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Abstract

We consider real-valued branching random walks and prove a large deviation

result for the position of the rightmost particle. The position of the rightmost

particle is the maximum of a collection of a random number of dependent random

walks. We characterise the rate function as the solution of a variational problem.

We consider the same random number of independent random walks, and show that

the maximum of the branching random walk is dominated by the maximum of the

independent random walks. For the maximum of independent random walks, we

derive a large deviation principle as well. It turns out that the rate functions for

upper large deviations coincide, but in general the rate functions for lower large

deviations do not.
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1 Introduction

We study the maximum of a branching random walk in discrete time. The branching ran-
dom walk can be described as follows. Given are two ingredients, an o�spring distribution
on N0 with weights (p(k))k∈N0 and a (centred) step size distribution on R. At time 0 the
process starts with one particle at the origin. At every time n ∈ N each particle repeats
the following two steps, independently of everything else. First, it produces o�spring
according to the o�spring distribution (p(k))k∈N0 , and then it dies. Afterwards, the o�-
spring particles move according to the step size distribution. Let m be the reproduction
mean of the o�spring distribution. We always assume m > 1. We are interested in the
position of the rightmost particle at time n. Therefore, let Dn be the set of particles at
time n. For v ∈ Dn denote by Sv the position of particle v at time n. The maximum of
the branching random walk is de�ned as

Mn = max
v∈Dn

Sv. (1)

The asymptotics of the maximum Mn are by now well-understood. Let I be the rate
function of the random walk. Conditioned on survival, it is well-known, see Biggins [6],
Hammersley [15] and Kingman [17], that Mn grows at linear speed x∗, where

x∗ = sup
{
x ≥ 0: I(x) ≤ logm

}
. (2)
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Addario-Berry and Reed [1] as well as Hu and Shi [16] obtain a logarithmic second term.
In [2] Aïdékon �nally proves that Mn − x∗n − c log n converges in distribution, where
c > 0 is an explicit constant. Furthermore, let M̃n be the maximum of |Dn| independent
random walks. One can check that the speed of (M̃n)n also equals x

∗, see [22, Theorem 1]
or (18). However, compared to the branching random walk, there is a larger logarithmic
correction term, see e.g. [22, Theorem 1]. Similar results were proved for branching
Brownian motion by Bramson in [7].
We investigate the exponential decay rates of the probabilities P

(
Mn

n
≥ x

)
for x ≥ x∗ and

P
(
Mn

n
≤ x

)
for x ≤ x∗. Our main result, Theorem 3.2, characterises these exponential

decay rates. We consider the same question for M̃n and determine the exponential decay
rates, see Theorem 3.1. Interestingly, the rate functions coincide for x ≥ x∗, but in
general they do not coincide for x < x∗.
Similar questions have been studied before. Large deviation estimates for the maximum
of branching Brownian motion have �rst been investigated by Chauvin and Rouault in [9]
and very recently by Derrida and Shi in [14] and [13]. See also [12] and [21] for extensions
with coalescence and selection or immigration, respectively. Note that [13] also treats
continuous time branching random walks. The di�erence to our setup is that in the
time-continuous case, the strategies can involve the exponential waiting times, while in
our setup, they can involve the branching mechanism given by the o�spring distribution.
Upper large deviations for the maximum of discrete time branching random walks have
been investigated in [20] in the case where every particle has at least one o�spring.
Recently large deviation results for the empirical distribution of the branching random
walk have been obtained in [18], [10], [19], but they do not seem to imply our result. We
also mention that in the case of a �xed number of o�spring, much more precise results
(describing not only the exponential decay rates) were derived in [8].
Our strategy of proof is rather direct. We compare Mn and M̃n and show that M̃n

stochastically dominates Mn for all n ∈ N, see Lemma 5.2.
Let us now introduce the model in a more formal way and �x some notation. Let (Zn)n∈N0

be a Galton-Watson process with one initial particle and o�spring law given by the
weights (p(k))k∈N0 . Let m =

∑∞
k=1 kp(k) be the reproduction mean. The associated

Galton-Watson tree is denoted by T = (V,E), where V is the set of vertices and E is
the set of edges. Further, for n ∈ N let Dn be the set of vertices in the n-th generation
of the tree. Then, |Dn| = Zn. For v ∈ Dn the set of descendants of v in the (l + n)-th
generation is denoted by Dv

l . Note that |Dv
l | equals |Dl| in distribution. The root of T

is called o ∈ V . For v, w ∈ V de�ne [v, w] as the set of edges along the unique path
from v to w. We now de�ne the locations of the particles. Let (Xe)e∈E be a collection
of i.i.d. random variables, i.e. every edge of T is labelled with a random variable. For
v ∈ Dn the position of the particle v at time n is de�ned as Sv =

∑
w∈[o,v]Xw. For n ∈ N

the position of the rightmost particle at time n is Mn = maxv∈Dn Sv and if Dn = ∅, we
setMn = −∞. We refer to (Mn)n∈N as the maximum of the branching random walk. For
v ∈ Dn, the rightmost descendant of v at time l + n is de�ned as M v

l = maxw∈Dv
l
Sw.

We also introduce the collection of i.i.d. random variables (Xj
i )i,j∈N, where X

1
1 has the

same distribution as Xe for some e ∈ E. Moreover, for j, n ∈ N de�ne the random walk
Sjn =

∑n
i=1X

j
i and the maximum of independent random walks as

M̃n = max
1≤j≤Zn

Sjn. (3)
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In analogy to the maximum of the branching random walk, we set M̃n = −∞, if Dn = ∅.
Furthermore, for i ∈ N let Xi be an independent copy of X1

i and de�ne Sn =
∑n

i=1Xi.
Note that for every time n the number of particles in the branching random equals the
number of random walks considered for M̃n. However, the positions of the particles in
the branching random walk are not independent. Indeed, this dependence is such that
the maximum of independent random walks stochastically dominates the maximum of
the branching random walk, see Lemma 5.2. We introduce the measure

P∗(·) = P(·|Zn > 0 ∀n ∈ N). (4)

The associated expectation is denoted by E∗. Let (an)n∈N be a sequence of positive
numbers and let c ∈ (0,∞] be a constant. With a slight abuse of notation for c =∞, we
write an = exp(−cn + o(n)), if limn→∞

1
n
log an = −c. Note that an decays faster than

exponentially in n if c =∞. The stochastic processes considered in this paper are discrete
time processes. However, to increase the readability of the paper, we omit integer parts
if no confusion arises.
The paper is organised as follows. In Section 2 we �rst introduce the rate function of the
random walk and two rate functions concerning the Galton-Watson process. We further
describe some general assumptions. Then we state our main results in Section 3. We
collect some preliminary results in Section 4 and prove the main results in Section 5.

2 Rate functions and assumptions

In this section we introduce the rate functions of the random walk and the Galton-Watson
process, which are needed to state our main results.

2.1 Rate function of the random walk

For x ∈ R the rate function of the random walk (Sn)n∈N is de�ned as

I(x) = sup
λ∈R

(
λx− logE

[
eλX1

])
. (5)

Assumption 1. There exists ε > 0 such that E
[
eλX1

]
<∞ for all λ ∈ (−ε, ε). Further-

more, for simplicity suppose that E[X1] = 0.

Note that E[X1] = 0 is not necessary for the results in Section 3, since we could derive
similar results for the collection of random variables (Xe − E[X1])e∈E. Assumption 1
ensures that I(x) > 0 for all x 6= 0 and I(x) → ∞ as |x| → ∞. If Assumption 1 is
satis�ed, Cramér's theorem implies that the probabilities P(Sn ≥ xn) decay exponentially
in n with rate I(x) for x > 0. A proof can e.g. be found in [11, Theorem 3.7.4].

2.2 Rate functions of the Galton-Watson process

First, we need to introduce some more assumptions before we can state the large deviation
results.

Assumption 2. The Galton-Watson process is supercritical, i.e. m > 1.
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Let q = inf
{
s ∈ [0, 1] : E[sZ1 ] = s

}
. Note that q is the extinction probability of the

process (Zn)n∈N0 . Assumption 2 implies that q < 1.

Assumption 3. The Galton-Watson process satis�es E[Z1 logZ1] <∞.

First of all, note that Assumption 3 implies m < ∞. Together with Assumption 1, this
yields that the speed of the branching random walk x∗ de�ned in (2) is �nite.
Due to the well-known Kesten-Stigum Theorem, Assumption 3 implies that the Galton-
Watson process grows like its expectation, see Theorem 4.1.

Assumption 4. Every particle has less than two o�springs with positive probability,
i.e. p(0) + p(1) > 0.

Assumption 4 is often referred to as Schröder case, whereas the case p(0) + p(1) = 0 is
called Böttcher case.
If Assumptions 2 and 3 are satis�ed, there is also a large deviation result for the proba-
bility that (Zn)n∈N0 grows at most subexponentially. A sequence (an)n∈N is called subex-
ponential, if ane

−εn → 0 as n→∞ for all ε > 0. De�ne

ρ := − logE[Z1q
Z1−1] ∈ (0,∞]. (6)

Note that ρ = − log p(1) if p(0) = 0 (and therefore also q = 0). In particular, ρ < ∞ if
and only if Assumption 4 is satis�ed. Consider the set

A =
{
l ∈ N : ∃n ∈ N such that P(Zn = l) > 0

}
(7)

containing all positive integers l such that there are l particles at some time n with
positive probability.

Theorem 2.1. Let Assumption 2 hold. Then, for every k ∈ A we have

lim
n→∞

1

n
logP∗

(
Zn = k

)
= −ρ.

Moreover, for every subexponential sequence (an)n∈N such that an →∞ as n→∞,

lim
n→∞

1

n
logP∗

(
Zn ≤ an

)
= −ρ.

A proof of the �rst statement in Theorem 2.1 can be found in [3, Chapter 1, Section 11,
Theorem 3]. The second statement is a consequence of of [5, Theorem 3.1].
For x ∈ [0, logm] de�ne the rate function of the Galton-Watson process as

IGW(x) = ρ
(
1− x(logm)−1

)
(8)

Note that IGW(x) > 0 for all x < logm.

Theorem 2.2. Under Assumptions 2 and 3 we have for x ∈ [0, logm]

lim
n→∞

1

n
logP∗

(
Zn ≤ exn

)
= −IGW(x).

This theorem is a consequence of [5, Theorem 3.2]. Note that there is also an upper large
deviation result for P∗

(
Zn ≥ exn

)
, where x > logm, see e.g. [4, Theorem 1].
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3 Results

After de�ning the rate functions of the random walk and the Galton-Watson process we
are now able to state our main results.
Note that I(x∗) = logm if I(x) <∞ for some x > x∗. On the other hand, I(x∗) < logm
already implies P(X1 > x∗) = 0. This case leads to a di�erent shape of the rate functions,
see Figure 1. Let

k∗ = inf{k ≥ 1: p(k) > 0}. (9)

Note that k = k∗ is the smallest positive integer, such that P(Zn = k) > 0 for some
n ∈ N. De�ne the rate function for the maximum of independent random walks as

I ind(x) =


I(x)− logm for x > x∗,

0 for x = x∗,

ρ
(
1− I(x)

logm

)
for 0 ≤ x < x∗,

k∗I(x) + ρ for x ≤ 0.

(10)

Note that ρ
(
1− I(x)

logm

)
= IGW(I(x)) for 0 ≤ x < x∗. Recall the maximum M̃n of a random

number of independent walks, de�ned in (3).

Theorem 3.1. Suppose that Assumptions 1, 2 and 3 are satis�ed. Then, the laws of M̃n

n

under P∗ satisfy a large deviation principle with rate function I ind.

In the Böttcher case (p(0) + p(1) = 0) we have ρ =∞ and therefore I ind(x) =∞ for all
x < x∗. Hence, in this case the lower deviation probabilities P∗(M̃n ≤ xn) for x < x∗

decay faster than exponentially in n.
Let us now give some intuition for the rate function I ind and describe the large deviation
event {M̃n ≥ xn} for some x > x∗, respectively {M̃n ≤ xn} for some x < x∗.
For x > x∗, the number of particles should be larger or equal than expected, i.e. Zn ≥ ent

for some t ≥ logm. The probability of such an event is of order exp(−IGW(t)n + o(n)).
If there are ent particles at time n, the probability that at least one particle reaches xn
is of order exp(−I(x)n + tn + o(n)) for t < I(x). Therefore, we need to maximize the
product of these two probabilities, which amounts to minimize IGW(t) + I(x)− t, where
t runs over the interval [logm, I(x)). It turns out that the optimal value is t = logm.
This argument will go through for the maximum of the branching random walk.
If 0 ≤ x < x∗, the probability that one particle reaches xn is of order exp(−I(x)n+o(n)).
Hence, for every ε > 0, if there are less than e(I(x)−ε)n particles, the probability that none
of these particles reaches xn is close to 1. However, if there are more than e(I(x)+ε)n

particles, this probability decays exponentially in n.
If x < 0, already the probability that a single particle is below xn at time n decays
exponentially fast in n. Hence, if the number of particles Zn grows exponentially, the
probability that all particles are below xn at time n decays faster than exponentially.
Therefore, the number of particles needs to grow subexponentially. Since ρ does not
depend on the choice of k in Theorem 2.1, there have to be only k∗ particles at time n
(provided that ρ <∞).
Next, we consider the maximum of the branching random walk. For x < x∗ let

H(x) = inf
t∈(0,1]

{
tρ+ tI

(
t−1
(
x− (1− t)x∗

))}
. (11)
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Note that for x > 0 it su�ces to take the in�mum over t ∈ (0, 1 − x
x∗
]. De�ne the rate

function of the branching random walk as

IBRW(x) =


I(x)− logm for x > x∗,

0 for x = x∗,

H(x) for x < x∗.

(12)

Theorem 3.2. Suppose that Assumptions 1, 2, 3 and 4 are satis�ed. Then, the laws of
Mn

n
under P∗ satisfy a large deviation principle with rate function IBRW.

In contrast to the case of independent random walks we only consider the Schröder case
(Assumption 4) for the branching random walk.

Remark. Let us comment on the shape of the rate functions and on Assumption 4.

a) One can check that the rate function IBRW is convex. Furthermore, also I ind is
convex, if I(x∗) = logm, see also the following discussion about the continuity of
I ind(x) at x = x∗.

(b) Assumption 4 is only needed for the lower deviations (x < x∗) in Theorem 3.2.
In the Böttcher case, i.e. if Assumption 4 is not satis�ed, the strategy for lower
deviations is di�erent and will be investigated in a follow-up paper.

For x > x∗ we have IBRW(x) = I ind(x). In this case the strategy is the same as for
independent random walks. The strategy in the case x < x∗ goes as follows. At time tn
there are only k∗ particles, and the position of one of those particles is smaller than its
expectation. All other k∗ − 1 particles are killed at time tn. Note that by Assumption
4 either k∗ = 1 or particles may have no o�spring with positive probability. Afterwards,
every particle moves and branches according to its usual behaviour.
Further notice, that in contrast to the case of independent random walks, the number
of particles can also grow exponentially if x < 0. It su�ces to have a small number of
particles at time tn for some t ∈ [0, 1].
To compare the rate functions, note that the maximum of independent random walks
stochastically dominates the maximum of the branching random walk, see Lemma 5.2.
Therefore, I ind(x) ≤ IBRW(x) for x > x∗, respectively I ind(x) ≥ IBRW(x) for x < x∗. For
x < x∗, the inequality is in general strict. For x > x∗, the rate functions coincide, see the
argument above.
Let us now comment on the shape of the rate functions. If I(x) =∞ for some x > x∗, also
I ind(x) = IBRW(x) = ∞. More precisely, I(x) = ∞ already implies P(X1 ≥ x − ε) = 0
for some ε > 0 and therefore Mn ≤ x∗n, respectively M̃n ≤ x∗n almost surely.
If I(x∗) = logm, then the rate functions I ind(x) and IBRW(x) are continuous at x = x∗.
However, if I(x∗) < logm, the rate functions I ind(x) and IBRW(x) are in�nite for x > x∗,
since I(x) = ∞. Therefore, they are not continuous from the right at x = x∗. The rate
function IBRW(x) is continuous from the left at x = x∗, since IBRW(x) ≤ ρ

(
1 − x

x∗

)
for

x < x∗. However, I ind(x) is also not continuous from the left at x = x∗. In particular,
limx↗x∗ I

ind(x) ∈ (0,∞) if ρ <∞, which implies that I ind is not convex in this case.
An intuitive explanation of this discontinuity is the following. If there are at least
exp
(
I(x∗)n

)
particles at time n, then M̃n = x∗n + o(n) with high probability. For a
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0 x∗
0

I(x∗) = logm

0 x∗
0

IGW(I(x∗))

∞

I(x∗) < logm

Figure 1: The �gure shows the qualitative behaviour of the rate function of the branching
random walk ( ) and the rate function of independent random walks ( ).

smaller linear term there have to be less particles, hence for all x < x∗ the probability
P∗(M̃n ≤ xn) is bounded from below by the probability to have at most exp

(
I(x∗)n

)
particles at time n, which decays exponentially. Note that for the branching random
walk, in contrast, it su�ces to have a small number of particles at the beginning.

4 Preliminaries

Before we prove the main results, we collect some preliminaries which are needed through-
out the proofs. As already mentioned in the introduction, conditioned on survival, the
linear speed of the branching random walk equals x∗, i.e.

lim
n→∞

Mn

n
= x∗ P∗-a.s. (13)

We often use the following simple inequalities.

(U1) We have 1− x ≥ e−ex for x ∈ [0, e−1].

(U2) We have 1− (1− x)y ≥ xy(1− xy) for x ∈ [0, 1] and y ≥ 0.

Proof. Both inequalities follow after some elementary calculations.

(U1) The function f(x) = 1 − x − e−ex is increasing on [0, e−1]. The claim follows, as
f(0) = 0.

(U2) The function g(x) = 1 − e−x − x(1 − x) is increasing for x ≥ 0. As g(0) = 0, we
have 1− e−x ≥ x(1−x). Using additionally the well known inequality 1−x ≤ e−x,
we get

1− (1− x)y ≥ 1− e−xy ≥ xy(1− xy).
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For i ∈ N let (ain)n∈N be a sequence of positive numbers and ai = lim supn→∞
1
n
log ain.

Then, for all k ∈ N it holds that

lim sup
n→∞

1

n
log

k∑
i=1

ain = max
i∈{1,...,k}

ai. (14)

A proof can e.g. be found in [11, Lemma 1.2.15].
We often need to estimate the number of particles at time n, which has expectation
mn. Let Wn = Zn

mn and (Fn)n∈N be the natural �ltration of the Galton-Watson process,
i.e. Fn = σ(Z1, . . . , Zn). The process (Wn)n∈N is a martingale with respect to the �ltration
(Fn)n∈N. Therefore, Wn → W almost surely, where W is an almost surely �nite random
variable. The following well-known theorem shows that under our assumptions, the limit
W is non-trivial, i.e. P(W = 0) < 1.

Theorem 4.1 (Kesten-Stigum). If Assumption 2 and Assumption 3 are satis�ed, we
have

E[W ] = 1 and P(W = 0) = q < 1.

A proof can e.g. be found in [3, Chapter 1, Section 10, Theorem 1].

5 Proofs

In this section we prove the main results of the paper.

Independent random walks

Proof of Theorem 3.1. 1. Case: x > x∗

Following the strategy explained in Section 3, independence of the random walks and
(U2) yields

P∗
(M̃n

n
≥ x

)
= E∗

[
1−
(
1− P

(Sn
n
≥ x

))Zn
]

≥ P∗
(
Zn ≥

1

2
e(logm)n

)
· E
[
1−
(
1− P

(Sn
n
≥ x

)) 1
2
e(logm)n

]
≥ P

(
Wn ≥

1

2

)
P
(Sn
n
≥ x

)1
2
e(logm)n

(
1− P

(Sn
n
≥ x

)1
2
e(logm)n

)
. (15)

By Cramér's theorem, P
(
Sn

n
≥ x

)
1
2
e(logm)n → 0 as n → ∞, since logm < I(x). For the

�rst factor on the right hand side of (15) we have lim infn→∞ P(Wn ≥ 1
2
) ≥ P(W > 1

2
) > 0,

since E[W ] = 1 by Theorem 4.1. Together with Theorem 2.2 and (14) we conclude

P∗
(M̃n

n
≥ x

)
≥ exp

(
−(I(x)− logm)n+ o(n)

)
,

which yields the lower bound. For the upper bound, the Markov inequality yields

P∗
(M̃n

n
≥ x

)
= P∗

( Zn∑
i=1

1{Si
n≥nx} ≥ 1

)
≤ P

(Sn
n
≥ x

)
E∗[Zn] = P

(Sn
n
≥ x

) mn

1− q
, (16)
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which immediately implies the claim.
2. Case: 0 < x < x∗

Since the rate function I is strictly increasing on the interval [0, x∗], we can choose ε > 0
such that ε < I(x) < logm − ε. We prove the upper bound �rst. Using the inequality
1− y ≤ e−y and Theorem 2.2, we have for n large enough

P∗
(M̃n

n
≤ x

)
= E∗

[(
1− P

(Sn
n
> x

))Zn
]
≤ E∗

[
exp
(
−P
(Sn
n
> x

)
Zn

)]
≤ P∗

(
Zn ≤ e(I(x)+ε)n

)
+ exp

(
− e

ε
2
n
)
= exp

(
−
(
IGW(I(x) + ε

)
n+ o(n)

)
.

Letting ε→ 0 yields the upper bound. Note that IGW de�ned in (8) is continuous. The
proof for the lower bound is similar. More precisely, since P(Sn

n
> x) < e−1 for n large

enough, (U1) yields for n large enough

P∗
(M̃n

n
≤ x

)
= E∗

[(
1− P

(Sn
n
> x

))Zn
]
≥ E∗

[
exp
(
−e · P

(Sn
n
> x

)
Zn

)]
≥ P∗

(
Zn ≤ e(I(x)−ε)n

)
· exp

(
− e1−

ε
2
n
)
= exp

(
−IGW(I(x)− ε)n+ o(n)

)
.

Letting ε→ 0 yields the lower bound.
3. Case: x ≤ 0
We �rst consider x < 0. For the upper bound we have for K ∈ N

P∗
(M̃n

n
≤ x

)
= E∗

[
P
(Sn
n
≤ x

)Zn
]
≤

K∑
k=1

P
(Sn
n
≤ x

)k
P∗(Zn = k)+P

(Sn
n
≤ x

)K
. (17)

By Theorem 2.1, the probability P(Zn = k) is of order exp(−ρn + o(n)) for all k ∈ A
(de�ned in (7)) and P(Zn = k) = 0 otherwise. For all K ∈ N, (14) yields

lim sup
n→∞

1

n
logP∗

(M̃n

n
≤ x

)
≤ max

{
−(k∗I(x) + ρ),−KI(x)

}
.

Hence, letting K →∞ proves the upper bound. Note that I(x) > 0 for x < 0. As in the
proof of (17) we have

P∗
(M̃n

n
≤ x

)
= E∗

[
P
(Sn
n
≤ x

)Zn
]
≥ P

(Sn
n
≤ x

)k∗
· P(Zn = k∗)

= exp
(
−(k∗I(x) + ρ)n+ o(n)

)
,

which shows the lower bound. For x = 0 the result follows from continuity of the rate
function I ind at 0.
4. Case: x = x∗

Since P∗(M̃n ≥ xn) decays exponentially in n for x > x∗ and P∗(M̃n ≤ xn) decays
exponentially in n for x < x∗, we conclude

lim
n→∞

M̃n

n
= x∗ P∗-a.s. (18)

and in particular I ind(x∗) = 0.
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Branching random walk

Before proving Theorem 3.2, we �rst show that the maximum of independent random
walks stochastically dominates the maximum of the branching random walk.

Lemma 5.1. Let (Xi)i∈N and (Yi)i∈N be independent sequences of (not necessarily inde-
pendent) random variables. Furthermore, assume that the random variables Yi, i ∈ N,
have the same distribution. Then we have for all k ∈ N and x ∈ R

P
(

max
i∈{1,...,k}

{Xi + Y1} ≤ x
)
≥ P

(
max

i∈{1,...,k}
{Xi + Yi} ≤ x

)
.

Proof. Let i∗ be the smallest (random) index such that Xi∗ = maxi∈{1,...,k}Xi. We have

P
(

max
i∈{1,...,k}

{Xi + Yi} ≤ x
)
≤ P

(
Xi∗ + Yi∗ ≤ x

)
= P

(
Xi∗ + Y1 ≤ x

)
.

As a consequence we can show that the maximum of independent random walks stochas-
tically dominates the maximum of the branching random walk.

Lemma 5.2. For all n ∈ N and x ∈ R
P(Mn ≤ x) ≥ P(M̃n ≤ x).

Proof. We prove this lemma by induction over n. For n = 1 the inequality is obviously
true. Now assume that the inequality holds for some n ∈ N. Let (Si,1n )n∈N, (S

i,2
n )n∈N, . . . be

independent copies of (Sin)n∈N and de�ne (M̃
1
n)n∈N, (M̃

2
n)n∈N, . . . and (M1

n)n∈N, (M
2
n)n∈N, . . .

in the same way. Furthermore, for i ∈ {1, . . . , Z1}, denote by Zi
n the number of descen-

dants of the i-th particle of the �rst generation at time n+1. Note that Zi
n equals Zn in

distribution. Using the induction hypothesis and Lemma 5.1,

P(Mn+1 ≤ x) = P
(

max
i∈{1,...,Z1}

{X i
1 +M i

n} ≤ x
)

≥ P
(

max
i∈{1,...,Z1}

{X i
1 + M̃ i

n} ≤ x
)

≥ P
(

max
i∈{1,...,Z1}

max
j∈{1,...,Zi

n}
{X i,j

1 + Si,jn+1 −X
i,j
1 } ≤ x

)
= P(M̃n+1 ≤ x).

The statement of Lemma 5.2 is also true with respect to P∗.

Proof of Theorem 3.2. 1. Case: x > x∗

Recall that IBRW(x) = I ind(x) for x ≥ x∗. Therefore, the upper bound immediately
follows from Theorem 3.1 and Lemma 5.2. It remains to prove the lower bound. Recall
that for v ∈ Dεn the rightmost descendant of v at time n is denoted by M v

(1−ε)n. By
Lemma 5.1,

P∗
(Mn

n
≥ x

)
= P∗

(
max
v∈Dεn

M v
(1−ε)n − Sv
(1− ε)n

+
Sv

(1− ε)n
≥ x

1− ε

)
≥ P∗

(
max
v∈Dεn

M v
(1−ε)n − Sv
(1− ε)n

+
Sεn

(1− ε)n
≥ x

1− ε

)
≥ P∗

(
max
v∈Dεn

M v
(1−ε)n − Sv
(1− ε)n

≥ x
)
· P
(Sεn
εn
≥ x

)
. (19)
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It remains to estimate the �rst probability on the right hand side of (19). Note that
(M v

(1−ε)n− Sv)v∈Dεn are independent under P. Therefore, we can use similar estimates as

in the proof of Theorem 3.1. More precisely, by independence and (U2) we get

P∗
(
max
v∈Dεn

M v
(1−ε)n − Sv
(1− ε)n

≥ x
)

≥ P∗
(
Zεn ≥

1

2
mεn

)
·
(
1−

(
1− P

(M(1−ε)n

(1− ε)n
≥ x

)) 1
2
mεn
)

≥ P
(
Wεn ≥

1

2

)
(1− q)P∗

(M(1−ε)n

(1− ε)n
≥ x

)1
2
mεn

(
1− P

(M(1−ε)n

(1− ε)n
≥ x

)1
2
mεn

)
. (20)

Analogously to (15), for the �rst factor on the right hand side of (20) it holds that
lim infn→∞ P(Wεn ≥ 1

2
) ≥ P(W > 1

2
) > 0. Furthermore, analogously to (16), the Markov

inequality and the choice of ε yields

1− P
(M(1−ε)n

(1− ε)n
≥ x

)
mεn ≥ 1− P

( S(1−ε)n

(1− ε)n
≥ x

)
mn

≥ 1− exp
(
−n
(
(1− ε)I(x)− logm

)
+ o(n)

)
→ 1. (21)

Combining (19), (20) and (21) shows

lim inf
n→∞

1

n
logP∗

(Mn

n
≥ x

)
≥ −ε(I(x)−logm)+(1−ε) lim inf

n→∞

1

(1− ε)n
logP∗

(M(1−ε)n

(1− ε)n
≥ x

)
.

This implies the lower bound.
2. Case: x < x∗

Following the strategy explained in Section 3, there are only k∗ particles at time tn and
the position of one particle is smaller than its expectation. Afterwards, all particles move
and branch as usual. For the lower bound let t ∈ (0,min{1− x

x∗
, 1}] and �x ε > 0. Note

that t ∈ (0, 1− x
x∗
] if x > 0 and t ∈ (0, 1] if x ≤ 0. We have

P∗
(Mn

n
≤ x

)
≥ P∗

(Mn

n
≤ x

∣∣ Ztn = k∗
)
· P∗(Ztn = k∗)

≥ qk
∗−1P∗

(Stn +M(1−t)n

n
≤ x

)
· P∗(Ztn = k∗)

≥ P∗
(M(1−t)n

(1− t)n
≤ x∗ + ε

)
· P
(Stn
n
≤ (x− (1− t)(x∗ + ε))

)
· P∗(Ztn = k∗).

(22)

Since the �rst probability on the right hand side of (22) converges to 1 almost surely as
n→∞ by (13), we get

P∗
(Mn

n
≤ x

)
≥ exp

(
−
[
I
(
t−1(x− (1− t)(x∗ + ε))

)
+ ρ
]
tn+ o(n)

)
.

Letting ε→ 0 and since this inequality holds for all t ∈ (0,min{1− x
x∗
, 1}], we conclude

lim inf
n→∞

1

n
logP∗

(Mn

n
≤ x

)
≥ sup

t∈(0,min{1− x
x∗ ,1}]

−H(x) = − inf
t∈(0,1]

H(x).
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For the upper bound de�ne

Tn = inf
{
t ≥ 0: Ztn ≥ n3

}
and for ε1 > 0 introduce the set

F = F (ε1) =
{
ε1, 2ε1, . . . ,

⌈
min

{(
1− x

x∗

)
, 1
}
ε−11

⌉
ε1

}
.

By the de�nition of Tn we then have

P∗
(Mn

n
≤ x

)
≤ P∗

(
Tn > 1− x

x∗

)
+
∑
t∈F

P∗
(Mn

n
≤ x

∣∣ Tn ∈ (t− ε1, t]) · P∗(Tn ∈ (t− ε1, t])
≤ P∗

(
Z(1− x

x∗ )n
≤ n3

)
+
∑
t∈F

P∗
(Mn

n
≤ x

∣∣ Tn ∈ (t− ε1, t]) · P∗(Z(t−ε1)n ≤ n3). (23)

Let ε2 > 0. Using Lemma 5.1 again,

P∗
(Mn

n
≤ x

∣∣ Tn ∈ (t− ε1, t])
≤ P∗

(
max
v∈Dtn

Stn +M v
(1−t)n

n
≤ x

∣∣∣ Tn ∈ (t− ε1, t])
≤ P

(Stn
n
≤ −

(
(1− t)(x∗ − ε2)− x

))
+ P

(M(1−t)n

(1− t)n
≤ x∗ − ε2

)n2

+ P∗
(
Ztn ≤ n2

∣∣ Tn ∈ (t− ε1, t]
)
. (24)

Note that we ignored all but one particle at time tn. Further note that the second
probability on the right hand side of (24) converges to q almost surely by (13) and the
de�nition of Mn on the event of extinction. Since q < 1, the second term in (24) decays
faster than exponentially in n. For the third term on the right hand side of (24),

P∗
(
Ztn ≤ n2

∣∣ Tn ∈ (t− ε1, t]
)
≤ P∗

(
∃k ∈ N : Zk ≤ n2

∣∣ Z0 = n3
)

≤
(
n3

n2

)
qn

3−n2 ≤ exp
(
(n3 − n2) log q + 3n2 log n

)
. (25)

In the second inequality we used the fact that for the event we consider, at most n2 of
the initial n3 Galton-Watson trees may survive. Note that every initial particle produces
an independent Galton-Watson tree.
Combining (23), (24) and (25) and letting ε1, ε2 → 0, we conclude with (14) after a
straightforward calculation

lim sup
n→∞

1

n
logP∗

(Mn

n
≤ x

)
≤ − inf

t∈(0,min{1− x
x∗ ,1}]

{
tρ+ tI

(
−(1− t)x∗ − x

t

)}
= −H(x).

Note that we could take the limit ε2 → 0, since I is continuous from the right on (0,∞).
3. Case: x = x∗

This follows from (13).
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