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Abstract

Thought to be directly and uniquely dependent on genotypes, the ontogeny of individual

phenotypes is much more complicated. Individual genetics, environmental exposures,

and their interaction are the three main determinants of an individual’s phenotype.

This picture has been further complicated a decade ago when the Lamarckian theory

of acquired inheritance has been rekindled with the discovery of epigenetic inheritance,

according to which acquired phenotypes can be transmitted through fertilization and

affect phenotypes across generations. These findings, together with the important de-

gree of missing heritability in genetics highlighted by Genome-Wide Association Studies,

suggest that not only acquired phenotypes, but also individual’s genotypes may affect

phenotypes intergenerationally through Indirect Genetic Effects. Here, I explored the

genotype-phenotype association resource of the International Mouse Phenotyping Con-

sortium (IMPC) with the aim of understanding whether Indirect Genetic Effects are

detectable and how common they are in mammalian genetics, what are the underly-

ing genetic determinants of Indirect Genetic Effects in mammals and which relevance

they may have for human physiology and susceptibility to complex diseases. My results

demonstrate that Indirect Genetic Effects are common to mammalian genet-

ics and influence intergenerational physiology across several layers spanning

from metabolic to neurological and cardiovascular health. Interestingly, func-

tional annotation of the underlying genetic determinants indicate a tight clustering to

proteins involved in protein ubiquitination and neuroactive signal transduction, despite

the absence of clear genomic and topological clustering. Altogether, my results pro-

pose Indirect Genetic Effects as a new common feature of mammalian genetics, which

v



Abstract

controls physiology across generations in a gene-dependent, genotype-independent man-

ner; highlight new functions for known genes and gene families; and provide a hook to

start looking for missing heritability in human genetics and the pathogenesis of complex

diseases.
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Zusammenfassung

Die Ontogenese individueller Phänotypen, von der man bisher annahm,, dass sie di-

rekt und eindeutig von den Genotypen abhängt, hat sich alswesentlich komplexer als

bisher gedacht herausgestellt. Die individuelle Genetik, Umwelteinflüsse und ihre Wech-

selwirkung sind die drei wichtigsten Determinanten des Phänotyps einess Individuums.

Dieses Bild hat sich vor einem Jahrzehnt als die Lamarcksche Theorie der erworbe-

nen Vererbung durch die Entdeckung der epigenetischen Vererbung neu belebt wurde,

der zufolge erworbene Phänotypen durch die Befruchtung weitergegeben werden und

den Phänotyp über Generationen hinweg beeinflussen können, weiter verkompliziert,.

Diese Erkenntnisse, zusammen mit der Tatsache, dass Genomweite Assoziationsstudien

gezeigt haben das es in der Genetik ein hohes Maß an fehlender Erblichkeit gibt, lassen

vermuten, dass nicht nur erworbene Phänotypen, sondern auch individuelle Genotypen

durch indirekte genetische Effekte Phänotypen über Generationen hinweg beeinflussen

können. Für diese Arbeit habe ich die Genotyp-Phänotyp-Assoziation Ressource des

International Mouse Phenotyping Consortium (IMPC) untersucht, um zu verstehen, ob

indirekte genetische Effekte nachweisbar sind und wie häufig sie in der Säugetiere Genetik

vorkommen. Zudem habe ich untersucht welche genetischen Determinanten den indirek-

ten genetischen Effekten bei Säugetieren zugrunde liegen und welche Bedeutung diese

für die menschliche Physiologie und die Anfälligkeit für komplexe Krankheiten haben

könnten.

Meine Ergebnisse zeigen, dass indirekte genetische Effekte in der Säugetiere

Genetik weit verbreitet sind und die intergenerationale Physiologie auf mehreren

Ebenen beeinflussen. Dies reicht vom Stoffwechsel bis zur neurologischen und kar-
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Zusammenfassung

diovaskulären Gesundheit. Interessanterweise zeigt die funktionelle Annotation der zu-

grundeliegenden genetischen Determinanten ein enges Clustering mit Proteinen, die an

der Ubiquitinierung von Proteinen und der neuroaktiven Signaltransduktion beteiligt

sind, obwohl es kein eindeutiges genomisches und topologisches Clustering gibt. Insge-

samt zeigen meine Ergebnisse, dass indirekte genetische Effekte ein neues gemeinsames

Merkmal der Säugetiere Genetik sind, das die Physiologie über Generationen hinweg

auf Gen-abhängige und Genotyp-unabhängige Weise steuert. Desweiteren heben meine

Ergebnisseneue Funktionen für bekannte Gene und Genfamilien hervor und bieten einen

Ausgangspunkt für die weitere Suche nach der fehlendeen Erblichkeit in der Human-

genetik und der Pathogenese komplexer Krankheiten.
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Summary

Biofluids contain various circulating cell-free RNAs (ccfRNAs). The composition of these

ccfRNAs varies among biofluids. They constitute tantalizing biomarker candidates for

several pathologies and have been demonstrated to be mediators of cellular communica-

tion. Little is known about their function in physiological and developmental settings,

and most works are limited to in vitro studies. Here, we develop iTAG-RNA, a method

for the unbiased tagging of RNA transcripts in mice in vivo. We use iTAG-RNA to

isolate hepatocytes and kidney proximal epithelial cell-specific transcriptional responses

to a dietary challenge without interfering with the tissue architecture and to identify

multiple hepatocyte-secreted ccfRNAs in plasma. We also identify specific transfer of

liver-derived ccfRNAs to adipose tissue and skeletal muscle, where they likely constitute

a buffering system to maintain lipid homeostasis under acute high-fat-diet feeding. Our

findings directly demonstrate in vivo transfer of RNAs between tissues and highlight its

implications for endocrine signaling and homeostasis.
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Abstract

Circadian rhythm synchronizes each body function with the environment and regulates

physiology. Disruption of normal circadian rhythm alters organismal physiology and

increases disease risk. Recent epidemiological data and studies in model organisms have

shown that maternal circadian disruption is important for offspring health and adult

phenotypes. Less is known about the role of paternal circadian rhythm for offspring

health. Here, we disrupted circadian rhythm in male mice by night-restricted feeding

and showed that paternal circadian disruption at conception is important for offspring

feeding behavior, metabolic health, and oscillatory transcription. Mechanistically, our

data suggest that the effect of paternal circadian disruption is not transferred to the

offspring via the germ cells but initiated by corticosterone-based parental communication

at conception and programmed during in utero development through a state of fetal

growth restriction. These findings indicate paternal circadian health at conception as a

newly identified determinant of offspring phenotypes.
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Abstract

Cardiosphere-derived cells (CDCs) generated from human cardiac biopsies have been

shown to have disease-modifying bioactivity in clinical trials. Paradoxically, CDCs’ cel-

lular origin in the heart remains elusive. We studied the molecular identity of CDCs

using single-cell RNA sequencing (sc-RNAseq) in comparison to cardiac non-myocyte

and non-hematopoietic cells (cardiac fibroblasts/CFs, smooth muscle cells/SMCs and

endothelial cells/ECs). We identified CDCs as a distinct and mitochondria-rich cell

type that shared biological similarities with non-myocyte cells but not with cardiac pro-

genitor cells derived from human-induced pluripotent stem cells. CXCL6 emerged as

a new specific marker for CDCs. By analysis of sc-RNAseq data from human right

atrial biopsies in comparison with CDCs we uncovered transcriptomic similarities be-

tween CDCs and CFs. By direct comparison of infant and adult CDC sc-RNAseq data,

infant CDCs revealed GO-terms associated with cardiac development. To analyze the

beneficial effects of CDCs (pro-angiogenic, anti-fibrotic, anti-apoptotic), we performed

functional in vitro assays with CDC-derived extracellular vesicles (EVs). CDC EVs

augmented in vitro angiogenesis and did not stimulate scarring. They also reduced the

expression of pro-apoptotic Bax in NRCMs. In conclusion, CDCs were disclosed as

mitochondria-rich cells with unique properties but also with similarities to right atrial

CFs. CDCs displayed highly proliferative, secretory and immunomodulatory properties,

characteristics that can also be found in activated or inflammatory cell types. By special

culture conditions, CDCs earn some bioactivities, including angiogenic potential, which

might modify disease in certain disorders.
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1 Introduction

The basic principle for the continuity of life is the faithful transmission of genotype, and

hence phenotype, to the next generation. It is now known that not only the genome but

also the epigenome plays a significant role in phenotype transmission. While the trans-

mission of parental factors which involves DNA sequence is known as genetic inheritance,

other forms of non-DNA based inheritance are collectively known as Non-Genetic In-

heritance. At the core of non-genetic inheritance are epigenetic mechanisms, which

modify gene function without changing the DNA sequence and most importantly are her-

itable through mitosis. Typically, Non-Genetic Inheritance is associated with parental

experience and environmental exposure, but relatively recent findings have indicated

that parental genetics can influence phenotypic trajectories also in non-carrier offspring

in a non-genetic manner. These phenomena can therefore no longer be explained by the

traditional Mendelian laws of inheritance, by which each inherited trait is defined by a

pair of genes.

The conventional concept of inheritance clearly rejects the possibility that environ-

mental effects and experiences can be transferred to offspring. Studies have revealed

that parental history and experience also have epigenomic impacts, including sperm

and oocyte cytosine methylation and chromatin patterning, noncoding RNAs and mi-

tochondria. These epigenetic mechanisms broadly deviate developmental trajectories,

thereby affecting adult phenotyping. Paternal paradigms can broadly be categorized

into three groups in mammals: dietary interventions, stress conditions, and exposures to

toxins [1, 2]. Dietary interventions focus mainly on high-fat diets, low-protein diets, and

caloric constraints that primarily affect metabolic parameters such as glucose control,

1



1 Introduction

Figure 1.1: Graphical representation of Chromatin organization and epigenetic reg-

ulation. A. Chromatin is the subunit that creates a chromosome, which is made up

of DNA and protein. B. DNA methylation on the promoter can lead to switching

ON or OFF of the gene transcription.

and lipid metabolism in offspring [3, 4, 5, 6]. Paternal disorders including social defeat,

maternal separation, and chronic unpredictable stress, have been linked to the modified

release of cortisol, metabolism, and blood-brain barrier function in the next generation

[7, 8, 9]. Finally, toxins and bioactive compounds used in paternal-effect studies range

from endocrine disruptors (vinclozolin, BPA, etc.), to carbon tetrachloride, to drugs of

abuse including nicotine and cocaine [10, 11, 12, 13]. It has been shown that environmen-

tal toxicants such as DDT cause epigenetic transgenerational disease inheritance (e.g.

obesity) via the germline [14].

Currently, there is a big debate in the field on whether epigenetics modifications can

be transgenerationally inherited and passed down to truly unexposed generations, such

as the third generation (F3). F3 is focused on as it is not subjected to any environmental

2



1.1 Epigenetics

influence of grandparents (F0), as the embryo (F1) and the germ cells of the embryo

(F2) can be exposed. As the research in the field of epigenetic inheritance is expanding,

so is our knowledge of the field.

1.1 Epigenetics

The word “Epi” in epigenetics is derived from Greek and it means on, above, at, upon

or to. Epigenetic modifications are alterations on the DNA that control whether genes

are switched on or off. The DNA in our cells is not in its purest form, several small

chemical groups can be found attached to it in specific regions. It is found wrapped

around special protein molecules called histones. These histones further pack and order

the DNA into nucleosomes. When the chemical groups are attached or removed from

the DNA or the associated proteins, it alters the expression of nearby genes which also

changes the cell function (Figure. 1.1). Sometimes, if these chemical modifications are

placed or taken off during critical stages of development, the patterns can stay for the

rest of our lives and can even passed on to the next generations.

Epigenetics is defined as the mechanism that controls gene activity and phenotype

ontogeny without altering the DNA sequence. Conrad H. Waddington introduced the

term “epigenetic” in 1942 to describe the intricate, dynamic interactions between the

developing environment and the genome that resulted in phenotypic formation. The

field of epigenetics is rapidly expanding, as is our awareness that the environment and

individual lifestyle choices may both directly interact with the DNA to drive epigenetic

modification.

1.2 Epigenetic inheritance

The transmission of these epigenetic marks to offspring is referred to as epigenetic in-

heritance (Figure. 1.2). Epigenetic marks when transferred from one generation to the

next are known as an intergenerational epigenetic inheritance; however, the transmis-

3



1 Introduction

Figure 1.2: Systematic representation of sequence of events that characterize ac-

quired epigenetic inheritance. Phenotypes acquired by the parental generation

as a result of exposure to various environmental stressors are detected by the soma

and produce epimutations in the germ cells, which are passed onto the offspring via

fertilization and dictate their developmental and phenotypic trajectories[15].

sion of information from grandparents to grandchildren is known as ”transgenerational”

epigenetic inheritance .

Research in the past decade has shown that in addition to transmitting their genetic

material at fertilization, parents also transfer a molecular memory of previous environ-

mental events, including nutritional status, to their offspring via epigenetic processes. In

a study conducted in 1990s, it was hypothesized that breast cancer originates in utero.

Since then, numerous studies have been conducted in human cohorts and animal models

that support the hypothesis of epigenetic inheritance. Family history is now known to

be an important risk factor for breast cancer and several other diseases. Mutations in

genes like BRCA1 and BRCA2 do account for breast cancer, but that’s only in a small

4



1.3 Intergenerational and transgenerational epigenetic inheritance in animals

percentage of cases [16]. Large-scale studies, such as The Cancer Genome Atlas TCGA,

have shown that epigenetic components are frequently mutated in cancer.

Figure 1.3: Diagrammatic representation of Intergenerational vs. Transgenerational

epigenetic Inheritance

1.3 Intergenerational and transgenerational epigenetic

inheritance in animals

Intergenerational epigenetic inheritance occurs when the parent generation (F0, male

or non-pregnant female) is exposed to an environmental factor or external stimuli (e.g.,

drugs of abuse, high fat diet, stress) that causes an epigenetic change in the parent and

parental germline cells (F1; e.g., sperm or oocytes). The epigenetic changes can be seen

in F1 adult somatic tissues, but they do not survive in the F2 generation. To be termed

transgenerational, epigenetic effects acquired in the F0 generation must be demonstrated
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in the F1 and F2 generations, and maybe beyond . The pregnant dam (F0), fetus (F1),

and fetal germline cells (F2) are all exposed to the external stimulation in pregnant

females who undergo environmental-induced epigenetic alterations. In this example,

intergenerational effects include transmission from F0 to F2, but transgenerational effects

include just persistence to the F3 generation (Figure. 1.3) [17].

Numerous examples of intergenerational and transgenerational impacts in animals

have been reported, for example, using model organisms like Caenorhabditis elegans,

which reproduce rapidly and allow for straightforward management of genomic varia-

tion. In most cases the mechanism of inheritance is not fully understood. But with

advancement in research and technologies and carefully controlled experiments a strong

opinion for the involvement of epigenetics in the heritance is evident.

1.4 General mechanisms of epigenetic inheritance

In modern biology, epigenetic inheritance is a fast-emerging field. Most studies are fo-

cused on general mechanisms of epigenetic inheritance like DNA methylation/demethy-

lation, histone modifications, competition of transcription factors, RNA-mediated post-

transcriptional silencing and amyloid prionization (Figure. 1.4) . Basically, any reg-

ulatory mechanism that engages in gene expression or gene-product regulation, under

certain settings may contribute to epigenetic inheritance [19].

1.4.1 Methylation

DNA methylation is an epigenetic process in which a methyl group is transferred to

the C5 position of the cytosine (5mC). It plays an important role in the development,

differentiation, and maintenance of cellular function. In vertebrates, DNA methylation

is mostly limited to CpG sites, however non-CpG methylation has also been described.

It is not fully understood to what extent DNA methylation contributes to epigenetic

inheritance and in what biological contexts. Recent genome-wide studies suggest that

the genome undergoes two phases of global demethylation/remethylation, first in the
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1.4 General mechanisms of epigenetic inheritance

Figure 1.4: Schematic representation of three general mechanisms of epigenetic in-

heritance.Taken from [18]

germline, where methylation marks are globally erased in the primordial germ cells

and end up with the establishment of sex-specific methylation patterns during later

stages of germ cell development (Figure. 1.5). The second reprogramming occurs after

fertilization, where most methylation marks inherited from the gametes are erased (with

the exception of imprinted regions, see below) and the subsequent organization of the

embryonic methylation landscape occurs [20].

In mammals, the mutant agouti viable yellow (Avy) mouse model is extensively stud-

ied and has provided evidence of DNA methylation associated with transgenerational

effects of various genetic and environmental perturbations, where methylation state in-
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Figure 1.5: Epigenetic reprogramming in early mammalian development During

preimplantation development, epigenetic reprogramming erases gametic epigenetic

patterns, allowing the embryo to generate an epigenetic profile appropriate for early

development and crucial for the developing conceptus [21].

versely correlates with transcriptional activity. Studies have shown that DNA methy-

lation changes associated with parental exposure to toxins, maternal care, diet, etc can

be transmitted to the grandchildren [22]. In mice, epigenetic profiling of offspring livers

coming from males fed on a low-protein diet showed ∼20% changes in cytosine methy-

lation patterns, increased expression of cholesterol biosynthesis genes, and decreased

cholesterol esters. The phenotype was partially linked to altered methylation at a pu-

tative enhancer of Ppara [4]. Data on DNA methylation have evolved into a crucial

source of information for biomarker development because, unlike static genetic risk es-

timations, DNA methylation fluctuates dynamically in reaction to different exogenous

and endogenous variables, including environmental risk factors and complicated disease

pathophysiology. Epigenome-wide association studies (EWAS) are a step forward in

this direction to investigate the association between phenotype and epigenetic variants,

mostly DNA methylation.
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1.4 General mechanisms of epigenetic inheritance

1.4.2 Histone modifications

Histone modifications contribute to a wider dynamic process that regulates access to

DNA and transcription. Several histone modifications including methylation, acyla-

tion, phosphorylation, and ubiquitination are key players that contribute to classical

epigenetic phenomena [23]. A histone mark must be somewhat stable to qualify as a

vital epigenetic mark that may be transferred during mitotic division. Histone lysine

methylation appears to be the most stable of the histone modifications. Among others

histone lysine methylation states, H3K9 and H3K27 methylation are most likely to be

heritable, as they are key regulators of epigenetic phenomena, position-effect variegation

[24, 25, 26], Polycomb silencing [27, 28, 29, 30] and X inactivation [31, 32].

During cell division, the nucleosomes are evenly distributed among the two daughter

chromosomes and retained close to the locus from where they are removed during repli-

cation. DNA replication results in hemimethylated CpG in daughter genomes which are

acted upon by the maintenance enzyme DNA methyltransferases DNMT1 in mammals.

A recent study has revealed Adenine-6N methylation as another factor for epigenetic

memory. However, this mechanism doesn’t work during trans-generational inheritance

of the genome because all such modifications are erased during gamete formation. Dur-

ing spermatogenesis, the nucleosomes are removed and replaced by protamines, which

are highly basic and allow super compaction of the chromosomes in the sperm head.

Exceptions to this rule are zebrafish and Arabidopsis where nucleosomes are retained

during the gametogenesis [33, 34]. Chromatin architecture is less distinctive in oocytes

with respect to sperms as nucleosomes are retained; however, chromatin packaging is

still different when compared to somatic cells. During oogenesis, oocytes chromatin is

replaced by germline-specific histones such as H1oo in mammals [35]. Upon fertilization,

the sperm and egg chromatin need to be decompacted which initiates extensive chro-

matin remodeling, and maternal and paternal genomes for several cell divisions remain

distinctly bundled [36]. Protamines in sperm chromatin are replaced by replication-

independent histone H3.3. In mammals, H3.3 histone is also involved in pericentric

chromatin and surprisingly in the nuclear pore formation [37, 38]. These chromatin
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changes guide Zygotic Genome Activation (ZGA), which characterizes the transition

from maternally supplied RNAs to zygotic genome transcription. ZGA occurs as early

as in the two-cell stage in mice to as late as 12 cleavage cycle in Drosophila [39].

In C. elegans, deficiencies in members of the COMPASS complex, responsible for

the trimethylation of histone H3 at lysine 4, exhibit transgenerational inheritance of

increased longevity upon reintroduction of functional COMPASS subunits [40]. This

identifies a crucial role of histone methylation in aging and reveals communication be-

tween germline and soma for the transgenerational regulation of lifespan.

In mice, it is shown that chlordecone exposure leads to increased prostatic intraepithe-

lial neoplasia phenotype (PIN) in both F1 and F3 generations which is mechanistically

linked to a global increase in H3K4 trimethylation (H3K4me3) and a decrease in H3K27

trimethylation (H3K27me3) histone modifications [39]. It is also shown that H3K4me3

from the father is passed down to the embryo, influencing gene expression and develop-

ment. It also implies that epigenetic mistakes can accumulate in sperm, resulting in poor

developmental outcomes in children [41]. Chromatin may act as a mediator of molecular

memory in transgenerational inheritance.

1.4.3 Small RNA

Small RNAs have long been implicated in the specification and stabilization of different

chromatin marks/heterochromatin. It is now known that small RNAs including miRNA,

piRNA, tRNA-derived small RNAs (tRNAs), and repeat-associated sRNAs have the abil-

ity to silence genes [42, 43, 44] and are important in the post-fertilization zygote [45, 46].

A burgeoning number of studies have shown that alterations in these sRNA have an im-

pact on inter and/or transgenerational transmission of induced effects through the male

germline [47, 48, 49]. Several studies in rodents showed altered sperm miRNAs expres-

sion associated with high-fat diet feeding and further leading to transmission of different

miRNA profiles in the zygote, with repercussions on embryo development [45, 50]. When

pregnant mice are exposed to toxins like vinclozolin, it leads to dysregulation of miRNAs

in primordial germ cells (PGCs), which has downstream consequences on PGC differ-
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entiation and lasts three generations. A recent study has interestingly shown the role

of tRNA-derived fragments (tRFs), a new class of non-coding RNA, in the intergener-

ational inheritance of myocardial hypertrophy [51]. tRFs in sperm could function as

a paternal epigenetic factor, and they could mediate the intergenerational inheritance

of paternal disease [47]. These tRFs are produced by stress-released ribonuclease that

cleaves mature tRNA into fragments [52]. Small RNAs are key players in RNA interfer-

ence (RNAi)-related pathways, which function both in the cytoplasm of eukaryotic cells

and in the nucleus where they often correlate with changes in chromatin modifications.

As the involvement of sRNAs in epigenetic processes is becoming evident, we need to

redefine our concepts of heredity. Breakthrough research in the field is changing the

picture of the molecular pathways and mechanisms that drive epigenetic inheritance in

animals.

1.4.4 Prions

Prions are an exceptional form of epigenetics. They are misfolded proteins and have

the ability to infect normal forms of the same protein with their misfolded structure.

Prions function outside of the basic dogma of molecular biology and are protein-based

components of inheritance. They don’t work by transcribing or translating genetic in-

formation; rather they adopt the final stage of central dogma – protein folding. They

are the hallmarks of several deadly and transmissible neurodegenerative illnesses (such

as Kuru and mad cow disease) [52] that affect humans and a variety of other species.

Its already proven that prions provide cells the ability to reorganize their metabolism

[53, 54]. An increasing amount of evidence implies that prion-like conformational con-

version is prevalent both within and between proteomes. Recent study reveals that

protein-based epigenetic element—the [ESI+] prion can promote the transgenerational

inheritance of an active chromatin state, which can confer an adaptive advantage [55].

This provides compelling evidence for the ability of this protein-based form of epigenet-

ics to cause heritable diversity of phenotypic landscapes. Despite growing evidences of

the protein-based inheritance in the past few decades, still there is lot to be explored.
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1.5 Genome-Wide Association Studies and the missing

heritability

In 1875 Francis Galton was the first to investigate twins to determine the relative strength

of heredity and environment. To further explore heritability in human populations

Genome-Wide Association Studies (GWAS) were initiated and have shown a significant

step forward in understanding the heritability and association between disease-causing

genetic variants and common human traits. Based on the hypothesis of “common dis-

ease, common variant” (CDCV), assuming that the same variants are responsible for

the disease across the population, GWAS studies have identified more than 70,000 Sin-

gle Nucleotide Polymorphisms (SNPs) associated with diseases and traits [56, 57, 58]. In

fact, these studies have identified patterns for multiple sets of variants, inclusive of those

associated with height, body mass index (BMI), prostate cancer risk, and many other

complex traits. Altogether, these genetic variants could only explain a small percentage

of the heritability and failed to detect disease risk for all variants involved. As an exam-

ple, for height, by 2010 around 40 variants had been identified that collectively explained

around 5% of the variation in height, compared to a twin heritability of around 80%.

This gap between heritability estimates from genotype data and heritability estimates

from twin data became labeled the “Missing Heritability” problem (Figure. 1.6). Several

explanations were proposed to explain it, such as epigenetics, epistasis, RNAs, heritabil-

ity overestimations, small size effect variants, experimental limitations, and many others.

However,the complete heritability is still not fully explained [59, 60, 61].

One possible elucidation for understanding the missing heritability is that the major-

ity of complex traits are polygenic, which means that traits are influenced by more than

one gene. To address this concern, researchers proposed a risk scoring system known

as Polygenic Risk Score (PRS), which is calculated by the weighted sum of risk alleles

in an individual and the corresponding effect sizes obtained from the GWAS statistics

summary. It enables a more accurate assessment of a person who is at risk of contract-

ing the disease. PRS is widely used in neurodegenerative diseases/disorders, such as
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Figure 1.6: Possible mechanisms of Missing heritability. This diagram depicts the alleged

mechanism of missing heritability. The proportion of each ingredient will vary

between common disorders. [18].

schizophrenia, bipolar disorder, and Alzheimer and can be applied in clinical care, to

identify individuals at risk and prescribe preventive measures. But studies have identified

pitfalls in PRS construction that can affect its prediction efficiency in the real world, like

lack of diversity in the population included in the studies, linkage disequilibrium-based

pruning for construction of PRS may lead to bias due to limited reference haplotype

panels for various populations. There have been recommendations for reducing the PRS

bias concerning their implementation in populations with varying or mixed ancestries.

Clearly, GWAS needs to include diverse populations to reduce biases and address health

discrepancies [62, 63, 64]. As the cost of sequencing is reducing, Whole Genome Sequenc-

ing (WGS) is the new proposed approach to fill the gap between heritability estimates

from monozygotic twin studies. The latest research suggests that much of the missing

heritability is due to rare genetic variants that can be captured via WGS data [65, 66].
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1.6 Epigenetic regulation of genomic imprinting

Genomic imprinting is an epigenetic process that determines whether genes are expressed

or not based on whether they are inherited from the mother or the father. Genes can

be partly imprinted as well. Imprinting, parent-of-origin-specific expression of one of

two alleles in a diploid organism, is a classic example of intergenerational epigenetic

inheritance [67, 68, 69] (Figure. 1.7). Paternally expressed genes tend to drive increased

provisioning to offspring, whereas maternally expressed genes prevent excessive invest-

ment in any one child and it is this tussle that is supposed to be the driving force behind

the evolution of imprinting [70, 71]. These imprinted genes occur in clusters surrounding

a differentially methylated region (DMR), whose methylation status controls local gene

expression. The majority of imprinting control regions are methylated on the maternal

allele and unmethylated on the paternal allele— the reason being the near-complete

demethylation of the paternal genome following fertilization. The regulation is different

in plants where imprinting relies on allele-specific differences in the repressive H3K27

methylation mark [72, 73]. Interestingly, H3K27 methylation has also been implicated

in certain cases of imprinting in mammals but are oocyte derived [74].

Igf2 is one of the best-studied paternally expressed imprinting genes that positively

regulate fetal growth. Abnormal biallelic expression of Igf2 leads to embryonic over-

growth, whereas its decrease causes growth restriction. Grb10 is another maternally

expressed imprinted gene that shows developmental effects (Figure. 1.8). Initially, im-

printed genes were thought to be only important for prenatal development but over

the years studies in mammals have shown their role in the regulation of metabolism,

neurological, and physiological adaptations [75].

It appears that imprinted genes are not uniformly distributed over the whole genome,

but were found clustered around a single imprinting control region (ICR) in certain ge-

nomic areas. These imprinting control regions [77], exhibit distinct epigenetic states in

male and female gametes and are epigenetically reset each generation during germline

development. Approximately 120 imprinted genes have been found and verified in hu-

mans and mice by 2014 [78]. But with a recent discovery of 71 new imprinted genes
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1.6 Epigenetic regulation of genomic imprinting

Figure 1.7: The image shows how imprinted genes are inherited across the genera-

tions (From Book Encyclopedia of Animal Cognition and Behavior).

in the mouse genome by the Biologists at the University of Bath and the University

of Vienna, this number is about 200 now [79]. Another highlight from this study is

that switching on and off imprinted genes is not always related to DNA methylation,

but many of the newly discovered genes seem to be connected with histone 3 lysine 27

(H3K27me3) alterations, with only a few being associated with DNA methylation.
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Figure 1.8: A summary of imprinted genes and their functions in the brain and

placenta during embryogenesis. [76]

1.7 Paramutation

Paramutation is another example of genetically controlled heritable epigenetic varia-

tion which defies Mendel’s first law that states that alleles are transmitted unchanged.

This was first reported by Brink and Coe and they were baffled to find it at odds with

Mendelian rules and, perhaps, for this reason, paramutation remained mysterious for

decades to come. The basic tenet of paramutation is trans-homologues interactions

between alleles namely ‘paramutagenic’ and ‘paramutable’. The “paramutagenic” al-

lele in heterozygotes transmits the phenotype to the wild-type allele (“paramutant”)

in a manner that is maintained through multiple generations. A universal hallmark of

paramutation is that para mutable alleles become paramutagenic following exposure to
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another paramutagenic allele in trans [80, 81, 82, 83, 84, 85]. In other words, these

alleles are meta-stable. Thus, paramutation can be identified as the heritable silencing

of one allele by the other. This crosstalk between the two alleles is mediated by short

RNAs which act in trans and establish a transcriptionally silent chromatin state which

is meiotically heritable through several generations viz. in the worm, C. elegans, bacte-

rial avoidance behavior can be epigenetically maintained through multiple generations

[86]. Epigenetic states assigned by paramutagenic alleles are occasionally permanent

[87] and found in all future generations, and some are reversed after a few generations

[83, 84, 88, 89, 90, 91, 92], as they show less than 100% heritability [93].

Another feature of paramutation is that it can be initiated in a parent of origin fashion.

e.g. in mice, the transmission of the Rasgrf1tm3.1Pds allele from father to daughter

modified the daughter’s Rasgrf1+d wild-type allele in a manner that allowed it to affect

the expression of both parental alleles in the grandchildren [94]. This example shows

that paternal transmission of the mutated allele also induced methylation and expression

in trans of the normally unmethylated and silent wild-type maternal allele.

Further, paramutation can be induced in an artificial manner like by inserting a trans-

gene in one allele. For example, in mice a paramutation model was created by inserting

a lacZ reporter gene in the first intron of Kit-oncogene which resulted in silencing of

the wild type allele in subsequent three generations (Figure. 1.9) [95, 96, 97]. The

same was also observed in the Igf2r locus. However, it remains to be discovered whether

initiation of paramutation by trans-gene insertion, involved physical interactions between

homologous alleles, the sequences in region 2 implicated in de novo methylation and

allele discrimination, from the endogenous Igf2r locus, or the extensive inverted repeat

structure in region 2 [94]. This suggested that despite the artificial means of initiating

the trans allelic interactions, such interactions are normal genomic events.

The mechanism of paramutation in different organisms differs extensively. However,

despite these fundamental differences in the gene regulatory mechanisms, the role of

small RNA (sRNA) molecules is emerging as a unifying concept. These small RNAs

result from misprocessing of different RNA molecules and the role of RNA-dependent
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Figure 1.9: Kit paramutation in mice Male heterozygous mice with one Kittm1Alf allele

and one normal wild-type (+) allele exhibit a speckled white tail tip and generate

aberrant Kit mRNAs from the paramutagenic Kittm1Alf allele. These are packed in

sperm and transferred to the embryo once the egg is fertilized. Progeny have the

heterozygous father’s wild-type Kit allele, but action of the transmitted aberrant

RNAs still gives rise to the spotted tail and perpetuates its production, allowing

paramutation of the wild-type Kit allele and continued transmission of the spotted

tail.

RNA polymerase (RdRp) has also been shown [98, 99, 100]. While non-coding RNAs

were reported to control epigenetic states in plants, as in other organisms, including

in the Drosophila germline [101, 102], transgenerational determination of an epigenetic

state by gametic RNA is, so far, unique to the mouse paramutation [95, 103].

These sRNAs are involved in directing RNA processing and/or chromatin modifying

proteins to nascent RNA transcripts or DNA in a sequence specific manner [103, 104,

105, 106]. Self-reinforcing feedback loops that involve chromatin modifications and sRNA

biogenesis that is mediated by Argonaute proteins [107] provide a persistent and heritable

source of regulatory information [105], and the germline transmission. Recent studies
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highlight paramutation as a byproduct of constitutive mechanisms that use small RNAs

(sRNAs) to regulate epigenetic states even though their interaction with chromatin is

still to be worked out.

Our knowledge and understanding of paramutations-like events are expanding and will

be significant to understand the concept of genetic control of the non-genetic inheritance.

1.8 Sperm contribution to epigenetic inheritance

The gamete (sperm and egg) is one of the most critical developing cell types in any

living process. The process of gametogenesis is largely responsible for the transfer of

phenotypic and ideally suited physiology to following generations. How this information

is transferred is largely unknown. For this reason, the area of sperm epigenetics has

experienced a huge surge in attention and advancement during the last decade (Figure.

1.10). Several studies have shown that males contribute little more than the sperm upon

mating, thus making mechanistic dissection of paternal effects relatively straightforward.

During fertilization, sperm DNA methylation and histone profiles, nucleo-protamine dis-

tribution pattern, and small non-coding RNA composition create a unique epigenetic

backdrop that could be transferred to the egg along with its haploid genome and can

influence offspring health. Growing research in the field suggests that paternal envi-

ronmental exposures, diet, and lifestyle can alter the sperm epigenome, affecting the

embryonic development and health of the future generations and even purified gametes,

have highlighted the role of sperm epigenome in reprogramming offspring. Males can

even influence their offspring phenotype via non-germline mechanisms including seminal

fluid, cryptic maternal effects, transfer of the microbiome, etc. It is known that towards

the end of gametogenesis, 90% of sperm CpG are methylated, whereas oocytes have only

40% CpG methylated [108]. Transposons and intergenic regions have the most DNA al-

terations in sperms, while gene bodies and CGI are very sparsely methylated [109]. The

methylation pattern of sperm DNA was found to be distinct from that of somatic cells

but comparable to that of Embryonic Stem cells (ESC). The promoters of transcription

and signaling factors of genes like Hox, Fox, Sox, or GATA family, which are involved in
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early development shows similar methylation pattern both in sperm and ESC [110]. Epi-

genetic alterations—including changes to sperm chromatin, cytosine methylation, and

small RNA payload—have been reported to occur in response to paternal exposures. In

fact, microinjection of either purified sperm RNAs payload or synthetic RNA mixtures

has been used in certain paradigms to partially reproduce paternally induced pheno-

types in offspring [46]. However, the robust intergenerational effects of the paternal

environment on the F1 generation get diluted in F2 and F3 generations.

Several research groups working on mouse models to study intergenerational effects

have demonstrated that feeding male mice with different diets, like high-fat diet (HFD),

low protein diet, and folate-deficient diet might result in metabolic abnormalities in the

progeny, which were directly connected to alterations in sperm epigenome. A study by

Skinner and colleagues has demonstrated that a mixture of plastic derived endocrine dis-

ruptor compounds bisphenol-A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and dibutyl

phthalate (DBP) all cause a significant increase in the occurrences of diseases/abnor-

malities (Pubertal abnormalities, testis disease, obesity, and ovarian disease) in the F3

generation [111]. The underlying mechanism remains unclear; however, altered sperm

DNA methylation, non-coding RNA, and histone retention are found to be associated

with transgenerational transmission of phenotype. It was interestingly observed that

direct or ancestral exposures induce distinct reprogramming of the sperm epigenome

[14].

Sperm epigenome is found to be altered by lifestyle factors like exercise before con-

ception and could hold responsible for altered metabolism in the future offspring. It

was shown that 6 weeks of endurance training altered the small RNA payload (with

particular effect on the piRNA fraction). Exercise training was even found to influence

DNA methylation of brain-related genes [112], whereas in humans even 3 months of

exercise training can alter the sperm DNA methylations, many methylation changes oc-

curred in genes related to brain diseases [113]. In humans, it appears that the offspring

of fat males are more likely to develop obesity. An interesting preliminary study con-

ducted in the Danish population (Obese = 10, Lean = 13, after surgery = 6) shows the

20



1.8 Sperm contribution to epigenetic inheritance

first epigenetic mapping of sperm in obese men and identifies the small RNA and DNA

methylation changes. They showed that following bariatric surgery, sperm DNA methy-

lation patterns shift, demonstrating that the epigenetic landscape of human sperm is

dynamic and susceptible to environmental changes. These alterations were mostly seen

in genes related to appetite regulation and Piwi-interacting RNAs [114]. To add to the

complication, a recent study that looked at the miRNA profile of spermatozoa at the

single-cell level found that spermatozoa from the same individual had varying miRNA

profiles [115].

Figure 1.10: Diagram depicting environmental changes and the ef-

fects on paternally inherited non-genetic contributions

(http://studentblogs.med.ed.ac.uk/reproductive-systems-group-2/mechanisms-

of-epigenetics/)

In 2021 an interesting study about the effects of spaceflight on mice was published

by Japanese scientists. After 35 days of spaceflight, male mice experience alterations in

the binding of transcription factor ATF7, a regulator of heterochromatin formation, to

promoter regions in the testis, as well as changes in small RNA production in sperma-

tozoa. The offspring of these mice show a rise in hepatic expression of genes involved in

the DNA replication [116].

Many studies across decades of research support the idea that the small RNA pro-

file and methylation pattern of sperm is easily altered by any lifestyle change, diet,
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stress, chemicals, etc, especially during embryonic development. During embryonic de-

velopment, sperm RNAs may trigger a transcriptional cascade of actions that induces a

paternally acquired phenotype in children. The mechanism by which the early impacts

of sperm RNAs are changed to a permanent form of information to allow transgener-

ational inheritance remains a mystery, although it may include a complex interaction

of transposable elements, DNA methylation, and chromatin structure. Future research

is needed to provide insight on the impact of this post-testicular transmitted sncRNA,

particularly how they may influence embryo development, thereby contributing to an-

other level of paternal inheritance. Until we know more, would-be parents should just

strive to be as healthy as possible at the time of conception, rather than being tempted

to fad diets or other activities in order to impact the health of their children in ways we

don’t fully understand.

1.9 Transgenerational epidemiological human studies

If we look at human studies there are very few that suggest the existence of sex-specific

transgenerational inheritance. The Överkalix cohorts in northern Sweden is one such

historical dataset [117, 118, 119, 120]. Although difficult to interpret, the data suggest

that excess consumption of food by paternal grandfather in pre-puberty can have adverse

effects on the later generations of males and not females. The sons and grandsons had

a high risk of death through cardiovascular diseases or diabetes, in response to an envi-

ronmental challenge they themselves had never experienced. The results are particularly

impressive when one considers that dietary interventions happened when the boys were

pre-pubescent and so not even started to produce sperm. Still, they were able to pass

an effect on to the future male generations. To test the hypothesis based on Överkalix

cohorts another human cohort study was conducted on a 40 times larger dataset, in

the Uppsala Multigeneration Study. Three generations were traced and studied and

found support for the major Överkalix observations, the food availability of a paternal

grandpa during pre-puberty predicts the all-cause mortality of his male grandchildren

but not of his female grandchildren. Cancer mortality adds significantly to this pattern
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in the study but it didn’t replicate earlier diabetic and cardiovascular death outcomes

[121]. Another fascinating study was conducted in Iceland to understand the influence

of diet on disease. The disease in concern is Hereditary cystatin C amyloid angiopathy

(HCCAA), a rare autosomal dominant genetic disease, which causes premature death

by brain hemorrhages. In Iceland, the condition is caused by L68Q mutation in the

cystatin C gene. The genealogies revealed that until around 1820, individuals with the

mutations had a life span of around 60 years, but between 1820 and 1900, the life ex-

pectancy for people with the same disorder dropped to about 30 years and still stays

the same. The group speculated in the research article that an environmental change

in the period after 1820 modified the way cells respond to and control the effects of the

mutation. The shift could also be possible due to a change in the diet from a traditional

to a more mainstream European diet, such as an increase in the consumption of more

carbohydrates or salt (for food preservation).

Another remarkable study on the human cohort is from Dutch Hunger Winter in 1944-

45 after World War II which includes individuals who were prenatally exposed to famine

[122, 123]. Women pregnant during the period gave birth to babies who were affected

by health problems like being unusually small in size and prone to obesity and diabetes

throughout their lives. In 2008, decades later it was observed that the imprinted IGF2

gene was hypomethylated in offspring as compared to their unexposed, same-sex siblings

[122]. Further studies revealed minor but consistent differences in DNA methylation

at five differentially methylated regions (DMRs) that regulate the imprinted status of

the IGF2/H19 regions regulating genes involved in growth and metabolism [124]. In

Newborn Epigenetics Study (NEST), DNA from umbilical cord blood leukocytes from

79 newborns was examined. The findings from the data showed an increase in DNA

methylation at the IGF2 and H19 DMRs in babies born to obese moms, which aligned

with the previous findings. These data contribute to the hypothesis that environmental

exposures in early life can lead to lifelong epigenetic changes in humans [125].

A very fascinating study on the inhabitants of the Azorean Island showed a trans-

generational epigenetic inheritance in humans caused by fetal Thyroid Hormone (TH)
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exposure. The people from the Azorean Island of Sao Manuel have Thyroid hormone

receptor (THR) autosomal dominant mutation and it occurs at a high frequency. Wild-

type fetuses of heterozygous THRbeta mothers were exposed to high amounts of TH in

utero without being harmed by maternal hyperthyroid illness outcome. The children of

F1 males which were exposed to high TH levels during fetal life showed Reduced Sensi-

tivity to TH (RSTH), while the children of the females didn’t show the same phenotype.

The F3 generation, whose great-grandmother had the heterozygous THR mutation and

whose grandfather was exposed to raised TH levels in utero exhibit RSTH. Prolactin

levels which are known to be associated with TH levels showed no differences in these

individuals which suggests a novel approach by which this condition is inherited without

the use of DNA mutations [126]. This is one of the most compelling examples of how

unique phenotypes may be inherited in response to specific ancestral experiences. In

mice, similar behavior has been reported [127].

We know very well that diabetes has a major effect on our health, it even affects

sperm quality and more during reproductive years. Metformin is a known primary

diabetes drug used for decades, Its effects on offspring’s health were never studied. A

very recent study on the Danish population (1997 to 2016) published in 2022 in the

Annals of Internal Medicine looked at the offspring of men who were taking diabetes

medication during the development of fertilizing sperm. What they found is that the

sons born to those men were more than three times as likely as unexposed newborns

to suffer a genital birth defect. Encouragingly, the researchers found no effect on the

progeny of men who used the drug earlier in life or the year before or after the 90-

day sperm production window. Metformin has been earlier shown in fish and mice

studies to affect the development of male reproductive organs. As the authors said

this is the first study and more studies should be done to replicate these findings and

determine the cause [128]. Another study on the Japanese mother-child cohort showed

that pregnant women’s usage of disinfectants may put their children at risk for asthma

and eczema. As the use of disinfectants is essential in today’s world for the prevention of
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various infectious diseases, this work should be replicated, and more investigation into

the processes is needed [129].

A quite troubling pattern emerges through all these studies from human beings to

animals, from famine to feast. Maybe the old aphorism ‘We are what we eat’ no more

stands true in the present light of research. We are also what our parents and grand-

parents ate, not even that we are also what they were exposed to. This could lead us to

wonder if the advice on a healthy life is any more relevant or not.

Figure 1.11: Studies on Non-genetic inheritance in mice. A. Non-Mendelian inheritance

of mouse paramutations. B. The study design examined the effect of the paternal

Y chromosome on the phenotypes of daughters. C. Study shows Smarca5 and

Dnmt1, modifiers of epigenetic reprogramming. Isogenic mice with the agouti

viable yellow allele have a variety of coat colors (yellow, mottled and agouti). D.

The disruption of histone methylation in developing sperm caused by KDM1A

transgene overexpression from a single generation substantially affected embryo

development and child survival. [130] E. Model for intergenerational epigenetic

inheritance following the deletion of Kdm6a in the male germline [131]
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1.10 Indirect Genetic Effects

Yet most studies focus solely on genetic variants. Evidence for non-genetic mecha-

nisms of transmission between parents and offspring (i.e., heredity) is accruing at a fast

pace. Nongenetic mechanisms of inheritance include cultural, ecological and epigenetic

inheritance, as well as parental effects and niche construction, all of which potentially

contribute to heredity [132, 133, 134, 135, 136, 137]. Indirect genetic effects (IGEs) occur

when parental genotype impacts the phenotype of non-carrier offspring irrespective of

environmentally acquired phenotypes [138]. IGEs are genotype-driven effects and are

genetically independent. IGEs of parents on their children can also be considered a

special case of nongenetic inheritance. One interesting feature of IGEs is the increased

variability and partial penetrance in offspring phenotypes.

During the last decade, few cases of IGEs have been reported in mammals and lower

organisms. The ”Kit paramutation,” which depicts a persistent alteration of Kit gene

expression, was the first mouse model for a non-Mendelian mechanism of inheritance

[95]. When heterozygous Kit tm1Alf/+ (Kit) mice are bred to wild-type (wt) mice, they

produce Kittm1Alf/+ (Kit) pups with characteristic white tails phenotype. When these

mice are mated to wild-type mice again, a portion of the progeny maintains the spotted

white-tail phenotype, even if the genotype is wild (Figure. 1.11A). This phenotype may

also be generated by microinjecting RNA into fertilized oocytes, indicating that RNA

plays a key part in the inheritance pathway. Maternal miRNAs and piRNAs seemed to

have an inhibitory influence on the effectiveness of paramutation germline transfer [139].

Biologically, we know that daughters do not inherit the Y chromosome and therefore

should not share the phenotype of fathers. The study published in 2010 took advan-

tage of chromosome substitution strains (CSSs) of mice in which the host strain’s Y

chromosome has been swapped with the donor strain’s Y chromosome. Daughters from

the CSS-Y men and host strain females are genetically identical and should be pheno-

typically equivalent in the absence of transgenerational genetic effects of the fathers’

Y chromosome on the phenotypes of the daughters (Figure. 1.11B). Surprisingly, the

results from this study found that although daughters were genetically identical to fe-
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1.10 Indirect Genetic Effects

males from the host, they show phenotypic similarities with the father but with different

intensities [140].

Ng et al. 2010 published in Nature the first report of non-genetic, intergenerational

transfer of metabolic consequences (impaired glucose-insulin homeostasis) of an HFD

from father to their female offspring in rats. Chronic HFD consumption in fathers

showed an increase in body weight, adiposity, impaired glucose tolerance, and insulin

sensitivity. The daughters of these fathers had an early onset of impaired insulin secre-

tion and glucose tolerance, that aggravated with time and induces common changes in

the transcriptomes of retroperitoneal adipose and pancreatic islet tissues. Differential

expression analysis pinpoints to Il13ra2 gene which is part of the Jak-Stat signaling

pathway, it even shows reduced methylation in HFD offspring [6, 141].

Smarca5 and Dnmt1 genes are known as modifiers of epigenetic reprogramming and

have shown parental intergenerational effects in the mouse (Figure. 1.11C). Parental

heterozygous autosomal mutations in these chromatin regulators influence the phenotype

of their offspring and are consistent with the assumption that epigenetic information that

controls gene expression is transmitted in mammals over generations. Histone modifier

dosage has been shown able to regulate intergenerational effects [142]. Alterations in

H3K4 methylation in the germline, caused by overexpression of the H3K4 demethylase

KDM1A (also known as LSD1), also affect future generations in mammals as it caused

reduced survival and developmental abnormalities not only in F1 but also in the F2

generation (Figure. 1.11D). These results demonstrate that histone demethylase activity

in developing sperm can trigger epigenetic inheritance of abnormal development without

affecting DNA methylation at CpG-rich locations [130] (Figure. 1.11E). These studies

in mice have shown that the untransmitted genotype of male parents can influence the

offspring phenotype.

In another study, the Kdm6a gene, present on the X chromosome, deleted in the

paternal germline resulted in an increased incidence of cancer in subsequent generations

which indicates transgenerational inheritance of the sperm epigenome. Interestingly,

they observed that the heterozygote offspring had epigenetic features similar to the
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mutant sperm. The epigenomic study in these mice unveiled that the majority of the

modifications were erased during cellular reprogramming, but some of the methylation

marks escaped the reprogramming machinery and passed on to the offspring [131]. The

mechanism that defies reprogramming is not yet known. But these results raise questions

regarding drugs used for cancer treatments, which target DNA methylation. Whether

the cancer patients exposed to these drugs could transmit these modifications if they have

children during or soon after their treatment. A basic understanding of how epigenetic

changes affect hereditary diseases could provide answers to families affected by cancer.

What was pretty remarkable from these studies is that heterozygous mutations in the

parental generation create germline epimutations, which are passed to children during

fertilization and shape their developmental and phenotypic trajectories independently

of the inherited genotype (Figure. 1.12). And these phenotypes we believe are gene-

dependent, genotype independent.

Since paternal and maternal background can affect the transmission of traits through

non-genetic means, this calls into question the role of sexual selection as well because we

know that sexual selection is a major force, stronger than natural selection, in shaping

evolution.

1.11 Relevance of large scale IMPC data

The International Mouse Phenotyping Consortium (IMPC) is an international estab-

lishment, to provide access to comprehensive and standardized mouse phenotypic data

for the purpose of identifying and characterizing phenotypic abnormalities associated

with each protein-coding gene knockout in the mouse genome [143]. To date, the

IMPC has generated 8457 mutant lines and 7824 genes have been phenotyped from

the mouse genome. Importantly, all mutants and their respective wild-type control ani-

mals were generated exclusively from heterozygous breeders on a coisogenic C57BL/6N

background. Phenotypic data covers a wide range of system areas, including neuro-

logical, behavioral, metabolism, cardiovascular, pulmonary, reproductive, sensory, and

musculoskeletal functions. The IMPC pipeline’s broad range of phenotypes has enabled

28



1.11 Relevance of large scale IMPC data

Figure 1.12: Diagrammatic representation of Indirect Genetic Effects (IGEs). This

diagram depicts an example of what we mean by indirect genetic influences. Het-

erozygous mutations in the parental generation create germline epimutations,

which are passed to children during fertilization and shape their developmen-

tal and phenotypic trajectories independently of the inherited genotype. The

increased diversity and partial penetrance in offspring phenotypes is an intriguing

aspect of IGEs.

research of putative genes implicated in certain disease areas that were previously un-

known or unexplored [144].

We are well aware that data collected from mouse models is becoming biologically

relevant for human clinical studies, increasing the value of an extensive phenotyping

approach for a broader analysis of multidimensional data sets. These large-scale and

multidimensional gene-phenotype datasets will shed new light on our understanding of

the mammalian genome landscape and reveal many unknown dimensions of gene func-

tions. An extensive study on the IMPC provides extensive novel insights into gene func-

tion along with numerous new disease models [144]. Systematic mouse phenotype data
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analysis by different groups has identified candidate genes for metabolism abnormali-

ties [145], eye development [146], auditory dysfunction [147], and bone mineral density

[148]. To date, more than 2,000 international publications have been published which

are benefited from the IMPC resources. It is phenomenal that 360 IMPC lines (40%)

have phenotypic similarity with 889 human disease genes, and the majority (279, 78%)

of lines are the first reported mouse model for these diseases. A recent study used the

IMPC data to identify 486 genes that have never been associated with cardiac diseases

in humans [149].

Such a valuable resource can assist in defining candidate genes to evaluate a condi-

tion of interest, provide information on the mechanisms involved or provide support for

predictions of gene function that can play a role in the adaptation [143]. Mouse genetics

is an effective tool for establishing links between genes and diseases and will shed some

light on human physiology. Together, these methods provide unprecedented opportuni-

ties to analyze in vivo processes and systems to better understand pathophysiology and

disease.
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1.12 Aim and scope of this thesis

Our study focuses on the non-DNA-based inheritance and the wide spectrum of phenom-

ena/mechanisms by which parents influence phenotypic variation in future generations.

A lot is done on how genetic changes like gene deletions, SNP, mutations etc directly

impact the phenotype or disease, one such large-scale studies in humans are GWAS where

population-based genetic modifications are linked to diseases and phenotypes. Another

large-scale project focused on the mouse model system and called IMPC (International

Mouse Phenotyping Consortium), aims at deciphering the functions of every mouse gene

by knocking out and systemic phenotyping. . These are examples of Direct Genetic

Effects (DGEs) studies where an individual’s phenotype is directly impacted by its own

genes.

Parents influence offspring phenotypes in many different ways. What we know is that

other than parental genetics, their environmental exposure, either pre-conceptionally,

during gestation, or post-delivery often influences offspring phenotypic trajectory. Re-

cent studies have shown that parental genetic variation induces phenotypic variation also

in non-carrier, wild-type, offspring - a phenomenon known as Indirect Genetic Effects

(IGEs). Indirect genetic effects lead to complex inheritance pathways in which genetic

and environmental sources of variation can be passed down over generations and hence

contribute to phenotypic variation, adaptation and evolutionary change. IGEs not only

constitute a paradigm-shift in our ken of genotype/phenotype relations across genera-

tions, but their full knowledge also holds the potential to provide a novel and full picture

of evolutionary processes, modes of inheritance and complex disease (epi)genetics.

Up to now, the vast majority of studies on IGEs have focused on either canonical

epigenetic modifiers, or on large parental genetic or genomic manipulations. What my

thesis aims at is to understand whether this phenomenon is peculiar to epigenetic mod-

ifier genes or common in mammalian genetics, and to identify the underlying genetic

determinants.
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To achieve the above objective first, we will use existing systemic phenotypic data

provided by the IMPC to isolate genetic determinants of phenotypic variation in non-

carrier individuals (Figure. 1.13).

Figure 1.13: Model of the study to identify genetic determinants of Indirect Genetic

Effects(IGEs).

Second, we will characterize gene or gene family-dependent molecular determinants of

the parental effect(s).

Our results will provide a resource for deciphering IGEs in detail and will be valuable

for understanding how much of complex phenotypes heritability is hidden by indirect ge-

netic effects and epigenetic mechanisms, and to what extent these phenomena contribute

to the pathogenesis of complex diseases.
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2.1 The International Mouse Phenotyping Consortium (IMPC)

The IMPC program entails the objective and systematic characterization of 20,000

known and predicted mouse genes knockout mouse strains using standard operating

procedures (SOPs). The phenotyping is accomplished at major research centers across

Europe, North America, and Asia. Standardized techniques have been devised to main-

tain uniformity and data quality throughout the centers. All mouse procedures are car-

ried out in compliance with the various member centers and animal welfare authorities.

The SOPs are detailed in the International Mouse Phenotyping Resource of Standard-

ized Screens (IMPReSS) http://www.mousephenotype.org/impress (Figure. 2.1). Each

IMPC center is free to nominate and therefore prioritize genes for systemic phenotyping,

mostly based on their own research focus. The only guideline is to avoid duplication

by not nominating genes more than once. The main objective of the consortium is to

focus on choosing poorly understood genes for which there is little to no knowledge

available. All mouse lines for the phenotyping are born and raised on a C57BL/6N

genetic background, with support animals descended from C57BL/6NJ, C57BL/6NTac,

or C57BL/6NCrl. Phenotyping data are collected between the age of 4 and 16 weeks

following approved animal ethics protocols in every institution.

2.2 IMPC Data Collection

The IMPC provides a unified point of access to mouse phenotypic data from 19 research

centers across the globe. For this study, we worked on the dataset from Data release 11.
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Figure 2.1: IMPRESS phenotyping pipeline The IMPC fundamental pipelines illustrate

the consortium-wide phenotyping workflow.

The centers do systematic phenotyping of Baseline Control animals (C57BL/6N) and ho-

mozygous knockout mice which are viable. When homozygous mice are not viable, more

homozygous animals are introduced into the embryo pipeline, and adult heterozygous

mice, when viable, are phenotyped. Otherwise, centers also phenotype heterozygous an-

imals sometimes. Our interest for this study is two populations of isogenic background:

pure C57BL/6N wild-type lineage, named Baseline (Ctrl) animals; and C57BL/6N

animals with a high degree of inbreeding derived from mutant parents that are heterozy-

gous, named wildtype (WT) animals (Figure. 2.2A). We obtained from the IMPC an

exclusive access to the data from these two cohorts, as they are not directly accessible

from the IMPC website.
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Figure 2.2: Representation of IMPC Data used in this study. A.Graphic representation

of the breeding scheme of Baseline (Ctrl) animals; and C57BL/6N animals with

a high degree of inbreeding derived from mutant parents that are heterozygous,

named wildtype (WT) animals. B. List of the phenotypic centers which contributed

data for this study. C. Geographical distribution of the phenotyping centers and

their respective contribution of cohorts (WT, Baseline or Both) for the study. D.

Representation of five broad physiological categories based on 129 phenotyping

parameters used in the study.

2.3 Data verification, filtration, and quality check

In IMPC the WT and Baseline animals are mostly used interchangeably as Controls in

the publicly available dataset, that’s why it was difficult to differentiate between these

animals from the online accessible data release. On special request, IMPC provided

cohorts of wild-type offspring (WT) coming from mutant parents. As the parental status

of this data was not fully confirmed by IMPC we further approached the respective

phenotypic centers for the additional information and to identify parents of origin. In

total we collected phenotyping data for 51608 animals from which 28637 were WT,

22971 Baseline from different phenotyping centers (Figure. 2.2B-C and Table. 2.1)
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. For this study, we only focused on Baseline and WT animals. The whole dataset

is a collection of 786 phenotyping parameters. The non-numerical, image data and

no data parameters were excluded. After exclusion and filtering, we scaled-down to

129 phenotyping parameters, which were further categorized into 5 broad physiological

categories (Figure. 2.2D).

Phenotyping Center Total WT Animal Total Baseline

BCM 4882 849

HMGU 1336 1146

MRC Harwell 2387 4634

ICS 17 2664

JAX 0 11254

KMPC 529 802

MARC 1949 0

RBRC 2038 77

TCP 6951 1303

UCD 6868 0

WTSI 1680 242

Table 2.1: Details of number of animals collected from different phenotyping centers.

After data collection, we performed a few initial data summaries and visualization

tasks to understand data distribution. The complete dataset was then arranged in a

multidimensional data matrix for further analysis. Animals with at least 3 replicates

per group and sex were included for further steps and the rest were removed. Initial

data visualization revealed that at least 48 % of data was missing if we pool the data in

the single data matrix. Imputing such a high percentage of missing data is statistically

not recommended, so we applied stringent filters to reduce the percentage of missing data

but only to the extent that we do not lose too much information. For multidimensional

data analysis, we performed data imputation with a random forest imputation algorithm
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using missForest R package [150]. MissForest is a non-parametric method and can be

applied to mixed data types. It first imputes all missing data using the mean/mode,

then for each variable with missing values, it fits a random forest on the seen portion and

predicts the missing part. This training and prediction procedure is repeated iteratively

until a stopping condition is satisfied or a maximum number of user specified iterations

is achieved. The imputed data matrix was z—score normalised and plotted for data

distribution visualization grouped by sex across all the parameters included in the study.

2.4 Principal Component Analysis (PCA) and correlation

Analysis

The primary analysis plan is to identify the major source of variability and relation

between the animals for which we performed PCA and correlation analysis. The data was

mean averaged per sample category. The data matrix was then scaled and the prcomp

function in R was used to determine the principal components of the complete dataset.

To quantify the difference between the genes based on phenotypes we use the Spearman

(rank) correlation method using get dist from the factoextra R package. Spearman’s rank

correlation is a nonparametric measure using the rank values of the two variables. These

correlation coefficients were calculated to identify similarity patterns in gene-phenotype

pairs and visualized using a heatmap generated by using the ComplexHeatmap package

from R. We used PCA based 2-dimensional (2D) visualizations to visualize the single

animal of the cohorts by using t-Distributed Stochastic Neighbor Embedding (t-SNE)

pca = TRUE, perplexity=50, theta=0.5, dims=2, epoch = 1000.

2.5 Strategy for candidate genes selection

For candidate gene selection we performed a phenotyping center based analysis which

means WT animals were compared against the Baseline animals (Figure. 2.3A) coming

from their respective phenotyping center. Groups with at least 4 animals/sex were

included for the comparison for statistical power. Males and females were analyzed
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Figure 2.3: Detailed strategy for identification of candidate genes responsible for

IGEs. A. Schematic diagram of the methodology followed in the study, B. Table

shows center based comparison of Baseline and WT animals. C. Quantile based

analysis, where WT animals which fall above quantile 90 (Q90) (shown in blue

within the red outline) and below quantile 10 (Q10) are selected. D. Selected candi-

dates further confirmed if they showed statistically significant differences (wilcoxon

test) between the Baseline and WT animals.

separately to account for the sexual dimorphism typical of complex phenotypes [151]. In

case the center doesn’t have its own baseline animals, they were compared against the

average baseline which includes all the baseline animals (Figure. 2.3B). We compared

every WT animal group for each phenotyping parameter against the baseline animals of

the same and selected only those whose median value lies above quantile 90 and below

quantile 10 of the baseline animals data range (Figure. 2.3C). These comparisons were

again statistically tested using the wilcoxon test to validate if the groups are different

from one another in a statistically significant manner using the compare means command

from the ggpubr R package with default settings (Figure. 2.3D).
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Figure 2.4: Identification of genotype dependant and independent phenotypes.

Comparison between WT and HOM (homozygous KO mutant) offspring of the

same heterozygous mating to differentiate between gene-dependent and genotype-

independent candidates.

IGEs are defined as gene-dependent (as they depend on the mutated gene in the

parental generation) and genotype-independent (because their phenotypic consequences

are manifested in wild-type offspring of mutant parents). This definition entails that

potential epimutations induced in the parental generation by the gene mutation have

consequences in the next generation in a genotype-independent manner. Therefore, WT

and HOM (homozygous mutant) offspring of the same heterozygous mating should have

similar phenotypic characteristics when compared to the Baseline population (Figure.

2.4). To test this hypothesis, we downloaded HOM phenotyping data from IMPC using

API and compared them with their WT littermates using wilcoxon test to validate if

the groups are different from one another in a statistically significant manner.
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2.6 Gene Annotations and pathway analysis

The functional annotation for Gene Ontology (GO), including biological process, cel-

lular component, and molecular function, was performed using the open-access We-

bGestalt tool (http://www.webgestalt.org) [152]. The same tool was also used to im-

plement the KEGG pathway enrichment analysis and for Over-representation analysis

of the genes. Top results with the false discovery rate (FDR) ≤ 0. 05 were consid-

ered significant. Next, we conducted Gene Set Enrichment Analysis (GSEA) to uncover

the signaling pathways and biological processes for which the geneset were enriched

(http://software.broadinstitute.org/gsea/). The STRING (Search Tool for the Retrieval

of Interacting Genes/Proteins) was used for protein-protein interaction (PPI) network

analysis, a web-based visualization resource. The network analysis was carried out using

a confidence interaction threshold of 0.40. We used the q value, which is the adjusted

P value using the Benjamini–Hochberg FDR method with a 5% cutoff for correction

for multiple hypotheses testing. The resulting diagram depicts the participation and

interaction of hallmark genes in the PPI network.

2.7 Publicly available data

2.7.1 Genomic Location

The genes were plotted based on their chromosomal location on the mouse genome

using RIdeogram package from R. We used Cluster Locator to determine number, size,

and position of all the clusters formed by the genes of interest and statistically analyze

the distribution of those genes along the reference genome and the percentage of gene

clustering found (http://clusterlocator.bnd.edu.uy/). Analysis was performed on 555

genes with a max gap of 5. The gap between two given genes is the number of other

genes located between them, defined by the location of their starting points in the

reference genome.
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2.7.2 Topologically associating domains (TADs)

We used publicly available Hi-C data from mouse embryonic stem cells available from

4DN Data Portal (https://data.4dnucleome.org). They performed Micro-C on JM8.N4

mouse embryonic stem cells (Pettitt et al., 2009) (male mESCs; Research Resource

Identifier: RRID:CVCL J962; obtained from the KOMP Repository at UC Davis) [165].

Micro-C is a variant of Hi-C that improves resolution and signal-to-noise ratio, which

were possible limitations of classic Hi-C owing to the chemicals employed in its workflow.

We downloaded the available processed file which includes TAD boundaries data in bed

format. We used the Bedtools intersect function to find overlaps between the genomic

coordinates of IGE genes with regions of TAD and TAD boundaries across the TAD

landscape. TAD boundaries are regions bordering TADs. A 100 kb TAD boundaries are

defined as sections 100 kb upstream of the TAD start and 100 kb downstream of the

TAD end. If a TAD existed at chr1: 2,000,000–3,000,000, we would describe its TAD

bounds as chr1: 1,900,000–2,000,000 (start boundary) and chr1: 3,000,000–3,100,000

(end boundary) (boundary around the end) [153]. Any borders that overlapped with

genomic gaps (UCSC table browser centromeric/telomeric repeats) were removed. Genes

of interest were checked if they overlap with these identified TAD boundaries.

2.7.3 Genome-wide association studies (GWAS)

GWAS examines hundreds of thousands of genetic variations across populations with

different ethnicities and regions to uncover those that are statistically related to a given

trait or illness. The GWAS catalogue hosted at https://www.ebi.ac.uk/gwas/ website

gives free access to these association studies. The All associations v1.0 was downloaded

from the GWAS Catalog (https://www.ebi.ac.uk/gwas/docs/file-downloads). It includes

47232 associations between genetic variations like SNP to diseases and phenotypes. To

compare our genes of interest to GWAS we converted mouse genes to human and then

matched them to gwas association data to understand which genes have correspondent

genetic alterations in humans and are associated with known disease or phenotypes

according to GWAS data.
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2.7.4 mouse embryonic stem cells (mESCs) ChIP-seq and ATAC-seq data

analysis

Several publicly available databases for chip-seq and atac-seq from mouse embryonic stem

cells (mESCs) were downloaded [154] Table 2.2. Reads from ChIP-seq experiments were

mapped to the mouse genome (mm10) using the Bowtie software [155]. Only those reads

that matched to a unique site with no more than two sequence mismatches were kept for

further analysis. Peaks were called using the MACS2 software [156] using a bandwidth

parameter of 150bp. Peaks with q-value cut-off <0.005 and fold >= 4-fold were retained.

Peak annotation has been performed using HOMER (http://homer.salk.edu/homer/).

For ATAC-seq we used the peaks data file available from the published article.

2.7.5 Chromatin segmentation analysis

Mapped dataset from ChIP-seq experiments of histone modifications and Transcription

Factors (TFs) was used for chromatin segmentation analysis by the EpiCSeg software

[169]. The software splits the genome into a regular grid and assigns a state to each bin

based on abundance and co-occurrence of histone marks and TFs. EpiCSeg getcounts

function generates a count matrix from a list of bam alignment files, and the count

matrix is normalized using normalizecounts function. The bin size was default set to

200 bp. The segment function produced the segmentation, the number of states is a free

parameter and was set to twenty five (–nstates 25) after trying different states from 8

to 30. The segmentation was calculated only for the genomic regions of interest. Based

on the matrix of histone mark counts, the states are labelled after segmentation.

2.7.6 CpG islands Identification

To annotate CpGs with respect to whether these genes reside in CpG islands, we down-

loaded the mm10 cpgIslandExt table from the UCSC table browser

(https://hgdownload.soe.ucsc.edu/goldenPath/mm10/database/cpgIslandExt.txt.gz).

The cpgIslandExt table contains annotations of CpG islands, where a genomic region

is a CpG island if it meets the following criteria: having >50% GC content, a length
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GEO accession Target Marks Type

GSM2417080 H3K4me3 Histone Marks ChIP-Seq

GSM2417084 H3K4me2 Histone Marks ChIP-Seq

GSM2417088 H3K4me1 Histone Marks ChIP-Seq

GSM2417092 H3K9ac Histone Marks ChIP-Seq

GSM2417096 H3K27ac Histone Marks ChIP-Seq

GSM2417100 H3K27me3 Histone Marks ChIP-Seq

GSM2417100 H3K27me3 Histone Marks ChIP-Seq

GSM2417104 H3K79me2 Histone Marks ChIP-Seq

GSM2417112 H3K36me3 Histone Marks ChIP-Seq

GSM2417112 H3K36me3 Histone Marks ChIP-Seq

GSM2417116 H3.3 Histone Marks ChIP-Seq

GSM2417120 H3 Histone Marks ChIP-Seq

GSM2417124 Input native MNase Input ChIP-Seq

GSM2417127 WCE Transcription Factor ChIP-Seq

GSM2417142 Oct4 Transcription Factor ChIP-Seq

GSM2417143 Sox2 Transcription Factor ChIP-Seq

GSM2417144 Klf4 Transcription Factor ChIP-Seq

GSM2417145 cMyc Transcription Factor ChIP-Seq

GSM2417169 p300 Transcription Factor ChIP-Seq

GSM2417173 Hdac1 Transcription Factor ChIP-Seq

GSM2417177 Brg1 Transcription Factor ChIP-Seq

GSM2417187 Nanog Transcription Factor ChIP-Seq

GSM2417188 Esrrb Transcription Factor ChIP-Seq

GSM2417076 ATAC Chromatin ATAC-seq

Table 2.2: Details of the mESCs Chip-seq and ATAC-seq sequencing data down-

loaded from NCBI.
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of >200bp and a ratio of observed to expected CG dinucleotides of >0.6. We assigned

each CpG island a unique identifier, and examined overlaps between CpGs and IGEs

candidate genes using the intersect function of Bedtools (v2.29.0, [157]).

2.7.7 Human diseases

We used disgenet2r R package to retrieve human disease association with our genes of

interest. Functional analyses were performed using the Enrichr package.

2.7.8 Phenotype based gene interaction Network

To build a knowledge-based network with a reduced set of high-relevant genes, we built

a pheontype-based co-correlation matrix and centered the 5 previously described param-

eter sets (Figure. 2.2D) around what we called core phenotypic terms. For example,

IMPC IPG 012 001 (AUCipgtt) is the core phenotypic term for glucose metabolism, as

well as IMPC CBC 015 001 (Total Cholesterol) is for Cholesterol homeostasis (see Sup-

plementary Figure. 8 - 19 for the entire set of core phenotypic terms). The phenotype-

based co-correlation matrix is a Spearman-based co correlation matrix calculated using

Prism 8 (using the correlation function and a two-tailed p-value threshold of 0.05) on the

complete and imputed phenotype dataset, which includes data fromWT and Baseline an-

imals. Around the core phenotypic terms and using the phenotype-based co-correlation

matrix, we built a network of co-occurring phenotypes (p-value <10-4 / -0.5 <r >0.5),

which we used to select relevant genes, showing significant phenotypic variation in WT

offspring for the core phenotypic term and >3 parameters of the selected parameter set.

(Figure. 2.5) shows an example of gene selection using the Glucose Tolerance param-

eter set centered around the AUCipgtt as core phenotypic term. The same procedure

was applied to Activity (IMPC OFD 009 001), Adiposity (IMPC DXA 002 001), Ane-

mia (IMPC HEM 003 001), Anxiety (IMPC OFD 012 001), Cholesterol Homeostasis

(IMPC CBC 015 001), Exploratory Behavior (IMPC OFD 019 001), Hearing (IMPC ABR),

Heart Function (IMPC ECG 002 001), Immune function (IMPC HEM 001 001), Liver
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2.7 Publicly available data

Function (IMPC CBC 013 001), and Sensory motor gating (IMPC ACS 037 001) phe-

notyping catagories to select relevant genes for respective terms.

After selecting phenotype and associated gene we used network package [158] from

R to draw associations and used log2FC as weight. Network was created using the R

package igraph [159] and Cytoscape was used to draw the network figure [160].

Figure 2.5: Steps to identify genes for Phenotype based gene interaction Network.

A. Phenotype-based co-correlation matrix is a Spearman-based co correlation ma-

trix based on imputed phenotype dataset from WT and Baseline animals. B.

IMPC IPG 012 001 (AUCipgtt) is the core phenotypic term for glucose metabolism,

phenotype-based Spearman co-correlation was calculated to identify relevant genes.

C. AUCipgtt shows negative correlation with chlorine levels. D. wheres shows pos-

itive correlation with initial response to glucose.

Note: All data processing, analysis and plotting was performed using R

version 4.1.2
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3 Results

3.1 IMPC phenotyping data reveals center-based clustering

We recently defined Indirect Genetic Effects (IGEs) as gene-dependent (as they are deter-

mined by the parental genetic alterations), genotype-independent (as their manifestation

is independent from the carrier genotype) control of phenotypic variation across gener-

ations [15]. To estimate the influence of parental genetics on the overall phenotypic

variation among isogenic individuals (C57BL6/N mice) discordant for parental geno-

types (either heterozygous mutants of pure wild-type), we uniformly compared IMPC

phenotypic-data from wildtype animals generated from heterozygous breeders (WT), to

Baseline (Ctrl) animals, from IMPC which have never seen any mutation, across 129

phenotypic parameters. As a dimensional reduction algorithm, spearman correlation

between the animals demonstrated that following covariate adjustment, animals clus-

tered closely based on the phenotyping center. Heatmaps were formulated with distance

between rows and columns calculated by Euclidean distance.

The heatmap (Figure. 3.1A) showed 5 distinct clusters, of HMGU, WTSI, MARC,

RBRC and MRC Harwell phenotyping centers. Within these clusters the animals form

sub-clusters based on gender. The heatmaps and t-SNE plot of the individual phenotyp-

ing center clearly shows the sexual dimorphism (Supplementary Figure. 6.1-6.7) As the

correlation analysis is based on averaged data we performed t-SNE where each data point

represented as a single animal. We used PCA for t-SNE embedding initialization. PCA

is a feature reduction method to project high-dimensional data into a lower-dimensional

space that can explain the most variance of the input data. PCA initialization is more

globally stable than random initialization. Consistent with our correlation observation,
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3 Results

Figure 3.1: Correlation analysis among animals shows center-based phenotypic clus-

tering A. The heatmap matrix shows the Spearman correlation coefficient between

animals for all the genes across 129 phenotyping parameters. Samples cluster by

phenotypic centers. Colors (blues) represent relationships between samples that are

most similar; warmer colors (reds) represent samples that are more dissimilar with

lower coefficients. B. t-SNE plot for both WT and baseline animals C. t-SNE plot

for visualizing only the Baseline animals clusters in a projected 2D metric map.

the largest number of animals in the cohort showed center based clustering (Figure.

3.1B). Importantly, restricting the same analysis to Baseline animals highlighted a simi-

lar center-based clustering, suggesting a determinant environmental influence on mouse

phenotypes (Figure. 3.1C).

The same t-SNE plots when differentiated based on the sex and type of animals

(Baseline and WT) (Figure. 3.2) revealed a certain degree of differentiation in the data,

which was importantly also evident when performing single-center correlation and t-

SNE-based analysis. These results, while warning us on a strong center-based clustering
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3.2 Wild-type offspring shows phenotypic variation

Figure 3.2: Sexual Dimorphism and WT, Baseline animals distribution. A. Sex-

specific distribution of animals shown as a t-SNE plot. B. Sex-based distribution

of HMGU phenotypic centers. C. WT and Baseline animals distribution shown

as a t-SNE plot, D. WT and Baseline animals distribution of HMGU phenotypic

center.

of the data, also highlighted a certain degree of phenotypic variation between WT and

Baseline animals (and therefore IGEs) within individual centers, which encouraged us on

further exploring of the IMPC dataset for the identification of novel genetic determinants

of indirect genetic effects.

3.2 Wild-type offspring shows phenotypic variation

After the observation that the animal phenotypes are biased by a strong center-based

clustering and to normalize for center effects, we adopted a quantile-based, wilcoxon
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3 Results

Figure 3.3: Distribution of 571 candidate genes of IGEs A. Venn Diagram of candidate

genes to show overlap between male and female animals. B. C. Alluvial plot shows

male and female dynamics of the candidate genes of IGEs. It shows candidates’

genes distribution through phenotyping center, phenotype category and phenotype

levels to be high or low. Each line represent a single gene connects it to phenotyping

center to the respective phenotype categories and levels.

corrected statistical pipeline to compare WT animals coming from a phenotyping center

to the respective baseline animals coming from the same center, or to the averaged

baseline for centers without own baseline data (Figure. 2.3B). After comparisons, we

identified 1275 statistically significant phenotypic differences in the male and 1623 in

the female data. These phenotypes reduce down to 571 genes in total, from which 135

were found to be unique to males, 142 unique to females and 294 common to both

sexes (Figure. 3.3A). As a quality check, the alluvialchord plot shows that the selected
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3.3 Functional Annotation of the identified 571 candidate genes

candidate genes are not biased towards any phenotypic center or phenotyping category

(Figure. 3.3B and C).

3.3 Functional Annotation of the identified 571 candidate

genes

Figure 3.4: Functional annotation of A. male and B. female gene set that are not

significantly different between WT and HOM phenotypes from the iden-

tified 571 candidate genes.

Indirect Genetic Effects underlie gene-dependent / genotype-independent mechanisms

that control phenotypic variation across generations [15]. This definition entails that

potential epimutations induced in the parental generation by the gene mutation have

consequences in the next generation in a genotype-independent manner. Therefore, WT

and HOM (homozygous mutant) offspring of the same heterozygous mating should have

similar phenotypic characteristics when compared to the Baseline population. To test

this hypothesis, we compared WT and HOM phenotypes from the identified 571 candi-

date genes with available HOM data (i.e. 368/436 for females and 364/429 for males).
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3 Results

Importantly, the vast majority of phenotypes are not significantly different between lit-

termates (eg. 1095/1319 for females and 1105/1340 for males) highlighting 346/368

genes for females and 338/364 genes for males, which fit the definition of indirect genetic

effects. Functional annotation of these genes using Gene Ontology and KEGG Path-

way analysis shows enrichment for terms underlying neuropeptide signaling and cellular

protein metabolism (via ubiquitination) in both male and female datasets (Figure. 3.4).

Importantly, extending the functional annotation to the entire set of 571 candidate

(Figure 3.5) genes by GeneSet Enrichment Analysis, through the online WebGestalt tool

(http://www.webgestalt.org/) reinforced the enrichment of similar terms (Supplemen-

tary Figure. 6.20), in line with the fact that more than 90% of the identified candidate

genes induce proven IGEs. Furthermore, STRING-based Protein-protein interaction

(PPI) analysis identified a network with 557 nodes and 1033 edges and showed that the

identified 571 genes are highly interconnected and cluster to the previously identified

pathways (Supplementary Figure. 6.21A and B). Of note, the PPI enrichment p-value

2.44e-15 shows that the network has significantly more interactions than expected for a

random set of proteins of the same size and degree distribution drawn from the genome.

Such an enrichment indicates that the proteins are at least partially biologically con-

nected, as a group.

Altogether, these results - generated by three independent analysis methods/tools -

indicate that:

1. Indirect Genetic Effects are a common feature of mammalian genes (and therefore

not restricted to canonical epigenetic modifiers, as previously suggested);

2. Genetic determinants of IGEs are functionally interconnected; and

3. These results hint to an important role for neurophysiology, as well as protein and

mRNA metabolism in non-genetic inheritance.
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3.4 Inferring information about IGEs by exploring publicly available datasets

Figure 3.5: Function annotation of A. male and B. female 571 candidate genes

identified of IGEs.

3.4 Inferring information about IGEs by exploring publicly

available datasets

Genes are known to be non randomly organized in the human genome, both within

and across chromosomes [161]. Genes that have comparable functions and evolutionary

origins, as well as genes with similar expression patterns, are frequently found to be

grouped allowing for coordinated regulation. While there is plenty of evidence to support

this, there are even interesting cases of the conserved grouping of genes with seemingly

unrelated roles [162, 163]. In more general terms, genomic topology and gene chromatin

environment are important determinants of gene regulation, function, heritability and

relevance for human diseases. Altogether, these pieces of evidence prompted us to look at

the genomic location of the identified IGE-inducing genes and understand their genomic

neighbourhood and regulatory landscape. The goal is to identify common features, which

together with the functional and phenotypic clustering, would provide a set of theoretical

characteristics of IGE-inducing genes.
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3 Results

Figure 3.6: Genomic location assessment of 571 candidate genes of IGEs. A. Ideogram

illustrating distribution and localization of 571 candidate genes along mouse chro-

mosomes. The position of each candidate gene is represented with different shapes

and colors based on their sex and relative position on its respective autosome and

sexual chromosomes. B. Gene cluster distribution on the mouse chromosomes. C.

Number of clusters on chromosome correlation with number of phenotypes. Chr 6

and 7 shows the highest correlation. D. Heatmap shows chromosome wise pheno-

typic enrichment.

We therefore mapped the 571 IGE-inducing genes on the mouse chromosomes. We

identified that they are uniformly distributed along the 21 mouse autosomes (with an

average of 29 genes/autosome) (Figure. 3.6A). Interestingly, 32.07% of the 571 genes

(178 genes) form 80 clusters of 2-4 genes per cluster distributed along the chromosomes

(Figure. 3.6B). This clustering is statistically significant (p-value <0.05) as compared to

the clustering found in 1,000 lists of 571 genes randomly picked from the mouse genome

Table. 3.1.

Although cluster density does not correlate with gene density on chromosomes and

individual clusters do not seem to underlie common intergenerational effects, cluster

density is significantly associated with the pleiotropy of the intergenerational phenotypic

variation (Figure.3.6C) and the chromosomal location is associated to specific F1 phe-

notypes in a gender-dependent manner (Figure.3.6D). For example, neuro-behavioural

phenotypes are associated with parental manipulations of genes located to chromosome
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3.4 Inferring information about IGEs by exploring publicly available datasets

Cluster size # Clusters # Genes % Genes

2 66 132 23.78%

3 10 30 5.41%

4 4 16 2.88%

80 178 32.07%

Table 3.1: Cluster Locator results shows number and size of clusters found and num-

ber and percentage of genes on the list forming clusters.

1 and 4 in male and female offspring, respectively (Figure.3.6D). Conversely, metabolic

phenotypes are intergenerationally induced by manipulations of genes located to chromo-

some 7 and 6, respectively in male and female offspring (Figure.3.6D) and interestingly,

chromosomes 7 and 6 are also the ones with the highest cluster density (respectively 8

and 10 clusters) and the highest number of phenotypes showing significant variation in

the WT offspring of mutant parents (respectively 174 and 141 in males and 138 and 154

in females) (Figure.3.6C).

These findings further support the strong gender dimorphism in mammalian physiol-

ogy and reinforce the association between gene chromosomal location and physiological

function, importantly, across generations and in a genotype-independent manner.

Importantly, these findings are in line with studies using mouse Chromosome Substi-

tution Strains (CSS) showing how chromosome-specific information - both genetic and

topological - is important for physiology, epigenetic stability and non-genetic inheritance

[140, 164, 165]. We therefore sought to further explore the topology and the chromatin

environment for genes on chromosomes 6 and 7, by overlapping IGE-inducing genes

to publicly available Hi-C-seq signals in mouse ESCs (to avoid any tissue-specific sig-

nals) to annotate them to Topologically Associated Domains (TADs); and by performing

chromatin-state segmentation analysis on a publicly available full epigenome in mouse

ESCs to provide single classifications to individual loci and therefore simplify the many

chromatin attributes of the locus.
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3 Results

Figure 3.7: TAD boundaries overlap and association with identified IGE-inducing

genes. A. Male and females genes/chromosomes(%) association with TAD bound-

aries. B. Overlap between IGEs genes identified in TAD and TAD boundaries. C

and D Correlation between percentage of TAD and TAD boundaries with number

of phenotypes in males and females.

On average 92% of the identified IGE-inducing genes overlap with TAD boundaries

(Figure. 3.7A and B), which have been associated with traits heritability [153]. In

contrast with these data, we could not detect any significant association between genes

either located or spanning TAD boundaries with intergenerational phenotypic pleiotropy

(Figure. 3.7C and D), suggesting non-canonical heritability mechanisms.

We further performed chromatin-state segmentation analysis of the 571 IGE-inducing

genes across 21 histone modifications, transcription factors binding and ATAC signals.

We clustered them to 25 individual states differentiating active (states 1-3), repressed

(state 18) and transcribing (states 8-9) genes, as well as those targets of the three

Yamanaka factors (states 22-24) (Figure. 3.8A and B). Interestingly, the vast majority

of genomic bins, as well as the vast majority of IGE-inducing genes, cluster to states 16

and 17, which are not very well defined (Figure. 3.8C and D).

These findings support the previously presented data on TAD and reinforce the notion

that IGEs are induced by non-canonical mechanisms of heritability.

Certain sections of the genome, known as CpG islands or CGIs, are devoid of DNA

methylation and are generally located directly upstream of gene promoters . About 68%
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3.5 Human Disease Association

Figure 3.8: EpiCSeg segmentation analysis A. The dataset’s average mark intensities

per state. The heatmaps depict the average level of a certain mark in bins labeled

with a specific state. B. The averages have been log-transformed for presentation

reasons after adding a pseudocount of 1. C. Bar plot refers to a chromatin state,

and its length proportional to the frequency of the state. D. State distribution

around fractions of genes, highlighted chr 6 and 7.

of genes were found to have overlap with CpG island sites (389 out of 571). 250 genes

out of 571 are found to be associated with diseases within GWA Studies.

3.5 Human Disease Association

DisGeNET is a search platform that has one of the most comprehensive publicly available

libraries of genes and variations linked to human disorders. It combines information from

expert-curated archives, GWAS libraries, animal models, and scientific literature. Data

in DisGeNET is annotated uniformly with controlled vocabularies and community-driven

ontologies. We used 26 genes that are known to be neuropeptides, and 11 genes involved

in Ubiquitination pathways from 571 genelist as input for DisGeNET enrichment as

performed using EnrichR. The results reveal that the neuropeptides genes are enriched

in disease like obesity, depression, hypertension, anorexia etc, (Figure. 3.9) while the

genes involved in Ubiquitination shows enrichment for neuromuscular diseases (Figure.

3.10). GWAS data shows 250 genes out of 571 IGEs genes are found to be associated

with diseases/phenotypes.
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3 Results

Figure 3.9: Human disease enrichment analysis for neuropeptides genes. The scatter

plot visualizes gene cluster based on their similarity on the first two UMAP dimen-

sions. The bar chart displays the top ten enriched words in the selected library,

along with their p-values. Colored bars represent words with p-values less than

0.05. A phrase with an asterisk (*) next to it has a significant adjusted p-value

(0.05).

3.6 Phenotype gene association network

The network is developed for 12 core phenotype categories encompassing the 5 main

physiological areas highlighted before Figure. 2.2D. Interestingly, while there is evident

association of terms like Exploratory behavior and anxiety (which belongs to neurobe-

havioral phenotypes and are quantified using the Open Field Test by the IMPC centers)

as well as adiposity and Cholesterol Homeostasis, which are expected, some more in-

teresting and unexpected associations pop up from our analysis. For example, there

is an interesting association between hyperactivity and sensory motor gating (a proxy

for schizophrenia-like phenotypes) through genes like trpc6, which belongs to the fam-

ily of the TRP (Transient Receptor Potential) channels implicated in the pathogenesis

of psychiatric disorders. Another interesting association is between hyperactivity and

adiposity, through genes like Hrh1 (Histamine Receptor H1) and Atn1 (Atrophin 1).
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3.6 Phenotype gene association network

Figure 3.10: Human disease enrichment analysis for Ubiquitination pathways re-

lated genes. The scatter plot visualizes gene cluster based on their similarity

in the first two UMAP dimensions. The bar chart displays the top ten enriched

words in the selected library, along with their p-values. Colored bars represent

words with p-values less than 0.05. A phrase with an asterisk (*) next to it has a

significant adjusted p-value (0.05).

Interestingly, activity disorders in humans (such as ADHD syndrome) are strongly as-

sociated with being overweight - especially in children and young adults, most likely

through rewiring of brain circuits controlling feeding behavior. Activity phenotypes are

also associated with immune depression and impaired liver function through the Emc10

(ER Membrane Protein Complex subunit 10) gene, involved in angiogenesis, a process

involved in a plethora of human diseases, involving developmentally programmed phe-

notypes (Figure. 3.11).

These findings highlight the power of our analysis and of IGEs to uncover genetic and

phenotypic associations, as well as suggest (epi)genetic mechanisms by which complex

phenotypes might be influenced by parental genetics, environmental exposures and gene

x environment interactions.
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3 Results

Figure 3.11: Phenotype based gene association Network The network has 128 nodes,

173 edges, and 13 multi-edge node pairs. The green square boxes are phenotypic

category, ellipse shaped are the genes, blue color represent genes having phenotype

in only male, pink represents female and purple show if genes have a phenotype

in both male and female. The red connecting lines show increased levels, while

the blue one show decreased levels.
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4 Discussion

The overarching goal of this study is to investigate indirect genetic effects, i.e how

parental genetics influence phenotypic trajectories in non-carrier, wild-type offspring.

Indirect Genetic Effects (IGEs) are dependent on parental genetics, but independent

from offspring genotype. While previously reported for canonical epigenetic modifier

genes or as a result of large genetic/genomic manipulations, we aim at understanding

whether Indirect Genetic Effects exist, how common they are in general mammalian ge-

netics, and what their impact is on individual phenotypic trajectories. As such, Indirect

Genetic Effects can constitute an important source of phenotypic variation in the general

population and explain, at least partly, the discrepancy between the identified genetic

variation and the observed phenotypic variation (a phenomenon known as the missing

heritability problem). To study the general impact of Indirect Genetic Effects we looked

for a multivariate, rich, and available dataset which would provide us with unbiased

and systemic phenotypic data from isogenic mice, discordant for parental genetics. We

found such a valuable data source in the data of the International Mouse Phenotyping

Consortium (IMPC), which allowed us to study 2000 genes across 129 phenotypes and 2

genders, and identify 571 IGE-inducing genes spanning 5 main physiological areas such

as glucose and lipid metabolism; neurology and behavior; immunology and hematology;

cardiovascular health and bone metabolism.
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4 Discussion

4.1 IMPC as a valuable resource to study Indirect Genetic

Effects

IMPC is a valuable resource for the scientific community as evident from more than

2000 peer-reviewed and published research articles to date. The systematic phenotyp-

ing of gene KO cohorts in IMPC helped the community to unravel gene function and

its relevance to diseases that were not known before. To fulfill the aim of this project

IMPC is a perfect resource, first it focuses on laboratory mice that are bred in a con-

trolled environment, which are genetically controlled and have standard protocols for

phenotyping, secondly, phenotyping data is available for vast categories like metabolism,

cardiovascular, Immunological, clinical chemistry, neurological, etc. As every multicen-

ter dataset, the IMPC resource has its own drawbacks. For example,the phenotypic data

reveals that there is phenotypic variation between different centers, and that the data

cluster well within the center but not between the centers. Another problem associated

with the IMPC resource is the relatively high level of data scattering and need for data

imputation. Among the different options to overcome these problems (including inter-

center normalization, data scaling and extensive imputation to name some) and proceed

with the data processing and analysis, we decided to take into account the differences

among the centers and exploit the fact that almost every center could provide data from

both wild-type mouse populations. We therefore proceeded to a center- and parameter-

based analysis, which includes a Wilcoxon corrected quantile-based statistics to isolate

top-varying phenotypes among the two wild-type populations and associate them to the

genes mutated in their siring parents.

4.2 Potential candidates of indirect genetic effects from IMPC

resource

After comparing WT and baseline animals we identified a total of 571 genes that induce

phenotypic variation and these could be potential candidates for indirect genetic effects.
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4.3 Quest for common features in IGE-inducing genes

Notably, this number constitutes roughly of the entire starting dataset, and most likely

this is due to the fact that we considered even the genes which induce phenotypic varia-

tion in single phenotypic parameters (Supplementary Figure. 6.22). Indeed, by filtering

genes that induced variation in at least 2 phenotypic parameters the number of candi-

dates shrinks down to 456 genes and 247 by filtering for at least 4 phenotypic parameters.

Another option could have been to filter for effect-size (or log2FC) and only consider

parameters with the strongest effect size. In both cases, though, we opted against the

filtering strategy to avoid missing knowledge, for example on essential parameters for a

given physiological function (eg. Area Under the Curve of a Glucose Tolerance Test -

IPG 012 - for whole body glucose tolerance) or on essential parameter with intrinsically

low variation (eg. the Respiratory Exchange Ratio - CAL 017).

As a functional quality control for the 571 identified genes, we tested whether they

induce intergenerational genotype-independent effects (therefore matching the definition

of IGEs) and therefore divided them into two categories one which induces phenotype

variation in a genotype-independent manner (WThet = KO) and the other one in a

genotype-dependent manner (WThet ̸= KO). Importantly, >90 % of the identified genes

induce intergenerational genotype-independent effects, suggesting a high degree of true

positive signals.

4.3 Quest for common features in IGE-inducing genes

While GWAS often neglect gene-gene interactions due to a lack of statistical power

to identify them, mouse chromosomal substitution strains (CSSs) offer an alternative

strategy for discovering epistasis due to their low allelic variation. CSS is a tool for

identifying quantitative trait loci (QTL) associated with disease and phenotypes. It

is a unique model for studying genetic architecture of complex traits and uncovering

phenotypic hot spots on the chromosomes. It seems that different chromosomes are

enriched for specific phenotypes. QTL on chromosome 6 regulates the onset of puberty

in mice and chromosome 7 is linked to organ weight and obesity. CSS-10, -11, -6,

and -Y show elevated PPI and decreased PPI in CSS-4 [165, 166, 167, 168, 169]. Our
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4 Discussion

results also show chromosomes 6 and 7 as hotspots for phenotypes and non-genetic

programming of phenotypic trajectories across generations. Furthermore and in keeping

with CSS studies, our data also show phenotypic clustering to specific chromosomes

(Figure. 3.3D), importantly for the first time across generations. Genome topology has

been lately associated with transcriptional regulation, gene function and disease etiology.

While these two pieces of evidence would suggest genomic/structural determinants for

IGEs, data from TAD and EpiCSeg do not highlight any common genomic/structural

features for IGEs. In particular, TAD data and Epicseg analysis on mESCs chromat-

in/histone marks show that most of the genes are present in not well-defined chromatin

domains and span TAD boundaries, suggesting that they are constitutively expressed in

mESCs (and most likely in adult tissues) and are essential for development. No partic-

ular divergence for genes located to chromosome 6 and 7 are identified. TAD and Epic

therefore do not show any specific genomic cue that could help explain the observed

IGEs and suggest non-canonical mechanisms of heritability.

Altogether, these data would suggest that what determines the likelihood and the

direction of IGEs is the function of the gene itself and the signaling pathway(s) it is

involved in. Indeed, the 571 genes we identified cluster to 3 discrete pathways: neu-

ropeptide signaling, ubiquitin and mRNA surveillance. Interestingly, genes clustering

on Chr.6 are involved in Neuropeptide Signaling, while those on Chr.7 are enriched for

immune function (which includes components of both mRNA surveillance and ubiquitin

pathways)
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5 Conclusion & Outlook

The study developed an unbiased, systematic, and phenotype-based strategy to investi-

gate the role of parental genetics in phenotypic diversity and adaptability in wild-type

progeny. It established and identified a certain degree of indirect genetic effects (inter-

generational phenotypes).

Key points from the study:

• With such controlled and guided phenotyping protocols certain degree of pheno-

typic variation is observed between the centers.

• Strong gender dimorphism in mammalian physiology

• We identified significant phenotypic variation in wild-type offspring of 571 mutants

across several using available, high-quality, and systemic mouse phenotype data.

• The identified genes show functional clustering to Neuroactive genes, genes involved

in protein catabolism (through ubiquitination), mRNA metabolism.

• Genomic location reveals an association between gene chromosomal location and

physiological

• IGEs are induced by non-canonical mechanisms of heritability.

• Strong interconnections between induced phenotypes and gene functionality

The findings of this intensive characterization effort reveal new information about the

candidate genes and their ability to generate indirect genetic effects and alter animal

physiology over generations. Furthermore, while not providing conclusive mechanis-

tic proof, the results of the molecular profiling will define a comprehensive dataset of
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5 Conclusion & Outlook

molecular signatures associated with the parental contribution to offspring variation in

phenotypes and a potential starting point for mechanistic dissection of indirect genetic

effects in mammals. Definitely, it opens more questions than answers, but answering

these questions will help us understand a different aspect of inheritance.

It will interesting to do in-depth phenotyping to isolate parent-of-origin effects. One

aspect of IMPC production is that the phenotyping cohorts (mutant animals and their

wild-type littermates) are created solely from heterozygous breeders. This means that

for this project, any parental influence might be supplied by either parent or arise from

a combined parental contribution. To thoroughly explore the molecular foundations, it

will be necessary to first identify parent-of-origin specific contributions to the reported

parental effects.

Another aspect to be looked upon is to dissect germline-dependent or independent

transmission of phenotypes. We know gametes are the primary, but not the only, means

of information transmission from parents to offspring. In vitro fertilization (IVF) tests

are the greatest technique to disentangle germline dependent and independent effects

since they exclude non-gametic components at conception (mainly seminal fluid and

maternal tract variables). Starting with a list of potential genes, constructing experi-

mental wild-type cohorts via IVF and assess their respective phenotype observed in our

data, with the parent(s) primarily contributing to the offspring phenotype.

The incidence of complex diseases like diabetes, obesity and neurodevel-

opmental disorders among others is on the rise worldwide and part of this is

due to acquired (epigenetic) inheritance. The obtained information will shed

light on the contribution of indirect genetic effects to disease susceptibility

and epigenetic inheritance.
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6 Supplementary Figures

Figure 6.1: Correlation and PCA based analysis of HMGU phenotyping center A.

The heatmap matrix shows the Spearman correlation coefficient between animals

for all the genes across 129 phenotyping parameters. B. Gender based distribution

of animals shown as a t-SNE plot both WT and baseline animals C. t-SNE plot for

visualizing WT and Baseline animals distribution in a projected 2D metric map.
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6 Supplementary Figures

Figure 6.2: Correlation and PCA based analysis of MRC Harwell phenotyping center

A. The heatmap matrix shows the Spearman correlation coefficient between animals

for all the genes across 129 phenotyping parameters. B. Gender based distribution

of animals shown as a t-SNE plot both WT and baseline animals C. t-SNE plot for

visualizing WT and Baseline animals distribution in a projected 2D metric map.

68



Figure 6.3: Correlation and PCA based analysis of RBRC phenotyping center A.

The heatmap matrix shows the Spearman correlation coefficient between animals

for all the genes across 129 phenotyping parameters. B. Gender based distribution

of animals shown as a t-SNE plot both WT and baseline animals C. t-SNE plot for

visualizing WT and Baseline animals distribution in a projected 2D metric map.
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6 Supplementary Figures

Figure 6.4: Correlation and PCA based analysis of MARC phenotyping center A.

The heatmap matrix shows the Spearman correlation coefficient between animals

for all the genes across 129 phenotyping parameters. B. Gender based distribution

of animals shown as a t-SNE plot both WT and baseline animals C. t-SNE plot for

visualizing WT and Baseline animals distribution in a projected 2D metric map.
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Figure 6.5: Correlation and PCA based analysis of WTSI phenotyping center A.

The heatmap matrix shows the Spearman correlation coefficient between animals

for all the genes across 129 phenotyping parameters. B. Gender based distribution

of animals shown as a t-SNE plot both WT and baseline animals C. t-SNE plot for

visualizing WT and Baseline animals distribution in a projected 2D metric map.
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6 Supplementary Figures

Figure 6.6: Correlation and PCA based analysis of KMPC phenotyping center A.

The heatmap matrix shows the Spearman correlation coefficient between animals

for all the genes across 129 phenotyping parameters. B. Gender based distribution

of animals shown as a t-SNE plot both WT and baseline animals C. t-SNE plot for

visualizing WT and Baseline animals distribution in a projected 2D metric map.
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Figure 6.7: Correlation and PCA based analysis of UCDavis phenotyping center A.

The heatmap matrix shows the Spearman correlation coefficient between animals

for all the genes across 129 phenotyping parameters. B. Gender based distribution

of animals shown as a t-SNE plot both WT and baseline animals C. t-SNE plot for

visualizing WT and Baseline animals distribution in a projected 2D metric map.
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6 Supplementary Figures

Figure 6.8: Density plots showing the distribution of Auditory Brain stem response

parameters(female:red; male:blue).
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Figure 6.9: Density plots showing the distribution of Acoustic Startle and Pre-pulse

Inhibition (PPI) parameters(female:red; male:blue).
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6 Supplementary Figures

Figure 6.10: Density plots showing the distribution of Indirect Calorimetry param-

eters(female:red; male:blue).
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Figure 6.11: Density plots showing the distribution of Body Composition (DEXA

lean/fat)parameters(female:red; male:blue).
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6 Supplementary Figures

Figure 6.12: Density plots showing the distribution of Electrocardiogram (ECG) pa-

rameters(female:red; male:blue).
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Figure 6.13: Density plots showing the distribution of ECHO parame-

ters(female:red; male:blue).
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6 Supplementary Figures

Figure 6.14: Density plots showing the distribution of Grip Strength parame-

ters(female:red; male:blue).
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Figure 6.15: Density plots showing the distribution of Hematology parame-

ters(female:red; male:blue).
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6 Supplementary Figures

Figure 6.16: Density plots showing the distribution of Heart Weight parame-

ters(female:red; male:blue).
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Figure 6.17: Density plots showing the distribution of Insulin parame-

ters(female:red; male:blue).
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6 Supplementary Figures

Figure 6.18: Density plots showing the distribution of Intraperitoneal glucose toler-

ance test (ipGTT) parameters(female:red; male:blue).

84



Figure 6.19: Density plots showing the distribution of Open Field parame-

ters(female:red; male:blue).

Figure 6.20: webgesalt analysis results
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6 Supplementary Figures

Figure 6.21: STRING Network analysis A.Network of 571 candidate genes. B.Highlighted

significant KEGG pathway terms.

Figure 6.22: Bar plot for occurrence of phenotype term per gene.
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