
 

Available online at www.sciencedirect.com 

ScienceDirect 

Procedia CIRP 00 (2022) 000–000 
  

     www.elsevier.com/locate/procedia 

   

 

2212-8271 © 2022 The Authors. Published by Elsevier B.V. 

Peer-review under responsibility of the scientific committee of the 16th CIRP Conference on Intelligent Computation in Manufacturing Engineering. 

16th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME ‘22, Italy 

Spatial Annotation of Time Series for Data Driven Quality Assurance in 
Additive Manufacturing 

 Raven Reischa,b,*,+, Matteo Pantanoa,b, +, Lucas Janischa,c, Alois Knollb, Dongheui Leed  

  a Siemens AG, Otto-Hahn-Ring 6, 81739 Munich, Germany 

 b Technical University of Munich, Boltzmannstraße 4, Munich, Germany  

 c Friedrich-Alexander-Universität Erlangen-Nürnberg, Schloßplatz 4, Erlangen, Germany  

 d Technical University of Vienna, Karlsplatz 13, 1040 Wien, Austria  

 

* Corresponding author. Tel.: +49 (1522) 4725020; E-mail raven.reisch@tum.de 
+ The authors contributed equally 

Abstract  

One of the biggest challenges for artificial intelligence in industry is the lack of labeled application data. Particularly for time series data, labeling 

requires a large amount of time for data preparation and expert knowledge both in data analysis and in the application domain. In this work, we 

propose a methodology for labeling time series solving the two barriers identified above in an additive manufacturing use case. Our approach 

correlates spatial and temporal features of process defects by means of a spatial sensor. By applying our method, we were able to achieve shorter 

labeling time while obtaining high-quality labels. 
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1. Introduction

The lack of labeled application data is one of the major 

challenges for the adoption of machine learning based data 

analytics approaches in industry. Particularly for time series, 

creating labeled process data results in high costs as knowledge 

both in data analysis and in the application domain is needed. 

Additionally, a considerable amount of time should be invested, 

as certain aspects might not be visible in a single time series but 

only in a multivariate dataset.  

Especially in Additive Manufacturing (AM), a high demand 

for labeled time series process data is apparent to develop and 

evaluate advanced monitoring setups which would enable the 

further industrialization of this process category. Relevant 

labels include defects as well as other deviations from the 

normal system behavior. To obtain information about the 

presence of these anomalies, a post-process quality assurance 

step is used. In general, the quality data is available as spatially 

resolved three-dimensional information for instance as point 

cloud of a scan using computer tomography (CT) or a laser 

scanner. However, a user-friendly method for mapping the 

spatially resolved quality data and the time series is needed.  

This paper presents a straight-forward method for time 

series labeling based on spatial features in additive 

manufacturing use cases. By applying our method, we could 

achieve a shorter labeling time, a higher useability for the 

labeling expert as well as high-quality labels. The method is 

validated using a part that was built by means of a monitored 

Wire Arc Additive Manufacturing (WAAM) process.  

The remainder of this paper is structured as follows. First, 

an overview of labeling technologies as well as basics in 

unsupervised and supervised data analytics are given. 

Subsequently, the methodology is presented. It is validated by 

testing the approach on the Wire Arc Additive Manufacturing 
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use case. Finally, the results are discussed, and the paper is 

concluded by proposing directions for future work.  

2. Related Work 

To maintain the desired process behavior during the additive 

welding operation and thus produce the desired geometry, 

monitoring of the welding process is crucial. To achieve such 

goal, the main objective is to detect, control and predict process 

anomalies and geometry defects like delamination, oxidations, 

pores, geometrical deformations, or burn throughs that can 

occur due to improper process parameters or process 

instabilities. Regarding this, recent research was investigating 

various sensory systems, including camera observations of the 

wire tip [1] and the melt pool [2], [3] as well as spectrometers 

[4], and pyrometers [5]. Reisch et al. [6] developed a 

multivariate monitoring framework by using current and 

voltage surveillance combined with a wire feed speed sensor, 

gas flow sensor, welding camera, profile scanner, spectrometer, 

pyrometer, thermal imaging, and acoustic sensor.  

To optimize and control the monitored process or to detect 

anomalies, the captured data needs to be made interpretable so 

that actual decisions or conclusions can be drawn from it. In 

other words, the data needs to be labeled. Especially with 

upcoming applications of machine learning methods in 

WAAM, the need for annotated data to train models like 

artificial neural networks (ANNs) becomes crucial.  

An exemplary application of machine learning in WAAM is 

the work by Tang et al. [7] predicting the weld bead width and 

height with an ANN using temperature, wire feed rate, 

traveling speed as well as welding voltage and current for input 

data. To generate training data several single weld beads are 

created and subsequently scanned. The measured height and 

width were then manually correlated with the time series data 

measured during the process. A similar approach is presented 

also by Karmuhilan et al. [8]. 

ANNs are also applied when detecting faulty behavior in the 

melt pool images [2], [3], [9]. Publications covering this 

approach use several thousand images that are labeled with a 

class to then train a model. Also in related manufacturing 

methods like the keyhole TIG welding, the weld pool video 

stream is used to detect defects with machine learning methods  

[9]. 

To detect the defects on the manufactured geometry Li et 

al. [10] trained an object detection model to classify and locate 

defects relating to lack-of-fusion and voids immediately after 

the deposition of a layer. The future goal of the research team 

is to match the located defects with other quality monitoring 

signals. [10]    

Alternatives to layer wise quality control of the finished parts 

are methods like optical inspection, crack detection, X-ray 

radiography, ultrasonic inspection and computed 

tomography. [11] 

Despite the above-described approach by Li et al., the labelling 

of data in WAAM is done manually which is time-consuming 

and sometimes results in incomprehensive datasets and thus 

insufficiently trained models. As this is a general problem 

related research areas try to reduce the labelling effort by 

various approaches. To the best of the authors' knowledge, the 

publication most related to this work is presented by Gregorio 

et al. [12] in which a three-dimensional region of interest is 

labelled on the real object with an augmented reality pen. Once 

this is done a robot arm equipped with a camera can take a 

series of images of the object and automatically label them. 

However, this approach is not feasible for time series data 

which are the common type of data gathered by a monitoring 

system in WAAM. 

3. Methodology 

To overcome this issue, we propose a method which 

synchronizes spatial with temporal data. The synchronization is 

achieved through the following steps:  

1. Temporal synchronization  

2. TCP position adaption 

3. Spatial defect annotation 

4. Transformations 

5. Proximity search 

6. Postprocessing 

In this section, a detailed description of the six steps is given. 

3.1. Temporal synchronization 

Time series which are obtained along the AM process, e.g., 

from sensors or numerical controls, are synchronized by using 

a system-wide global time reference. It is required to gather the 

tool center point (TCP) positions as time series data.  

3.2. TCP position adaption 

In the AM process, deviations can occur between the 

nominal and the actual TCP positions. Real-time measurements 

of these deviations are used to adjust the TCP time series 

accordingly. In WAAM, these measurements can be done for 

instance by a machine learning based nozzle-to-work distance 

measurement [13]. In laser assisted AM processes such as 

Laser Metal Deposition (LMD) an optical coherence 

tomography could be used [14]. 

3.3. Spatial defect annotation 

In the post-process quality assurance, defects in the final 

part are detected and are assigned to coordinates in a reference 

coordinate system. This can be done by using the voxel number 

in a CT scan or the physical coordinates of defects which are 

annotated with a virtual reality (VR) tracker as described in 

Sec. 3.4. The tracker used in this work is the Tracepen™ from 

the company Wandelbots™. The tracking system is based on 

the principle of reflecting photodiode sensors which receive an 

infrared signal and send it back to a tracking station to measure 

distance of the tracker to a reference system. Due to this 

working principle the position of the tracker is expressed in 

relation to the tracking station [15]. 
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3.4. Transformations 

The obtained defect coordinates are transferred from the 

reference coordinate system to the component coordinate 

system using a coordinate transformation.  

In case of the CT scan-based defect coordinates, this 

coordinate transformation is done by simply applying a rotation 

and a translation to the defect positions. In case of the VR 

tracker, additional steps must be conducted to gather defect 

coordinates in the part coordinate system. The problem is 

shown in Figure 1. Therefore, using the nomenclature of the 

figure, the transformation 𝑡𝑇⃗ 𝑐  had to be calculated. For this 

calculation an approach like the one proposed by Zhang et al. 

[16] was followed. Therefore, the VR tracker was used to 

sample three points from the component through its coordinate 

system. More precisely, the origin (𝑃⃗ 𝑢1𝑇 ), a point along the x-

axis (𝑃⃗ 𝑢2𝑇 ), and a point in the x-y plane (𝑃⃗ 𝑢3𝑇 ) of the component 

coordinate system. Afterwards, by assuming the following for 

the selected points in the component coordinate system: 

 𝑃⃗ 𝑢1𝐶 = [0; 0; 0]    (1) 𝑃⃗ 𝑢2𝐶 = [𝑥𝑢2; 0 ; 0]    (2) 𝑃⃗ 𝑢3𝐶 = [𝑥𝑢3; 𝑦𝑢3 ; 0]   (3) 

The following equation can be solved for 𝑡𝑇⃗ 𝑐: 

 𝑃⃗ 𝑢𝑖𝑇 =  𝑡𝑇⃗ 𝑐 𝑃⃗ 𝑢𝑖𝐶  , ∀𝑖    (4) 

 

Finally, knowing the transformation 𝑡𝑇⃗  and calculating its 

inverse 𝑐𝑇⃗ 𝑡, the points of any anomaly can be defined by: 

 𝑃⃗ 𝑎𝑖𝐶 =  𝑐𝑇⃗ 𝑡 𝑃⃗ 𝑎𝑖𝑇  , ∀𝑖    (5) 

3.5. Proximity search 

The mapping between the spatially annotated defects and 

the times series takes place by annotating the TCP time series 

based on the spatial proximity of the transformed defect 

coordinates. 

Therefore, the Euclidian distance between every labeled 

defect position 𝑥𝑑𝑖 , 𝑦𝑑𝑖 , 𝑧𝑑𝑖  and the TCP positions 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖  within the TCP time series is calculated.  

 𝑑 = √(𝑥𝑖 − 𝑥𝑑𝑖)2 + (𝑦𝑖 − 𝑦𝑑𝑖)2 + (𝑧𝑖 − 𝑧𝑑𝑖)2    (6) 

 

If the distance is smaller than a tolerance value 𝑑𝑡𝑜𝑙, the data 

point is labeled as anomalous. 𝑑𝑡𝑜𝑙  is influenced by various 

factors such as the spatial annotation accuracy of the labeling 

expert or the spatial accuracy of the spatial sensor. However, a 

lower boundary can be defined which ensures that every 

labeled defect can be related to a monitored TCP position. The 

boundary value depends on the sample rate 𝑓𝑝𝑜𝑠  of the TCP 

time series, the maximum TCP velocity 𝑣𝑇𝐶𝑃 in the process, the 

hatching distance 𝑑h and the maximum layer height 𝑑𝑙: 
 𝑑𝑡𝑜𝑙 ≥ √( 𝑣𝑇𝐶𝑃2⋅𝑓𝑝𝑜𝑠)2 + (𝑑𝑙2 )2 + (dh2 )2

   (7) 

 

To reduce the computational time complexity of the 

proximity search, a binary search using cubical regions can be 

used [17].  

3.6. Postprocessing 

At last, the annotations of the TCP time series are transferred 

to other synchronized time series. In case of different sample 

rates, the annotations are interpolated along the time.  

4. Results and Discussion 

4.1. Test methodology 

To evaluate the methodology, a sample part with helical 

path and forced anomalies was built using the WAAM process. 

The anomalies were forced by reducing the gas flow in the 

process, resulting in heavy oxidation and slag. Additionally, a 

discontinuity was introduced in the first revolution of the helix 

which propagated in the next four layers. Along the process, 

Figure 1: Transformations for obtaining the anomalies coordinates in the 

component coordinate system. The VR tracker points to the anomaly and 

defines its position on the coordinate system of the VR anchor 𝑃⃗ 𝑎𝑖𝑇 . Such 

coordinates are transformed to the component coordinate system through the 

transformation 𝑡𝑇⃗ 𝑐 . Finally, the anomaly is defined in the component 

coordinate system 𝑃⃗ 𝑎𝑖𝐶 . 

       
           

          

         

Figure 2: Proximity search for spatial correlation between TCP positions in the 

time series and the spatially annotated defects. The minimum radius for the 

search depends on the spatial resolution of the TCP position measurements and 

the layer height. 
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the TCP positions as well as the voltage data were monitored. 

The defects in the final part were labeled using a CT scan and 

a VR tracker as shown in Figure 4. 

The spatial annotations of the time series were validated 

using an unsupervised anomaly detection approach based on a 

sliding moving average (see [17] ).  

4.2. Labelling accuracy 

In Figure 3, the tool path based on the monitored TCP 

positions is visualized in blue. As the tool path was following 

a helical path, the height of the spiral was scaled depending on 

the final parts height to adapt the TCP positions according to 

step 2. In red, the spatially annotated defects are visualized. 

Beforehand, their coordinates were transformed from the 

reference coordinate system in the CT scan to the component 

coordinate system. 

Having the transformed defect labels and the adapted TCP 

time series, the proximity search was conducted using a sphere 

radius of 1.4 mm. Finally, the annotations were transferred to 

the synchronized voltage times series. As shown in Figure 5 

qualitatively, the yellow spatially annotated defects correspond 

to the outliers in the voltage time series. Also, the consequential 

defects were detected and labeled. The discontinuity in the first 

revolution which propagated in the next four layers was 

annotated spatially but couldn’t be detected with the anomaly 
detection approach.  

A quantitative analysis of the automated and the spatial 

annotation method for labelling the datapoints in the print job 

is shown in the confusion matrix in Table 1.  

Table 1: Confusion matrix of annotated datapoints comparing the automated 

and the spatial annotation method. Many datapoints were labelled as abnormal 

by the spatial annotation which were not detected by the anomaly detection. 

 Automated annotation 

Normal Abnormal 

Spatial 

annotation 

Normal  5792784 69723 

Abnormal 189000 50836 

 

The normal process behavior was labeled as normal by both 

methods simultaneously most of the times, resulting in a high 

accuracy score of 0.96.  

However, in case of abnormal annotations, the methods 

differ significantly from one another, resulting in a balanced 

accuracy score of only 0.69. On the one hand, datapoints were 

spatially annotated as abnormal but were not highlighted in the 

automated annotation. There were several defects such as the 

discontinuity in the first five layers or the slag in the revolutions 

after the heavy oxidations which were not reliably detected. 

Additionally, the proximity search results in a spatial blurriness 

Figure 4: Spatially annotating the defects in the sample part using the VR 

tracker by Wandelbots™. The obtained coordinates must be transferred from 

the tracker coordinate system to the component coordinate system using 

coordinate transformations. 

Figure 3: Spatially annotated defects visualized in red after the coordinate 

transformation in the component coordinate system along the monitored, 

adapted tool path (blue). 

Figure 5: Labelled voltage time series. The green labels were annotated by means of the spatial annotation approach while the red ones were created using an 

unsupervised anomaly detection method.    
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in the annotation. Thus, more datapoints might be annotated 

than needed. On the other hand, the anomaly detection detected 

an abnormal behavior which was not annotated spatially. Some 

unusual process behavior doesn’t result in defects. Thus, the 
data looks abnormal, but a defect is not present. Using a 

combined spatial and automated annotation could ensure, that 

less unknown abnormal datapoints can be found in a training 

set for semi-supervised learning. Hereby, both the process 

perspective in terms of data anomalies as well as the quality 

perspective in terms of defects is considered. Additionally, 

while the automated annotation is only capable of annotating 

anomalous behavior, the spatial annotation enables the labeling 

of specific defect types in AM.  

To investigate further the capability of the labelling 

approach a preliminary user test with two operators was 

conducted. The results of the user test are shown in Table 2. 

The user test includes a comparison between a defect labeling 

based on the spatial annotation and one based on a tool for time 

series labeling. The spatial labeling was conducted using the 

VR tracker with the real part or a CT-scan. The temporal 

labeling was based on the voltage and current time series. The 

users had 10 minutes to label the defects, both for the spatial 

and for the temporal annotation methods. The labeling methods 

were evaluated regarding their usability and labeling 

performance. The ground-truth for the calculation of the recall, 

precision, F1 score and balanced accuracy metrics was created 

by a combination of manual labeling conducted by a process 

expert both in space and time and of an automated labeling 

using a supervised anomaly detector.  

Table 2: Comparison of annotation methods using the spatial annotation (with 

the VR tracker and CT scan) and the temporal annotation (time series of 

voltage, current, structural acoustic). The users had to a label a cone which was 

previously labelled by an expert and a supervised anomaly detector in 10 min.  

Annotation 

method 

Spatial annotation Temporal 

annotation 

 CT-Scan VR tracker  

User 1 2 1 2 1 2 

Usability of 

method 
8 8 9 9 1 5 

Confidence in 

finding all defects 
9 8 8 7 2 3 

Confidence in 

label precision 
6 6 6 5 4 6 

Recall .41 .43 .11 .50 .25 .34 

Precision .44 .43 .08 .15 .84 .48 

F1 Score .43 .42 .09 .24 .39 .40 

Balanced 

accuracy 
.67 .70 .52 .68 .62 .66 

 

In all cases, the usability and the confidence in finding all 

defects was higher for the spatial annotation. It is necessary to 

mention, that even if the user had 10 minutes to conduct the 

labeling, the users were finished using the spatial annotation in 

average already after 5 minutes. The confidence in the 

precision of the labels was similar for all annotation methods. 

Regarding the labeling performance, the spatial annotations 

showed a high recall. However, the precision was very low, 

which can be ascribed to the spatial blurriness due to the 

proximity radius. The F1-score and the balanced accuracy is 

higher for the spatial annotation methods. These results of the 

preliminary study support the previously mentioned 

recommendation to combine spatial and temporal labeling. 

First, a preselection of relevant areas in the part and in the time 

could be done by the spatial annotation of the time series. Then, 

the labeling is optimized by focusing on the highlighted areas 

in the time series. This approach could reduce the labeling time 

and improve the recall and the precision of the labeling. 

However, further user tests should be carried out to better 

generalize the findings of this approach due to variabilities in 

the performances depending on the user as shown from the two 

tests conducted with the VR tracker. 

4.3. Spatial resolution of VR tracker  

To evaluate the precision of the transformation and of the 

VR tracker a comparison test with a test bench was performed. 

More precisely, a test bench composed of a plane with 

mechanical mechanisms to induce controlled and precise 

translations on the three axis was used. A picture of the test 

bench used is shown in Figure 6. With the test bench-controlled 

transformations were performed and measured through the 

labels of the mechanical mechanisms. After each 

transformation, three points (origin, x-axis and xy-plane) were 

sampled to calculate transformations given from the VR tracker 

and compared with the labels of the control mechanism. This 

evaluation yielded that the translation on the x-axis, y-axis and 

z-axis have no discrepancy with the ground truth from the 

control mechanisms. However, the precision was measured on 

the millimetric scale due to limitations on the evaluations’ tool. 
Therefore, some accuracy errors could be present in the sub-

millimeter scale. Moreover, it is worth mentioning that the tip 

Figure 6: Test bench for the evaluation of the accuracy of the VR tracker. The 

test bench was composed of a measurement plane mounted on mechanical 

mechanisms to induce controlled translations of the measurement plane. To 

measure the accuracy the VR tracker was used to sample some points of the 

measurement plane and measured translations were compared with indicators 

in the adjustable mechanisms. 
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used for the defect labelling during the user testing had a 

circular diameter of 5mm. Therefore, considering the approach 

described in Sec. 3.5 with a labelling radius of 1.4mm it is easy 

to note that the user could make labelling errors due to the 

required high precision. This somehow explains the low 

precision and achieved in the user testing above. Therefore, the 

authors suggest that the approach with the VR tracker as spatial 

sensor should be used accordingly to the part and anomaly size 

or within a hybrid approach with temporal labelling as 

mentioned before.  

Table 3: Summary of the finding related to the evaluation of the accuracy of 

the VR tracker. The VR tracker showed a good accuracy in the millimetric 

scale showing no discrepancy compared to the test bench. However, errors 

under the millimetric scale could not be measured due to limitations of the 

evaluations’ tool. 

Transformation Ground truth Measured 

X translation 5 mm 5 mm 

Y translation 5 mm 5 mm 

Z translation 3 mm 3 mm 

5. Conclusion 

In this paper, we proposed a method for spatially annotating 

time series. Our approach correlates spatial and temporal 

features of process defects by means of a proximity search and 

geometrical transformations. By applying our method on a use 

case with a preliminary user test, we could achieve higher 

usability and shorter labeling time while obtaining high-quality 

labels. The testing was limited by the number of involved users 

and the minimum detectable defect through the spatial 

approach due to employed hardware. Therefore, to demonstrate 

the generalizability of our findings future research could 

elaborate on the use of the spatial annotation with 

semiautomated labeling to accelerate the data analytics in 

different AM monitoring use cases. For example, the proposed 

method can be transferred to any other multi-axis-based AM 

technologies, including other Direct Energy Deposition 

technologies such as Laser Metal Deposition, as well as 

material extrusion and fused deposition modeling. 
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