with SL in our model
problem from an adaptivity perspective by merging the evaluation framework with the
existing implementation. This thesis offers the first extensive evaluation of the system
from an adaptivity perspective. The previous works and how this thesis fits in the bigger
picture can be seen from Figure 1.1.

1

1 Introduction

Figure 1.1: The figure aims to show how this thesis fits in the bigger picture of closing the gaps in SAS
literature. The main overarching theme between all of the predecessors of this thesis is the formalisms of
system adaptivity and the model problem proposed by Petrovska [37]. This implementation of the model

problem is done by various projects and theses of the same group. In parallel the measure of system
adaptivity (Q-score) was proposed by Petrovska [37] and implemented in the evaluation framework by
Bergemann [5]. This thesis combines both systems to evaluate the impact of knowledge aggregation with

SL on the model problem from a lens of adaptivity.

1.3 Aims and Contribution

The primary contribution of this thesis is to evaluate the impact of knowledge aggregation
with subjective logic from the perspective of self-adaptivity for the ROS-based imple-
mentation of multi-agent self-adaptive cyber-physical system. Even though there were
several attempts at evaluating the system in the past, this is the first work that evaluates
the adaptivity property of the system to this depth.

In order to evaluate the impact of the knowledge aggregation from a lens of adaptivity,
the previously created ROS-based implementation of the multi-agent self-adaptive cyber-
physical system and the evaluation framework had to be merged. Merging the two
subsystems revealed several bugs and limitations which shifted the focus of the thesis to
fix those. Merging the subsystems, fixing the bugs and creating a much more robust and
reliable system was one of the major contributions of this thesis.

During the scope of this thesis, a completely new experimental tooling system was
introduced. This new tooling containerizes the merged system with all of its dependencies
to create a stand-alone Docker container. The new tooling automates and simplifies
the whole process of parallelization, configuration, execution, debugging, storage and
evaluation of the results. This containerization further allows running the simulation
in parallel in one or many computers at the same time. This new tooling can be seen as
another major contribution of this thesis.

2

1.4 Outline

Secondary contributions of this thesis also includes introducing a new metric for the
calculation of the adaptivity score.

1.4 Outline

The thesis is structured as the following. Chapter 2 will introduce the background
information used throughout the thesis. Chapter 3 will explain the previous work this
thesis is built upon. Related works in the literature are presented in Chapter 4. Chapter 5,
one of the two most crucial chapters in this thesis, explains the experimental infrastructure
and implementation details. Chapter 6 showcases the results of our evaluation and goes
in detail what they mean. Chapter 7 concludes the thesis by mentioning the limitation,
threats to validity and possible future works.

3

2 Background

This chapter explains the necessary background knowledge used throughout the thesis.
Two major concepts used in the implementation and evaluation of our system is adaptivity
and knowledge aggregation with Subjective Logic. Section 2.1 will provide the necessary
definitions regarding adaptivity and self-adaptive systems. Subjective Logic in general
and how it is used for knowledge aggregation will be explained in Section 2.2.

2.1 Adaptivity and Self-Adaptive Systems

Cyber-physical systems (CPS) often have to handle and compensate for the uncertainties
in their environments. These systems need to be able to adapt to different scenarios in
order to achieve their business goals successfully. Cyber-physical systems that can adapt
to unknown scenarios and learn from them are called Self-Adaptive Systems (SAS) or
Self-Adaptive Cyber-Physical Systems (SACPS).

A system can be converted to a SAS by two commonly used methodologies. These are
called control-based self-adaptation [2, 12] and architecture-based self-adaptation [9, 14]
[47]. This thesis and its predecessors [5, 34, 40] use architecture-based self-adaptation.
Architecture-based self-adaptation commonly divides the system into two main elements,
namely the adaptation logic and the managed element. The system interacts with the
context, which is often the environment the CPS exists in. This distinction can be seen
from Figure 2.1.

Figure 2.1: The figure shows the different components of the MAPE-K approach for self-adaptation. The
adaptation logic consists of the closed-feedback loop of MAPE and the shared knowledge. M stands for

Monitoring, A stands for Analyzing, P stands for Planning and E stands for Executing. K or the
Knowledge is shared between all of the components. The managed element can be seen as the CPS, while

the context is the environment in which this CPS exists in. Adopted from [46]

5

2 Background

As seen in Figure 2.1, the adaptation logic is based on the MAPE-K closed feedback
loop. MAPE-K stands for Monitor, Analyze, Plan and Execute. These four components
form the feedback loop that achieves self-adaptation while the Knowledge is shared
between all of the components [27] [30] [29]. The managed element is the CPS that is
desired to be self-adaptive. The operating context, or the context for short is the part of
the environment that the CPS can interact with. The self-adaptivity of a CPS depends
greatly on the context it exists in [37]. The CPS interacts with the context during its
operations and need to compensate for the changes in the context. This behaviour makes
self-adaptivity challenging.

This thesis and its predecessors use master-slave pattern of the MAPE-K adaptation
logic [50]. A visualization of the master-slave pattern of the MAPE-K approach can be
found in Figure 2.2. In the master-slave layout, the managed element monitors the context
and execute commands from the adaptation logic. The adaptation logic analyzes the
information coming from the monitor, combines it with the shared knowledge and plans
the necessary actions.

Figure 2.2: The figure shows the flow of the Master-Slave pattern of the MAPE-K feedback loop.
Adopted from [48]

For our model problem described in Section 3.1, the monitoring is done via LiDAR
sensors and the managed element is a dirt cleaning robot. The context is a simulated room
with dirts spawning in random places. Different components of the MAPE-K feedback
loop is realized via centralized and distributed ROS nodes.

2.1.1 Definition

First step of determining whether a system is self-adaptive or not is defining adaptivity
itself. However in the literature, there is a lack of consistent definitions and formalisms
regarding adaptivity and self-adaptive systems. Petrovska [37] introduces a formal frame-
work that discusses the definition of adaptivity and the conditions in which a system
can be considered self-adaptive. This thesis and its predecessors use those formalisms in
order to implement and evaluate the adaptivity of our ROS-based implementation of the
multi-agent self-adaptive cyber-physical system (MA-SACPS). This section explains the
definition of adaptivity using Petrovska’s [37] framework.

6

2.1 Adaptivity and Self-Adaptive Systems

Kugele et al. [28] argues that it is challenging to classify the entirety of a system as
autonomous or non-autonomous. The authors argue that the autonomy is defined for
individual functions. Petrovska [37] adopts the same principle for self-adaptive systems.
The author argues that the adaptivity of a system can be defined for a specific system
function sf . System function sf maps the input i ∈ I , system’s internal state σ ∈ Σ and
context c ∈ C to the output o ∈O and new internal state σ ′ ∈ Σ as shown in Equation 2.1
[37].

sf : I ×Σ×C→O ×Σ, f (i,σ ,c) = (o,σ ′) (2.1)

The author defines behaviour of the system in a given time frame as a sequence of
system functions (sf0, sf1, ...sft ...). Furthermore, the author defines a Quality Function
(Q) that represents how good the business goals and the adaption goals of the managed
element is achieved in a given time frame. The Q-score of the system can be seen as a
numerical value between 0 and 1 that represents how adaptive the system is in the given
time frame (Equation 2.2). A Q-score of 0 would mean the worst possible fulfilment of
the goals, while a score of 1 indicates the best possible outcome.

Q : (I ×Σ×C→O ×Σ)→ [0,1] (2.2)

Q-score should change for each different use-case as the goals of each system is different.
The goal of the adaptation logic is to improve this Q-score. Petrovska [37] defines a system
as adaptive if the Quality Function Q converges towards a limit `. This is defined formally
in Equation 2.3.

∃`,ε, i∀t ≥ i : |Q(sft)− `| < ε,
with `,ε ∈ [0,1] and 0 ≤ ` − ε < ` < ` + ε ≤ 1

(2.3)

Figure 2.3 shows the evolution of the system functions of an adaptive system. The
system is considered adaptive as the Q-score converges towards a limit ` with a threshold
ε.

7

2 Background

Figure 2.3: The figure shows the evolution of the system functions sft over time. The system functions
converge toward a limit ` and with the threshold ε. Because the system functions converges towards a

limit, this system is deemed adaptive.

As explained and defined in Equation 3.3, if a system is adaptive, the Q-score converges
towards a limit `. The Q-score does not necessarily increase monotonically. A change in
the context or an internal change in the managed element can lead to sudden drops or
increases in the value of the Q-score. Because of this, the value of the Q-score at a specific
time frame does not give any information about the adaptivity of the system. Adaptivity
of the system can only be determined by looking at the patterns the Q-score evolves
towards. Petrovska [36] also proposes a framework called SAST framing to determine
whether a system can be considered as adaptive. SAST stands for specifying the system
functions, adaptivity goals, the situation and the time period the system is considered
adaptive for. The author argues that all four of these components need to be specified in
order to determine a system as self-adaptive or not.

2.2 Subjective Logic

Cyber-physical systems operate in an environment that is filled with uncertainties. Differ-
ent agents can perceive the same event in different ways. Binary logic and probabilistic
logic are two of the most commonly used frameworks to understand the universe. Binary
logic consists of propositions that are either true or false and probabilistic logic maps
the likelihood of an event to a value between 0 and 1. Neither of these frameworks are
suitable to assess subjective observations coming from the measurements of cyber-physical
systems. Subjective logic (SL) is a framework that aims to bridge this gap.

Subjective logic allows capturing the fuzziness and the uncertainties of the real world.
Subjective logic deals with subjective opinions instead of propositions. These subjective
opinions allow probability values with varying degrees of uncertainties. This property

8

2.2 Subjective Logic

comes from the Dempster-Shafer theory. Subjective logic also allows mapping a subjective
opinion to its classical probability distribution [43] [24].

A subjection opinion encompasses a “belief” about a state variable X ∈X. This thesis
uses a binary domain X = {x, x̄} for the model problem described in 3.1, For our use-case x
represents a cell is occupied by a dirt, while its complementary counterpart x̄ represents
the cell is unoccupied. These types of subjective opinions are called binomial subjective
opinion as the domain is binary. This thesis and its predecessors are focused solely on
binomial subjective opinions. Therefore theoretical discussions in this section will be
limited to this subdomain as well.

Binomial subjective opinions are defined formally as the following [25]. Let X be a
binomial random variable in the binary domain X = {x, x̄}. Opinion about the truth of
value x is the ordered quadruplet Ox = (bx,dx,ux, ax) where the parameters are defined as
the following. bx is the belief mass in support of X = x. dx is the disbelief mass in support
of X = x̄. ux is the uncertainty mass that represents the vacuity of evidence. ax is the base
rate, the prior probability of x without evidence. These parameters satisfy the additivity
requirement in Equation 2.4.

bx + dx +ux = 1 (2.4)

A vacuous opinion is defined as a subjective opinion that has ux = 1. As explained
before a binomial subjective opinion can be projected into a probability distribution. This
projected probability of a subjective opinion about the value x is defined in Equation 3.5.

P (x) = bx +uxax (2.5)

Barycentric coordinate system on an equilateral triangle can be used to visualize bino-
mial subjective opinions. An example of this can be seen in Figure 2.4.

Figure 2.4: Visualization of a binomial subjective opinion using a barycentric coordinate system on an
equilateral triangle. Adopted from [25]

A binomial subjective opinion such as Ox = (0.4,0.2,0.4,0.9) can be plotted using the
triangle in Figure 2.4. The lines connected to the point represents belief mass(bx), disbelief
mass(dx) and uncertainty(ux) of the subjective opinion. The base rate (ax) resides in a

9

2 Background

point on the base line and is connected to the uncertainty vertex by a line called base rate
director. The projected probability (P (x)) can be found by drawing a parallel line to the
base director and calculating the point the line intersects with the base line. The parallel
line is called the projector.

2.2.1 Knowledge Aggregation with Subjective Logic

There are often many different opinions about the same proposition. This could be
several cyber-physical systems publishing their observations about a physical object in
the environment. This observations can support the same belief or conflict with each
other due to some measurement error. Whether they support the same belief or not,
these observations have to be merged into a single, collective opinion. This process is
called belief fusion. We use belief fusion in this thesis for aggregating knowledge between
different dirt cleaning robots.

Belief fusion can be achieved via various different operators. These operators can be
extensions of binary logic operators such as the AND operator or operators that are unique
to the subjective logic framework. Several commonly used operators in subjective logic
are as follows [19, 26]:

• Belief Constraint Fusion (BCF) combines the opinion of the agents into a single
collective opinion. The opinions must support the same belief otherwise the belief
fusion is not possible with BCF. An example of this operator can be a group of
friends trying to decide which movie to watch. If all of the group agree on a specific
movie, a single collective opinion can be formed. Otherwise, the group can not
agree.

• Cumulative Belief Fusion (CBF) treats the opinion of the agents as evidence for a
proposition. The opinions cumulatively increase the belief or the disbelief of the
final collective opinion. The uncertainty of the collective opinion decreases with each
coming evidence. An example of this operator can be aggregating measurements for
a specific experiment into a single collective opinion that has an uncertainty smaller
than each individual measurement. This operator is best used for non-conflicting
measurements.

• Averaging Belief Fusion (ABF) averages all of the incoming observations into a
single collective opinion. Each opinion affects the final result in the same way.
Unlike other operators, vacuous opinions are aggregated into the final collective
opinion with the same weight as all of the other observations. An example of this
operator can be a board of professors grading the examination of a student.

• Weighted Belief Fusion (WBF) averages all of the incoming observations into a
single collective opinion like the ABF operator. However in WBF, each opinion is as-
signed a weight depending on its uncertainty value. Opinions with high uncertainty
are assigned lower weights so they affect the final collective opinion in a smaller
way. As vacuous opinions have an uncertainty ux = 1, they get assigned a weight of
0 and they do not affect the aggregated opinion.

• Consensus & Compromise Fusion (CCF) preserves the belief masses of the indi-
vidual opinions while doing the aggregation. If the opinions are conflicting, a

10

2.2 Subjective Logic

compromise opinion with an increased uncertainty is formed. An example of this
operator can be a board of doctors diagnosing a patient. Each doctor has a different
area of expertise and looks at the problem from a different perspective. CCF operator
would identify the shared set of beliefs, all doctors in the group agrees upon.

The thesis of Neuss [34] showed that using any of these operator by themselves is not
enough to achieve long term knowledge aggregation. The author states that a combination
of the CCF and the CBF operators resulted in the best outcome for our use-case [34]. This
can be seen from Figure 2.5, where the performance of the combination operator does
not degrade over time unlike the CCF and CBF operators. The combination aggregation
scheme outperform both of the other operators.

Figure 2.5: The figure shows the combination aggregation scheme outperforms CCF and CBF operators
for our use-case described in Section 3.1. Number of completed task slowdown for the CCF and CBF

operators while the combination aggregation scheme’s performance does not degrade over time. Adopted
from [34]

In this thesis, we continue to use this combination of CCF and CBF in order to do
knowledge aggregation. The experiments in Chapter 6 uses this combination operator for
the settings in which knowledge aggregation with subjective logic is enabled.

11

3 Previous Work

The software system that we use in this thesis is a product of many previous projects
and theses. This chapter will explain the previous work this thesis is built upon. This
thesis uses two main subsystems, namely the ROS-based implementation of the multi-
agent self-adaptive cyber-physical system (MA-SACPS) and the wrapper that extends its
functionality called the evaluation framework. Section 3.1 will explain the model problem
that is being examined. Section 3.2 will explain the evolution of the simulator and its state
we inherited for this thesis. Section 3.3 will mention the motivation for the evaluation
framework and its implementation details at the start of this thesis.

3.1 The Model Problem

The model problem that we are investigating in the scope of this thesis was first proposed
by Yousfi [52]. The same use-case was used throughout the evolution of the system. The
problem was adapted by Quijano [40] and took its final form during the theses of Neuss
[34] and Bergemann [5].

The use-case is defined as the following. There are a predetermined number of robots
traversing a fixed map with different rooms and obstacles. Robots have the functionality
to clean dirts by moving on top of them. The dirts spawn in random location of the map
depending on the chosen dirt distribution pattern. They have fixed spawn intervals which
is chosen at the beginning of the simulation. Figure 3.1 shows the model problem seen
from the graphical interface of the Gazebo simulator.

Figure 3.1: The figure shows the model problem as seen from the Gazebo simulator view. The map is
separated into rooms with the use of walls. Red cylinders represents the detected dirts and the blue

cylinders are dirts that are not yet detected. Black TurtleBot robots traverse the map in order to detect
and clean the dirts. Taken from Bergemann [5].

13

3 Previous Work

The robots are equipped with LiDAR sensors to observe their surroundings. The sensor
have a maximum range of 3.5m. The robots do not have a priori knowledge about the
locations of the dirts or the room. They also can not observe the room fully as the room
used in this thesis has the dimensions 10 meters x 10 meters and the LiDAR sensor only
has a maximum range of 3.5 meters and they are subjected to Gaussian error εd . For every
LiDAR measurement the error εd is sampled using Equation 3.1 where the units for the
standard deviation and the mean is in meters.

εd ∼N (µ = 0.022,σ = 0.02) (3.1)

If the measurement after the error is added exceeds the maximum range of the sensor,
it is clipped to 3.5 meters. A graphic demonstration of the difference between the pure
measurement of the LiDAR sensor and the measurement with the Gaussian error added
can be seen in Figure 3.2.

After the thesis of Quijano [40] it was realized that the uncertainties that come from the
noisy sensor only affects the dirts detected by the very end of the sensor. This behaviour
occured very rarely to have an impact on the system. This led to the creation of false
positive and false negative tasks in the thesis of Neuss [34].

The tasks can be ground truths or false positives. Ground truths are dirts that actually
exist and the robots should clean them. False positive dirts are assigned to a specific robot
and can only be detected by that robot. The system also supports having false negatives.
In the case of false negatives the robot is unable to detect an existing dirt. The robots
aggregate their knowledge about the environment to mitigate all these uncertainties. In
the ideal case the robots should clean the ground truths, avoid the false positives and
counteract the false negatives through knowledge aggregation.

Figure 3.2: The figure shows the difference between the unaltered measurement of the LiDAR sensor and
the measurement after the Gaussian error is added. The figure on the left is the unaltered measurement
and the figure on the right is the measurement with the Gaussian noiseN (µ = 0.022,σ = 0.02). Adopted

from Neuss [34]

14

3.2 Implementation of MA-SACPS

3.2 Implementation of MA-SACPS

Implementation of the ROS-based multi-agent self adaptive cyber physical system (MA-
SACPS) evolved as a result of several theses and projects.

The software that aims to implement the model problem described in section 3.1 was
first developed in the scope of a practical course in Technical University of Munich. The
practical course was titled “Praktikum: Smart Self-Adaptive Cyber-Physical Systems -
A road towards Autonomous Systems”. There were two teams Team 1 [4] and Team
2 [33] that proposed their solutions for a ROS and Gazebo-based implementation of
multi-agent self-adaptive cyber-physical system. Both of the teams proposed their own
approach for the same problem and best parts of both of the approaches were merged
into a single system during the master’s thesis of Quijano [40]. The merged system
had adaptive scheduling, costmaps that contain knowledge-aggregation, auction-based
allocation, realistic detection and goal validation. The new system could detect dirts
with LIDAR sensors that had Gaussian noise, thus followed a realistic approach. Quijano
was also investigating the usage of Subjective Logic at the time and used the theory for
representing the uncertainty for the knowledge aggregation [40]. After Quijano’s thesis
Neuss started his own master’s thesis on the evaluation of the knowledge aggregation.
Neuss discovered several errors and limitations with the system. This shifted the focus
of his thesis to fix the discovered issues. Most of the bugs and limitations were resolved,
resulting in the version of the simulator that we inherited for this thesis [34]. A high-level
overview of the final version of the simulator can be seen from the image below. The
orange boxes in the image represent the centralized ROS-nodes that exist once for the
whole system and the blue nodes are the distributed ROS-nodes which exist for each
separate robot. The nodes communicate using publisher-subscriber pattern. Individual
ROS-nodes that form the system will be explained in their own subsections.

Figure 3.3: ROS nodes of the simulator. Adopted from Neuss [34]

15

3 Previous Work

Map Transformer

Map transformer is a centralized node that transforms the high resolution map used by
Gazebo into a 20x20 low-resolution grid to be used internally by the other nodes. The grid
cells can either be occupied with an obstacle like a wall or be empty. The generated grid
map is used for the context model which hold the information of where the dirts on the
map is located. The grid map is created only once and at the beginning of the simulation.
This node is overridden by the evaluation framework’s Map Provider node.

Figure 3.4: The right-side shows the high-resolution map as seen in Gazebo. Left-side shows the
low-resolution context model that holds the locations of the obstacles and the dirts. Adopted from Neuss

[34]

Dirt Generator

Dirt generator is a centralized ROS node that is responsible for spawning the ground truth
and false positive dirts on the map. The dirts have the physical form of a cylinder with
0.25 meters in Gazebo. The dirts have a physical boundary so the robots can detect them
using the sensors.

The Dirt Generator node samples a Beta distribution B(α = 2,β = 2) and scales it to
the width (W) and the height (H) of the map to find the spot where the new dirt should
be spawned. The calculated values corresponds to the x and y coordinates on the map
(Equation 3.2 , 3.3).

xdirt ∼
W

B(α = 2,β = 2)
xα−1(1− x)β−1 (3.2)

ydirt ∼
H

B(α = 2,β = 2)
xα−1(1− x)β−1 (3.3)

16

3.2 Implementation of MA-SACPS

The cell of the grid map that contains the position (xdirt , ydirt) is determined. If the cell
is unoccupied by a wall or by another task, the new dirt is spawned in the middle of that
cell. The false positive dirts can spawn in cells that are occupied by other tasks. If the dirt
can not be placed in the proposed cell, another sample for (xdirt , ydirt) using Equation 3.1
and Equation 3.2. This process repeats until a suitable cell is found for the new dirt.

The time intervals in which a new dirt should be spawned is fixed at the beginning
of the simulation. Ground truths (true positives) always spawn with the given spawn
interval. This interval is 60 seconds for all of the experiments done in this thesis. The
time interval in which a false positive should be spawned, is calculated from the false
positive probability of the robots and the spawn intervals for the ground truths(TT P). The
false positive probability for each robot (pFP ,i) is taken as a simulation parameter at the
start of the simulation. The calculation for the spawn interval of false positives for the
robot i (TFP ,i) can be found in Equation 3.3.

TFP ,i =
1− pFP ,i
pFP ,i

TT P (3.4)

The dirt distribution logic described here is overriden by the Global Dirt Generator
node after the merger with the evaluation framework.

Dirt Detector

Dirt Detector is a distributed node that exists for each robot. It is responsible for
analysing the output of the LiDAR sensor for the robot it belongs to. Dirt Detector
node determines whether the laser sensor detects a valid task or not. Valid tasks are
distinguished from other objects such as walls, obstacles or other robots. After detecting
a dirt, it cross references the list from the Goal Manager node to determine whether the
detected dirt is already assigned to the robot.
Dirt Detector node also handles the false negative measurements. As explained

previously in section 3.1, false negatives are dirts that actually exist but the robot is unable
to measure.

Knowledge Aggregator

Knowledge Aggregator is a centralized ROS node that handles the knowledge aggregation
using the Subjective Logic library. It is responsible for creating a map called the opinion
grid that contains the aggregated observations. The created grid contains the opinions
aggregated according to the chosen Subjective Logic operator. Subjective Logic and the
available operators are explained in detail in Section 2.2. The opinion grid is updated
whenever there is a new opinion comes from the Dirt Detector node.

Goal Manager

Goal Manager is a centralized node that keeps a list of all the available tasks that exist in
the map. There are two types of tasks: ’undetected tasks’ and ’goals’. An undetected dirt
is classified as a goal when the robots detect it and the opinion grid for that dirt exceeds a

17

3 Previous Work

certain threshold. When a dirt is classified as a goal, its physical boundary in Gazebo is
removed. This allows the robots to move towards the center of the goal to clean it.

The goals can be ground truths or false positives. False positives are programmed to
dissappear from the map if they are not cleaned in 2 minutes. This is done to avoid
overcrowding the map with false positive dirts.

Goal Manager is triggered whenever the Dirt Detector node detects a new dirt. The
cleaned dirts are removed from the list and their physical models are removed from
Gazebo by this node as well.

Bidder

Bidder is a distributed node that exists for each robot. This node gets triggered whenever
the Goal Manager node classifies a new goal. The schedule of the robot which is an ordered
list of tasks the robot should complete is stored inside the Bidder node. A bid about the
new goal is formed by looking at the closest goal of the robot. The cost of inserting the
new goal before and after the closest goal is calculated by the Cost Calculator node.
The smaller of those two costs is determined as the ’bid’ and sent to the Task Allocator
node.

Cost Calculator

The Cost Calculator node calculates the possible paths to add a new goal to the robot’s
existing schedule. As seen in Figure 3.5, when a new goal is detected, the possible path of
adding the new goal before and after the closest goal is calculated.

Figure 3.5: The figure (a) shows the original schedule of the robot. In figure (b) a new goal (green
square) is detected and the possible paths are calculated (blue path and the orange path). The path that
has the lower cost will be determined as the ’bid’ and sent to the Bidder node. Adopted from Neuss [34]

The shorter path of those two is determined as the bid and gets sent to the Bidder node.
The paths are usually not straight lines as the robot needs to avoid the obstacles and the
walls in the map. The paths are calculated using the native ROS node move_base.

18

3.2 Implementation of MA-SACPS

Task Allocator

Task Allocator is a centralized ROS node. Its purpose is to collect all of the bids from
the available robots for a specific dirt. Task Allocator finds the smallest among them
and assigns the dirt to the robot that owns that bid. The bid collection ends if all of
the robots submit their bids for a specific dirt or a predetermined timer runs out. The
time-out scenario happens when a robot is unable to submit their bid. Once a dirt is
assigned to a robot, the Task Manager node is notified.

Task Manager

Task Manager is a distributed node that exists for each robot. It holds a queue of tasks the
robot needs to complete. The task that is on top of the queue is sent to the Task Executor
node. Task Executor node explained in the subsection below sends a message back to the
Task Manager when that task is completed. The completed tasks are removed from the
queue. When a new task from the Task Allocator node arrives, the queue is adjusted
accordingly.

Task Executor

Task executor is a distributed node that exists for each robot. It sends messages to the
native ROS node move_base to make the robot move from its current position to position
of the next goal the robot has to accomplish. The next goal is usually a dirt that needs
to be cleaned. If no dirt is detected, the goal can be an exploration goal that points to
a random point in the map as well. The node is also responsible for notifying the Task
Manager node when a goal is reached.

Output Timer

The Output Timer node is a different node in the sense that it is a part of the MA-SACPS
subsystem but it is used by the evaluation framework. It was added during the thesis of
Bergemann to allow collecting the data evaluation framework needs [5]. It subscribes
to the desired ROS topics, format the messages coming from them and publishes the
formatted information to the ROS topics evaluation framework listens to.

19

3 Previous Work

3.3 Evaluation Framework

The evaluation framework is an abstract wrapper around the simulator that extends
its functionality. Figure 3.6 shows how it intersects with the MA-SACPS subsystem. It
was proposed and implemented during the master’s thesis of Bergemann [5]. The main
motivation of the evaluation framework is to evaluate the adaptivity of the system with the
introduction of the Q-score. The framework also offers many improved functionalities in
terms of configuration and evaluation. It allows changing the map and the dirt distribution
which was not possible previously. Comparisons between the configuration and the
evaluation made by the MA-SACPS subsystem and the evaluation framework can be found
in Section 5.2. Functionalities of the evaluation framework are used extensively in this
thesis as well.

Figure 3.6: High level view of the previous state of the combined system. The image shows how the
ROS-nodes of the MA-SACPS and the evaluation framework intersect. Modified the image taken by

Petrovska et al. [38]

20

3.3 Evaluation Framework

Control Master

Control Master is a centralized ROS node that orchestrates launching the other nodes
of the evaluation framework. The node waits until all of the nodes of the evaluation
framework boots up properly and launch the actual simulation. Control Master node
ensures the MA-SACPS subsystem receives the map and the input data coming from
the evaluation framework. At the end of the simulation, this node will shut down the
simulator and start the evaluation process. After the evaluation is completed, the node
will shut down all of the ROS nodes and the rosmaster to conclude the simulation.

Map Provider

Map Provider is a centralized node that overrides the Map Transformer of the MA-SACPS
subsystem. This node extends the Map Transformer node by adding two additional
functionalities. First, it removes the unreachable grid cells from the grid map. Also, it
allows changing the resolution of the map by scaling the map according to the resolution.
The resolution can be controlled with the parameters.yaml configuration file (Listing 3.1).

1 # parameters.yaml
2

3 ...
4 # Define how big each cell should be in the provided map:
5 # (a cell is a pixel of the inital map image)
6 map_resolution: 0.5 # m/cell (width and height of a cell)
7 ...

Listing 3.1: The configuration line in parameters.yaml that allows changing the resolution of the
map

Global Dirt Generator

Global Dirt Generator is a centralized node that overrides the Dirt Generator node
of the MA-SACPS subsystem. It extends the dirt generation process in several ways. As
explained in the related subsection, Dirt Generator node only allows having uniform
dirt distribution using a Beta distribution. Global Dirt Generator node allows non-
uniform dirt distribution, where the dirt is distributed around hotspots. The number and
the location of the hotspots can be configured via the parameters.yaml file. Figure 3.6
showcases this functionality. The left-most image on Figure 3.6 represents the uniform
distribution where each cell has the same probability of being chosen for spawning the
new dirt. The middle and the right-most images shows non-uniform dirt distribution.
The right-most map has one hotspot located in the bottom left corner of the map, while
the middle map has several hotspots.

21

3 Previous Work

Figure 3.7: The left-most map has the uniform dirt distribution enabled. Each cell has the same
probability of being chosen for spawning the new dirt. The middle and the right-most images has

non-uniform dirt distribution. The right-most map has one hotspot located in the bottom left corner of
the map, while the middle map has several hotspots. Figure taken from Bergemann [5].

Furthermore, the Beta distribution is replaced with normal distribution for the dirt
generation process. The user configures the position and the spread of each hotspot at the
beginning of the simulation via the parameters.yaml file (Listing 3.2).

1 # parameters.yaml
2

3 ...
4 dirt_hotspots:
5 - {
6 x: -4.0,
7 y: 3.0,
8 spread: 0.6
9 }

10 - {
11 x: 2.5,
12 y: 1.0,
13 spread: 0.8
14 }
15 ...

Listing 3.2: The parameter in parameters.yaml that is used to configure the positions and the
spreads of the hotspots used for non-uniform dirt distribution. The x and y fields are used as the

mean of the normal distribution while the spread field is used as the standard deviation.

The dirt generator samples two normal distributions for each hotspot corresponding to
the coordinates in x and y axes. The mean of the normal distribution is the hotspot center
given in the parameters.yaml file and the standard deviation is the corresponding spread
variable (Listing 3.2). These two samples are combined to create a bi-variate normal
distribution that is used to determine the location of the new dirt.

Map2gazebo

Map2gazebo is a centralized node that transforms the given low-resolution 2d grid map
into a high-resolution 3D Gazebo map.

22

3.3 Evaluation Framework

Data Collector

Data collector is a centralized node that collects the necessary data to be used by the
evaluator node. It subscribes to the topics published by the Output Timer node of the
simulator.

Evaluator

Evaluator is a centralized node that runs at the end of the simulator. It takes the data
from the Data Collector node and calculates the Q-score with that data. This node has a
helper script called score_functions.py that holds the score functions used to calculate
the Q-score. The parameters.yaml configuration file determines which weights should
be used for which score functions, and the Evaluator node calculates the Q-score for
each timeframe. It also calculates the average and maximum Q-scores of that specific
simulation run and writes the results into csv files to be examined later.

23

4 Related Work

This chapter summarizes the related work in the literature. Even though the field of SAS
is constantly growing and expanding, we kept the scope of this literature review focused
on two topics. Section 4.1 explains the related work on evaluating self-adaptive systems.
Section 4.2 summarizes the literature on mitigating uncertainties in self-adaptive systems.

4.1 Evaluating Self-Adaptive Systems

Evaluation of self-adaptive systems are an important but often overlooked research area.
There are several important pieces of literature exploring this field. Zhu et al. [53]
describes the main metric to evaluate the learning behaviour of a robotic system is to
take the difference between different runs of the same system and see if the system’s
behaviour is improving or not according to the defined goals. This approach requires a
way of calculating the difference between metrics. This is often done by having a unified
metric [53]. A similar notion is also stated in [42] to evaluate self-adaptation in large
software systems. The authors state that different metrics can be unified into a average
metric and this average score can be used for comparison. The comparison is usually done
between the current run and an established base case [42].

A recent study [17] showed that evaluation of self-adaptive systems mostly use similar
metrics as other, non-adaptive, software systems. The evaluation metrics usually very
use-case specific and mirror the business costs. The metrics can be loosely grouped to
several categories. Time based metrics include measuring the time it takes for completion
[31], decision [32], response [10], discovery, execution or lifetime [34, 40]. Cost based
metrics try to evaluate the for maintenance costs[16], engineering costs [10], resource
costs [39], service costs [49] or energy consumption [22, 23, 39]. Other metrics include
evaluating the performance [21, 31], accuracy [23, 44, 51], stability [1, 44, 51]. Even
though there are several metrics to evaluate self-adaptive systems, no metric exists to
evaluate the adaptivity of a SAS due to lack of definitions on system adaptivity [36].

4.2 Mitigating Uncertainties in SAS

Cyber-physical systems may encounter uncertainties in three phases. These phases are
the requirement phase, design phase and run-time phase [41]. A recent survey on the
research community perspective [20] showed that the majority of researchers believe that
the mitigation of uncertainties have to happen in all of these phases. The survey results
on the opinion of the research community can be seen in Figure 4.1.

The motivation behind handling uncertanties in design phase and in run-time phase
is the following. If an uncertainty can be identified during design phase, it should be
mitigated as early as possible in the design phase. Mitigating uncertainties in design
phase lowers the cost and improves efficiency. However in most cases the uncertainties
are unknown in design phase and can only be resolved in the run-time phase [20].

25

4 Related Work

Figure 4.1: The figure shows the result of a survey done to researchers in adaptivity research. The
majority of the researchers believe uncertainties have to be handled in both design phase and the

run-time phase. Taken from [20]

For this work we mostly deal with uncertainties that occur in the run-time phase. Un-
certainties that occur in run-time can be classified into internal and external uncertainties
[37]. Internal uncertainties are unexpected malfunctions or imperfections that comes
from within the agent. Examples of internal uncertainties can be sensor malfunctions
or sensor noise. The other type of uncertainties are external uncertainties. These are
uncertainties that comes from unpredictable changes in the environment.

There are couple of proposed techniques to mitigate run-time uncertainties. Internal
uncertainties like sensor failure can be compensated in various ways [7, 15]. External
uncertainties like unpredictable environments can be mitigated as well [3, 7, 8, 15, 35,
41].

Most mitigation techniques are based on one or more feedback loops [7]. The mitigation
methods are often use-case specific as well [35]. Rainbow [15], one of the best frameworks
to mitigate uncertainties, focuses on architectural reusability. In Rainbow, the feedback
loop and the managed element are isolated, resulting in a more knowledge-specific but
system-independent infrastructure. Rainbow does not allow altering the adaptation logic
in run-time [15].

26

5 Experimental Infrastructure and
Implementation

The goal of this thesis is to evaluate the impact of Knowledge Aggregation (KA) with
Subjective Logic (SL) on the overall system’s adaptivity in multi-agent self-adaptive cyber-
physical systems (MA-SACPS). The simulation system used in this thesis is built upon
the ROS-based implementation of MA-SACPS built by Neuss [34] and the evaluation
framework implemented by Bergemann [5]. The MA-SACPS subsystem acts as a base to
test the effect of knowledge aggregation with Subjective logic in a multi-agent robotic
system. The evaluation framework implemented by Bergemann extends this MA-SACPS
subsystem [5]. It introduces the adaptivity metric and allows configuring the parameters
of a simulation run easily. Section 5.1 will introduce the vocabulary used throughout the
chapter. Section 5.2. will explain the previous state of the system in detail.

These two subsystem were merged in the scope of this thesis in order to calculate
the adaptivity metric (Q-score) for the multi-agent robotics system with knowledge
aggregation. Section 5.3 will describe the steps taken to merge the subsystems and the
encountered challenges.

Last but not least, merging of these two subsystems allowed a completely new and
improved experimental tooling system. This new system automates many of the steps
to design, configure, run, store and analyse the experiments. It allows running the
simulations in parallel by containerizing them and reduces the previously needed manual
effort greatly. Section 5.4 will explain this new experimental tooling system in detail.

5.1 Implementation Related Vocabulary

Our definition of the MA-SACPS subsystem

As explained in Chapter 3, the simulation system used in this thesis consists of two
subsystems. One of them is the evaluation framework which is explained in detail in
Section 3.3. The other subsystem consists of the software system used in the thesis of
Neuss [34]. The software system used in the thesis of Neuss [34] is referred to as the
ROS-based implementation of the multi-agent self adaptive cyber-physical systems, or
the MA-SACPS subsystem for short. We use the terms ROS-based implementation of
MA-SACPS, MA-SACPS subsystem or simply MA-SACPS interchangeably. All of these
terms refer to this software system. This subsystem, its architecture and implementation
details are explained in detail in Section 3.2.

Difference between simulations and experiments

Throughout the thesis we use the terms simulations, simulation runs, experiments exten-
sively. Simulation, simulation run or individual runs are used interchangeably. These

27

5 Experimental Infrastructure and Implementation

words refer to a single run of the ROS-based system. With the configuration used in this
thesis an individual run takes 45 minutes.

Experiments are made up of several simulations with slightly different configurations.
They are designed to prove a hypothesis. For example, Experiment 1.1, which is explained
in detail in Section 6.2, we change the false positive probability of the robots from 0.1 to
0.9 to test how it affects the performance of the knowledge aggregation. That experiment
has 9 different configuration for the false positive probabilities and it is run with subjective
logic on and off. Therefore it is made of 18 simulations. The experiment is repeated 5
times for statistical robustness. Thus 90 simulations are run in total for that experiment.

5.2 Previous State of the System

In this section, the previous state of the ROS-based implementation of the MA-SACPS and
the evaluation framework will be discussed. Both subsystems will be explained in terms
of configuration, data generation, and evaluation of the collected data.

Configuration

The MA-SACPS subsystem has 11 ROS nodes. Each of these nodes have their own
configurable parameters. During the evolution of the system these parameters were
collected into a single file called master.launch. All configurable parameters can be found
there and be changed. These parameters will then be passed into their own respective
ROS nodes. For the experiments done in thesis of Neuss [34], this master.launch file was
modified via shell scripts. A single shell script would modify the necessary parameters
run the experiment, modify the parameters again, run the simulation again and do this
for how many times necessary. As a result of this choice, this shell script would run for
hours at a time. If it got interrupted for some reason the entire experiment would need to
be restarted.

The evaluation framework improved the configuration step by introducing a single
point of entry to the system. It collected all the configurable parameters for the MA-
SACPS subsystem and the evaluation framework in a single human-readable file called
parameters.yaml. These parameters are passed down to the correct nodes by a ROS node
called control_master. The control_master node allows the parameters that belongs to
the MA-SACPS subsystem to be accessed by the master.launch file.

Data Generation

The MA-SACPS subsystem and the evaluation framework has different data generation
methods due to the different perspectives they aim to evaluate.

The MA-SACPS subsystem originally aimed to evaluate the performance of the knowl-
edge aggregation. To evaluate the knowledge aggregation, it collects the robot locations,
belief maps, subjective logic observations and achieved goals for every time point. These
are collected via a ROS functionality called rosbags. Rosbags are created by dumping the

28

5.2 Previous State of the System

output of one or more ROS topics into a file. This file can then be analyzed or played back
to replicate the exact simulation run.

Evaluation framework aims to evaluate the adaptivity of the system by calculating the
quality score (Q-score). Contrary to the MA-SACPS subsystem, the evaluation framework
collects all of the necessary data in runtime instead of using rosbags. The evaluation
framework calculates the Q-score at the end of each run with a ROS node called evaluator
using this collected data. The Q-score for each timepoint is calculated and written into
a csv file called results.csv. The summary of the result that has the average Q-score,
max Q-score and the configuration parameters for that specific run is written to a file
called result_summary.csv. The evalation framework also generates information about the
configuration, a plot about how the Q-score evolves, a video about the simulation history,
transformed maps, an image showing how the dirt was distributed and creates separate
files for each of these. All of these files are put it into a folder called evaluation_output.
Detailed explanations on what is collected by the evaluation framework and the folder
structure can be found in the thesis of Bergemann [5]. The counter generated in the thesis
of Bouzid [6] is put into this folder as well.

Figure 5.1: A sample transformed map created by the evaluation framework and stored in the
evaluation_output folder. Implemented by Bergemann [5]

Evaluation

Because of the different data collection methods used, the MA-SACPS subsystem and the
evaluation framework evaluates the collected results differently.

29

5 Experimental Infrastructure and Implementation

The MA-SACPS subsystem collects all of the necessary information into the rosbag
dump file to be evaluated after the run. Several rosbags from different runs after put into
a folder. When all of the rosbags for an experiment are collected, the python script called
data_analysis.py is run. This script loads all of the necessary rosbag files according to
the selected experiment, reads them and creates the desired plots.

The evaluation framework follows a different approach. The results are collected while
the simulation is running and they are evaluated at the end of the run via a ROS node
called evaluator. This node calculates the Q-score and generates the files explained in
the subsection above. A sample plot that is created by the evaluator node can be seen
in Figure 5.2. The figure shows the evolution of the Q-score for each time frame. The
Q-score is calculated from two business goals (no crashes and minimum 10% cleaned)
and four adaptation goals.

Figure 5.2: A sample plot created by the evaluation framework that shows the evolution of the Q-score.
Implemented by Bergemann [5]

5.3 Merging the MA-SACPS Subsystem and the Evaluation
Framework

In order to use the improved functionalities of the evaluation framework with the MA-
SACPS subsystem, these subsystems had to be merged. These improvements include
calculation of the Q-score, easy configuration, extended visualizations and more evalua-
tion graphs. Even though the evaluation framework was designed as a wrapper for the
MA-SACPS subsystem, the scope of Bergemann’s implementation at that time did not
include some of the MA-SACPS subsystem’s functionalities.

In the scope of this thesis, we merged the evaluation framework with the MA-SACPS
by implementing the missing functionalities. These additions can be summarized in
two major areas. The first improvement was allowing the framework to collect the
data generated in Neuss’s thesis. This was done by creating a new ROS node called
Rosbag Recorder. Details of this ROS node can be found in Section 5.3.1. The second
improvement introduced in the scope of this thesis was adding the generation of false

30

5.3 Merging the MA-SACPS Subsystem and the Evaluation Framework

Figure 5.3: ROS nodes of the merger between evaluation framework and the MA-SACPS. The filled blue
star implies the node was added during this thesis. The outlined blue stars implies a previously created

node was modified. Modified the original image taken from Petrovska et al. [38]

positive dirts to the evaluation framework. False positive dirt generation is a key aspect
when evaluating the knowledge aggregation. Adding this functionality to the wrapper
proved to be more challenging than expected. Section 5.3.2 explains the changes made to
allow false positive dirt generation and the encountered challenges. Finally, Section 5.3.3
introduces the false positive penalty and how it was implemented. The architecture graph
of the newly added Rosbag Recorder node and the modified ROS-nodes can be seen in
Figure 5.3.

5.3.1 Data Collection

One of the challenges encountered while merging the MA-SACPS subsystem and the
evaluation framework was about data collection. The MA-SACPS subsystem dumps the
data from the relevant topics into a Rosbag file. Rosbag is a file format used to store
messages coming from specific topics for the entirety of the simulation. This storage file is
later analyzed via a separate python script to generate the plots. However the evaluation
framework collects the data on run-time and generates its results using a ROS node called
evaluator. Because of the discrepancies between these subsystems, a new ROS node that
collects these rosbags had to be added to the evaluation framework during the merge.

31

5 Experimental Infrastructure and Implementation

The newly added node is called Rosbag Recorder. It is added to the evaluation frame-
work code and it allows recording the same rosbag files the MA-SACPS subsystem records.

It is configurable via the parameters.yaml file evaluation framework offers. Currently
it has 4 parameters that can be changed to customize the operations of the node.

• rosbag_data_record: Boolean flag that determines whether this node should work.
If false, rest of the arguments are ignored and the node does not record any data.

• rosbag_data_record_topics: Specifies the topics that are wanted to be stored as
rosbags. Only relevant if rosbag_data_record is true.

• rosbag_data_record_output_folder: Specifies the absolute path to the folder
rosbags should be stored. Only relevant if rosbag_data_record is true.

• rosbag_data_record_output_name: Specifies the prefix of the output file name of
recorded rosbags. Only relevant if rosbag_data_record is true.

5.3.2 False Positive Dirt Generation

The dirt generation was moved to the evaluation framework from the MA-SACPS sub-
system in the scope of Bergemann’s thesis[5]. While this allowed having a much more
extended dirt generation process with different distributions and hotspots, it didn’t sup-
port the generation of false positive dirts. Generation of false positive dirts was crucial to
evaluate the knowledge aggregation and had to be implemented. This functionality was
added to the dirt generator of the evaluation framework in the scope of this thesis. There
were several challenges encountered while implementing this feature.

The false positive dirts are handled differently in several ways than ground truth dirts.
Several changes had to be made to the Global Dirt Generator, Dirt Generator and the
Goal Manager ROS nodes. The interactions of all of the changed nodes can be seen from
Figure 5.1. The changes will be explained in the following subsections.

Spawn Intervals

The calculation of the spawn intervals for the ground truths and false positives are
explained in the Dirt Generator subsection of Chapter 3. The spawn interval for the
ground truths (TT P) is taken as a simulation parameter in the beginning of the run. The
spawn intervals for false positives of each individual robot are calculated from TT P and
the false positive probabilities for each robot (pFP ,i) as shown in Equation 3.4. This logic
was implemented in the Dirt Generator node in the scope of the thesis of Neuss [34].
However, implementing false positives was not in the scope of the thesis of Bergemann
[5]. Thus the spawn intervals which are necessary to generate false positive dirts were
not calculated in the Global Dirt Generator node of the evaluation framework. As
mentioned before, Global Dirt Generator overrides the dirt distribution functionality
for our thesis, so the logic to calculate false positive spawn intervals had to be added to
the Global Dirt Generator node.

The coding pattern used in Dirt Generator node was reused and added to the Global
Dirt Generator. As seen in Listing 5.1, the spawn intervals are stored as an array
(self.spawn_intervals). The array’s first element (self.spawn_intervals[0]) is the

32

5.3 Merging the MA-SACPS Subsystem and the Evaluation Framework

spawn interval for the ground truths, stored as seconds. The false positive spawn interval
for the robot i is stored in the element i + 1 (self.spawn_intervals[i+1]). The values in
the array correspond to the seconds the timer in the node has to wait in order to spawn
the corresponding task.

1 # global_dirt_generator.py
2

3 ...
4 # convert probabilities into timers
5 fp_spawn_intervals = (1.0 - self.fpp_props) / \
6 self.fpp_props * spawn_interval
7

8 # Store all spawn intervals in this array.
9 # The order is ground truth , robot 0, robot 1, ...

10 self.spawn_intervals [0] = spawn_interval
11 self.spawn_intervals [1:] = fp_spawn_intervals
12 ...

Listing 5.1: Spawn intervals are added to the Global Dirt Generator ROS node to allow false
positive dirt generation

GoalManager crash bug

A bug that causes the Goal Manager node to crash was discovered during the thesis of
Bouzid [6]. This crash would occur sporadically in the middle of a simulation. After
debugging the logs, this behaviour was pinpointed to the Goal Manager node. In the Goal
Manager node there is a logic that loops over a dictionary of existing dirts. When a dirt is
cleaned while this loop is running, the entire node crashes and shutdowns. This is because
a dictionary should not change while it is being traversed. To fix this issue the dictionary
of existing dirts is cloned before the loop begins. Only this clone is traversed. Even if a
dirt is cleaned in the middle of the loop, the clone is not affected. The code snippet in
Listing 5.2 shows how this logic was implemented. After this change, the node allows the
dictionary to change during the traversal.

1 # GoalManager.py
2

3 # Reason for the line below is to prevent changes to
4 # fp_spawn_times during iteration. If a false positive
5 # dirt is cleaned during this iteration , GoalManager
6 # will crash. To prevent that we iterate over a snapshot
7 # instead of the actual dictionary.
8

9 tmp_fp_spawn_times = self.fp_spawn_times.copy()
10 for task_id in tmp_fp_spawn_times.keys():
11 spawn_time = tmp_fp_spawn_times[task_id]
12 ...

Listing 5.2: A snapshot of list of the existing dirts is taken to avoid the crash

33

5 Experimental Infrastructure and Implementation

GoalObject and DirtObject

There are two different Python objects to represent a goal in the MA-SACPS subsystem.
This is a result of the evolution of the system. These objects are called DirtObject
and GoalObject. DirtObject is always a ground truth while the GoalObject has a field
called fp that holds whether the dirt is a ground truth or a false positive. During the
implementation of the evaluation framework false positives were not prioritized. The
implementation goal of the framework was to be an abstract wrapper that can support
different simulators. Because of this dirts were represented with DirtObjects. However, for
this thesis we require spawning false positives from the evaluation framework. Therefore,
the usages of DirtObjects were replaced with GoalObjects that can handle false positives
(Listing 5.3). The implication of this was breaking the support for the simulators that
does not handle false positives. This limitation is explained further in Section 7.2.

1 # global_dirt_generator.py
2

3 ...
4 pose = Pose(position=r_position ,
5 orientation=Quaternion(x=0.0, y=0.0, z=0.0, w=1.0))
6

7 # This object and its publisher is changed
8 # to use GoalObjects instead of DirtObjects
9 # to support false positives.

10

11 # Please note that this probably breaks
12 # the support for the custom simulator.
13

14 dirt = GoalObject(index , pose , trust_value , [])
15 ...

Listing 5.3: DirtObject used in global_dirt_generator.py is changed to GoalObject

Modifications to the Dirt Generator node

As explained before, the Global Dirt Generator node overrides the calculation of where
the dirts should be spawned. It allows having more complicated dirt distribution patterns
like hotspots. However the Dirt Generator is still responsible for adding the dirt to
Gazebo. As explained in the subsection above, all usages of DirtObject was changed to
GoalObjects in the Global Dirt Generator node. As the actual generation happens in
the Dirt Generator node, the usages of DirtObjects had to be changed to GoalObjects in
this node as well.

In addition to this change, the logic to add the new dirt to Gazebo was simplified as
well. Adding a new dirt to Gazebo, or the dirt generation process as called in the code
base, is handled by two different functions. One of the functions handles the dirts that
are created by the Global Dirt Generator node of the evaluation framework, while the
other function handles the dirts created by the legacy Dirt Generator node. These two
functions mostly had the same logic with the difference that one of them supported false
positive dirts as well. As this difference was removed in the scope of this thesis, the

34

5.3 Merging the MA-SACPS Subsystem and the Evaluation Framework

function that handles the tasks coming from the evaluation framework was reworked to
reuse the other function. This simplified the code and allowed a more maintainable and
easy to extend system. The change can be seen from the code snippet in Listing 5.6.

1 # DirtGenerator.py
2

3 def __spawn_dirt_from_wrapper(self , dirt: GoalObject):
4 # Spawns dirt object in the map at the position
5 # which was generated for the dirt delivered via the
6 # input parameter of this function. The dirt object
7 # comes from the topic published by
8 # the evaluation framework
9

10 duplicate , fp_duplicate = self.__check_for_duplicates(
11 dirt.pose.position ,
12 dirt.fp)
13

14 self.__spawn_dirt(dirt , fp_duplicate)

Listing 5.4: __spawn_dirt function of the Dirt Generator node is reused to handle adding the dirts
coming from the evaluation framework into Gazebo

5.3.3 False Positive Completion Penalty

Another idea tested with this thesis was how cost of the operation, dirt cleaning in our
case, affects the performance of the knowledge aggregation. In the previous state of the
system dirt cleaning was a 0-cost operation. Robots instantly cleaned any dirt they reached.
However, this is not the case for most of the real-world operations. Cyber-physical systems
spend considerable amount of resources and time while completing their tasks. This
was represented in our extended system by introducing a penalty on the amount of false
positive dirts cleaned.

We introduced a new score function for penalizing the completion of false positives. As
seen in Equation 5.2, the score function takes the ratio of the completed false positive dirts
(nFP ,completed) over the number of spawned false positives (nFP ,spawned). The calculated
ratio is subtracted from 1 to make it a penalty. This new score function was added to the
helper script(score_functions.py) of the evaluator node. The implementation of this new
score function can be seen in Listing 5.5. This new score function was used in addition to
the old higher_cleaning_rate(q1(t)) score function of the thesis of Bergemann [5]. The
higher_cleaning_rate score function used in the thesis of Bergemann [5] used the ratio
of completed dirts over the total number of spawned dirts. This was not suitable for us, as
the total number of spawned dirts includes false positives as well. This was changed to
use only the ratio of number of completed ground truths (nT P ,spawned) over the number
of spawned ground truths (nT P ,spawned). Equation 5.1 shows the calculation of this score
function(q1(t)). The implementation of the higher_cleaning_rate score function can be
seen from Listing 5.4. These two score functions were summed with their corresponding
weight functions to calculate the final Q-score (Equation 5.3).

35

5 Experimental Infrastructure and Implementation

q1(t) =
nT P ,completed
nT P ,spawned

(5.1)

q2(t) = 1−
nFP ,completed
nFP ,spawned

(5.2)

Q(t) = w1 ∗ q1(t) + (1−w1) ∗ q2(t) (5.3)

1 # score_functions.py
2

3 def function_0(portion_number , total_amount):
4 if portion_number is None or total_amount is None:
5 # if input is missing (can be the case in the beginning)
6 return 1.0
7 elif total_amount == 0:
8 # it is not possible to have a portion of nothing
9 return 1.0

10 elif remaining_dirt_number < 0 \
11 or total_spawned_dirt_number < 0 \
12 or remaining_dirt_number > total_spawned_dirt_number:
13 return 0.0 # this should not be possible
14 else:
15 return portion_number / total_amount

Listing 5.5: function_0 from [5] is used to calculate the ratio of completed ground truths

1 # score_functions.py
2

3 def function_7(gt_finished ,
4 total_finished ,
5 gt_spawned ,
6 total_spawned):
7 # Penalize completion of False positives
8

9 total_amount = total_spawned - gt_spawned
10 portion_number = total_finished - gt_finished
11 if portion_number is None or total_amount is None:
12 # if input is missing
13 return 1.0
14 elif total_amount == 0:
15 # it is not possible to have a portion of nothing
16 return 1.0
17 elif portion_number < 0 \
18 or total_amount < 0 \
19 or portion_number > total_amount:
20 return 0.0 # this should not be possible
21 else:
22 return (total_amount - portion_number) / total_amount

Listing 5.6: A new score function, function_7, is created to calculate the false positive completion
penalty

36

5.3 Merging the MA-SACPS Subsystem and the Evaluation Framework

Previously the system did not differentiate when calculating the numbers of completed
or spawned ground truths and false positive dirts. In order to calculate the score functions
above, the differentiation had to be made. There were couple of changed made to the Goal
Manager and Output Timer nodes in order to achieve this.

A new ROS publisher called goal_obj_attained was added to the Goal Manager node.
This new publisher published a GoalObject whenever a goal was completed (Listing 5.7).

1 # GoalManager.py
2

3 for _goal in self.all_tasks:
4 if self.__compare_poses(_goal.pose , goal_pose):
5 self.all_tasks.remove(_goal)
6 self.goal_obj_attained_pub.publish(_goal)
7 # if task is FP also remove timer from dictionary
8 if len(_goal.fp) > 0:
9 self.__delete_spawn_times_entry(_goal.id)

Listing 5.7: New ROS publisher in the Goal Manager publishes a GoalObject whenever a goal is
attained.

Output Timer is the node that is used to pass information from the MA-SACPS subsys-
tem to the evaluation framework as explained in section 3.3. A new subscriber was added
to this node that listens to the newly added goal_obj_attained publisher. The callback
function that is shown in Listing 5.8, subscribes to the publisher and determines whether
the goal is a false positive or not. If the goal is a ground truth, a counter is incremented.

1 # output_timer.py
2

3 def spawned_goal_gt_callback(message):
4 global spawned_goal_gt_counter ,
5 current_undetected_dirt_locations ,
6 all_dirt_ever
7

8 # Increase the counter if goal is ground truth
9 if len(message.fp) == 0:

10 spawned_goal_gt_counter += 1
11 spawned_goal_gt_pub.publish(
12 Int32(data=spawned_goal_gt_counter)
13)

Listing 5.8: The subscriber callback function that increments a counter whenever the received goal
is a ground truth. The counter is published for the use of the evaluation framework score functions

This counter is published to the evaluation framework and used in the calculation of
the score functions explained above.

37

5 Experimental Infrastructure and Implementation

5.4 New Experimental Tooling

One of the biggest contributions of this thesis is the introduced new experimental tooling
system. Section 5.3.1 will explain why a new tooling system was needed. Section 5.3.2
will describe the design requirements of the system. Section 5.3.3 will introduce the new
experimental tooling system and show what architectural decisions was made to fulfill
the requirements. Rest of the subsections will do a deep-dive in individual components of
the new tooling system and explain them in detail.

5.4.1 Motivation

As explained in the Chapter 3, the system grew into a complex and integrated system as
the result of several projects and theses. The current version of the system consists of
dozens of ROS nodes that works in harmony. Each ROS node requires several parameters.
Configuring the whole system requires a lot of manual effort. Evaluation framework
developed by Bergemann [5] simplifies this process greatly by introducing a master
configuration file. However this configuration file exists in the simulation level. There
was no tool for configuration in the experiment level. As explained further in section 5.1,
the simulations refer to the individual runs of the system while experiments refer to a
collection of simulations.

Previously, running the experiments required a lot of manual effort. Main motivation
of this new tooling is to automate the steps as much as possible and reduce the time it
takes to run the experiments. Each simulation runs for 45 minutes. Considering each
experiment contains many simulations and that there is a huge parameter space that is
being explored, it was quickly realized that running the system locally in one computer
was not feasible. Running all of the experiments take thousands of hours. If we decided to
run all of the experiments locally it would have greatly reduced the scope and the success
of this thesis. That’s why this new tooling was designed from scratch to allow running the
experiments in parallel. It later evolved to a complete end-to-end system that supports
configuration, storage of results, debugging and analysis of the collected data.

5.4.2 Design Goals

There were several design goals when designing the new experimental tooling system.
The decided requirements can be seen in list 5.3.1.

R.1 The tooling should allow running simulations in parallel.
R.2 The simulation should be self-contained and should not need a complicated installa-

tion process.
R.3 The simulation should run on any suitable computer with minimal effort.
R.4 The tooling should handle scaling up or down the number of parallel simulations

seamlessly.
R.5 The tooling should allow easily adding new experiments.
R.6 The tooling should allow running evaluations for the collected data with minimal

manual effort.

38

5.4 New Experimental Tooling

R.7 The system should allow easily sharing the generated vast amount of data.
R.8 The entire system should be version controlled.

5.4.3 System Architecture

In order to satisfy the design requirements in subsection 5.4.2, a novel system architec-
ture was designed from scratch. The proposed system automates all of the steps of the
experimentation process and allows running the simulations in parallel.

The proposed system consists of five subsystems. These subsystems are named Experiment
Designer, Cloud Storage, Task Queue, Worker Containers and the Analysis Subsystem.
They will all be explained in detail in their respective subsections.

These subsystem are decoupled from each other and they all each handle a differ-
ent function of the overall system. The configuration functionality is handled by the
Experiment Designer script, which will be explained in detail in subsection 5.4.7. The
results are stored using Cloud Storage that is explained in subsection 5.4.6. The execu-
tion happens in Worker Containers, which is the merged system explained in section
5.3 converted into a Docker container with all of its dependencies. The containerization
process is explained in section 5.4.5. The orchestration needed by the parallelization is
handled by the Task Queue tool, which is explained in subsection 5.4.8. Lastly, evaluation
of the generated results are done by a collection of scripts that are named the Analysis
Subsystem. The Analysis Subsystem ties the whole system together by downloading the
output of the simulations, evaluating the data and generating the plots which are the final
output of the system.

The new experimental tooling system has two main sequences. These are the configura-
tion sequence and the execution sequence.

The first sequence is the configuration sequence which is triggered whenever the user
runs the Experiment Designer tool. As seen in Figure 5.4, the user first configures
the experiment with the config.json file and runs the experiment_designer.py Python
script. This script reads through the configuration and generates the parameters.yaml
files necessary to configure the individual runs. These parameter.yaml files are uploaded
into a Cloud Storage bucket with a unique folder name. This folder name is generated
by concatenating the experiment name with the run id. The details of this process is
explained in subsection 5.4.7. Lastly, this unique folder name is added to the task queue
by calling the /add endpoint of the Task Queue.

The second sequence is the execution sequence which is triggered whenever a Worker
Container is restarted. The sequence is visualized in Figure 5.5. On startup, the worker
container queries for a task label name from the Task Queue using the /take endpoint.
Task Queue responds with the label name of an uncompleted simulation. This label name
corresponds to a unique folder in the Cloud Storage. When the container receives this
task label name, it downloads the parameters.yaml file from the correct Cloud Storage
folder. The container then copies this parameters.yaml file to the correct location and
executes the simulation with the given parameters. At the end of the simulation, the
results are put into a folder called evaluation_output. This folder is compressed and
uploaded to the same Cloud Storage folder. The container restarts after this file is

39

5 Experimental Infrastructure and Implementation

Figure 5.4: The diagram shows the sequence of the actions that runs during the configuration of the
experiments. This sequence runs whenever the user executes the experiment designer script

uploaded successfully, and starts this sequence again. The details of the containerized
system can be found in section 5.4.5.

Figure 5.5: The diagram shows the sequence of the actions that runs during the execution of the
experiments. This sequence is triggered whenever a worker container restarts. The worker containers are

configured to restart whenever a simulation is finished, so this sequence runs continuously.

5.4.4 Worker Containers

As explained in detail in section 5.3, the MA-SACPS subsystem and the evaluation frame-
work was merged in the scope of this thesis. The merged system was turned into a Docker
container with all of its dependencies in order to satisfy requirement R.2 and R.3. This
containerization step makes the system self-contained as the whole system can be in-
stalled just by loading a Docker image (R.2). The containerization also allows running
the system in any computer that runs Ubuntu 18.04 and has Docker installed (R.3). This
simplification of the installation process allows easily running the simulation in many

40

5.4 New Experimental Tooling

different computers. Docker mostly isolates the container from the rest of the computer,
thus we are also able to run multiple simulations on the same computer.

The containerization of the simulation system was made possible with the parame-
ters.yaml file introduced in the thesis of Bergemann [34]. This file provides a single point
of entry for the configuration of the system which was not possible before.

There were couple of issues encountered while creating the first Docker container that
contains the merged system. The first challenge was resolving the absolute path to the
simulator launch file. This path had to be given inside the parameters.yaml file as seen in
Listing 5.9.

1 # parameters.yaml
2

3 absolute_path_to_simulator_launch:
4 "/thesis_ws/src/original/ros/test/master.launch"

Listing 5.9: The parameters.yaml configuration line that is used to configure the absolute path to
the simulator launch file

This was a challenge as the ROS workspace usually resides inside the Linux home
folder and the home folder path depends on the container ID. As the container ID is
unique for each worker container, this was very challenging to resolve. The solution to
this problem was found by putting the ROS workspace in the Linux root folder. The root
folder path does not depend on the container ID. Using this trick, the absolute path to the
simulator could be written as “/thesis_ws/src/original/ros/test/master.launch”
for each container.

The second challenge was due to the limitations of the Docker. Normally, the system
uses the graphical user interface of Gazebo to visualize the simulation. However, this was
very challenging to achieve and unnecessary while running the system inside a Docker
container. This challenge was avoided by running the Gazebo simulator headless. By
running Gazebo headless, the simulation system could be run in the background without
launching a graphical user interface.

The third challenge of containerizing the system was giving it read and write access
to the Google Cloud Platform (GCP). This access was needed as the container had to
send a query to get the label name from the Task Queue as explained in section 5.4.3.
Furthermore, the container had to download the parameters.yaml configuration file from
the Cloud Storage and upload the results after the simulation was done. All of these
actions require permission to access the private GCP project. This challenge was resolved
by creating a service account from GCP. The service account was used by all of the
containers and had read/write access to the necessary GCP services. Access token of the
service account was added to the container image. The containers uses the access token to
authenticate on startup.

After these challenges were handled, the container could be run successfully. As we
wanted to minimize the manual effort, it was decided that the worker containers should
run continuously. In order to achieve robustness and scalability, the containers were
designed as stateless. The containers run a script called run_sim.sh every time they
restart. This script handles the authentication, querying the Task Queue and receiving

41

5 Experimental Infrastructure and Implementation

the label name, downloading the parameters.yaml file from the Cloud Storage, copying
it to the correct location, setting up the ROS environment, executing the simulation,
compressing the results and uploading them back to the Cloud Storage (Listing 5.10).

1 # run_sim.sh
2

3 #!/bin/bash
4 gcloud auth activate -service -account \
5 container -user@i4 -tamer -thesis.iam.gserviceaccount.com \
6 --key -file=/i4 -tamer -thesis -18 e6e929bad2.json
7

8 RUN_ID=$(curl https ://us -central1 - \
9 i4 -tamer -thesis.cloudfunctions.net/take)

10

11 gsutil cp gs://i4 -thesis -multi -agent -data/ \
12 $RUN_ID/parameters.yaml parameters.yaml
13

14 mv parameters.yaml /thesis_ws/src/original/ \
15 ros/src/evaluation -framework -code/launchers/config/
16

17 source /thesis_ws/devel/setup.bash
18 export TURTLEBOT3_MODEL=burger
19

20 roslaunch launchers main_launcher.launch
21

22 mkdir /thesis_ws/src/original/ros/src/ \
23 evaluation -framework -code/evaluation_output/logs
24

25 cp -r ~/. ros/log/latest /thesis_ws/src/ \
26 original/ros/src/evaluation -framework -code/ \
27 evaluation_output/logs/
28

29 tar -czvf results.tar.gz \
30 /thesis_ws/src/original/ros/ \
31 src/evaluation -framework -code/evaluation_output
32

33 gsutil cp results.tar.gz \
34 gs://i4-thesis -multi -agent -data/$RUN_ID/results.tar.gz

Listing 5.10: The bash script that orchestrates the operations that run inside the worker container.
The script runs when the Docker container is booted up. The script handles authentication,
querying the Task Queue, downloading the parameters.yaml file, executing the simulation,

compressing and uploading the generated results

The run_sim.sh bash script is made to run every time the Docker container is loaded,
by defining it as such in the Dockerfile. The base Docker image that contains the merged
system, all of its dependency libraries, the GCP authentication access token and the
run_sim.sh bash script. The base image is used to create another Docker image with the
Dockerfile in Listing 5.11.

42

5.4 New Experimental Tooling

1 # Dockerfile
2

3 FROM full -deal -self -adaptive -robotics -system:v3.0
4 CMD /run_sim.sh

Listing 5.11: The Dockerfile that creates the automatic Docker image that runs run_sim.sh
whenever it is loaded. As seen in the snippet different versions of the base image can be used to

create the final image. For this sample, v3.0 of the base image was used. The versioning is explained
in detail in subsection 5.4.9

The new image is created and pushed to DockerHub by running the following command
in the folder that contains the Dockerfile.

1 sudo docker build -t tamertemizer/ \
2 full -deal -self -adaptive -robotics -system:v3.0 .
3

4 sudo docker push tamertemizer/ \
5 full -deal -self -adaptive -robotics -system:v3.0

Listing 5.12: The first command is used to build the Docker image that runs the run_sim.sh
automatically. That command should be called from the directory of the Dockerfile. The second

command pushes the created Docker image to DockerHub to be versioned. The versioned image can
be pulled from any computer connected to the Internet.

The new image always runs the run_sim.sh bash script whenever it is loaded. As
explained above run_sim.sh script handles all of the necessary operations within the
worker container. The container is run using the following command.

1 sudo docker run -d --restart always tamertemizer/ \
2 full -deal -self -adaptive -robotics -system:v3.0

Listing 5.13: The command that is used to start and run the worker containers continuously.

5.4.5 Choosing the Cloud Provider

Several cloud providers were investigated to find the best infrastructure to run the simu-
lations. The considered options were running the experiments Google Cloud Platform
(GCP), Microsoft Azure and LRZ Computation Cloud. These providers were bench-
marked for cost, available computation resources, ease of integration with rest of the
system, availability and scalability.

Minimizing the cost was a necessary requirement. Because of this only providers with
free trials were benchmarked. GCP offers 300 dollars worth of free computation resources
for 3 months [18] while Azure offers 200 dollars of free computation resources for 2
months. The trial accounts can be upgraded to paid ones during or after the trial. On
LRZ Computation Cloud, our group had a quote of virtual CPUs that can be assigned to
virtual machines.

As explained on system architecture and worker containers subsections, simulations
run in separate Docker containers on Ubuntu 18.04. The provider had to support this
functionality. Google Cloud Platform has the Google Kubernetes Engine (GKE) which

43

5 Experimental Infrastructure and Implementation

allows running individual containers. Azure also provides this functionality via Azure
containers. Both providers allow changing the CPU architecture, number of assigned
CPU cores and adding the desired GPU. Increasing the allocated resources increase the
cost. Free trials on GCP and Azure introduces quotas on available resources. Both of them
allow having only 1 GPU core for the free trial version. Both of them have a quota that
allows running 8 virtual CPU cores at most at the same time.

In the end, Google Cloud Platform was chosen for the Task Queue (Section 5.4.8) and
Cloud Storage (Section 5.4.6) subsystems of the new experimental tooling. The decision
to put the Cloud Storage in GCP was made after realizing storing vast amounts of data is
inexpensive and the free trial of 300 dollars was more than enough for the duration of this
thesis. Task Queue tool was also implemented using Google Cloud’s Firebase platform.
This decision was made because of the Firebase Cloud Functions functionality. Using
Cloud Functions a serverless backend can be implemented very easily and with minimal
cost [13]. The details of the Task Queue and the design choices made while implementing
the tool can be found in Section 5.4.8.

For the worker containers, using the resources of GCP was deemed infeasible. Even
though storage is cheap in GCP, computation with the resources that we need was ex-
pensive. Furhermore, the quotas imposed by the free trial of GCP, severely limited the
number of parallel simulations. As mentioned before, our group had access to some
suitable servers in LRZ Computation Cloud. One of the servers had Intel(R) Xeon(R)
Gold 6148 CPU with 2.40GHz clock speed. After running the simulation system in that
server with varying number of parallel containers, the best configuration was found. At
the end, 6 worker containers was run in parallel in that server in the LRZ Computational
Cloud.

5.4.6 Cloud Storage

One of the drawbacks of the old system was that all of the data was dumped into the local
storage of the computer that is running the simulations. This is changed with the new
tooling because of several reasons.

The data generated from the simulations take up a considerable amount of storage
space. The data can easily take hundreds of gigabytes with the test runs. It is undesirable
to store that data in the computer of the user.

Secondly, with the new tooling, experiments are being run in parallel. According to R.6,
the tooling should allow running evaluations for the collected data with minimal effort. If
the collected data for a specific experiment exists in separate computers, it is not possible
to analyse it without manual effort.

Lastly, according to R.7, the generated results should be shareable between the members
of the group. This is hard to achieve when the data is located on the local computer of the
user. Given the size of the data, it was hard to share between different users.

Because of these reasons, storing the data in a cloud storage unit was decided. All of
the data collected during a simulation run is uploaded automatically to the cloud storage.
Google Cloud Storage was chosen to keep the synergy between the other components of

44

5.4 New Experimental Tooling

the tooling that uses the Google Cloud Platform. Data can be accessed through the web
portal of GCP or the gsutil CLI tool.

The graphical user interface of the web portal of GCP Cloud Storage can be seen in
Figure 5.6. The folder structure is determined as the following. The top level folders
are named after the experiment name. In the figure below, the experiment name is
false-negative1/experiment2-2/no-sl. This experiment name consists of 3 parts which
is configured by the user in the config.json file of the Experiment Designer tool. If the
experiment name contains forward slash characters (/), Cloud Storage separates the
subsections into their own folders. In Figure 5.6, the experiment name contains two
slashes, which results in three nested folders. This functionality is used to organize
the experiments better. After the experiment name, different folders for each seed is
created with the format seed + seed_no. In the figure, inside of the folder seed72 can be
seen. This folder contains a different folder for each of the individual simulation runs.
These runs are named after the run ids. This folder also contains the config.json file used
to create this experiment. The folder that have different run ids (e.g. fnp05) contains
the parameters.yaml configuration file for that specific run and the evaluation_output
compressed into a tarball named results.tar.gz. This folder structure and the configuration
files are created by the Experiment Designer tool explained in detail in Section 5.4.7.
Creation of the tarball is done by the run_sim.sh script of the worker containers explained
in detail in Section 5.4.4.

Figure 5.6: A Google Cloud Storage bucket showing different simulation results being stored. Each
folder contains the evaluation_output folder compressed with the name results.tar.gz and the respective

parameters.yaml configuration file for that run.

5.4.7 Experiment Designer

Experiment designer tool is the entry point of the user. It is located in the user’s local
computer and it is used to configure the experiments. The need for this component comes
from the high number of individual simulations that was needed for this thesis. This

45

5 Experimental Infrastructure and Implementation

tool builds upon the easy configuration scheme introduced with the parameters.yaml
file of the evaluation framework [3]. The parameters.yaml allows configuring all of the
relevant parameters from a single file. A separate parameters.yaml had to generated for
every single simulation run. As the parameter space is very large, this required many
hours of manual labor. The earlier method used to automate this process was having shell
scripts that ran several experiments back-to-back. The script had to be located on the same
computer that is running the experiments. The same shell script had to run for hours at a
time. If this shell script was interrupted for some reason, the entire experiment had to
be run again. Adding new experiments required editing the script which is inconvenient
especially when running these experiments in parallel on many machines. Because of
these reasons a new tool for configuration called experiment designer is introduced in the
scope of this thesis.

Experiment designer tool allows configuration in the experiment level (many runs)
instead of the simulation level(1 run). This means a single config.json file is used to
generate all the necessary parameters.yaml files for an experiment. These generated
parameters.yaml files are uploaded to the cloud storage with the unique label name of
experiment-id/run-id. Also the new label name is broadcasted to be added to the task
queue.

The available configuration fields can be seen below.

• experiment_name: Unique experiment name that will be used for the cloud storage
bucket name

• run_prefix: Prefix that will be appended after the experiment name and before
the value of the independent variable

• simulation_time: Duration that the simulation will be run (in seconds)
• seed: Simulation seed for dirt generation, can be an array to create tasks for multiple

seeds at the same time
• use_sl: Boolean flag that determines whether knowledge aggregation with subjec-

tive logic should be on.
• sl_operator: Subjective Logic operator. Can be CCF, CBF or Comb.
• adaptive_scheduling: Boolean flag that determines whether adaptive scheduling

should be on.
• dirt_use_uniform_distr: Boolean flag that determines whether dirt generation

should follow uniform distribution or hotspots.
• spawn_interval: The time interval in which a new dirt will be spawned (in seconds)
• variables: JSON object that holds all of the changed variables. Explained in detail

in the following list.

The variables field is an array of object that has the following fields.

• name: Name of the parameter that will be changed. This field should match the
name of the parameter in the parameters.yaml config file of the evalation framework.

• values: Different values the variable should have. A separate simulation task will
be created for each value in this array.

46

5.4 New Experimental Tooling

• sim: Boolean flag that determines whether the parameter exist in the parame-
ters.yaml config file or should be passed to the simulator as an external argument. If
the parameter can be seen in the paramters.yaml file this field should be set to false.

1 // config.json
2

3 {
4 "experiment_name": "false -negative -experiment/sl",
5 "run_prefix": "fnp",
6 "simulation_time": 2700,
7 "seed": [71, 72, 73, 74, 75],
8 "use_sl": true ,
9 "sl_operator": "Comb.",

10 "adaptive_scheduling": true ,
11 "dirt_use_uniform_distr": true ,
12 "spawn_interval": 60,
13 "variables": [
14 {
15 "name": "robot_0_fnp",
16 "values": [0.1, 0.2, 0.3, 0.4, 0.5],
17 "sim": false
18 },
19 {
20 "name": "robot_1_fnp",
21 "values": [0.1, 0.2, 0.3, 0.4, 0.5],
22 "sim": false
23 }
24]
25 }

Listing 5.14: A sample experiment_designer config file that modifies the false negative probabilities
of the two robots at the same time

5.4.8 Task Queue

With the simulation containerized and ready to be deployed in parallel, the need for
configuring each container with its own parameters.yaml file arised. Experiment designer
tool created the parameters.yaml files for each simulation but there were some decisions
that were made on how to send the parameters to the containers itself. There were three
main approaches explored in this project.

First one was creating the parameters.yaml file via the experiment designer tool and
creating each docker container by giving the parameters.yaml file as a docker input. Even
though this method was the most straightforward one, it had its limitations. The biggest
limitation came while trying to satisfy R.3 and R.4 at the same time. R.3 states that the
experiment should run on any suitable computer with minimal effort. This would imply
that the system should support all major cloud providers and local computers. However all
of these systems have different command line tools to create docker containers. Creating a
container on Google Cloud and a local computer needs different steps. This would mean
the experiment designer had to know which kind of system will run the simulations. This

47

5 Experimental Infrastructure and Implementation

made R.4. very challenging. Because according to the requirement, the tooling should
allow scaling up or down the number of parallel simulations seamlessly. This is very
easy to do if the exact same container is replicated. However if each container requires a
unique step of setting up the parameters when creating, this is much more challenging.

Trying out the first approach led to the realization that copying the parameters.yaml
file to each container is not a very suitable way for our requirements. For the second
approach the parameters.yaml file was put into the cloud storage with a unique directory
name of experiment-id/run-id. Only this unique id was passed into the docker containers
on start-up as an environment variable. When the container received this unique id, it
downloaded the parameters.yaml file from the correct directory of the cloud storage.
Although it was clear that this approach was better than the first one, still there was a
unique step for each container which made it impossible to replicate the same container.

At the end, the most suitable approach was using a small web server called the Task
Queue. The parameters.yaml files were put into the cloud storage with a unique id like the
second approach. At this third approach, the docker containers send a request to the Task
Queue backend and ask for an available task. If there are any tasks in the queue, the server
responds with the unique id. The container downloads the correct parameters.yaml file
using this id. Implementation of the worker containers is explained in detail in Section
5.4.4. With this approach, the need to configure each container individually was gone.
The same container can be replicated many times which makes the whole system very
scaleable. The state of remaining tasks only needs to exist in the task queue.

The task queue is a serverless backend implemented with Google Firebase. It uses
Firestore as its database and Cloud Functions for the functionality.

Figure 5.7: View of the task queue in the Google Firestore web dashboard showing different simulation
labels that will be executed by the worker containers

48

5.4 New Experimental Tooling

The backend has two endpoints exposed. These endpoints are implemented using
Cloud Functions. The first endpoint /add inserts a new task to the queue. It is called by
the experiment_designer tool.

1 // Take the text parameter passed to this HTTP endpoint
2 // and insert it into Firestore under the path
3 // /messages /: documentId/original
4

5 exports.add = functions.https.onRequest(
6 async (req , res) => {
7 // Grab the text parameter.
8 const original = req.query.text;
9 if(original && original.length > 0)

10 {
11 // Push the new message into Firestore
12 // using the Firebase Admin SDK.
13 const writeResult = await firestore.
14 collection(’messages ’).add({ original: original });
15 }
16 else
17 {
18 res.json({ result: ‘Fill text parameter .‘});
19 }
20 });

Listing 5.15: /add endpoint of the Firebase task queue. Used for adding a new simulation task to
the task queue.

The second endpoint /take pops a task from the queue. When this endpoint is called,
it returns a task label and removes that label from the queue. It is called by the worker
containers.

1 exports.take = functions.https.onRequest(
2 async (req , res) => {
3 const messagesRef = firestore.collection(’messages ’);
4 const query = await messagesRef.limit (1).get();
5 query.forEach(doc => {
6 const data = doc.data();
7 res.send(data.original);
8 doc.ref.delete ();
9 });

10 });

Listing 5.16: /take endpoint of the Firebase task queue. Used for taking a task label from the queue.
The returned label is removed from the task queue.

5.4.9 Version Control

One of the requirements was allowing version control for the entire system. This was
needed to allow rapid changes for the experiments. All of the code base resides in a
Git repository. Also the different versions of the containers are stored using DockerHub.
Using DockerHub for the containers allow versioning of the Docker images. As the Docker

49

5 Experimental Infrastructure and Implementation

images are layered, small changes to the system can easily be integrated to all of the
worker computers without the need to download the entire image every time [11].

5.4.10 Debugging

The new tooling also stores the logs generated by the ROS nodes and console logs. All
generated logs are dumped into their separate files and saved with the rest of the results in
the evaluation_output folder. The logs can be examined manually in the case of a failure.
Debugging is easier because of this functionality, as the logs indicate where an error might
have happened. As is the case with most software systems, many runs have to be made to
understand the issue. Considering each run of the simulation takes 45 minutes, this is a
very time consuming task. With this added logging function, many simulations can be
run in parallel to speed up the debugging process.

5.4.11 Analysis

The new tooling automates data analysis process as well. The analysis step extracts the
data from the cloud storage, extracts it, formats it and generates the related plots. The
analysis component of the new tooling builds upon the data_analysis python script used
in the thesis of Neuss [34].

Figure 5.8: The diagram shows the sequence of running the experiments using the analysis subsystem.
First the user downlaods the folder containing all of the simulation results from the Cloud Storage. Then
they run the extract_simulations.sh shell script shown in Listing 5.17. Finally the user runs the plots.py

to evaluate the results and generate the plots.

The analysis sequence can be seen in Figure 5.8. As seen in the figure ,first the data is
downloaded from the correct cloud storage directory to the computer of the user using
the gsutil CLI tool. The data in the cloud storage resides in tar.gz compressed form.
This tarball needs to be extracted to generate the plots. The script shown in Listing 5.17

50

5.4 New Experimental Tooling

extracts the compressed results and renames the necessary files according to the naming
format required by the data_analysis python script.

1 # extract_experiments.sh
2

3 #!/bin/bash
4

5 cd false -positive -experiment
6

7 ROSBAG_PATH=thesis_ws/src/original/ros/src/ \
8 evaluation -framework -code/evaluation_output/ \
9 recorded_data/rosbags

10

11 RES_SUM_PATH=thesis_ws/src/original/ros/src/ \
12 evaluation -framework -code/evaluation_output/results
13

14 for SEED in 71 72 73 74 75
15 do
16 for FPP in 1 2 3 4 5 6 7 8 9
17 do
18 cd sl/seed$SEED/fpp0$FPP/
19 echo $PWD
20 tar -xvf results.tar.gz
21 cp $ROSBAG_PATH /*. bag ../../../../../../ \
22 data/r2_sltrue_fptrue_fntrue_spi60_seed${SEED} \
23 _r0fpp0.${FPP}_r0fnp0 .2 _r1fpp0.${FPP}_r1fnp0 .2.bag
24

25 cp $RES_SUM_PATH /*. csv ../../../../../../ \
26 results/r2_sltrue_fptrue_fntrue_spi60_seed${SEED} \
27 _r0fpp0.${FPP}_r0fnp0 .2 _r1fpp0.${FPP}_r1fnp0 .2full.csv
28

29 cd ../../..
30 done
31 done

Listing 5.17: The script that extracts the downloaded results tarball. The script renames the
necessary files to the naming format used by the analysis script and copies them to the required

folders

Currently the analysis component allows analyzing the rosbag files explained in section
5.2.1 and the result_summaries generated by the evaluation framework. These files are
copied to their respective directories to prepare for the evaluation by the script in Listing
5.17. Finally, data_analysis.py script, implemented in the scope of the thesis of Neuss [34],
is run to generate the plots. Also a new script called plots.py is added to allow plotting
the change of the adaptivity metric (Q-score) during the experiments. The generated plots
are put into a separate folder called plots for the user. The generated plots and their
commentary is shown in detail in Chapter 6.

51

6 Evaluation

The goal of this thesis is to evaluate the impact of Knowledge Aggregation (KA) with Sub-
jective Logic (SL) on the overall system’s adaptivity. This chapter explains our evaluation
approach and results. Section 6.1 introduces the experiments and how they tie to the
explored hypotheses. Section 6.2 explains the existing metrics to calculate the Q-score
and how they were reworked for this thesis. Finally Section 6.3 shows the results of the
experiments and explains how knowledge aggregation impacts the adaptivity of multi-
agent cyber-physical systems from various aspects. Section 6.4 summarizes the evaluation
results and comments on the benefits and drawbacks of the knowledge aggregation with
Subjective Logic.

6.1 Experimental Setup

As explained before the primary goal of this thesis is to evaluate the impact of KA with
SL on the overall system’s adaptivity. We aim to achieve this goal by varying several key
parameters of the system in order to see how they affect the Q-score introduced in Section
2.1.2. The proposed experiments are run using KA with SL and without the KA. The
difference in Q-scores of these two sub-experiments (Equation 6.1) give the impact of KA
with SL on the overall system’s adaptivity. The calculation of the Q-score is described in
Section 6.2.

Qgain =QSL −QBase (6.1)

Five research questions were proposed in order to identify and evaluate the key param-
eters for the impact of KA with SL. These research questions can be seen below.

• RQ.1 How does changing the false positive probability of the robots affect KA with
SL?

• RQ.2 How does penalizing the erroneous actions impact the performance of KA
with SL?

• RQ.3 How does changing the false negative probability of each robot affect KA with
SL?

• RQ.4 How does the value of threshold affect KA with SL?
• RQ.5 Is there an optimal threshold value that can be set to maximize the perfor-

mance of KA with SL?
• RQ.6 Does changing the dirt distribution patterns affect the performance of the

system?

By looking at the research questions defined above, several hypotheses were defined.
These hypotheses are matched with experiments in Table 6.1.

53

6 Evaluation

Research Question Hypothesis Experiment

RQ.1
H1.1 KA introduces a performance overhead.
However, the benefits of KA increase as the
false positive probability increases.

False Positive Probability
H1.2 The average time to complete a TP task
fluctuates more as the FP probabilities in-
crease.

RQ.2
H2.1 Benefits of KA become more prominent
as the cost of making errors increase.

False Positive Penalty

RQ.3
H3.1 KA with SL is not the optimal plan of
action for cases with high false negative prob-
ability and low false positive probability.

False Negative Probability

RQ.4
H4.1 Higher threshold values increase accu-
racy.

Threshold
RQ.5

H4.2 Lower threshold values increase the to-
tal number of cleaned tasks.

RQ.6
H5.1 KA benefits from higher overlap be-
tween agents.

Dirt Distribution

Table 6.1: The table shows the summary of hypotheses derived from the research questions presented in
List 6.1. The first column indicates the research question, the second column shows the explored

hypotheses derived from that research question. The third column indicates the name of the performed to
explore the hypotheses. The details of the experiments can be found in the subsections in Section 6.3.

6.2 Quality Function

Quality function (Q-score) defined in Section 2.1 is used to evaluate the adaptivity of
our simulation system. The Q-score and its score functions were implemented in the
scope of the thesis of Bergemann [5]. The score functions are evaluated for each time
frame by the evaluator node of the evaluation framework. The details of this node
can be found in Section 3.3. As explained in Section 2.1, all of the score functions are
implemented following Petrovska’s [37] definition of adaptivity and they give a result
between 0 and 1. The score functions are defined for two different categories. These are
the business goals and the adaptation goals. The business goals determines whether an
agent is satisfying the minimum requirements needed in order to consider that agent
as successful. The adaptation goals determine how successfully the agent is adapting
in order to maximize its performance. These output values of these adaptation score
functions (qi) are multiplied with a weight (wi) and summed up in order to calculate the
final Q-score (Q). The calculation can be seen from Equation 6.2. N stands for the number
of score functions defined for the system. As seen in Equation 6.3 weights (wi) always
sum up to 1. The implementation of the score functions can be seen from Appendix B.

Q(t) =
N∑
i=1

qi(t)wi (6.2)

N∑
i=1

wi = 1 (6.3)

54

6.2 Quality Function

6.2.1 Business Goals

The business goals are score functions that determine whether the agent is satisfying the
minimum required goals in order to be counted as successful. If one of the business goals
are not satisfied, the Q-score automatically drops to 0. There were two business goals
defined for our use-case implemented by Bergemann [5]. These were minimum_cleaned
and no_crashes.

Minimum Cleaned

This business goal is used to ensure the agent cleans at least 10% of the spawned dirts.
This business goal becomes active only after 5 dirts are spawned in the map. This is done
to prevent getting Q-scores of 0 at the beginning of the simulation. The desired ratio
of the minimum cleaned dirts can be configured via the parameters.yaml file as seen in
Listing 6.1.

1 # parameters.yaml
2

3 minimum_cleaned: {
4 type: "mission_goal",
5 function_index: 5,
6 variables: {
7 input_to_check: "finished_goal_gt_number",
8 offset: 0,
9 aim: "spawned_goal_gt_number",

10 factor: 0.1,
11 start_requirement: 5
12 }
13 }

Listing 6.1: The configuration field in the paramters.yaml file that allows changing the desired
minimum cleaned ratio

This score function was changed in the scope of this thesis to ignore the false positive
dirts. Previously this function would look at the number spawned dirt which included the
false positives as well. As false positive dirts should not be cleaned in the ideal scenario,
this behaviour was not desired. To fix this, the score function was changed to only use
the ratio of the number of completed ground truths (nT P ,completed) over the number of
spawned ground truths (nT P ,spawned).

No Crashes

This business goal is used to ensure the robots traversing do not crash with each other. If
the robots crash with each other for some reason, the Q score drops to 0. This was deemed
as a necessary business goal as in the real world the robots should prevent crashes at all
costs. Crashes can damage an expensive robot and cause unpredicted consequences in the
environment.

55

6 Evaluation

6.2.2 Adaptation Goals

The adaptation goals are the score functions that evaluate how well the overall system
is adapting for the given problem. The adaptation goals are implemented according to
the framework Petrovska proposes in [37]. They map the behaviour of the system to a
numerical value between 0 and 1. A value of 0 means the system is performing the worst
possible way for the given score function while a value of 1 means the system is behaving
perfectly. All of the scores from the adaptation goals are multiplied with their respective
weights (wi) to get the final Q-score as seen in Equation 6.2.

Higher Cleaning Rate

The higher_cleaning_rate adaptation goal calculates the ratio of the completed tasks over
the total number of spawned tasks. This function is designed to evaluate how well the
agents clean the dirts in the map. A value of 1 indicates all of the spawned dirts are
cleaned, while a value of 0 would mean no dirt is cleaned at all. This function was
implemented during the scope of the thesis of Bergemann [5]. As mentioned previously
Bergemann’s thesis [5] did not consider the false positive dirts during its implementation.
This score function was calculating the ratio using the total number of dirts because of
that reason. However higher cleaning rate should only depend on the ground truth dirts,
not the false positives. This change was introduced in the scope of this thesis. The final
version of this score function calculates the ratio of the number of completed ground
truth dirt (nT P ,completed) over the number of spawned ground truth dirts (nT P ,spawned). The
calculation can be seen from Equation 6.4.

q(t) =
nT P ,completed
nT P ,spawned

(6.4)

Shorter Dirt Existence

The shorter_dirt_existence score function uses the summed up actual existence time of
all of the dirts and the summed up theoretical dirt existence times. The actual existence
time of a dirt (ti,actual) is the number of seconds from its spawning to its cleaning. The
theoretical dirt existence time (ti,theoretical) is the number of seconds between the spawn
time frame of that specific dirt to the current time frame in the simulation. The theoretical
dirt existence time would be equal to the actual dirt existence time if no dirts were cleaned
during the simulation. Both actual dirt existence time and the theoretical existence time
is summed for each dirt. This can be seen from the Equation 6.5. In Equation 6.5, Ndirt
represents the number of dirts spawned.

Tactual =
Ndirt∑
i=1

ti,actual

Ttheoretical =
Ndirt∑
i=1

ti,theoretical

(6.5)

56

6.2 Quality Function

This score function returns a value of 1 if every dirt is cleaned as soon as they are
spawned and a score of 0 if no dirt is cleaned at all. This is achieved by taking a ratio of
the summed up actual dirt existence time (Tactual) over the summed up theoretical dirt
existence time (Ttheoretical) and subtracting the result from 1. The exact calculation can be
seen from Equation 6.6.

q(t) = 1− Tactual
Ttheoretical

(6.6)

Higher Detection

The higher_detection score function calculates the ratio of the detected dirts (ndetected) over
the total number of dirts (Ndirt). It aims to reward the agents for detecting the maximum
number of dirts. The exact calculation can be seen from Equation 6.7.

q(t) =
ndetected
Ndirt

(6.7)

Less Distance

The less_distance score function aims to reward the agents to move as less as possible. As
moving consumes energy thus introduces costs to the user, moving less is considered as
an adaptation goal. If no robots move at all the output of this score function will be 1. For
the opposite case of robots moving as much as possible, the output of this function will
be 0. The score is calculated from the traveled distance of the robots (xtraveled), elapsed
time (telapsed), maximum possible velocity (Vmax) and the number of robots (nrobot). The
calculation can be seen from Equation 6.8.

xmax = Vmax · telapsed ·nrobot
q(t) =min(1.0,max(0.0,

xmax − xtraveled
xmax

))
(6.8)

Lower Error Rate

The lower_error_rate is a new score function introduced in the scope of this thesis. It
was added to the existing set of adaptation goals to be able to penalize the completion
of false positives. In the current implementation of the system, cleaning the dirts are a
0-cost operation. This means that whenever a robot moves to the center of the dirt, the
dirt is cleaned instantly. It was realized that this behaviour does not exist in the real
world. In the real world, cleaning is an expensive operation that might take couple of
minutes or introduce costs to the system. Also completing false positive tasks might be
dangerous, expensive or confusing from the user perspective. Overall, the robot should
aim to complete ground truths and avoid false positives. There are couple of ways to
enforce this behaviour such as introducing a waiting time after cleaning each dirt or
penalizing the completion of false positives in the score functions. Both methods have
their advantages and disadvantages. Introducing a new adaptation score function to
penalize the completion of false positives were chosen for this thesis. However the other

57

6 Evaluation

method of introducing a waiting time after completing each task is worth exploring as
well. This is discussed in detail in the future works in Section 7.3.

The implementation of this new score function can be found in Section 5.3.3. The
lower_error_rate score function calculates the ratio of the number of completed false
positive dirts over the number of spawned false positive dirts and substracts the result
from 1. If all of the false positive dirts are cleaned this score function return 0. In the
opposite case of no false positive dirts being cleaned, this function returns a score of 1.
The exact calculation can be found in Equation 6.9.

q(t) = 1−
nFP ,completed
nFP ,spawned

(6.9)

6.2.3 Metric Selection

The score functions used previously was deemed contradictory for this thesis. It was real-
ized that the adaptation goals such as less_distance, higher_detection, shorter_dirt_existence
was trying to optimize for contradictory goals or they were unnecessary to evaluate the
adaptivity of the system. The business goals were left as is but for the adaptation goals, a
simpler set was defined. The new set of score functions consists of two business goals and
two adaptation goals.

The two business goals, namely minimum_cleaned and no_crashes was deemed necessary
for our use-case as well and they are reused in this thesis. The only change to the business
goals was made to the minimum_cleaned score function so that it ignores the false positive
dirts. The details can be found above in the respective subsection of the minimum_cleaned
score function.

The adaptation goal set was reduced to have only two goals. It was realized that the
higher_cleaning_rate score function is the most important goal for the adaptation. It is
believed that the adaptation of the system can be measured to an acceptable degree only
by looking at the ratio of the completed ground truths. However this function does not
include any information about the false positives. Completion of the false positives is an
undesirable behaviour for cyber-physical systems. It might be dangerous, expensive or
confusing if the robot chose completing false positive dirts over the completion of ground
truths. This realization led to the development of a new score function lower_error_rate as
explained in Section 5.3.3 and its respective subsection in Section 6.2.2. The final Q-score
for our thesis is defined in Equation 6.10. Similarly as before, if one of the business goals
are not satisfied, this Q-score drops to 0 automatically.

q1(t) =
nT P ,completed
nT P ,spawned

q2(t) = 1−
nFP ,completed
nFP ,spawned

Q(t) = w1 · q1(t) + (1−w1) · q2(t)

(6.10)

After evaluating the results of Experiment 2, the impact of false positive penalty
described in detail in Section 6.3.2, w1 was chosen as 0.7 for the experiments. The

58

6.3 Experimental Results

exceptions of this are mentioned in the respective subsections of the experiments and in
the table in Section 6.3.

6.3 Experimental Results

As explained in Section 6.1, five experiment were designed. These five experiments map
to the research questions and hypotheses as seen in Table 6.1. There were several key
parameters that were kept constant throughout the experiments. All of the experiments
are done with 2 robots. However this is a design choice, not a limitation of the system. An
experiment that changes the number of robots can be found in Neuss [34].

Another parameter that were kept constant was the seed of the simulation. This was
changed after the thesis of Neuss [34] to reduce the undesired uncertainties in the system.
Instead, the same simulation seed (Seed 72) is run 5 times and the results are averaged
out for statistical robustness.

The spawn intervals are kept as a constant of 60 seconds per 1 ground truth and the
simulation time is kept as 45 minutes. These values are kept at those values to maintain
the comparability with the experiments of Neuss [34] and Bergemann [5]. One important
difference that is made to the configuration of the evaluation framework of Bergemann
[5] was to change the used map and the map resolution (0.5 meters) to the ones used in
Neuss [34].

The first experiment varies the false positive probabilities for all robots at the same
time. This means that each robot will always have the same false positive probability as
each other. The same pattern is used for Experiment 2 and Experiment 5 as well.

For some of the experiments, the experiment parameter space has more than one
dimension. For example Experiment 4 varies the threshold value between 0.2 and 0.8.
The same experiment is repeated for false positive probability 0.2 and 0.8 which adds
another dimension to the parameters. All of the experiments are run for the KA with SL
case and the base case with no knowledge aggregation.

The detailed parameters for all of the experiments can be seen in the table below and
the respective subsection of the experiment.

59

6 Evaluation

FP
P

ro
b

ab
il

it
y

FP
Pe

n
al

ty
FN

P
ro

b
ab

il
it

y
T

h
re

sh
ol

d
D

ir
t

D
is

tr
ib

u
ti

on

E
xp

er
im

en
t

1
2

3
4

5

R
es

ea
rc

h
Q

u
es

ti
on

R
Q

.1
R

Q
.2

R
Q

.3
R

Q
.4

,R
Q

.5
R

Q
.6

K
n

ow
le

d
ge

A
gg

re
ga

ti
on

[C
om

b
,O

ff
]

[C
om

b
,O

ff
]

[C
om

b
,O

ff
]

[C
om

b
,O

ff
]

[C
om

b
,O

ff
]

FP
P

ro
b

ab
il

it
y

[0
.1

,
0.

2,
0.

3,
0.

4,
0.

5,
0.

6,
0.

7,
0.

8,
0.

9]
[0

.1
,

0.
2,

0.
3,

0.
4,

0.
5,

0.
6,

0.
7,

0.
8,

0.
9]

0.
2

[0
.2

,0
.8

]
[0

.1
,

0.
2,

0.
3,

0.
4,

0.
5,

0.
6,

0.
7,

0.
8,

0.
9]

FN
P

ro
b

ab
il

it
y

0.
2

0.
2

[0
.1

,
0.

2,
0.

3,
0.

4,
0.

5,
0.

6,
0.

7,
0.

8,
0.

9]
0.

2
0.

2

FP
Pe

n
al

ty
W

ei
gh

t
0

[0
,0

.3
,0

.5
,0

.8
]

0
[0

,0
.3

,0
.5

,0
.8

]
[0

,0
.3

]

T
h

re
sh

ol
d

0.
8

0.
8

0.
8

[0
.2

,0
.4

,0
.6

,0
.8

]
0.

8

D
ir

t
D

is
tr

ib
u

ti
on

U
ni

fo
rm

U
ni

fo
rm

U
ni

fo
rm

U
ni

fo
rm

[U
n

if
or

m
,1

H
ot

sp
ot

,3
H

ot
sp

ot
s]

Sp
aw

n
In

te
rv

al
(s

)
60

60
60

60
60

Si
m

u
la

ti
on

T
im

e
(s

)
27

00
27

00
27

00
27

00
27

00

Se
ed

72
72

72
72

72

N
o

of
R

er
u

n
s

5
5

5
5

5

60

6.3 Experimental Results

6.3.1 Experiment 1: Impact of False Positive Probabilities

In Experiment 1, the impact of varying false positive probabilities of each robot is explored.
The false positive rates for all robots were varied from 0.1 to 0.9. The false positive
probabilities of the robots determine the ratio of false positive tasks to total tasks spawned
for each robot. As mentioned in Section 3.2, the spawn interval for ground truths are kept
as a constant for all of the experiments. The consequence of this design choice is that the
increase of the false positive probability translates into the increase of total number of
tasks in the map. The spawn interval timer of the false positive tasks can be seen from
Equation 6.11. The details of this process can be seen in the Dirt Generator subsection of
Section 3.2.

TFP ,i =
1− pFP ,i
pFP ,i

TT P (6.11)

This experiment is run with 2 robots and the robots have the same false positive
probabilities. This experiment was designed to test H1.1 and H1.2 shown in Table 6.1.
The experiment also aims to answer the RQ.1, “How does changing the false positive
probability of the robots affect KA with SL?”.

In the first part of H1.1, we hypothesized that KA with SL would introduce a perfor-
mance overhead initially. This was hypothesized because KA propagates a dirt as a goal
only after a certain number of observations. This slows down the propagation of the tasks
and therefore should result in a loss in performance. However KA with SL should also
increase accuracy. Thus the second part of H1.1 states that the benefits of KA with SL
should increase as the false positive probability of the robots increase. This hypothesis
is proved in our experimental results as well. Figure 6.1 shows the gain of KA with SL
according to Equation 6.2. Points above the 0-line would indicate benefits of KA with SL
compensates and overcomes the performance overhead.

Figure 6.1: The figure shows gain of KA with SL against the base case of disabled knowledge
aggregation. The gain is calculated using Equation 6.2. If the gain is above the 0-line, that indicates that
KA with SL is more beneficial to the system than the base case. The results show KA with SL introduces
a overhead but this overhead is compensated when the false positive probability increases. This is caused

by the increased accuracy gained by KA with SL.

61

6 Evaluation

The figure shows that the base case is notably better in lower false positive probabilities.
This is caused by the aforementioned performance overhead caused by the KA with SL. As
the false positive probability increases, benefits of KA with SL increases and the line gets
closer to the 0-line. However even in very high false positive probabilities the benefits of
KA with SL due to increased accuracy is not enough to compensate the initial performance
overhead. This result is expected as the false positive penalty or accuracy as an adaptation
goal is not considered for this experiment. The cost of cleaning tasks are zero. This was
changed in Experiment 2.

We also noted a significant spike in false positive probability of 0.5. This spike should
be investigated to eliminate the risks of implementation errors. This behaviour is noted in
the threats to validity part of Section 7.2.

The second hypothesis tested in this experiment states that the average time to complete
a ground truth task fluctuates more as the false positive probabilities of the robots increase.
This was hypothesized for several reasons. The first reason being a higher probability
of false positive dirt generation would indicate a higher level of external uncertainty in
the system. This would result in more unpredictable results, thus a higher spread in the
average time to complete true positives. This is reflected in our experimental results as
well. In Figure 6.2, it is seen that the spread of average time to complete a ground truth
task tend to increase as the false positive probability increases.

Figure 6.2: The figure shows the average time to complete TP tasks tend to increase as the false positive
probability increases. The first case (blue) represents the scenario where KA with SL is used and the

black bars represents the base case. The orange line indicates the median. The results show the spread
tend to increase as the false positive probability increases.

6.3.2 Experiment 2: Impact of False Positive Penalty

For this experiment we reused Experiment 1 with a changed Q-score. As explained
in Section 6.2.3, the Q-score calculation was reworked for this thesis. The new score
functions and the equation to calculate the Q-score can be seen from Equation 6.12. For
Experiment 1, w1 is taken as 1. This results in only the higher_cleaning_rate score function
being used. As explained in Section 6.2.3 and 5.3.3, this is not a realistic adaptation
goal for our model problem. The cleaning is a 0-cost operation in our model problem,
meaning that the robots instantly clean the tasks they touch. However, cleaning or any

62

6.3 Experimental Results

other operation cyber-physical systems perform in the real world usually have high costs.
The operations of a CPS might take a long time to complete or might be expensive. If
a CPS chooses a false positive task over a ground truth, it either wastes a lot of time or
resources to complete an unnecessary or sometimes dangerous operation. Because of
this, accuracy is an important adaptation goal in most real world cyber-physical systems.
As explained in previous subsection, this was represented in our system in a new score
function called lower_error_rate. In this experiment, we change the weights of that score
function to explore how it affects the performance of KA with SL.

The equation to calculate the Q-score is repeated on Equation 6.12 for better readability.

q1(t) =
nT P ,completed
nT P ,spawned

q2(t) = 1−
nFP ,completed
nFP ,spawned

Q(t) = w1 · q1(t) + (1−w1) · q2(t)

(6.12)

In order to evaluate the impact of the false positive penalty, w1 is changed from 1.0 to
0.7, 0.5 and 0.2. This results in the false positive penalty weight (1−w1) of 0, 0.3, 0.5, and
0.8. In H2.1, we hypothesized that the benefits of KA would become more prominent as
the false positive penalty weights increase. This was indeed represented very clearly in
our experimental results. As seen in Figure 6.3, when the false positive penalty weight
increases, the performance of KA with SL increases significantly. This is caused by the
increased accuracy KA with SL brings.

Figure 6.3: The figure shows the Q-score gain of using knowledge aggregation for varying false positive
probabilities with different penalty weights introduced. The gain is calculated by QSL −QNO−SL. The

false positive completion is penalized according to the Q-score calculation in Equation 6.12. The figure
shows the benefit of the knowledge aggregation increases steeply if making errors are penalized.

Another interesting finding is that the false positive penalty weight of 0.3 is the value
that compensates for the performance overhead for our model problem. Any FP penalty
weight over 0.3 results in a scenario where using KA with SL is beneficial for the system.

63

6 Evaluation

This value is used in some of the other experiments to normalize for the performance
overhead.

6.3.3 Experiment 3: Impact of False Negative Probabilities

In Experiment 3, false negative probabilities for all robots were varied in order to investi-
gate the parameter’s impact on the performance of KA with SL (RQ.3). The false negative
probability for the two robots were varied from 0.1 to 0.9. False positive probability was
kept at 0.2, a very low value. False negative tasks are dirts that exist in the world and
should be cleaned but can not be seen by the agent.

The first expectation for this experiment was the fact that the average time to complete
true positive tasks would increase as the false negative probabilities increase with base
case notably faster than the scenario with KA with SL. This is caused by the performance
overhead of the KA with SL. In Figure 6.4, it is seen that the base case performs better
than the case with KA with SL throughout the experiment.

Figure 6.4: The figure shows the average time to complete TP tasks tend to increase as the false negative
probability increases. The first case (blue) represents the scenario where KA with SL is used and the

black bars represents the base case. The orange line indicates the median. The results show that the base
case is better throughout the experiment. This would indicate base case is more suitable for scenarios

where false negative probability is high and false positive probability is low.

Furthermore, the optimal plan of action for cases with high false negative probability
and low false positive probability is to propagate the detected dirts as goals immediately
after the first observation [34]. Because of this reason in H3.1, we hypothesized that KA
with SL is not the optimal plan of action in cases with high false negative probability. In
Figure 6.5, Q-Score at the end of the simulations are shown for the base case and the case
with KA with SL.

64

6.3 Experimental Results

Figure 6.5: The figure shows the final Q-score using KA with SL and the base case. FN probability is
varied for this experiment and the results show a nearly parallel line between the QSL and QBase. This

means that KA with SL is not affected significantly from increasing the FN probability.

The lines are mostly parallel which indicates that KA with SL introduces a performance
overhead but is not affected by the FN probability significantly. This is a surprising result
for us as we expected to see a degration of performance by the KA with SL when the false
negative probabilities increase. This expectation was based on our intuition explained
above for H3.1. This was not reflected in our experimental results, in fact the opposite
was observed. The KA with SL case had a minor increase in performance after 0.6 FN
probability. This might be an artifact of “lucky runs” however the fact that there is an
increase not a decrease in the Q-score should be investigated further.

6.3.4 Experiment 4: Impact of Threshold

For the fourth experiment, the impact of threshold on the performance of KA with SL
was examined (RQ.4). The threshold value is varied between 0.2, 0.4, 0.6, and 0.8. The
experiment is run for false positive probability of 0.2 and 0.8. This experiment is similar
to the one run in Neuss [34] but the 0.5 false positive probability is removed in our case.
This is done to avoid the unexpected spike that happens around 0.5 FP probability that
can be seen in Experiment 1 and Experiment 2.

The threshold is a property of Subjective Logic. As explained in Section 2.2, Subjective
Logic opinions are ordered quadruplets with the notation Ox = (bx,dx,ux, ax). In this
notation bx is the belief mass, dx is the disbelief mass, ux is the uncertainty mass that
represents the vacuity of evidence and ax is the base rate. The details of Subjective Logic
can be found Section 2.2. The threshold value is a threshold of the probability calculated
from the SL opinion. As mentioned in Section 2.2, a SL opinion can be projected into a
probability distribution using Equation 6.13.

P (x) = bx +uxax (6.13)

A threshold of 0.8 would mean only the opinion with P (x) > 0.8 will be propagated as
a goal. Thus, the higher the threshold value goes, the stronger KA with SL is enforced.

65

6 Evaluation

Intuitively, the threshold value can also be interpreted as the number of observation a dirt
needs to get in order to be propagated as a goal. More observations are needed to propagate
a task as a goal when the threshold value is higher. Using this knowledge two hypotheses
were created. H4.1 hypothesizes that the higher threshold values increase accuracy. This
is expected as one of the primary benefits of KA with SL is the increased accuracy. H4.2
hypothesizes that lower threshold values increases the total number of cleaned tasks.
This is also expected as lower threshold values would decrease the performance overhead
caused by KA with SL. Both of these hypotheses are shown to be true in our experimental
results in Table 6.2.

FP Probability Threshold TP Completion Ratio FP Completion Ratio Total Cleaned

0.2

0.2 0.79 0.21 52
0.4 0.79 0.21 53
0.6 0.72 0.28 50
0.8 0.80 0.19 47

0.8

0.2 0.43 0.57 109
0.4 0.46 0.53 125
0.6 0.42 0.57 102
0.8 0.47 0.53 98

Table 6.2: The table shows the false positive probability, the threshold value, number of total cleaned
tasks (TP + FP) and the error ratio of the cleaned dirts.

As seen in Table 6.3, higher threshold values tend to increase the TP completion ratio
while the lower threshold values tend to increase the total number of cleaned dirts. The
next research question (RQ.5) that we had was investigating whether there is an optimal
threshold value that maximizes the number of cleaned TPs. The same experiment was
run with different false positive penalty weights to change the scenarios and see if one
threshold value performs the best for all scenarios.

66

6.3 Experimental Results

Figure 6.6: The figure shows the impact of
threshold values for FP probability 0.2 and 0.8.
The gain is calculated using Equation 6.1. The

image is generated with 0 FP completion
penalty.

Figure 6.7: The figure shows the impact of
threshold values for FP probability 0.2 and 0.8.
The gain is calculated using Equation 6.1. The

image is generated with 0.3 FP completion
penalty.

Figure 6.8: The figure shows the impact of
threshold values for FP probability 0.2 and 0.8.
The gain is calculated using Equation 6.1. The

image is generated with 0.5 FP completion
penalty.

Figure 6.9: The figure shows the impact of
threshold values for FP probability 0.2 and 0.8.
The gain is calculated using Equation 6.1. The

image is generated with 0.8 FP completion
penalty.

As seen in plots in Figure 6.6 - 6.9, the optimal threshold value depends on the scenario
and the adaptation goals. Our experimental results show that the optimal threshold
value depends on the use-case, the uncertainties in the system and the adaptation goals.
For most of the scenarios we tried, medium-to-low threshold values like 0.4 performed
slightly better than the alternatives. Note that all of the experiments are run with a very
high threshold value of 0.8 which is not optimal.

6.3.5 Experiment 5: Impact of Dirt Distribution

For this last experiment, the dirt distribution pattern was modified to see its impact on
KA with SL. Experiment 1 was reused for this experiment as well. The false positive

67

6 Evaluation

Figure 6.10: The figure shows the impact of
different dirt distribution patterns for various
FP probabilities. The gain is calculated using
Equation 6.1. The image is generated with 0

FP completion penalty.

Figure 6.11: The figure shows the impact of
different dirt distribution patterns for various
FP probabilities. The gain is calculated using
Equation 6.1. The image is generated with 0.3

FP completion penalty.

probability was changed between 0.1 and 0.9 and the experiment was repeated for uniform
dirt distribution, all dirts concentrated on 1 hotspot and 3 hotspots. The main hypothesis
tested in this experiment is checking whether more overlap between agents results in a
better knowledge aggregation (H5.1). It was hypothesized that 1 hotspot scenario would
have more overlap, thus result in a better performance for the KA with SL case. However
the experimental results were inconclusive. The Figure 6.10 and 6.11 shows the gain of
KA with SL for different dirt distribution patterns. Values over the dotted 0 line means
KA with SL is performing better than the base case. Figure 6.10 has 0 FP completion
penalty while Figure 6.11 has 0.3 FP completion penalty to compensate for the initial
performance overhead.

As seen in the figures above, the experimental results are inconclusive and can not be
used to prove that better overlap results in more benefits for the KA with SL case. This
hypothesis should be investigated further to make a conclusive statement. The overlap
metric can also be explored via changing the map size. Smaller maps would result in more
overlap between the agents while larger maps would result in less overlap.

6.4 Discussion

Our experimental results mostly validated our hypotheses based on the results of the
previous works [5, 34] and intuition about the potential benefits of KA with SL. As
mentioned in H1.1, we hypothesized that KA with SL introduces a performance overhead
initially. This was shown in the work of Neuss [34] by looking at the average time to
complete TPs. This hypothesis was further proved in our thesis by comparing the results
from an adaptivity perspective by looking at the Q-Scores. We believe this overhead is
mainly caused by the fact that KA with SL uses several observations to propagate a task
as a goal while the base case immediately propagates the task as a goal. This causes the
base case to clear more TPs but more FPs as well. This behaviour is seen in Experiment 4

68

6.4 Discussion

as well. Higher threshold values intuitively means the KA is stronger. The experimental
results show that higher threshold values increase accuracy while decreasing the total
number of cleaned tasks.

Another thing that was tested was how KA with SL performed in scenarios where the
accuracy is a main business concern. In the real world these scenarios can be use-cases
where the operation of the CPS is expensive or dangerous. In Experiment 2, we showed
that when accuracy is a main concern and the completion of FPs are penalized, KA with
SL performs significantly better than the base case. This result is an especially important
finding as it clearly presents a scenario where KA with SL performs significantly better
than the base case.

Our experimental results had surprising findings as well. One of our preliminary
hypothesis was that more overlap between agents should results in better performance of
KA with SL. As more overlap should result in more observation for the same tasks, we
believed it would increase the accuracy and the overall system performance. Experiment
5 was designed to test this hypothesis by changing the dirt distribution to concentrate all
tasks in one or more hotspots. We believed this would increase the overlap between the
agents and 1 hotspot case should perform better than the other cases. However this was
not reflected in the experimental results. In fact the 1 hotspot case on overall resulted in a
worse performance by the KA with SL. This finding should be investigated further. The
overlap hypothesis can be tested further by changing the map size and comparing the
performance of KA with SL on larger maps and smaller maps. According to the overlap
hypothesis the smaller maps should result in a better performance for the KA with SL.

To conclude, our experimental results showed that KA with SL introduces a performance
overhead but compensates and overcomes the overhead if the uncertainty in the system is
high and accuracy is a primary concern.

69

7 Conclusion

To conclude we want to summarize our findings in section 7.1, mention the remaining
issues and threats to validity in section 7.2. Lastly, possible future improvements will be
explained in section 7.3.

7.1 Summary

In this thesis, we explore the benefits and drawbacks of Knowledge Aggregation (KA)
based on Subjective Logic (SL) for a Multi-Agent Self-Adaptive Cyber-Physical System
(MA-SACPS) from a lens of adaptivity. We use the simulated MA-SACPS subsystem
previously implemented by Neuss [34] and several other previous projects. We merged
this MA-SACPS subsystem with the evaluation framework implemented by Bergemann
[5] in order to be able to calculate the adaptivity metric (Q-Score). There were several
challenges encountered during this merging. The details are explained in detail in Section
5.3.

Merging the two subsystems allowed configuring the entire system from a single config-
uration file. Leveraging this, the merged system and all of its dependencies were turned
into a stand-alone Docker container. A new experimental tooling system was developed
around this container to automate the configuration, execution, storage and analysis
steps of the experimentation process. The new tooling system also allows running the
simulations in parallel. In the end, we managed to reduce the required computational
time to run all of the experiments 6 times. This was a result of resource constraints, the
tooling would allow reducing the computational time even further. The new experimental
tooling system is explained in detail in Section 5.4.

After the implementation was done, the evaluation of the impact of KA with SL on
the overall system’s adaptivity started. Five experiments were designed in total. These
experiments are the impact of false positive probability, false positive penalty, false
negative probability, threshold and dirt distribution. The results show that KA with SL
introduces a performance overhead due to the fact that it requires several observations
before a detected dirt can be propagates as a goal. However, the increased accuracy KA
with SL brings can compensate and overcome the overhead in certain scenarios. Our
experimental results show that benefits of KA with SL increase as the false positive
probability (internal uncertainty) increases. Furthermore, KA with SL starts to benefit
the adaptivity and the performance of the system when the completion of false positives
are penalized. By looking at the results, we would state that KA with SL is suitable to be
used in scenarios where high accuracy by the agents are desired. These could be use-cases
where the operation of the CPS is expensive, dangerous or the completion of false positives
are highly undesired due to some reason.

71

7 Conclusion

7.2 Threats to Validity

We have identified several issues that might require attention. They will be addressed in
this section.

• Q-score depends on the computational resources of the computer that is running
the simulation. So the experiments must be run on computers with similar resources
in order to be comparable.

• Changes made during this thesis might break the decoupled structure between
the evaluation framework and the simulators. We only used the realistic simulator
developed by [34], thus the changes we introduced are only tested for that subsys-
tem. We have reason to believe the support for the custom simulator developed
by [45] might be broken due to using GoalObjects instead of DirtObjects in the
global_dirt_generator node of the evaluation framework. The changes are doc-
umented in the code, the support for the custom simulator can be restored with
minimal effort by looking at the documentation in the code.

• We encountered several unexpected bumps and drops in the Q-score graph, the
most significant one being the rise at false positive probability 0.5 and the drop at
false positive probability 0.6 in Experiment 1. This pattern exists with different dirt
seeds and when repeating the same seed multiple times. This behaviour should be
examined.

• Currently completion of false positive dirts are penalized in the Q-score by adding a
new score function that calculates the ratio of completed false positive dirts over
the number of spawned false positive dirts. Even though this can be seen as an
acceptable way of penalizing false positives, a better way exists. Adding a waiting
period after the completion of each dirt achieves the same result and represents the
cost of the cleaning operation better. This was not done in the scope of this thesis
due to technical limitations.

7.3 Future Work

There are several aspects this work can be extended. The envisioned improvements can
be summarized in three categories, improvements on the ROS-based implementation,
improvements on the new tooling and extending the experimentations.

The MA-SACPS subsystem we used in this thesis is open to many improvements. It
would be very interesting to add a modifiable waiting time to the dirt cleaning operation.
This would open the possibility of evaluation the self-adaptive behaviour of the system
in relation to the cost of the operation. This was done via the modified Q-score (section
5.2.3) in this thesis but the waiting time would be a better alternative. Another interesting
improvement would be adding the so-called overlap metric. This would be a numerical
value that represents how much the robots’ sensors are overlapping with each other. This
would be a very interesting metric to have as it was hypothesized that the amount of
overlap the robots have should impact the performance of the knowledge aggregation

72

7.3 Future Work

greatly. Another beneficial addition to this research would be adopting the newest
formalism of adaptivity based on the series expansion made by Petrovska [37].

The newly implemented tooling can be improved greatly as well. The tooling system
currently does not have a very user friendly configuration interface. Everything is done
via config files and shell scripts. However it would be very useful to have a web interface
to configure and monitor the experiments. The current implementation allows for this via
the endpoints it exposes however the implementation of this web interface was not in the
scope of this thesis. Individual components of the tooling can be improved as well. For
example the task queue can be converted into a priority queue to allow prioritizing which
experiments are run first. The docker containers sometimes get stuck during running the
ROS simulation. Currently these containers have to be restarted manually. A heartbeat
like signal can be published throughout the experiment and stuck containers can be
restarted automatically by looking at this signal.

Lastly, the experiments can be extended to investigate a wider parameter space. Chang-
ing the map and evaluate how it affects the performance of the knowledge aggregation
from an adaptivity perspective would be especially interesting. Different map sizes and
map layouts with more open spaces or more corridors can be tested. Changing the robot
number would open up noteworthy research questions as well.

73

List of Figures

1.1 The figure aims to show how this thesis fits in the bigger picture of closing
the gaps in SAS literature. The main overarching theme between all of the
predecessors of this thesis is the formalisms of system adaptivity and the
model problem proposed by Petrovska [37]. This implementation of the
model problem is done by various projects and theses of the same group. In
parallel the measure of system adaptivity (Q-score) was proposed by Petro-
vska [37] and implemented in the evaluation framework by Bergemann
[5]. This thesis combines both systems to evaluate the impact of knowledge
aggregation with SL on the model problem from a lens of adaptivity. 2

2.1 The figure shows the different components of the MAPE-K approach for
self-adaptation. The adaptation logic consists of the closed-feedback loop
of MAPE and the shared knowledge. M stands for Monitoring, A stands
for Analyzing, P stands for Planning and E stands for Executing. K or the
Knowledge is shared between all of the components. The managed element
can be seen as the CPS, while the context is the environment in which this
CPS exists in. Adopted from [46] . 5

2.2 The figure shows the flow of the Master-Slave pattern of the MAPE-K
feedback loop. Adopted from [48] . 6

2.3 The figure shows the evolution of the system functions sft over time. The
system functions converge toward a limit ` and with the threshold ε. Be-
cause the system functions converges towards a limit, this system is deemed
adaptive. 8

2.4 Visualization of a binomial subjective opinion using a barycentric coordi-
nate system on an equilateral triangle. Adopted from [25] 9

2.5 The figure shows the combination aggregation scheme outperforms CCF
and CBF operators for our use-case described in Section 3.1. Number
of completed task slowdown for the CCF and CBF operators while the
combination aggregation scheme’s performance does not degrade over
time. Adopted from [34] . 11

3.1 The figure shows the model problem as seen from the Gazebo simulator
view. The map is separated into rooms with the use of walls. Red cylinders
represents the detected dirts and the blue cylinders are dirts that are not
yet detected. Black TurtleBot robots traverse the map in order to detect and
clean the dirts. Taken from Bergemann [5]. 13

3.2 The figure shows the difference between the unaltered measurement of
the LiDAR sensor and the measurement after the Gaussian error is added.
The figure on the left is the unaltered measurement and the figure on the
right is the measurement with the Gaussian noiseN (µ = 0.022,σ = 0.02).
Adopted from Neuss [34] . 14

75

List of Figures

3.3 ROS nodes of the simulator. Adopted from Neuss [34] 15

3.4 The right-side shows the high-resolution map as seen in Gazebo. Left-side
shows the low-resolution context model that holds the locations of the
obstacles and the dirts. Adopted from Neuss [34] 16

3.5 The figure (a) shows the original schedule of the robot. In figure (b) a
new goal (green square) is detected and the possible paths are calculated
(blue path and the orange path). The path that has the lower cost will be
determined as the ’bid’ and sent to the Bidder node. Adopted from Neuss [34] 18

3.6 High level view of the previous state of the combined system. The image
shows how the ROS-nodes of the MA-SACPS and the evaluation framework
intersect. Modified the image taken by Petrovska et al. [38] 20

3.7 The left-most map has the uniform dirt distribution enabled. Each cell has
the same probability of being chosen for spawning the new dirt. The middle
and the right-most images has non-uniform dirt distribution. The right-
most map has one hotspot located in the bottom left corner of the map,
while the middle map has several hotspots. Figure taken from Bergemann [5]. 22

4.1 The figure shows the result of a survey done to researchers in adaptivity
research. The majority of the researchers believe uncertainties have to be
handled in both design phase and the run-time phase. Taken from [20] . . 26

5.1 A sample transformed map created by the evaluation framework and stored
in the evaluation_output folder. Implemented by Bergemann [5] 29

5.2 A sample plot created by the evaluation framework that shows the evolution
of the Q-score. Implemented by Bergemann [5] 30

5.3 ROS nodes of the merger between evaluation framework and the MA-
SACPS. The filled blue star implies the node was added during this thesis.
The outlined blue stars implies a previously created node was modified.
Modified the original image taken from Petrovska et al. [38] 31

5.4 The diagram shows the sequence of the actions that runs during the config-
uration of the experiments. This sequence runs whenever the user executes
the experiment designer script . 40

5.5 The diagram shows the sequence of the actions that runs during the exe-
cution of the experiments. This sequence is triggered whenever a worker
container restarts. The worker containers are configured to restart when-
ever a simulation is finished, so this sequence runs continuously. 40

5.6 A Google Cloud Storage bucket showing different simulation results being
stored. Each folder contains the evaluation_output folder compressed with
the name results.tar.gz and the respective parameters.yaml configuration
file for that run. 45

5.7 View of the task queue in the Google Firestore web dashboard showing
different simulation labels that will be executed by the worker containers . 48

76

List of Figures

5.8 The diagram shows the sequence of running the experiments using the
analysis subsystem. First the user downlaods the folder containing all
of the simulation results from the Cloud Storage. Then they run the ex-
tract_simulations.sh shell script shown in Listing 5.17. Finally the user
runs the plots.py to evaluate the results and generate the plots. 50

6.1 The figure shows gain of KA with SL against the base case of disabled
knowledge aggregation. The gain is calculated using Equation 6.2. If the
gain is above the 0-line, that indicates that KA with SL is more beneficial to
the system than the base case. The results show KA with SL introduces a
overhead but this overhead is compensated when the false positive prob-
ability increases. This is caused by the increased accuracy gained by KA
with SL. 61

6.2 The figure shows the average time to complete TP tasks tend to increase as
the false positive probability increases. The first case (blue) represents the
scenario where KA with SL is used and the black bars represents the base
case. The orange line indicates the median. The results show the spread
tend to increase as the false positive probability increases. 62

6.3 The figure shows the Q-score gain of using knowledge aggregation for vary-
ing false positive probabilities with different penalty weights introduced.
The gain is calculated by QSL −QNO−SL. The false positive completion is
penalized according to the Q-score calculation in Equation 6.12. The figure
shows the benefit of the knowledge aggregation increases steeply if making
errors are penalized. 63

6.4 The figure shows the average time to complete TP tasks tend to increase as
the false negative probability increases. The first case (blue) represents the
scenario where KA with SL is used and the black bars represents the base
case. The orange line indicates the median. The results show that the base
case is better throughout the experiment. This would indicate base case
is more suitable for scenarios where false negative probability is high and
false positive probability is low. 64

6.5 The figure shows the final Q-score using KA with SL and the base case.
FN probability is varied for this experiment and the results show a nearly
parallel line between the QSL and QBase. This means that KA with SL is not
affected significantly from increasing the FN probability. 65

6.6 The figure shows the impact of threshold values for FP probability 0.2 and
0.8. The gain is calculated using Equation 6.1. The image is generated with
0 FP completion penalty. 67

6.7 The figure shows the impact of threshold values for FP probability 0.2 and
0.8. The gain is calculated using Equation 6.1. The image is generated with
0.3 FP completion penalty. 67

6.8 The figure shows the impact of threshold values for FP probability 0.2 and
0.8. The gain is calculated using Equation 6.1. The image is generated with
0.5 FP completion penalty. 67

77

6.9 The figure shows the impact of threshold values for FP probability 0.2 and
0.8. The gain is calculated using Equation 6.1. The image is generated with
0.8 FP completion penalty. 67

6.10 The figure shows the impact of different dirt distribution patterns for
various FP probabilities. The gain is calculated using Equation 6.1. The
image is generated with 0 FP completion penalty. 68

6.11 The figure shows the impact of different dirt distribution patterns for
various FP probabilities. The gain is calculated using Equation 6.1. The
image is generated with 0.3 FP completion penalty. 68

List of Listings

3.1 The configuration line in parameters.yaml that allows changing the resolu-
tion of the map . 21

3.2 The parameter in parameters.yaml that is used to configure the positions
and the spreads of the hotspots used for non-uniform dirt distribution. The
x and y fields are used as the mean of the normal distribution while the
spread field is used as the standard deviation. 22

5.1 Spawn intervals are added to the Global Dirt Generator ROS node to
allow false positive dirt generation . 33

5.2 A snapshot of list of the existing dirts is taken to avoid the crash 33
5.3 DirtObject used in global_dirt_generator.py is changed to GoalObject . . . 34
5.4 __spawn_dirt function of the Dirt Generator node is reused to handle

adding the dirts coming from the evaluation framework into Gazebo 35
5.5 function_0 from [5] is used to calculate the ratio of completed ground truths 36
5.6 A new score function, function_7, is created to calculate the false positive

completion penalty . 36
5.7 New ROS publisher in the Goal Manager publishes a GoalObject whenever

a goal is attained. 37
5.8 The subscriber callback function that increments a counter whenever the

received goal is a ground truth. The counter is published for the use of the
evaluation framework score functions . 37

5.9 The parameters.yaml configuration line that is used to configure the abso-
lute path to the simulator launch file . 41

5.10 The bash script that orchestrates the operations that run inside the worker
container. The script runs when the Docker container is booted up. The
script handles authentication, querying the Task Queue, downloading the
parameters.yaml file, executing the simulation, compressing and uploading
the generated results . 42

78

List of Listings

5.11 The Dockerfile that creates the automatic Docker image that runs run_sim.sh
whenever it is loaded. As seen in the snippet different versions of the base
image can be used to create the final image. For this sample, v3.0 of the
base image was used. The versioning is explained in detail in subsection 5.4.9 43

5.12 The first command is used to build the Docker image that runs the run_sim.sh
automatically. That command should be called from the directory of the
Dockerfile. The second command pushes the created Docker image to
DockerHub to be versioned. The versioned image can be pulled from any
computer connected to the Internet. 43

5.13 The command that is used to start and run the worker containers continuously. 43
5.14 A sample experiment_designer config file that modifies the false negative

probabilities of the two robots at the same time 47
5.15 /add endpoint of the Firebase task queue. Used for adding a new simulation

task to the task queue. 49
5.16 /take endpoint of the Firebase task queue. Used for taking a task label from

the queue. The returned label is removed from the task queue. 49
5.17 The script that extracts the downloaded results tarball. The script renames

the necessary files to the naming format used by the analysis script and
copies them to the required folders . 51

6.1 The configuration field in the paramters.yaml file that allows changing the
desired minimum cleaned ratio . 55

A.1 The configuration field in the parameters.yaml file for the no_crashes
business goal. 85

A.2 The configuration field in the parameters.yaml file for the minimum_cleaned
business goal. 85

A.3 The configuration field in the parameters.yaml file for the higher_cleaning_rate
adaptation goal. 85

A.4 The configuration field in the parameters.yaml file for the shorter_dirt_existence
adaptation goal. 86

A.5 The configuration field in the parameters.yaml file for the higher_detection
adaptation goal. 86

A.6 The configuration field in the parameters.yaml file for the less_distance
adaptation goal. 86

A.7 The configuration field in the parameters.yaml file for the lower_error_rate
adaptation goal. 87

A.8 The config.json file used to configure the Subjective Logic enabled sub-
experiment of Experiment 1 . 87

A.9 The config.json file used to configure the Subjective Logic enabled sub-
experiment of Experiment 1 . 88

A.10 The config.json file used to configure the Subjective Logic disabled sub-
experiment of Experiment 1 . 88

79

A.11 The config.json file used to configure the Subjective Logic enabled sub-
experiment of Experiment 3 . 89

A.12 The config.json file used to configure the 0.2 false positive probability and
Subjective Logic enabled sub-experiment of Experiment 4 90

A.13 The config.json file used to configure the 0.2 false positive probability and
Subjective Logic disabled sub-experiment of Experiment 4 91

A.14 The config.json file used to configure the 0.5 false positive probability and
Subjective Logic enabled sub-experiment of Experiment 4 92

A.15 The config.json file used to configure the 0.5 false positive probability and
Subjective Logic disabled sub-experiment of Experiment 4 92

A.16 The config.json file used to configure the 0.8 false positive probability and
Subjective Logic enabled sub-experiment of Experiment 4 93

A.17 The config.json file used to configure the 0.8 false positive probability and
Subjective Logic disabled sub-experiment of Experiment 4 94

A.18 The config.json file used to configure the 1 hotspot sub-experiment of
Experiment 5. Used with the change in the template parameters.yaml file
in Listing A.7 . 94

A.19 The changed line in the template parameters.yaml file of the experiment
designer. Used with the config.json in Listing A.6 95

A.20 The config.json file used to configure the 1 hotspot sub-experiment of
Experiment 5. Used with the change in the template parameters.yaml file
in Listing A.9 . 95

A.21 The changed line in the template parameters.yaml file of the experiment
designer. Used with the config.json in Listing A.8 96

List of Tables

6.1 The table shows the summary of hypotheses derived from the research
questions presented in List 6.1. The first column indicates the research
question, the second column shows the explored hypotheses derived from
that research question. The third column indicates the name of the per-
formed to explore the hypotheses. The details of the experiments can be
found in the subsections in Section 6.3. 54

6.2 The table shows the false positive probability, the threshold value, number
of total cleaned tasks (TP + FP) and the error ratio of the cleaned dirts. . . 66

80

Bibliography

[1] F. Amar, C. Grand, and G. Besseron. “Performance evaluation of locomotion modes
of an hybrid wheel-legged robot for self-adaptation to ground conditions”. In: 8th
ESA Workshop on Advanced Space Technologies for Robotics and Automation, ASTRA
2004 (2004).

[2] K. Angelopoulos, A. Papadopoulos, and V. Souza. “Model predictive control for
software systems with CobRA”. In: Proceedings - 11th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2016 (2016).

[3] L. Baresi, L. Pasquale, and P. Spoletini. “Fuzzy goals for requirements-driven adap-
tation”. In: 2010 18th IEEE International Requirements Engineering Conference (2010).

[4] T. Beffart, K. Hawryluk, and R. C. Medina. SSACPS Praktikum Team 1: Approach
Description. Chair of Software and System Engineering, 2019.

[5] S. Bergemann. “Evaluation Framework for a Self-Adative Cyber-Physical System on
an Example of a Multi-Robot System”. MA thesis. Technische Universität München,
Mar. 2021.

[6] N. Bouzid. “Evaluating the Impact of the Base Rate in Knowledge Aggregation with
Subjective Logic in Multi-Agent Self-Adaptive Cyber-Physical Systems”. In: (Nov.
2021).

[7] Y. Brun, G. Serugendo, C. Gacek, H. Giese, H. Kienle, et al. “Engineering self-
adaptive systems through feedback loops”. In: Software engineering for self-adaptive
systems (2009).

[8] B. Cheng, P. Sawyer, N. Bencomo, and J. Whittle. “A goal-based modeling approach
to develop requirements of an adaptive system with environmental uncertainty”. In:
International Conference on Model Driven Engineering Languages and Systems (2009).

[9] S. Cheng, D. Garlan, and B. Schmerl. “Architecture-based self-adaptation in the
presence of multiple objectives”. In: (2006).

[10] S. Cheng, D. Garlan, and B. Schmerl. “Evaluating the effectiveness of the rain-
bow self-adaptive system”. In: Proceedings of the 2009 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS 2009 (2009).

[11] DockerHub. url: https://www.docker.com/products/docker-hub (visited on
01/15/2022).

[12] A. Filieri, C. Ghezzi, and A. Leva. “Self-adaptive software meets control the-
ory: A preliminary approach supporting reliability requirements”. In: 2011 26th
IEEE/ACM International Conference on Automated Software Engineering, ASE 2011,
Proceedings (2011).

[13] Firebase. url: https://firebase.google.com/docs (visited on 01/28/2022).

[14] D. Garlan and S. C. B. Schmerl. “Software architecture-based self-adaptation”. In:
Autonomic Computing and Networking (2009).

81

https://www.docker.com/products/docker-hub
https://firebase.google.com/docs

Bibliography

[15] D. Garlan, S. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste. “Rainbow:
Architecture-based self-adaptation with reusable infrastructure”. In: Computer
(2004).

[16] S. Gerasimou, R. Calinescu, and S. Shevtsov. “UNDERSEA: An Exemplar for En-
gineering Self-Adaptive Unmanned Underwater Vehicles”. In: Proceedings - 2017
IEEE/ACM 12th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, SEAMS 2017 (2017).

[17] I. Gerostathopoulos, T. Vogel, D. Weyns, and P. Lago. “How do we Evaluate Self-
adaptive Software Systems?” In: (2021).

[18] Google Cloud Platform. url: https : / / cloud . google . com / docs (visited on
01/28/2022).

[19] R. Heijden, H. Kopp, and F. Kargl. “Multi-Source Fusion Operations in Subjective
Logic”. In: 2018 21st International Conference on Information Fusion, FUSION 2018
(2018). doi: 10.23919/ICIF.2018.8455615.

[20] S. Hezavehi, D. Weyns, P. Avgeriou, R. Calinescu, R. Mirandola, et al. “Uncertainty
in Self-adaptive Systems: A Research Community Perspective”. In: ACM Transactions
on Autonomous and Adaptive Systems (Dec. 2021).

[21] G. Hoffman and C. Breazeal. “Effects of anticipatory perceptual simulation on
practiced human-robot tasks”. In: Autonomous Robots (2010).

[22] M. Iftikhar, G. Ramachandran, and P. Bollansée. “DeltaIoT: A Self-Adaptive Internet
of Things Exemplar”. In: Proceedings - 2017 IEEE/ACM 12th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2017 (2017).

[23] P. Jamshidi, J. Camara, and B. Schmerl. “Machine learning meets quantitative
planning: Enabling self-adaptation in autonomous robots”. In: ICSE Workshop on
Software Engineering for Adaptive and Self-Managing Systems (2019).

[24] A. Josang. “A Logic for Uncertain Probabilities”. In: International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems 3 (2001).

[25] A. Josang. Subjective Logic. Springer International Publishing Switzerland, 2016.
isbn: 978-3-319-42335-7. doi: 10.1007/978-3-319-42337-1.

[26] A. Josang, D. Wang, and J. Zhang. “Multi-source fusion in subjective logic”. In: 20th
International Conference on Information Fusion, Fusion 2017 - Proceedings) (2017).
doi: 10.23919/ICIF.2017.8009820.

[27] J. Kephart and D. Chess. “The vision of autonomic computing”. In: Computer (2003).

[28] S. Kugele, A. Petrovska, and I. Gerostathopoulos. “Towards a taxonomy of au-
tonomous systems”. In: European Conference on Software Architecture. Springer,
2021.

[29] R. Lemos, D. Garlan, and C. Ghezzi. “Software engineering for self-adaptive systems:
research challenges in the provision of assurances”. In: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) (2017).

82

https://cloud.google.com/docs
https://doi.org/10.23919/ICIF.2018.8455615
https://doi.org/10.1007/978-3-319-42337-1
https://doi.org/10.23919/ICIF.2017.8009820

Bibliography

[30] R. Lemos, H. Giese, and H. Müller. “Software engineering for self-adaptive sys-
tems: A second research roadmap”. In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
(2013).

[31] V. Matena, T. Bures, and I. Gerostathopoulos. “Model problem and testbed for
experiments with adaptation in smart cyber-physical systems”. In: Proceedings -
11th International Symposium on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS 2016 (2016).

[32] G. Moreno, C. Kinneer, and A. Pandey. “DARTSim: An exemplar for evaluation
and comparison of self-adaptation approaches for smart cyber-physical systems”.
In: ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems
(2019).

[33] M. Neuss, S. Bergemann, and M. Büchner. SSACPS Praktikum Team 2: Approach
Description. Chair of Software and System Engineering, 2019.

[34] M. Neuss. “Run-Time Reasoning and Solving Conflicting Observations with Sub-
jective Logic in Multi-Agent Self-Adaptive Cyber-Physical Systems”. MA thesis.
Technische Universität München, Dec. 2020.

[35] P. Oreizy, M. Gorlick, R. Taylor, D. Heimhigner, G. Johnson, et al. “An architecture-
based approach to self-adaptive software”. In: IEEE Intelligent Systems and Their
Applications (1999).

[36] A. Petrovska. “Is every system a self-adaptive system? A critical reflection. Under
review”. In: (2022).

[37] A. Petrovska, S. Kugele, T. Hutzelmann, T. Beffart, S. Bergemann, et al. “Defining
Adaptivity and Logical Architecture for Engineering (Smart) Self-Adaptive Cyber-
Physical Systems”. 2022.

[38] A. Petrovska, S. Quijano, I. Gerostathopoulos, and A. Pretschner. “Knowledge
Aggregation with Subjective Logic in Multi-Agent Self-Adaptive Cyber-Physical
Systems”. In: (Oct. 2020). doi: 10.1145/3387939.3391600.

[39] M. Provoost and D. Weyns. “DingNet: A self-adaptive internet-of-things exemplar”.
In: ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems
(2019).

[40] S. Quijano. “Runtime Multi-Agent Knowledge Aggregation with Subjective Logic in
Self-Adaptive Cyber-Physical Systems”. MA thesis. Technische Universität München,
Nov. 2019.

[41] A. Ramirez, A. Jensen, and B. Cheng. “A taxonomy of uncertainty for dynamically
adaptive systems”. In: 2012 7th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS (2012).

[42] S. Schmid, I. Gerostathopoulos, and C. Prehofer. “Self-Adaptation Based on Big
Data Analytics: A Model Problem and Tool”. In: Proceedings - 2017 IEEE/ACM 12th
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS 2017 (2017).

83

https://doi.org/10.1145/3387939.3391600

Bibliography

[43] G. Shafer. “A mathematical theory of evidence”. In: Princeton University Press (1976).

[44] N. Villegas, H. Müller, and G. Tamura. “A framework for evaluating quality-driven
self-adaptive software systems”. In: Proceedings - International Conference on Software
Engineering (2011).

[45] J. Weick. “Realization of Adaptive System Transitions for Smart Self-Adaptive
Cyber-Physical Systems using a Modular Approach with Learned Parameters on
an Example of Multi-Robot Collaboration”. MA thesis. Technische Universität
München, July 2020.

[46] D. Weyns. “Software Engineering of Self-Adaptive Systems: An Organised Tour and
Future Challenges”. In: Handbook of Software Engineering (2017).

[47] D. Weyns and T. Ahmad. “Claims and evidence for architecture-based self-
adaptation: A systematic literature review”. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics) (2013).

[48] D. Weyns and V. G. B. Schmerl. “On patterns for decentralized control in self-
adaptive systems”. In: Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2013).

[49] D. Weyns and R. Calinescu. “Tele Assistance: A Self-Adaptive Service-Based System
Exemplar”. In: Proceedings - 10th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS 2015 (2015).

[50] D. Weyns, B. Schmerl, and V. Grassi. “On patterns for decentralized control in
self-adaptive systems”. In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2013).

[51] J. Yoon, T. Shiratori, and S. Yu. “Self-supervised adaptation of high-fidelity face
models for monocular performance tracking”. In: Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (2019).

[52] S. Yousfi. “Design and Implementation of ROS-Based Simulated Multi-Robot Sys-
tems for Data Collection”. MA thesis. Technische Universität München, 2018.

[53] Z. Zhu and H. Hu. “Robot learning from demonstration in robotic assembly: A
survey”. In: (2018).

84

A Additional Code Snippets

This chapter will present some of the code snippets used throughout the thesis.

A.1 Score Functions

A.1.1 Configuration

1 # parameters.yaml
2

3 no_crashes: {
4 type: "mission_goal",
5 function_index: 4,
6 variables: {
7 input_to_check: "robot_crashes",
8 threshold: 0
9 },

10 description: "No robot should crash at all."
11 }

Listing A.1: The configuration field in the parameters.yaml file for the no_crashes business goal.

1 # parameters.yaml
2

3 minimum_cleaned: {
4 type: "mission_goal",
5 function_index: 5,
6 variables: {
7 input_to_check: "finished_dirt_number",
8 offset: 0,
9 aim: "spawned_dirt_number",

10 factor: 0.1,
11 start_requirement: 5
12 }
13 }

Listing A.2: The configuration field in the parameters.yaml file for the minimum_cleaned business
goal.

1 # parameters.yaml
2

3 higher_cleaning_rate: {
4 type: "adaptation_goal",
5 weight: 0.9,
6 function_index: 0,
7 variables: {
8 portion_number: "finished_goal_gt_number",
9 total_amount: "spawned_goal_gt_number"

10 }
11 }

85

A Additional Code Snippets

Listing A.3: The configuration field in the parameters.yaml file for the higher_cleaning_rate
adaptation goal.

1 # parameters.yaml
2

3 shorter_dirt_existence: {
4 type: "adaptation_goal",
5 weight: 0.2,
6 function_index: 6,
7 variables: {
8 portion_number: "actual_dirt_existence_time",
9 total_amount: "theoretical_dirt_existence_time"

10 }
11 }

Listing A.4: The configuration field in the parameters.yaml file for the shorter_dirt_existence
adaptation goal.

1 # parameters.yaml
2

3 higher_detection: {
4 type: "adaptation_goal",
5 weight: 0.2,
6 function_index: 0,
7 variables: {
8 portion_number: "detected_dirt_number",
9 total_amount: "spawned_dirt_number"

10 },
11 description: "The more dirt is detected , the better it is."
12 }

Listing A.5: The configuration field in the parameters.yaml file for the higher_detection adaptation
goal.

1

2 # parameters.yaml
3

4 less_distance: {
5 type: "adaptation_goal",
6 weight: 0.1,
7 function_index: 3,
8 variables: {
9 traveled_distance: "traveled_distance_total",

10 elapsed_time: "theoretical_elapsed_time",
11 max_possible_velocity: "parameter:robot_max_velocity",
12 robot_count: "parameter:sim_no_of_robots"
13 },
14 }

Listing A.6: The configuration field in the parameters.yaml file for the less_distance adaptation
goal.

86

A.1 Score Functions

1 # parameters.yaml
2

3 lower_error_rate: {
4 type: "adaptation_goal",
5 weight: 0.1,
6 function_index: 7,
7 variables: {
8 gt_finished: "finished_goal_gt_number",
9 total_finished: "finished_dirt_number",

10 total_spawned: "spawned_dirt_number",
11 gt_spawned: "spawned_goal_gt_number"
12 },
13 }

Listing A.7: The configuration field in the parameters.yaml file for the lower_error_rate adaptation
goal.

A.1.2 Implementation

1 # config.json
2

3 {
4 "experiment_name": "experiment1/sl",
5 "run_prefix": "fpp",
6 "simulation_time": 2700,
7 "seed": [72],
8 "use_sl": true ,
9 "sl_operator": "Comb.",

10 "adaptive_scheduling": true ,
11 "dirt_use_uniform_distr": true ,
12 "spawn_interval": 60,
13 "variables": [
14 {
15 "name": "robot_0_fpp",
16 "values": [0.1, 0.2, 0.3, 0.4,
17 0.5, 0.6, 0.7, 0.8, 0.9],
18 "sim": false
19 },
20 {
21 "name": "robot_1_fpp",
22 "values": [0.1, 0.2, 0.3, 0.4,
23 0.5, 0.6, 0.7, 0.8, 0.9],
24 "sim": false
25 }
26]
27 }

Listing A.8: The config.json file used to configure the Subjective Logic enabled sub-experiment of
Experiment 1

87

A Additional Code Snippets

A.2 Experiment Configuration Files

This section contains the config.json configuration used for the experiments in Section 6.
These config.json files can be reused to duplicate the experiments.

A.2.1 Experiment 1 - Impact of False Positive Probability

This experiment was divided into two subexperiments. Both sub-experiments have the
same configuration except one of them has SL enabled and the other has SL disabled.

1 # config.json
2

3 {
4 "experiment_name": "experiment1/sl",
5 "run_prefix": "fpp",
6 "simulation_time": 2700,
7 "seed": [72],
8 "use_sl": true ,
9 "sl_operator": "Comb.",

10 "adaptive_scheduling": true ,
11 "dirt_use_uniform_distr": true ,
12 "spawn_interval": 60,
13 "variables": [
14 {
15 "name": "robot_0_fpp",
16 "values": [0.1, 0.2, 0.3, 0.4,
17 0.5, 0.6, 0.7, 0.8, 0.9],
18 "sim": false
19 },
20 {
21 "name": "robot_1_fpp",
22 "values": [0.1, 0.2, 0.3, 0.4,
23 0.5, 0.6, 0.7, 0.8, 0.9],
24 "sim": false
25 }
26]
27 }

Listing A.9: The config.json file used to configure the Subjective Logic enabled sub-experiment of
Experiment 1

1 # config.json
2

3 {
4 "experiment_name": "experiment1/no-sl",
5 "run_prefix": "fpp",
6 "simulation_time": 2700,
7 "seed": [72],
8 "use_sl": false ,
9 "sl_operator": "Comb.",

10 "adaptive_scheduling": true ,
11 "dirt_use_uniform_distr": true ,
12 "spawn_interval": 60,

88

A.2 Experiment Configuration Files

13 "variables": [
14 {
15 "name": "robot_0_fpp",
16 "values": [0.1, 0.2, 0.3, 0.4,
17 0.5, 0.6, 0.7, 0.8, 0.9],
18 "sim": false
19 },
20 {
21 "name": "robot_1_fpp",
22 "values": [0.1, 0.2, 0.3, 0.4,
23 0.5, 0.6, 0.7, 0.8, 0.9],
24 "sim": false
25 }
26]
27 }

Listing A.10: The config.json file used to configure the Subjective Logic disabled sub-experiment of
Experiment 1

A.2.2 Experiment 2 - Impact of False Positive Penalty

The same config.json file as the Experiment 1 was used. The weights to calculate the
Q-score was changed at the analysis step. This was possible as the results.csv generated
by the evaluation framework stores the values of each score function.

A.2.3 Experiment 3 - Impact of False Negative Probability

This experiment was divided into two sub-experiments as well. Similar to Experiment 1,
one sub-experiment has SL enabled and the other one has SL disabled. The config.json
files used to replicate the experiments can be found below.

1 # config.json
2

3 {
4 "experiment_name": "experiment -3/sl",
5 "run_prefix": "fnp",
6 "simulation_time": 2700,
7 "seed": [72],
8 "use_sl": true ,
9 "sl_operator": "Comb.",

10 "adaptive_scheduling": true ,
11 "dirt_use_uniform_distr": true ,
12 "spawn_interval": 60,
13 "variables": [
14 {
15 "name": "robot_0_fnp",
16 "values": [0.1, 0.2, 0.3, 0.4,
17 0.5, 0.6, 0.7, 0.8, 0.9],
18 "sim": false
19 },
20 {
21 "name": "robot_1_fnp",

89

A Additional Code Snippets

22 "values": [0.1, 0.2, 0.3, 0.4,
23 0.5, 0.6, 0.7, 0.8, 0.9],
24 "sim": false
25 }
26]
27 }
28

29 \begin{lstlisting }[caption ={The config.json file used to configure the
Subjective Logic disabled sub -experiment of Experiment 3}, captionpos
=b]

30 # config.json
31

32 {
33 "experiment_name": "experiment -3/no-sl",
34 "run_prefix": "fnp",
35 "simulation_time": 2700,
36 "seed": [72],
37 "use_sl": false ,
38 "sl_operator": "Comb.",
39 "adaptive_scheduling": true ,
40 "dirt_use_uniform_distr": true ,
41 "spawn_interval": 60,
42 "variables": [
43 {
44 "name": "robot_0_fnp",
45 "values": [0.1, 0.2, 0.3, 0.4,
46 0.5, 0.6, 0.7, 0.8, 0.9],
47 "sim": false
48 },
49 {
50 "name": "robot_1_fnp",
51 "values": [0.1, 0.2, 0.3, 0.4,
52 0.5, 0.6, 0.7, 0.8, 0.9],
53 "sim": false
54 }
55]
56 }

Listing A.11: The config.json file used to configure the Subjective Logic enabled sub-experiment of
Experiment 3

A.2.4 Experiment 4 - Impact of Threshold

This experiment was divided into six sub-experiments to configure in the experiment
designer tool. These are false positive probability of 0.2, 0.5 and 0.8. Also each part is run
with SL enabled and SL disabled.

1 # config.json
2

3 {
4 "experiment_name": "experiment4/fpp02/sl",
5 "run_prefix": "sl_threshold",
6 "simulation_time": 2700,

90

A.2 Experiment Configuration Files

7 "seed": [72],
8 "use_sl": true ,
9 "sl_operator": "Comb.",

10 "adaptive_scheduling": true ,
11 "dirt_use_uniform_distr": true ,
12 "spawn_interval": 60,
13 "variables": [
14 {
15 "name": "sl_threshold",
16 "values": [20, 40, 60, 80],
17 "sim": true
18 },
19 {
20 "name": "robot_0_fpp",
21 "values": [0.2 ,0.2 ,0.2 ,0.2] ,
22 "sim": false
23 },
24 {
25 "name": "robot_1_fpp",
26 "values": [0.2 ,0.2 ,0.2 ,0.2] ,
27 "sim": false
28 }
29]
30 }

Listing A.12: The config.json file used to configure the 0.2 false positive probability and Subjective
Logic enabled sub-experiment of Experiment 4

1 # config.json
2

3 {
4 "experiment_name": "experiment4/fpp02/no-sl",
5 "run_prefix": "sl_threshold",
6 "simulation_time": 2700,
7 "seed": [72],
8 "use_sl": false ,
9 "sl_operator": "Comb.",

10 "adaptive_scheduling": true ,
11 "dirt_use_uniform_distr": true ,
12 "spawn_interval": 60,
13 "variables": [
14 {
15 "name": "sl_threshold",
16 "values": [20, 40, 60, 80],
17 "sim": true
18 },
19 {
20 "name": "robot_0_fpp",
21 "values": [0.2 ,0.2 ,0.2 ,0.2] ,
22 "sim": false
23 },
24 {
25 "name": "robot_1_fpp",
26 "values": [0.2 ,0.2 ,0.2 ,0.2] ,

91

A Additional Code Snippets

27 "sim": false
28 }
29]
30 }

Listing A.13: The config.json file used to configure the 0.2 false positive probability and Subjective
Logic disabled sub-experiment of Experiment 4

1 # config.json
2

3 {
4 "experiment_name": "experiment4/fpp05/sl",
5 "run_prefix": "sl_threshold",
6 "simulation_time": 2700,
7 "seed": [72],
8 "use_sl": true ,
9 "sl_operator": "Comb.",

10 "adaptive_scheduling": true ,
11 "dirt_use_uniform_distr": true ,
12 "spawn_interval": 60,
13 "variables": [
14 {
15 "name": "sl_threshold",
16 "values": [20, 40, 60, 80],
17 "sim": true
18 },
19 {
20 "name": "robot_0_fpp",
21 "values": [0.5 ,0.5 ,0.5 ,0.5] ,
22 "sim": false
23 },
24 {
25 "name": "robot_1_fpp",
26 "values": [0.5 ,0.5 ,0.5 ,0.5] ,
27 "sim": false
28 }
29]
30 }

Listing A.14: The config.json file used to configure the 0.5 false positive probability and Subjective
Logic enabled sub-experiment of Experiment 4

1 # config.json
2

3 {
4 "experiment_name": "experiment4/fpp05/no-sl",
5 "run_prefix": "sl_threshold",
6 "simulation_time": 2700,
7 "seed": [72],
8 "use_sl": false ,
9 "sl_operator": "Comb.",

10 "adaptive_scheduling": true ,
11 "dirt_use_uniform_distr": true ,
12 "spawn_interval": 60,

92

A.2 Experiment Configuration Files

13 "variables": [
14 {
15 "name": "sl_threshold",
16 "values": [20, 40, 60, 80],
17 "sim": true
18 },
19 {
20 "name": "robot_0_fpp",
21 "values": [0.5 ,0.5 ,0.5 ,0.5] ,
22 "sim": false
23 },
24 {
25 "name": "robot_1_fpp",
26 "values": [0.5 ,0.5 ,0.5 ,0.5] ,
27 "sim": false
28 }
29]
30 }

Listing A.15: The config.json file used to configure the 0.5 false positive probability and Subjective
Logic disabled sub-experiment of Experiment 4

1 # config.json
2

3 {
4 "experiment_name": "experiment4/fpp08/sl",
5 "run_prefix": "sl_threshold",
6 "simulation_time": 2700,
7 "seed": [72],
8 "use_sl": true ,
9 "sl_operator": "Comb.",

10 "adaptive_scheduling": true ,
11 "dirt_use_uniform_distr": true ,
12 "spawn_interval": 60,
13 "variables": [
14 {
15 "name": "sl_threshold",
16 "values": [20, 40, 60, 80],
17 "sim": true
18 },
19 {
20 "name": "robot_0_fpp",
21 "values": [0.8 ,0.8 ,0.8 ,0.8] ,
22 "sim": false
23 },
24 {
25 "name": "robot_1_fpp",
26 "values": [0.8 ,0.8 ,0.8 ,0.8] ,
27 "sim": false
28 }
29]
30 }

93

A Additional Code Snippets

Listing A.16: The config.json file used to configure the 0.8 false positive probability and Subjective
Logic enabled sub-experiment of Experiment 4

1 # config.json
2

3 {
4 "experiment_name": "experiment4/fpp02/no-sl",
5 "run_prefix": "sl_threshold",
6 "simulation_time": 2700,
7 "seed": [72],
8 "use_sl": false ,
9 "sl_operator": "Comb.",

10 "adaptive_scheduling": true ,
11 "dirt_use_uniform_distr": true ,
12 "spawn_interval": 60,
13 "variables": [
14 {
15 "name": "sl_threshold",
16 "values": [20, 40, 60, 80],
17 "sim": true
18 },
19 {
20 "name": "robot_0_fpp",
21 "values": [0.8 ,0.8 ,0.8 ,0.8] ,
22 "sim": false
23 },
24 {
25 "name": "robot_1_fpp",
26 "values": [0.8 ,0.8 ,0.8 ,0.8] ,
27 "sim": false
28 }
29]
30 }

Listing A.17: The config.json file used to configure the 0.8 false positive probability and Subjective
Logic disabled sub-experiment of Experiment 4

A.2.5 Experiment 5 - Impact of Dirt Distribution

This experiment was divided into three sub-experiments to configure in the experiment
designer tool. The first sub-experiment reuses the SL disabled subexperiment of Experi-
ment 1. The other sub-experiments are with 1 hotspot and 3 hotspots. To configure them
both config.json and template parameters.yaml file was changed.

1 # config.json
2

3 {
4 "experiment_name": "experiment5/hotspots1",
5 "run_prefix": "fpp",
6 "simulation_time": 2700,
7 "seed": [72],

94

A.2 Experiment Configuration Files

8 "use_sl": true ,
9 "sl_operator": "Comb.",

10 "adaptive_scheduling": true ,
11 "dirt_use_uniform_distr": false ,
12 "spawn_interval": 60,
13 "variables": [
14 {
15 "name": "robot_0_fpp",
16 "values": [0.1, 0.2, 0.3, 0.4,
17 0.5, 0.6, 0.7, 0.8, 0.9],
18 "sim": false
19 },
20 {
21 "name": "robot_1_fpp",
22 "values": [0.1, 0.2, 0.3, 0.4,
23 0.5, 0.6, 0.7, 0.8, 0.9],
24 "sim": false
25 }
26]
27 }

Listing A.18: The config.json file used to configure the 1 hotspot sub-experiment of Experiment 5.
Used with the change in the template parameters.yaml file in Listing A.7

1 # parameters.yaml
2

3 ...
4 dirt_number_of_random_hotspots: 1
5 ...

Listing A.19: The changed line in the template parameters.yaml file of the experiment designer.
Used with the config.json in Listing A.6

1 # config.json
2

3 {
4 "experiment_name": "experiment5/hotspots3",
5 "run_prefix": "fpp",
6 "simulation_time": 2700,
7 "seed": [72],
8 "use_sl": false ,
9 "sl_operator": "Comb.",

10 "adaptive_scheduling": true ,
11 "dirt_use_uniform_distr": false ,
12 "spawn_interval": 60,
13 "variables": [
14 {
15 "name": "robot_0_fpp",
16 "values": [0.1, 0.2, 0.3, 0.4,
17 0.5, 0.6, 0.7, 0.8, 0.9],
18 "sim": false
19 },
20 {
21 "name": "robot_1_fpp",

95

A Additional Code Snippets

22 "values": [0.1, 0.2, 0.3, 0.4,
23 0.5, 0.6, 0.7, 0.8, 0.9],
24 "sim": false
25 }
26]
27 }

Listing A.20: The config.json file used to configure the 1 hotspot sub-experiment of Experiment 5.
Used with the change in the template parameters.yaml file in Listing A.9

1 # parameters.yaml
2

3 ...
4 dirt_number_of_random_hotspots: 3
5 ...

Listing A.21: The changed line in the template parameters.yaml file of the experiment designer.
Used with the config.json in Listing A.8

96

	Acknowledgments
	Abstract
	Contents
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Aims and Contribution
	1.4 Outline

	2 Background
	2.1 Adaptivity and Self-Adaptive Systems
	2.1.1 Definition

	2.2 Subjective Logic
	2.2.1 Knowledge Aggregation with Subjective Logic

	3 Previous Work
	3.1 The Model Problem
	3.2 Implementation of MA-SACPS
	3.3 Evaluation Framework

	4 Related Work
	4.1 Evaluating Self-Adaptive Systems
	4.2 Mitigating Uncertainties in SAS

	5 Experimental Infrastructure and Implementation
	5.1 Implementation Related Vocabulary
	5.2 Previous State of the System
	5.3 Merging the MA-SACPS Subsystem and the Evaluation Framework
	5.3.1 Data Collection
	5.3.2 False Positive Dirt Generation
	5.3.3 False Positive Completion Penalty

	5.4 New Experimental Tooling
	5.4.1 Motivation
	5.4.2 Design Goals
	5.4.3 System Architecture
	5.4.4 Worker Containers
	5.4.5 Choosing the Cloud Provider
	5.4.6 Cloud Storage
	5.4.7 Experiment Designer
	5.4.8 Task Queue
	5.4.9 Version Control
	5.4.10 Debugging
	5.4.11 Analysis

	6 Evaluation
	6.1 Experimental Setup
	6.2 Quality Function
	6.2.1 Business Goals
	6.2.2 Adaptation Goals
	6.2.3 Metric Selection

	6.3 Experimental Results
	6.3.1 Experiment 1: Impact of False Positive Probabilities
	6.3.2 Experiment 2: Impact of False Positive Penalty
	6.3.3 Experiment 3: Impact of False Negative Probabilities
	6.3.4 Experiment 4: Impact of Threshold
	6.3.5 Experiment 5: Impact of Dirt Distribution

	6.4 Discussion

	7 Conclusion
	7.1 Summary
	7.2 Threats to Validity
	7.3 Future Work

	List of Figures
	List of Listings
	List of Tables
	Bibliography
	A Additional Code Snippets
	A.1 Score Functions
	A.1.1 Configuration
	A.1.2 Implementation

	A.2 Experiment Configuration Files
	A.2.1 Experiment 1 - Impact of False Positive Probability
	A.2.2 Experiment 2 - Impact of False Positive Penalty
	A.2.3 Experiment 3 - Impact of False Negative Probability
	A.2.4 Experiment 4 - Impact of Threshold
	A.2.5 Experiment 5 - Impact of Dirt Distribution

