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Preface

Abstract

Gaussian process regression is a powerful tool for predicting variables with credible intervals.
It has been used for various machine learning and uncertainty quantification applications as
it provides estimates about the prediction’s uncertainty by default. The thesis is concerned
with how Gaussian processes can be utilized for prognostics, i.e., predicting the degradation of
mechanical systems, particularly when several previous degradation trajectories are available.

Typically, predefined mean and covariance functions are employed to construct a Gaussian
process model. However, these predefined functions without integrating prior information
reduce the potential of Gaussian processes. This drawback is tackled by directly deriving
the mean and covariance function from previous degradation trajectories. After specifying
the Gaussian process, its prediction can be updated by computing the conditional distribution
based on monitoring data. The approach facilitates using problem-specific governing equations,
which opens the way to physics-informed Gaussian processes. An extension for treating non-
normally distributed degradation trajectories is further presented.

The approach is applied to several degradation examples, such as fatigue crack growth,
laser degradation, and milling machine wear. The predictive capabilities of the proposed
approach are compared to the state-of-the-art Gaussian process regression and other machine
learning methods. Lastly, the entire approach is applied to a real aerospace structure in
order to predict future failure probabilities. The results show that the presented approach
(1) outperforms the state-of-the-art Gaussian process method for prognostics applications,
(2) leads to similar accuracies as recurrent neural networks while predicting the entire future
degradation trajectory, and (3) needs only a fraction of training time.
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Zusammenfassung

Gaußprozesse sind performante Werkzeuge für Regressionsprobleme. Sie wurden für unter-
schiedliche Anwendungen im Bereich des maschinellen Lernens und der Unsicherheitsquan-
tifizierung verwendet, vor allem, weil sie zusätzlich zu Vorhersagen auch deren Unsicherheiten
schätzen. Die vorliegende Dissertation beschäftigt sich mit der Implementierung von Gaußpro-
zessen für die Vorhersage von Degradationsvorgängen, insbesondere für den Fall, bei dem
mehrere Trajektorien, die den Versagensprozess widerspiegeln, verfügbar sind.

Typischerweise werden vordefinierte Mittelwerts- und Kovarianzfunktionen verwendet, um
das zugrundeliegende Modell eines Gaußprozesses zu definieren. Diese vordefinierten Funkti-
onen verringern jedoch das Potenzial von Gaußprozessen, wenn Vorinformationen nicht inte-
griert werden. In der vorliegenden Arbeit wird deshalb die Mittelwerts- und Kovarianzfunktion
direkt aus vorhandenen Trajektorien abgeleitet, um Vorinformationen in den Gaußprozess zu
integrieren. Anschließend kann die Vorhersage des Gaußprozesses aktualisiert werden, in-
dem ihre bedingte Wahrscheinlichkeitsverteilung basierend auf Strukturüberwachungsdaten
berechnet wird. Der Ansatz ebnet zudem den Weg für physikalisch informierte Gaußprozesse.
Zusätzlich wird eine Erweiterung für nicht-normalverteilter Daten vorgestellt.

Der Ansatz wird auf mehrere Ermüdungsbeispiele, wie z.B. Rissfortschritt in Luftfahrt-
strukturen, Laserdegradation und Fräsmaschinenverschleiß, angewendet. Die neuartige Metho-
de wird mit dem Stand der Technik und anderen Modellen des maschinellen Lernens ver-
glichen. Schließlich wird der gesamte Ansatz auf eine reale Luftfahrtstruktur angewendet,
um zukünftige Ausfallwahrscheinlichkeiten vorherzusagen. Die Ergebnisse zeigen, dass der
vorgestellte Ansatz (1) den Stand der Technik für Prognoseanwendungen übertrifft, (2) zu
ähnlichen Prognosegüten wie rekurrente neuronale Netze führt, während die neuartige Metho-
de den gesamten zukünftigen Ermüdungsverlauf prognostiziert, und (3) der Ansatz dabei nur
einen Bruchteil der Trainingszeit benötigt.
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Chapter 1
Introduction

”I never think of the future. It comes soon enough.”

– Albert Einstein

Even though Albert Einstein stated that he never thinks of the future as it comes soon enough,
estimating future conditions has never been more important than now in many emerging
fields. This thesis is particularly devoted to Gaussian processes for prognostics — predicting
the degradation of mechanical systems. Why this is beneficial, what topics still need to be
explored, and which contributions are made throughout the thesis are addressed in this chapter.
We start this chapter by motivating the use of prognostics and health management for aerospace
structures. Moreover, we introduce prognostics and health management and explain frequently
used terms in context. This is followed by a section that describes the current problems that
come with applying Gaussian processes for prognostics and outlines the contributions of this
work. Lastly, the structure of the presented studies is summarized.

1.1 Motivation of prognostics for aircraft

Severe fatigue problems should be avoided to prevent grounding the fleet, which implies loss of
flying hours and poor publicity [126]. Yet, unexpected fatigue events have occurred repeatedly.
According to Schijve [125], several aircraft fatigue accidents have led to rethinking aircraft de-
sign and understanding fatigue mechanisms better. In 1954, for example, two Comet 1 aircraft
crashed after only 1290 and 900 pressurized flights [127] due to an unstable crack extension that
caused an explosive fuselage decompression. It was concluded that the fuselage skin material
should be resistant to fatigue crack growth, and local stress concentrations at cutouts should
be avoided. Moreover, it became clear that a full-scale fatigue test should never be preloaded
to a high level of stress before the intended fatigue life had been proven. Unfortunately, this
was done on the front fuselage specimen to show the static strength capability of the Comet 1.
In addition to some thirty earlier load cycles between one and two times the working pressure,
the subsequent fatigue test revealed initial cracks after about 18,000 simulated flights [127] —
after more than 13 times the service life. Today, we know that high preloads may cause local
plastic deformation, introducing favorable compressive residual stresses [125].

Multiple other accidents led to a better understanding of the fatigue behavior in aerospace
structures. During this learning process, one crucial mind shift was that aerospace structures
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2 1 Introduction

must be damage tolerant. Therefore, a structure must tolerate damages such as cracks, i.e.,
these damages must not lead to catastrophic failure. All damage tolerance concepts have to
prove that the occurrence of any damage (fatigue initiated, foreign object induced, etc.) will
not impair structural integrity [4]. On the one hand, this, together with detailed inspection
and maintenance plans, leads to a safe aircraft operation. On the other hand, in the view
of economic profit, aircraft of airlines should be in the air as much as possible [126], while
maintenance is seen as a significant factor in aircraft operating costs. The average direct
maintenance costs of a Boeing 757-200, for example, had a proportion of about 23% of the
total flight operating costs in 2017 [1]. This is why current aircraft operation trends show an
increasing demand for lower maintenance costs. This can be obtained by longer inspection
intervals and shorter inspection downtimes [4].

Recent incidents have shown that fatigue is still an urgent challenge in the aviation industry
and leads to unexpected events. In late 2019, for example, Boeing notified the Federal Aviation
Administration of structural cracks in the pickle fork on a small number of their 737 Next
Generation airplanes. Even though this structural part was designed to withstand more than
90,000 flights, the cracks occurred on some planes before 30,000 flights [47, 51, 87]. Moreover,
after an uncontained engine failure on February 20, 2021, the U.S. airplane manufacturer
recommended grounding all 777-model aircraft powered by a particular Pratt & Whitney
engine model [26, 73]. If reliable predictions can solve fatigue problems, a significant amount
of time and money can be saved [126]. Indeed, one way is to improve fatigue and fracture
computations. However, since fatigue-induced damage is still one of the most uncertain failures
in structures [43], it is challenging to compute the fatigue life precisely, which typically leads to
a large margin of the computed fatigue life. Another way is to monitor mechanical systems with
data gathered by attached sensors. This enables assessing mechanical parts’ conditions during
operation and avoids time-consuming inspections that involve disaggregating assemblies. One
step beyond monitoring mechanical systems is to additionally predict the degradation and
time to failure, which is referred to as prognostics [46]. If the system’s degradation and the
time to failure are known, its maintenance scheme can be adapted to be more favorable for
airlines. Additionally, actions can be taken to diminish adverse consequences caused by a
system failure, or the system’s operation can be corrected to prolong its lifetime [44]. Even
though it is currently common practice in the aviation industry to repair a crack once it is
detected, in the future, this might be too expensive when having a fully operating monitoring
system. Predicting the degradation of structures, e.g., the crack growth, makes it possible
to wait until either multiple parts have to be repaired or structural safety cannot be assured
anymore.

1.2 Prognostics and health management

In the literature, authors use many different terms in the context of monitoring mechani-
cal systems. Various aspects such as conditioning monitoring, structural health monitoring,
conditioned-based maintenance, predictive maintenance, and prognostics and health manage-
ment are used interchangeably, confusing readers. Therefore, we give an overview of those
terms by classifying them into three categories: monitoring, maintenance, and management.

Monitoring. According to [158], monitoring is concerned with five tasks, damage (1) detec-
tion, (2) localization, (3) classification, (4) assessment, and (5) prediction, where tasks 2–4 can
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be regarded as diagnostics and the last one as prognostics [132]. Two major monitoring terms,
namely structural health monitoring and condition monitoring, can be found in the literature.
Both determine the internal condition of mechanical systems by analyzing data from attached
sensors, see, e.g., [24] and [139]. Even though the terms are used ambiguously in literature [36],
it seems to be that condition monitoring predominantly refers to the monitoring of rotating
and reciprocating machinery. By contrast, structural health monitoring is mainly used for
structures, such as bridges, buildings, or aerospace structures. Prognostics is often considered
the last stage of structural health monitoring and condition monitoring and is thus a part of
them [24, 158].

Maintenance. In contrast to monitoring, the term maintenance is used for all technical and
managerial actions taken during the usage period to maintain or restore the required func-
tionality of a product [129]. As every mechanical system is subject to loads during operation
and deteriorates over time, maintenance should be exercised to ensure the system’s reliability
[65]. In order to retrieve maximum operating time between shutdowns, machines were origi-
nally ”run to break” [115]. Nowadays, the so-called corrective maintenance policy is still used
for large numbers of small machines, such as sewing machines, where catastrophic failure is
unlikely, and the loss of one device is not critical to production. However, as corrective main-
tenance occasionally entailed catastrophic breakdowns with serious consequences for safety,
production loss, and repair cost [115], the first response to it was time-based preventive main-
tenance, i.e., maintaining systems after specific intervals such that there is a small likelihood of
failures between repairs. Preventive maintenance, however, leads to greater use of spare parts
as well as more maintenance work than necessary [115] and thus results in high prevention
costs. A new concept called condition-based maintenance was developed to minimize main-
tenance costs while preserving the desired level of reliability and safety [65]. It is sometimes
further divided into proactive and predictive maintenance. Proactive maintenance focuses on
determining the root causes of machine failure and dealing with those issues before significant
problems occur, whereas predictive maintenance has its focus on failure prediction [29].

Management. After being successfully able to detect and predict the degradation of me-
chanical systems and applying a maintenance policy for them, one can focus on managing tasks
such as adjusting and optimizing maintenance schedules and logistic supports [65] or changing
envisaged operations [44]. The frequently used term ”prognostics and health management”
embraces all of the previously described tasks within the categories monitoring, maintenance,
and management. Figure 1.1 shows the composition of them. As prognostics is seen as the key
enabler of prognostics and health management [65], this dissertation is especially dedicated to
prognostics, i.e., predicting the degradation of mechanical systems.

There are many fields where prognostics and health management have been applied, such
as detecting and predicting damages in bearings, shafts, and gears. Prognostics and health
management is particularly useful when catastrophic failures of these components lead to great
downtimes associated with high economic losses [10]. Therefore, the concept has also been
applied to civil engineering structures, such as bridges, buildings, underground tunnels, and
aerospace structures. Gathering data from sensors attached to a structure opens the possibility
to use machine learning models for prognostics and health management. For example, k-
nearest neighbors, support vector machines, neural networks, and Gaussian process regression
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Figure 1.1: Composition of prognostics and health management

are four machine learning methods applied intensively to mechanical system prognostics and
health management tasks in the last decade. As fatigue and fracture are subject to significant
uncertainties, it is crucial to model and predict uncertainties associated with the problem.
In contrast to k-nearest neighbors, support vector machines, and neural networks, Gaussian
processes provide estimates about the output’s uncertainty by default. Therefore, this work
particularly focuses on Gaussian processes.

1.3 Problem statement and contributions

As previously shown, prognostics and health management is a promising field, also in the
aviation industry. The main goal of this work is thus to establish a machine learning method
for predicting the degradation of mechanical systems, particularly the crack growth in aerospace
structures. Since fatigue and fracture scatters greatly, we also want to estimate the predictions’
uncertainties. This allows us to predict future failure probabilities, which can be used to better
schedule maintenance tasks. Another objective of this work is to create a method that leads to
high accuracy. We not only want to predict the degradation precisely but also estimate valid
credible regions. This means that if we, for example, predict a 95% credible interval, the data
should, in fact, lie in 95% of the cases within this interval. The last goal of this thesis is that
the established model is quickly trained in order to reduce computational effort. In summary,
the objectives of this work are to

(1) predict the entire degradation trajectory of mechanical systems with valid credible re-
gions,

(2) establish a prediction method with high accuracy, and

(3) enable quick training.

Gaussian process regression has shown to be a powerful tool for nonlinear regression prob-
lems that generalizes small data sets well [151]. It sometimes even outperforms other models,
such as neural networks [55], and provides estimates of the output’s uncertainty by default.
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Therefore, many researchers have been using them to predict future events in different appli-
cation fields. For example, in [33, 94] the authors try to predict future stock prices and in
[2, 19, 156] future CO2 concentration in the air. The problem is that stock markets and the
earth’s environment are large systems with many influencing factors. In order to predict their
future behaviors, one has to account for all these different factors. Predictions solely based
on past observations might not be better than guessing since the influencing factors vary over
time and are not the same as the condition for the recently observed data.

Yet, applying Gaussian processes to predict the degradation of mechanical systems seems
to be promising. In contrast to predicting stocks or CO2 concentrations, the system bound-
aries for mechanical experiments can often be precisely drawn, allowing us to control or be
aware of different influencing factors regarding the experiment. Therefore, Gaussian processes
have also been used for predicting the degradation of mechanical systems such as crack growth
[5], fatigue of solder joints [71], and degrading bearings [52, 57]. Even though the underlying
model can significantly influence prediction accuracy, Gaussian processes are typically used
with default models that incorporate strong assumptions about the data’s structure. The
assumptions implicitly made by choosing a particular Gaussian process model are often in-
correct and thus lead to low prediction accuracy and a short look-ahead time. As stated in
[57, 63, 71, 112, 123], prior knowledge regarding the underlying model should improve the pre-
diction accuracy of Gaussian processes. Therefore, the present work is particularly concerned
with how prior knowledge can be integrated into Gaussian processes and whether it improves
prediction accuracy.

One way of integrating prior knowledge is to incorporate data from previously executed
experiments into a Gaussian process model. In this work, we thus distinguish between previous
and current data, see Figure 1.2. The first-mentioned represents all data collected by previously
conducted simulations or experiments of a similar mechanical system. Previous data comprises
several trajectories, each belonging to one simulation or experiment executed until a specified
end. Different trajectories can be achieved by varying uncertain parameters, such as material
parameters and loads. In contrast to previous data, current data is collected from the actual
monitored system with fixed, realized parameters that are generally unknown. Current data
comprises the data points collected until the current state of the mechanical system.

In this thesis, we present an approach that infers a Gaussian process model from previous
data and thus integrates prior knowledge into the model. As physical equations are often
understood for mechanical systems, the work also addresses incorporating physical equations
into Gaussian processes. The novel approach is compared to state-of-the-art Gaussian processes
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as well as to three machine learning methods, namely k-nearest neighbors, support vector
machines, and recurrent neural networks. Since observations of many engineering applications
do not follow a normal distribution, the approach presented in this work is extended to handle
non-normally distributed data by warping the Gaussian process. The different levels of the
novel approach are applied to various problems such as crack growth, laser degradation, and
milling machine wearing. The method is finally used to predict the crack growth in a real
aerospace structure. The main contributions of this work are as follows:

(1) Inferring a Gaussian process model from previous data

(2) Incorporating physical equations into Gaussian processes

(3) Comparing the novel approach to other machine learning methods

(4) Warping Gaussian processes with integrated prior knowledge

1.4 Structure of the thesis

After this introductory chapter, the fundamentals of fatigue and fracture are introduced. The
basics of computing the fatigue life of structures and how to consider cracks and their propa-
gation in structures are explained. A short introduction to computing cracks with the finite
element method (FEM) is also given. Furthermore, the normal distribution is introduced,
and its generalization, the Gaussian process, is derived from it. The third chapter outlines
an overview of the different problem types encountered in this thesis. Different data sets
are described and linked to the, in this thesis, tackled challenges. The novel approach, which
integrates prior knowledge into Gaussian processes, is described in Chapter 4. First, the under-
lying concept is explained and applied to a simple crack growth problem. Then, the approach
is applied to three different data sets and compared to the state-of-the-art Gaussian process
method. Third, the approach is extended by incorporating physical equations into Gaussian
processes and applied to predict crack growth in an aluminum specimen. Chapter 5 introduces
three machine learning models: k-nearest neighbors, support vector machines, and recurrent
neural networks. The models are trained on three different data sets and compared to the
approach proposed in Chapter 4. This is followed by Chapter 6, which introduces warped
Gaussian processes and how to integrate prior knowledge into them. The extended approach,
which is able to handle data that is not normally distributed, is applied to a set of simulated
crack growth trajectories and compared to the approach without warping the data. Finally,
the extended approach is used to predict the crack growth in a real aerospace structure. Lastly,
Chapter 7 summarizes the outcomes of the research work and discusses them. The thesis ends
with the conclusions drawn from the studies and an outlook of promising venues.



Chapter 2
Fundamentals

”The universe doesn’t allow perfection.”

– Stephen Hawking

Before diving into Gaussian processes towards the end of this chapter, it is essential to know
the basic concepts of fatigue and fracture mechanics. Much research has already led to a good
understanding of the fatigue behavior in structures. The involved computational methods help
us to clarify our prior knowledge of structures’ degradation and fatigue life. The focus of this
chapter is to explain the fundamentals of fatigue and fracture mechanics as well as to introduce
the, for this work, important implementations of fracture mechanics in the finite element
analysis (FEA). As — the universe does not allow perfection — we will see that fatigue is subject
to large uncertainty. Since the present work deals with them by using the normal distribution,
an introduction of it and its generalization, the Gaussian process, are given afterwards.

2.1 Fatigue of structures

As early as 1858, August Wöhler found that steel can rupture even at stresses less than the
elastic limit if they are sufficiently repeated. The reason for such a behavior is the repetitive,
cyclic loading. Figure 2.1 shows an example for one cycle with its minimum, maximum, mean,
and amplitude stress Smin, Smax, Sm, and Sa. Often cyclic loads are also defined by their

cycle

Sa

Smax

Sm

Smin

time t

st
re

ss
 S

Figure 2.1: One cycle with its minimum, maximum, mean, and amplitude stress.
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stress ratio

R =
Smin
Smax

. (2.1)

These repetitive loads can cause accumulations of dislocations which lead to local stress con-
centrations. The high stresses may dissolve bonds along preferred lattice planes and thus
result in cleavage [49]. Since the first discoveries of Wöhler, many researchers have established
methods for predicting the structure’s time to failure for a given cyclic loading program. The
fundamentals of them are briefly explained in the following.

S-N curves. The S-N curve is an important tool for predicting fatigue life. As shown in
Figure 2.2, it relates the applied nominal amplitude stress Sa to the number of cycles until
fracture N . Therefore, the S-N curve quantifies how many cycles with a certain nominal
amplitude stress are needed to fracture a specimen. An S-N curve can also be used to compute
the fraction of the damage

Di =
ni
Ni

(2.2)

for a given number of cycles ni at the constant nominal stress amplitude Sa,i and its corre-
sponding number of cycles until fracture Ni.

Figure 2.2: S-N curves and its probability density function (pdf) for an unnotched aluminum
specimen.

S-N curves are generated by fatigue experiments where usually coupon specimens are cycli-
cally loaded until fracture. The fatigue life is investigated depending on the geometry, loading
type, and stress level. The geometry (shape and size) of a notch can be considered by the
fatigue notch factor Kf , which is defined as the ratio of the fatigue limit of a smooth specimen
to the fatigue limit of a notched one. It can be computed for a tension-compression loaded
structure by

Kf =
Kt

nσ
, (2.3)

where Kt is the stress concentration factor and nσ the support factor based on Stieler [130]. The
support factor based on Stieler considers that only small regions are highly stressed for notches
with large stress gradients, which has a positive effect on fatigue life. It can be estimated based
on the stress gradient and corresponding material parameters, see p. 42 in [117]. The stress
concentration factor Kt is defined by

Kt =
σmax
S

, (2.4)
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where σmax denotes the maximum local stress at the corresponding spot and S the nominal
stress. There exist multiple definitions for the nominal stress. The FKM guideline [117] defines
it for a uniaxial case by

S =
F

Anet
, (2.5)

where F is the applied force and Anet is the net cross-section at the corresponding spot. The
net cross-section for a plate with a centered hole, for example, is the difference between the
cross-section of the plate and the hole’s diameter times the thickness. Problems arise with this
definition if structures become more complex and the net cross-section is not properly defined
anymore. A simplified and conservative approach for computing the fatigue life of a complex
structure is to compare the maximum principal stress in a notch with an S-N curve of Kt = 1
(no notch) as the stress gradient is neglected. For further details and more advanced methods
for dealing with notched structures or multiaxial stress conditions see [117].

As fatigue life is subject to large uncertainty, a 50% S-N curve is usually depicted. There-
fore, the curve denotes the number of cycles until 50% of all specimens are failed. Assuming a
log10 distribution and the experience-based scatter parameter s, which can be found on p. 527
in [50] for different materials, the uncertainty of the time to failure can be estimated. Figure 2.2
shows the fatigue life distribution of an unnotched aluminum specimen for the constant am-
plitude stress Sa = 200 MPa. The graph reveals the great uncertainty (NPf=2.5% ≈ 117× 103,

NPf=97.5% ≈ 694× 103) associated with fatigue. Therefore, even if we know the material and
load precisely, we can only roughly estimate when a specimen will fail. As an exact prediction
is not possible, prognostics and health management become worthwhile.

Rainflow-counting. Typically structures are not loaded under a constant amplitude over
their entire lives but rather experience a variety of different stress amplitudes. Rainflow-
counting is a method to count similar cycles within a loading program such that it transforms a
time-based loading program into a matrix. The method is based on counting closed hystereses
that start from a starting level, return at the target level, and end up in the starting level
again. The numbers in the rainflow matrix describe the occurrences of closed hystereses. The

1
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residuals
rainflow matrix

loading program

Figure 2.3: Concept of rainflow-counting, see [50].
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counting method can be explained by imagining a raindrop floating down the 90° turned loading
program. Whenever it hits another branch, the hysteresis loop is closed, i.e., the raindrops
of this cycle are stopped, and a new raindrop is started afterwards. The closed hystereses in
Figure 2.3 are indicated by numbered triangles. For each closed hysteresis, one cycle is added
to the rainflow matrix at the corresponding row and column. The row and column numbers
are the position of the starting and turning level, respectively. The rainflow matrix, therefore,
relates the number of similar cycles to its corresponding minimum and maximum stress. The
method also allows us to distinguish between hanging (triangle 1 and 6) and standing (triangle
2, 3, 4, 5, and 7) hystereses which lay left and right to the diagonal of the rainflow matrix,
respectively (see Figure 2.3). However, as there is often no different computation scheme for
these types, only the upper right corner of the rainflow matrix is filled out. By erasing the
closed hystereses in Figure 2.3, the residuals are visible. There are different possibilities to deal
with them. The ASTM standard on p. 287–293 in [8], for example, adds half a cycle for each
residual to the rainflow matrix. After applying the rainflow-counting method to a time-based
loading program, the cycle frequencies and corresponding stress levels are quantified.

Haigh diagram. S-N curves are usually generated with a constant stress ratio or mean stress.
As loading programs can consist of cycles with various stress ratios, multiple S-N curves would
be needed to compute the corresponding damages. A Haigh diagram as shown in Figure 2.4
can be used to map cycles with different stress ratios to a constant one. The resulting damage

M 
for

45°

threshold for maximum 
stress Smax from static
stress verification

Smax

Sa(R=-1)

mean stress Sm

0

stress 
amplitude Sa

Figure 2.4: Haigh diagram, see [50].

equivalent stress amplitudes for usually R = −1 (Sa,R=−1) can then be compared to a single S-
N curve. An equation-based transformation is given on p. 98 in [117], where the transformation
is dependent on the mean stress sensitivity Mσ and can be computed as

for R > 1:
Sa,R=−1 = Sa(1−Mσ)

(2.6)

for −∞ ≤ R ≤ 0:

Sa,R=−1 = Sa(1 +Mσ
Sm
Sa

)
(2.7)

for 0 < R < 0.5:

Sa,R=−1 = Sa
(1+Mσ)(3+Mσ

Sm
Sa

)

3+Mσ

(2.8)
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for R > 0.5:

Sa,R=−1 = Sa
3(1+Mσ)2

3+Mσ

(2.9)

for principal stresses. The mean stress sensitivity is a material parameter that can be found,
for example, on p. 29 in [50].

Miner rule. When dealing with different stress amplitudes, a method for damage accu-
mulation is needed to compute the total damage resulting from cycles with different stress
amplitudes. The most popular and most often used method to quantify the fatigue life based
on cycles with various amplitude stresses is the linear damage accumulation rule [50] based on
Palmgren [100] and Miner [90]. The so-called Miner rule assumes that the damages of each
cycle accumulate linearly to a total damage. All fractions of the damages Di, that result from
the number of loaded cycles ni at the constant nominal stress amplitude Sa,i, are therefore
summed up and lead to the total damage

D =
∑
i

Di =
∑
i

ni
Ni
, (2.10)

where Ni is the corresponding fatigue life at the nominal stress amplitude Sa,i. As displayed
by Equation 2.10, the rule neglects the order of loads which is also lost by applying rainflow-
counting to a time-based loading program. The critical damage value, where fracture is ex-
pected, is D = 1. There exist various versions of the Miner rule that consider the fatigue limit
differently. The Miner original rule, for example, considers no damage for stresses below the
fatigue limit, whereas the Miner elementary version assumes the slope of the S-N curve in a
log-log diagram to be continued below the fatigue limit.

2.2 Fracture mechanics

Repetitive loads, as explained earlier, can cause accumulations of dislocations that eventually
lead to cracks in structures. In contrast to the previously explained methods, fracture me-
chanics considers a slit or rather a crack in a body. Figure 2.5 shows the three distinguished
deformation modes of a crack. As stated in [6], mode I is characterized by a principal load
normal to the crack plane which tends to open the crack. An in-plane shear loading refers to
mode II that slides one crack face with respect to the other, and mode III corresponds to an
out-of-plane shear.

mode I

x
y

z

mode II mode III

x
y

z

x
y

z

Figure 2.5: The three distinguished deformation modes of a crack, see [49].
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A special area of fracture analysis is the linear-elastic fracture mechanics. It describes the
behavior of cracks in bodies that are completely linear-elastic. Non-elastic mechanisms that
might occur close to the crack tip must therefore be limited to a small region such that they
can be neglected from a macroscopic perspective. This is the case in many cases, including
typical metallic and brittle materials [49]. There are two approaches for fracture analysis: the
energy criterion and the stress-intensity approach. They are briefly discussed in the following.

Griffith energy balance. In 1920, Griffith [48] applied the first law of thermodynamics
to the formation of a crack. He postulated that a crack could form or propagate only if the
total energy decreases or remain constant. The critical condition can be therefore defined as
the point at which crack growth occurs without changing the total energy. The total energy
E is composed of the potential energy Π and the work required to create new surfaces Ws.
The potential energy is comprised of the internal strain energy and the work done by external
forces. Under equilibrium conditions, the Griffith energy balance for an incremental increase
of the crack area dA becomes

dE

dA
=
dΠ

dA
+
dWs

dA
= 0 (2.11)

−dΠ

dA
=
dWs

dA
. (2.12)

For an infinite plate with the thickness t, Young’s modulus E, and a crack which lays perpen-
dicular to the remotely applied stress σ∞ with a length of 2a, the potential energy is according
to [6]

Π = Π0 −
πσ2
∞a

2t

E
, (2.13)

where Π0 is the potential energy of the uncracked plate. Therefore, its derivative becomes

− dΠ

dA
=
πσ2
∞a

E
. (2.14)

Since the formation of a crack requires creating two surfaces, the work becomes Ws = 4atγs
with its derivative dWs

dA = 2γs, where γs is the material’s surface energy [6]. Equating both
derivatives and solving for the remote stress leads to the fracture stress

σ∞,f =

(
2Eγs
πa

)1/2

. (2.15)

Since this equation is valid only for ideally brittle solids such as glass, the expression can be
generalized by

σ∞,f =

(
2Ewf
πa

)1/2

, (2.16)

where wf is the fracture energy that could include plastic, viscoelastic, or viscoplastic effects
depending on the material. A closely related concept was proposed by Irwin in 1956 [59] where
he defined the energy release rate G by

G = −dΠ

dA
, (2.17)
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which becomes for the previously investigated infinite plate

G =
πσ2
∞a

E
, (2.18)

as also stated in [6]. The energy release rate is a measure of the required energy for incremental
crack growth. Fracture occurs when it reaches the fracture toughness Gc.

Stress intensity approach. A different approach to describe a crack in a body is based
on the stress intensity factor (SIF) KI . It fully characterizes the crack tip conditions in a
linear-elastic material. There is an individual SIF for each fracture mode. For this work, it is
sufficient to introduce the approach on mode I since only examples for this particular mode
are examined. For the infinite plate considered previously, the SIF is

KI = σ∞
√
πa (2.19)

and the entire stress distribution at the crack tip can be computed by

σxx =
KI√
2πr

cos

(
θ

2

)(
1− sin

(
θ

2

)
sin

(
3θ

2

))
(2.20)

σyy =
KI√
2πr

cos

(
θ

2

)(
1 + sin

(
θ

2

)
sin

(
3θ

2

))
(2.21)

τxy =
KI√
2πr

cos

(
θ

2

)
sin

(
θ

2

)
cos

(
3θ

2

)
, (2.22)

where the coordinate system begins at the crack tip, and the position of the infinitely small ele-
ment is described by the angle θ and distance r, see Figure 2.6. Note that all stress components

crack

r

x

y

Figure 2.6: Coordinate system for SIF, see [6].

are proportional to 1√
r
. Therefore, the linear-elastic theory leads to infinitely high stresses for

r → 0. The Equations 2.20–2.22 for the stress components are only valid for stresses close
to the crack tip. They can be derived from complex stress functions, see [49] (Chapter 1.5.2
and 4.2) for more details. To consider different geometries, a geometry factor γ is typically
introduced to the SIF

KI = γ(a)σ∞
√
πa (2.23)

which is, in general, dependent on the crack length a. Several solutions for different configu-
rations can be found in [70]. Failure occurs if KI = KI,c. Therefore, KI,c is another measure
of the fracture toughness. As in linear-elastic mechanics, the principle of superposition can
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be used in the linear-elastic fracture mechanics too. Therefore, complex configurations can
be subdivided into simpler ones for which the SIF solutions are known. Applications of the
so-called compounding method can be found in [23, 38, 39, 124] where the authors apply the
method, for example, to a lap-joint configuration. Both approaches, the energy release rate
and the SIF, are closely related by

G =
K2
I

E′
(2.24)

in the linear-elastic case, where E′ = E is valid for plane stress and E′ = E
1−ν2 for plane strain.

Paris law. As stated by Gross and Seelig [49], a crack in a statically loaded structure will not
grow if the crack length or the loading is below a certain value. However, when the structure is
cyclically loaded, a crack will propagate even if loading is below a critical threshold. This is also
called fatigue crack growth which is characterized by the crack growth rate da

dN . The reasons
for such behavior are the inelastic processes in the crack tip zone. A metallic material, for
example, experiences plastic hystereses in the crack tip zone due to tension and compression.
The resulting changing residual stresses damage the material up to complete separation. The
fatigue crack growth can be described with the SIF in the linear-elastic fracture mechanics.
The cyclic loading corresponds to a cyclic SIF which is usually described by the SIF range
∆K, see Figure 2.7a. Measuring the crack growth rate da

dN with respect to ∆K yields to the
typical course shown in Figure 2.7b. A crack does not propagate below the threshold ∆K0

and rapidly propagates if it reaches Kc. In between, i.e., region II, the crack growth rate can
be approximated by a straight line with the slope α in a log-log diagram. Therefore, the crack
growth rate can be modeled by

da

dN
= C∆Kα, (2.25)

where C and α are material parameters. This is also called the Paris law [101]. Further
extensions, such as the Foreman law [34] that considers the rising crack growth rate towards
Kc exist in the literature. The Paris law, however, is one of the most frequently used ones.

Kmin

Kmax

ΔK

ΔK

K

t
(a)

ΔKΔK0

da/dN

Kc

I II IIIlog

log
(b)

Figure 2.7: (a) SIF over time for cyclic loading and (b) Paris law, see [49].

Multiple crack growth experiments, such as those executed by Virkler et al. [148], reveal a
huge scatter of the gathered crack growth trajectories, even though the loading and material are
kept the same for all specimens. Consequently, fracture mechanics can often not be regarded
as deterministic processes. They are rather probabilistic mechanisms whose uncertainties can
be significant.
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Figure 2.8: (a) FE model with crack and (b) its node replacement, see [92].

Extended finite element method. The SIF for arbitrary bodies and crack geometries
can be determined by numerical methods such as FEM. FEM is based on dividing a body
into a finite number of elements and on approximating the displacements of each element
by displacement shape functions. A special type of FEM, which is used in this work, is the
extended finite element method (XFEM). The advantage of XFEM in comparison with other
methods is that cracks do not necessarily have to be in between elements but can also cut
them. Its fundamentals were published by Belytschko and Black [11] and Moës et al. [92] in
1999 and are briefly introduced in the following. Figure 2.8a shows an FE model based on four
elements with a crack in between element 1 and 3. The FE approximation for the displacement

uh =
[
uhx, u

h
y

]>
is

uh =
10∑
i=1

uiφi, (2.26)

where ui is the displacement and φi the bilinear shape function at node i. By defining a =
u9+u10

2 and b = u9−u10
2 , and replacing u9 and u10 in Equation 2.26, the displacements can be

expressed as

uh =

8∑
i=1

uiφi + a (φ9 + φ10) + b (φ9 + φ10)H(x), (2.27)

where H(x) is the jump function to consider the discontinuity of the crack. It is defined by

H(x) =

{
+1, for y > 0

−1, for y < 0 .
(2.28)

If the nodes 9 and 10 are replaced by node 11, as shown in Figure 2.8b, φ9 +φ10 can be written
as φ11 and a as u11 which leads to

uh =

8∑
i=1

uiφi + u11φ11 + bφ11H(x). (2.29)

Equation 2.29 can be interpreted as the sum of the FE model without the crack uh =∑8
i=1 uiφi + u11φ11 and a discontinuous enrichment bφ11H(x).
The introduced concept can be transferred to a crack that does not align with the mesh.

Every node is enriched if its support is cut by the crack into two disjoint pieces, see Figure 2.9a.
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(a)

p

(b)

Figure 2.9: (a) FE model with a crack (a) aligned and (b) misaligned with the mesh, see [92].

This is in agreement with the previous example, in which only node 11 was enriched. If the
crack tip does not coincide with an element edge, see Figure 2.9b, the discontinuity cannot be
adequately described by using only the jump function H(x). The enrichment of the circled
nodes would consider the crack tip to be at point p. In order to seamlessly model the entire
discontinuity along the crack, the squared nodes are enriched by the asymptotic crack tip
functions F (r, θ) by which a two-dimensional displacement field close to the crack tip can be
described [6]. The approximation for an arbitrary crack with one crack tip becomes therefore

uh =
∑
i∈I
uiφi +

∑
j∈J

bjφjH(x) +
∑
k∈K

φk

(
4∑
l=1

ck,lFl(x)

)
, (2.30)

where J and K are the sets of the circled and squared nodes, respectively, and clk are the
enrichment coefficients associated with the crack tip functions

Fl(r, θ) ≡
[√

r sin

(
θ

2

)
,
√
r cos

(
θ

2

)
,
√
r sin

(
θ

2

)
sin(θ),

√
r cos

(
θ

2

)
sin(θ)

]
, (2.31)

where r and θ are the polar coordinates with the origin at the crack tip.

Virtual crack closure technique. The virtual crack closure technique is an efficient method
for evaluating SIFs based on FEM. It leads also for coarse grids to good results and permits
the evaluation of both mode I and mode II SIFs [120]. The technique is based on Irwin’s
contention that if a crack growths by a small amount ∆a, the energy absorbed in the process is
equal to the work required to close the crack to its original length [59]. For a polar coordinate
system with its origin at the grown crack tip, the energy release rate can be formulated as

G =GI +GII

= lim
∆a→0

1

2∆a

∫ ∆a

0
σyy(∆a–r, 0)v(r, π)dr (2.32)

+ lim
∆a→0

1

2∆a

∫ ∆a

0
τxy(∆a–r, 0)u(r, π)dr,

where ∆a is the crack growth, σyy and τxy are the stresses close to the crack tip, and u and v are
the relative sliding and opening between the points on the crack faces. For the implementation
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Figure 2.10: Virtual crack closure technique, see [120].

of this technique into FEM, where the displacements and forces at nodes can be computed,
the energy release rates can be expressed as

GI = lim
∆a→0

1

2∆a
Fc(vc–vd) (2.33)

and

GII = lim
∆a→0

1

2∆a
Tc(uc–ud), (2.34)

where T and F are the forces in x- and y-direction, respectively. The indices at the force and
displacement denote the corresponding nodes. The equations represent the work required to
close the crack by ∆a, i.e., to hold the nodes c and d together, see Figure 2.10. In order to
compute the energy release rates, the forces Fc and Tc must be determined. The forces Fe
and Te can be obtained by placing very stiff springs between nodes e and f and evaluating the

forces in these springs. The forces Fc and Tc can then be approximated by Fc =
√

∆a
l2
Fe and

Tc =
√

∆a
l2
Te. The introduction of this method describes the basic concept of the virtual crack

closure technique. Further extensions and advances exist in the literature.

2.3 The normal distribution

The previous two sections indicate that fatigue and fracture are subject to uncertainty. Prob-
ability distributions are usually employed to model uncertainties. A widely used model for
the distribution of continuous variables is the normal distribution which is also known as the
Gaussian distribution. It plays a major role in many applications and can be motivated from
different perspectives. One is the central limit theorem, which states that the sum of ran-
dom variables increasingly follows a normal distribution as the number of terms in the sum
increases too [149]. As many patterns — from fish to handwritten characters to some speech
sounds — can be viewed as ideal patterns corrupted by many random processes, the normal
distribution is often a good model for the probability distribution [16]. We can illustrate this
behavior, as it is presented in [16], by computing the mean of n uniformly distributed random
variables x1, . . . , xn over the interval [0, 1] and plotting its histogram. Figure 2.11 shows this
behavior for three different amounts of random variables, n = 1, n = 2, and n = 10. For each
random variable, 1000 realizations are sampled.
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(a) (b) (c)

Figure 2.11: Histogram of samples with (a) n = 1, (b) n = 2, and (c) n = 10, see also [16].

One-dimensional normal distribution. A single random variable X is normally dis-
tributed X ∼ N (µ, σ2) if it follows the normal density distribution

p(x) = N (x|µ, σ2) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
. (2.35)

The distribution is fully defined by its mean (or expected value)

µ = E[X] =

∫ ∞
−∞

x p(x)dx (2.36)

and variance (or expected squared deviation)

σ2 = E[(X − E[X])2] =

∫ ∞
−∞

(x− µ)2p(x)dx, (2.37)

where σ is also known as the standard deviation. By conducting experiments, samples or
rather realizations of the random variable can be drawn.

The mean and the variance can be inferred from realizations or observations of a random
variable. If we have m observations x = [x1, . . . , xm]> that are independently drawn from the
same distribution, which is also denoted as independent and identically distributed (i.i.d.), the
likelihood of all observations is the product of the likelihoods

p(x|µ, σ2) =

m∏
j=1

N (xj |µ, σ2). (2.38)

The term likelihood is used in this work to describe the probability density at a certain point
xj . A common criterion for determining the parameters of a probability distribution is to
find the parameters that maximize the likelihood of all observations [16]. In practice, not the
likelihood itself but rather the log of the likelihood is maximized. Since the logarithm is a
monotonically increasing function, maximizing the log-likelihood leads to the same results as
maximizing the likelihood. Using the logarithm not only simplifies the mathematical analysis
but also reduces numerical precision errors. This is because the product of small likelihoods
can easily underflow the computer’s numerical precision, and the logarithm turns the product
of likelihoods into a sum of log-likelihoods [16]. Therefore, Equation 2.38 turns into

log p(x|µ, σ2) = −m
2

log σ2 − m

2
log(2π)− 1

2σ2

m∑
j=1

(xj − µ)2. (2.39)



2.3 The normal distribution 19

Maximizing Equation 2.39 with respect to µ and σ2 leads to the sample mean

µ̂ =
1

m

m∑
j=1

xj (2.40)

and to the sample variance

σ̃2 =
1

m

m∑
j=1

(xj − µ̂)2. (2.41)

Since the expectation of the sample variance is

E[σ̃2] =
m− 1

m
σ2, (2.42)

the unbiased sample variance is given by

σ̂2 =
1

m− 1

m∑
j=1

(xj − µ̂)2. (2.43)

Multivariate normal distribution. In general, it is also possible that multiple random
variables X ∼ N (µ,Σ) follow a joint normal distribution, a so-called multivariate normal
distribution

p(x) = N (x|µ,Σ) =
1√

(2π)n det Σ
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
, (2.44)

where n is the dimensionality of the random variable vector, µ is the mean vector, and Σ is
the n× n covariance matrix. As for the one-dimensional normal distribution, the parameters
µ and Σ can be again inferred from observations by the sample mean vector

µ̂ =
1

m

m∑
j=1

xj (2.45)

and the unbiased sample covariance matrix

Σ̂ =

σ̂1,1 · · · σ̂1,n
...

. . .
...

σ̂n,1 · · · σ̂n,n

 , σ̂i,k =
1

m− 1

m∑
j=1

(xi,j − µ̂i)(xk,j − µ̂k) (2.46)

with σ̂2
i = σ̂i,i. The main diagonal of the covariance describes the variances of each dimension

whereas the non-diagonal elements are the covariances which also include information about the
correlations between the dimensions. A two-dimensional covariance matrix can be expressed
as

Σ =

[
σ2

1 ρ1,2σ1σ2

ρ1,2σ1σ2 σ2
2

]
, (2.47)

where ρ1,2 is the Pearson correlation coefficient which is a measure of linear correlation, in this
case, between variable 1 and 2. The Pearson correlation coefficient is defined between −1 and
+1 where −1 describes a perfect negative linear correlation, 0 no linear correlation, and +1
perfect positive linear correlation. Figure 2.12 shows the contour lines of three different bivari-
ate normal distributions and their dependency on the variances and the Pearson correlation
coefficient.
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(a) (b) (c)

Figure 2.12: Contour lines of bivariate normal distribution with (a) positive correlation (ρ1,2 >
0), (b) no correlation (ρ1,2 = 0), and (c) no correlation (ρ1,2 = 0) and σ2

1 = σ2
2, see also [16].

Conditional normal distribution. An important property of a multivariate normal dis-
tribution is that its conditional is also a normal distribution. A detailed derivation is provided
in Appendix A. If two sets of variables x = [x1,x2]> follow a multivariate normal distribution
N (x|µ,Σ), their marginal distributions as well as the conditional distribution of one set condi-
tioned on the other are normal distributions too. For the two sets of variables, the mean vector
and the covariance matrix can be split according to the two variable sets into µ = [µ1,µ2]>

and

Σ =

[
Σ1,1 Σ1,2

Σ2,1 Σ2,2

]
, (2.48)

where Σ1,1 and Σ2,2 are symmetric and Σ1,2 = Σ>2,1. The marginal distributions for x1 and
x2 are p(x1) = N (x1|µ1,Σ1,1) and p(x2) = N (x2|µ2,Σ2,2), and the conditional distribution
of x1 given x2 is p(x1|x2) = N (x1|µ1|2,Σ1|2), where

µ1|2 = µ1 + Σ1,2Σ
−1
2,2(x2 − µ2) (2.49)

and
Σ1|2 = Σ1,1 −Σ1,2Σ

−1
2,2Σ2,1. (2.50)

(a) (b)

Figure 2.13: (a) Bivariate normal distribution with measured plane and (b) marginal and
conditional normal distribution.
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A simple example illustrates the behavior of conditional normal distributions. Figure 2.13a
shows the bivariate normal distribution N (y|µ,Σ) with µ = [0, 0]> and

Σ =

[
1.0 0.7
0.7 2.0

]
. (2.51)

Now we assume that variable 1 is measured and realized by y1 = 1, which is indicated by
the transparent plane in Figure 2.13a. The conditional distribution of y2 can be seen as the
normalized distribution cut by the transparent plane in Figure 2.13a and can be computed with
Equations 2.49–2.50. The marginal distribution of y2 as well as the conditional distribution
of y2 given y1 = 1 are shown in Figure 2.13b. We can see that the conditional distribution
has a smaller variance than the marginal distribution, which indicates that y2 is known more
precisely if y1 is given. This behavior, however, is only true if the covariances are non-zero.

Gaussian processes. A Gaussian process can be seen as a generalization of a multivariate
normal distribution. In order to derive it graphically, we first consider a bivariate normal
distribution where its 2× 2 covariance matrix and its contour lines are shown in Figures 2.14a
and 2.14b, respectively. Additionally, three realizations are illustrated in Figure 2.14b. The

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.14: (a, d, g) Covariance matrices & function where yellow indicates high and blue low
values, (b, e, h) contour lines for two variables, and (c, f, i) trajectories of the bivariate and the
multivariate normal distribution, and of the Gaussian process.
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realizations can also be displayed in a plot where both elements of the realized vector, y1 and
y2, are plotted on the ordinate and their variable indices on the abscissa, see Figure 2.14c.
For sampling different realizations, the line connecting the two points in Figure 2.14c changes
its location. The mean vector of the distribution, which consists of two values µ = [0, 0]>,
is displayed in blue. We now increase the dimensionality of the distribution. By considering,
for example, a 20-dimensional normal distribution with a 20 × 20 covariance matrix (Figure
2.14d) and a 20 × 1 mean vector, we obtain 20 points for each realization, see Figures 2.14f.
Due to space constraints, the marginal distribution’s contour lines of only two variables, y1

and y20 are shown in Figure 2.14b. The mean vector is again displayed in blue. Now, let
us consider an infinite number of random variables that correspond to the position x rather
than the variable indices. Then, we obtain a continuous line instead of a finite number of
points, see Figure 2.14i. The mean vector and the covariance matrix turn, therefore, into
a mean function m(x) and a covariance function k(x, x′), respectively, and the multivariate
normal distribution becomes a so-called Gaussian process. Figure 2.14g shows that the (co-
)variance is now a function of x and x′ indicated by the non-discrete color scheme. A Gaussian
process is thus a collection of random variables where any finite number of them follows a joint
normal distribution [116]. It is fully specified by its mean and covariance function and can
be expressed as N (f(x)|m(x), k(x, x′)). The shape of its realizations strongly depends on the
chosen Gaussian process model, i.e., the mean and covariance function. Usually, predefined
functions with free parameters θ are used to specify a Gaussian process. Frequently used
covariance and mean functions are, for example, the squared exponential covariance function

k(x, x′) = σ2
f exp

(
−(x− x′)2

2`2

)
, (2.52)

where θ = [σf , `]
> are its free parameters, and the zero mean function m(x) = 0.

Conditional Gaussian processes. A Gaussian process can be conditioned on observed data
similarly as previously shown for a multivariate normal distribution. Given the observed points
y+ at x+, the conditional distribution of y∗ at x∗ can be expressed asN (y∗|m∗|+(x∗), k∗|+(x∗, x∗))
with

m∗|+(x∗) = m(x∗) + k(x∗,x+)k(x+,x+)−1(y+ −m(x+)) (2.53)

and
k∗|+(x∗, x∗) = k(x∗, x∗)–k(x∗,x+)k(x+,x+)−1k(x∗,x+)>, (2.54)

where
m(x+) = [m(x+,1), . . . ,m(x+,n)]> (2.55)

and

k(x+,x+) =

k(x+,1, x+,1) · · · k(x+,1, x+,n)
...

. . .
...

k(x+,n, x+,1) · · · k(x+,n, x+,n)

 (2.56)

are the mean and covariance function evaluated at the observed locations x+, m(x∗) and
k(x∗, x∗) are the mean and covariance function evaluated at the location to predict x∗, and
k(x∗,x+) = [k(x∗, x+,1), . . . , k(x∗, x+,n)] are the covariances between the values at the locations
to predict and the observed locations.
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(a) (b)

(c) (d)

Figure 2.15: (a) Prior, (b) first update, (c) second and third update, (d) with observation
error.

In the following, we consider a Gaussian process with a zero mean and a squared-exponential
covariance function with σf = 1.0 and ` = 1.0 defined over x∗ ∈ [−3, 3]. Figure 2.15a displays
the mean function in black, the symmetric 95% credible region in light blue, and 20 realiza-
tions, where each is now a continuous line rather than a finite number of points. Given an
observed point y+ = 1.0 at x+ = −3.0, the conditional Gaussian process can be computed with
Equations 2.53–2.54. The resulting Gaussian process is now conditioned on that observation,
leading all realizations to intersect at the observed point, see Figure 2.15b. Additionally, the
mean function passes this point, and the credible interval is narrowed down to zero as the
value at this location is exactly known. The credible region close to the observed point is
narrowed down too. By assuming a squared-exponential covariance function, close points are
linearly correlated with each other. Therefore, knowing the value at x+ = −3.0 results in
knowing close points to it more precisely. This is based on the same behavior as previously
seen for the two-dimensional example. Figure 2.15c shows an example where multiple values
y+ = [1.0,−0.3, 0.6]> at x+ = [−3.0,−1.0, 2.0]> are observed, leading to three intersection
points of the realizations. In reality, however, observing or measuring values exactly is not
possible. This can be considered by adding the variance of the squared observation error
σ2
y to the main diagonal of the covariance function evaluated at the observed location, i.e.,
k(x+,x+) + σ2

yI. Figure 2.15d shows the same example as Figure 2.15c, but we consider an
observation error with σy = 0.2. The figure illustrates that the realizations do not intersect
at the three observed points anymore but are rather narrowed down to the standard deviation
equals the one of the observation error.

The examples in this chapter let us anticipate that the normal distribution and Gaussian
processes can be helpful in many engineering problems. Prognostics of aerospace structures can
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benefit from those models since non-negligible uncertainties are involved in our observations
and in fatigue and fracture mechanics.



Chapter 3
Problem Types

”In God we trust, all others bring data.”

– William Deming

In general, we want to leverage Gaussian processes for prognostics. Since prescribed Gaussian
process models reduce the predictive capabilities of Gaussian processes, we use several previ-
ously collected trajectories, as shown in Figure 3.1a, to derive their underlying model. Then,
we want to probabilistically predict future damage states based on observed conditions of our
monitored mechanical system, see Figure 3.1b.

(a) (b)

Figure 3.1: (a) Previously collected trajectories from which we want to derive the underlying
model and (b) prediction of future damage states based on observed conditions of our monitored
mechanical system.

In the course of this work, we will encounter different challenges. The present chapter
serves as an overview of the data sets used in this thesis, and the problems associated with
them. The studied data sets entail different levels of difficulty. For example, one challenge
occurs when the desired values cannot be measured precisely, and thus observation error is
apparent. Previously collected trajectories can also consist of different numbers of data points,
and statistical values like the sample mean vector cannot be computed anymore. Another
challenge that arises in this thesis occurs when using simulation data as training trajectories.
There, the observation error is absent but might be present in the data of the monitored

25
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Table 3.1: Tackled challenges in the course of this thesis.

Simulation Data from literature Experiment

Tackled
challenges

crack growth
simulation

FCG
Hudak

FCG
Virkler

Laser
degradation

Milling
machine wear

crack growth in
aero. structure

present
noise

(×) × × × × ×

diff. lengths
of prev. data

(×) × ×

non-normally
distributed data

(×) ×

prev. data
lacks noise

(×) ×

variable
is hidden

×

system. We will also deal with non-normally distributed trajectories and with a data set in
which the degradation variable, in this case, the crack length, is hidden. Table 3.1 links the
tackled challenges to the data sets.

In this thesis, we will also use simulation data to showcase the proposed methods. The
advantage of simulated data is that the underlying equations are known, and the challenges
can be gradually added. This is denoted by (×) in Table 3.1. Apart from the simulation
data, the difficulty level increases from left to right in the table. During this thesis, we will
handle the more manageable data sets first and gradually increase the difficulty level. In total,
six data sets regarding various fatigue crack growth problems, laser degradation, and milling
machine wear are faced throughout the thesis. Each data set describes a particular system
output/behavior. The term system output/behavior is used for the variable that indicates the
deterioration of the mechanical system. The considered approaches deal with data sets where
the system behavior is determined in the low-frequency domain.

In the present chapter, we first explain how to simulate fatigue crack growth in a pre-cracked
plate. The results are used throughout this thesis and are therefore particularly important. In
the second section, we describe the data sets found in literature. Those data sets are based
on real-world applications and incorporate observation errors. The chapter ends by specifying
the conducted experiments and presenting their results in the third section.

3.1 Crack growth simulation

As explained in the introduction chapter, aerospace structures are designed to tolerate dam-
ages, such as cracks. Many thin-walled aircraft structures follow this damage tolerant design
guideline which is why we consider the crack growth in a plate as our first application. A
rather simple example is a growing crack in a pre-cracked infinite plate with a remote stress
range ∆σ∞, see Figure 3.2. As introduced in the fundamentals chapter, the crack growth rate
da
dN can be modeled according to Paris and Erdogan [101] by

da

dN
= C(∆KI)

α, (3.1)
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Figure 3.2: Pre-cracked infinite plate.

where C and α are material properties and ∆KI is the range of the SIF in mode I. In general,
the SIF range can be computed as ∆KI = γ(a)∆σ∞

√
πa, where a is half the crack length, see

Figure 3.2, and γ(a) is the geometry factor which is in general dependent on the crack length
a. Assuming a constant remote stress range ∆σ∞ and that C and α are independent of a, the
differential equation can be solved with the initial condition N0 = 0 for the number of cycles
N dependent on the crack length a as

N(a) =
1

C∆σα∞π
α/2

∫ a

a0

γ(ā)−α ā−α/2 dā. (3.2)

For an infinite plate, the geometry factor becomes γ = 1 and the integral can be explicitly
solved to

N(a) =
2

(2− α)C∆σα∞π
α/2

(
a

2−α
2 –a

2−α
2

0

)
(3.3)

or

a(N) =

(
(2− α)C∆σα∞π

α/2

2
N + a

2−α
2

0

) 2
2−α

. (3.4)

Now, the crack growth in an infinite plate can be analytically computed. Different crack
growth trajectories can be produced by varying the parameters in Equation 3.4. Since crack
propagation is subject to uncertainties, one can consider some parameters in Equation 3.4 as
random variables. By assuming a probability distribution for each parameter, a set of samples
can be drawn, and the corresponding crack growth trajectory computed. For an initial crack
length of a0 = 9 × 10−3 m, a remote stress range of ∆σ∞ = 48.26 MPa, and the material
parameters α = 2.9 and N (C|µC , σ2

C) with µC = 8.7096 × 10−11 and σC = 1.519 × 10−11,
50 sampled crack growth trajectories are shown in Figure 3.3a (C with [da/dN ] = m/cycle
and [∆KI ] = MPa

√
m). Each trajectory stops at approximately 0.05 m. Figure 3.3b shows

the trajectories when additionally assuming an additive observation error of N (e|0, σ2
y) with

σy = 0.4× 10−3 m.
When simulating crack growth trajectories, we can add an observation error, simulate

trajectories with the same and different lengths, and deal with non-normally distributed data.
Therefore, simulated data provides the great possibility to increase the difficulty level gradually.
Since we also know the exact solution and the a priori assumed values, we are able to validate
our methods.
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(a) (b)

Figure 3.3: Crack growth trajectories (a) without and (b) with observation error.

3.2 Data sets from literature

In literature, various data sets regarding degrading mechanical systems can be found. Four
data sets are used for multiple studies in this thesis, representing fatigue crack growth, laser
degradation, and milling machine wear. The data sets shown in Figure 3.4 open the possibility
to apply the methods presented in this work to different areas. All data sets are based on
measurements and are subject to observation error.

(a) (b)

(c) (d)

Figure 3.4: Data found in literature representing (a) fatigue crack growth in a compact tension
specimen (FCG Hudak), (b) laser degradation, (c) milling machine wear, and (d) fatigue crack
growth in an aluminum plate (FCG Virkler).

FCG Hudak data set. The fatigue crack growth data used in this work (Figure 3.4a) was
originally gathered by Hudak et al. [58] and pictures crack growth in compact tension specimens
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made of steel. The data set was visually obtained by Meeker and Escobar [89] from Figure
4.5.2 in [20]. The crack length a is given every 10, 000 cycles. We cut all trajectories at 90, 000
cycles such that each line consists of the same number of data points. Additionally, the crack
lengths are normalized by the initial crack length of a0 = 0.9 in.

FCG Virkler data set. Another fatigue crack growth data set was published by Virkler
et al. [148] which consists of 68 crack growth trajectories, see Figure 3.4d. The center-cracked
aluminum 2024–T3 test specimens with a total width of W = 152.4 mm and an initial crack
size of a0 = 9 mm were tested under a constant amplitude loading with a stress range of
∆σ∞ = 48.26 MPa up to a final crack length of ac = 49.8 mm. During the test, the number
of cycles was measured every ∆a = 0.2 mm up to a = 36.2 mm, every ∆a = 0.4 mm up to
a = 44.2 mm, and every ∆a = 0.8 mm up to a = 49.8 mm.

Laser degradation data set. Meeker and Escobar [89] published the laser degradation data
set consisting of 15 gallium arsenide (GaAs) laser device degradation trajectories. In general,
the output light intensity decreases over time. However, due to a feedback mechanism in
the experiment, the laser output was kept constant by increasing the operating current. The
operating current I was measured every 250 h until 4, 000 h, showing an increasing trend. The
trajectories that indicate the degrading lasers are shown in Figure 3.4b.

Milling machine wear data set. All the previously explained data sets from literature have
in common that their trajectories are equally long and measured at the same locations. By
contrast, the milling machine wear trajectories published by Agogino and Goebel [3] exhibit
different numbers of data points per line. This is a challenge since the sample mean vector
and covariance matrix cannot be computed. The entire data set consists of several sensor
measurements. However, we only use the flank wear over the executed runs in this work. In
total, 16 cases were considered by Agogino and Goebel. Since one case comprises only an initial
value, we investigate 15 milling machine wear trajectories in our studies, see Figure 3.4c.

3.3 Conducted experiments

In contrast to the before-mentioned examples, usually, the degradation variable, such as the
crack length, cannot be observed in real-world applications. For example, continuous visual

(a) (b)

Figure 3.5: (a) Specimen and (b) test rig.

monitoring for aircraft in flight is not applicable since cameras are heavy and difficult to mount.
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Therefore, sensors are attached to structures to infer their conditions from the collected data.
In order to generate data for such an application, we tested an aluminum panel that resembles
a lower section of a civil aircraft wing. It is made of the aluminum alloy Al 2024–T351 with
Young’s modulus of E = 72, 000 MPa and a Poisson’s ratio of ν = 0.34. The structure is
1, 920 mm long and 570 mm wide and has an elliptical armhole with a length of 135 mm and
a width of 75 mm. The hole allows reaching into the wing to inspect the inner surfaces of the
structure with an endoscope. Around the centered armhole, there are 16 small holes with a
radius of 2 mm. The armhole is usually covered by a lid fixed on the small holes. The whole
specimen is shown in Figure 3.5a.

(a) (b)

Figure 3.6: Loading program with flight types (a) A and B, and (b) C and D.

During the fatigue test, the load was applied by a hydraulic cylinder at an angle in order
to represent shear stresses in a wing resulting from twisting, see Figure 3.5b. The loading
program is based on four different flight types, A, B, C, and D (Figure 3.6), to realistically
simulate the forces acting on an aircraft wing. They consist of 230, 190, 114, and 146 load
steps, respectively. The flight types are ordered randomly for the first 100 flights. The order
of the first 100 flights is repeated consecutively afterwards. The occurrences of the different
flight types, A, B, C, and D, in the first 100 flights are 55, 15, 20, and 10 times, respectively.

(a) (b)

Figure 3.7: Sensors of (a) P02T01 and (b) P03T01.

In total, two equally manufactured specimens, P02T01 and P03T01, were tested with the
same loading program. Several sensors were attached to the panel to monitor the structures.
The sensors were predominantly positioned according to the crack detection zones method
developed by Pfingstl and Zimmermann [104] and Pfingstl et al. [106] to ensure that the
applied strain gauges detect the occurring cracks. In total, two single strain gauges and three
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strain rosettes were attached to specimen P02T01 and two single strain gauges and four strain
rosettes to specimen P03T01, see Figures 3.7a and 3.7b.

(a) (b) (c)

Figure 3.8: Fatigue process of aerospace structure with (a) intact structure, (b) crack growth,
and (c) final fracture, see Pfingstl et al. [106].

At the beginning of each experiment, the specimen was completely sound, see Figure 3.8a.
After loading the structure several hundreds of flights, a crack was initiated, as shown in
Figure 3.8b. Afterwards, the crack propagated until the structure eventually failed, see Fig-
ure 3.8c. Test engineers regularly inspected the structure during the experiment to detect
cracks and measure their lengths. The measured crack lengths of P02T01 and P03T01 are
shown in Figure 3.9.

Figure 3.9: Crack lengths resulting from visual inspections for specimens P02T01 and P03T01.

The data sets presented in this chapter are used throughout the thesis. We start dealing
with the simulated trajectories and continue with the data sets found in the literature. Finally,
in the second-last chapter, we will propose methods to predict crack growth in the aerospace
structure.





Chapter 4
Inferred Gaussian Processes

”Prognosen sind schwierig, besonders wenn sie die Zukunft betreffen.”

– Karl Valentin

Predictions are difficult, especially when it comes to the future. This sentence, said by the
German comedian Karl Valentin, points out amusingly that it is challenging to foresee events.
As already explained in the introduction chapter, this is especially true for incidences in large
systems such as future CO2 concentrations in the air or stock prices where many influencing
factors that might vary over time are apparent. By contrast, the system boundaries of experi-
ments regarding mechanical systems can often be precisely drawn, allowing us to control or at
least acknowledge influencing factors, leading to repetitive behaviors and similar results for the
same experiments. As the results of a mechanical experiment are repetitive, we can tackle the
challenge of predicting the conditions of mechanical systems by integrating prior information
about the system behavior in form of previously executed experiments into our model.

Section 4.1 and Sections 4.3–4.6 of this chapter are fully based on the paper Pfingstl and
Zimmermann [105]. The results were further discussed with Dr. Mario Teixeira Parente
from the Jülich Centre for Neutron Science. His valuable advice and feedback are gratefully
acknowledged.

Before introducing the approach of integrating prior information into Gaussian processes in
Section 4.3, the work is motivated by recent publications discussed in Section 4.1. Furthermore,
an introduction on how to use a multivariate normal distribution for prognostics is given in
Section 4.2. The approach for inferring a Gaussian process model from training trajectories
is applied to three different data sets in Section 4.4, on which the effect of integrating prior
knowledge into Gaussian processes is studied. Section 4.5 details an extension of this approach
by incorporating problem-specific governing equations into Gaussian processes and investigates
its impact on the predictions. In the final section, we conclude from the studies conducted in
this chapter.

4.1 Motivation

Using mathematical surrogate models is one way of predicting the condition of mechanical
systems based on data. Researchers have proposed many different types of models for pre-

33
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dicting fatigue life [131]. Some of them, e.g., recurrent neural networks [30, 85, 96], support
vector regression [64, 134], and k-nearest neighbors [138, 150], have been applied successfully
to prognostics and health management problems. As fatigue-induced damage is still one of the
most uncertain failures in structures [43], the models should supply information about their
prediction’s uncertainty. However, by default, the before-mentioned surrogate models do not
provide any.

Since Gaussian process regression provides credible intervals for its predicted states, it has
frequently been used for probabilistic predictions, see, for example, [5, 9, 10, 25, 40, 52, 57, 66,
71, 76, 77, 79, 93, 137, 161, 163]. As already introduced in Section 2.3, a Gaussian process is
entirely defined by its mean and covariance function, which we also refer to as the Gaussian
process model. In order to apply Gaussian process regression, a mean and a covariance function
have to be chosen a priori. Table 4.1 shows recently used functions in prognostic and health
management.

Table 4.1: Recently used mean and covariance functions for prognostics and health manage-
ment problems.

Topic Mean function Covariance function Year Reference

Crack growth prediction zero neural network (NN) 2011 [93]
Degradation of bearings zero squared-exponential (SE) iso, Matern, NN 2012 [57]
Battery degradation linear, quadratic SE iso, periodic, constant 2013 [79]
Crack growth prediction polynomial SE iso 2015 [5]
Degradation of solder joints zero SE iso 2015 [71]
Damage detection in bearings zero, constant,

linear, quadratic,
cubic

SE iso, SE ard, linear, linear ard,
Matern iso, noise, periodic,
rational-quadratic (RQ) ard, RQ iso

2017 [10]

Battery degradation zero SE ard 2018 [161]
Tool wear prediction linear SE iso 2018 [66]
Crack growth prediction zero SE iso 2019 [76]
Degradation of bearings linear SE iso 2019 [52]
Crack growth evaluation zero SE iso + linear 2019 [163]
Crack growth evaluation zero SE ard + linear ard 2020 [25]
Seismic fragility zero SE iso 2020 [40]

iso: isotropic length scale

ard: automatic relevance determination

As illustrated in Table 4.1, a frequent choice is a zero mean and a squared-exponential
covariance function. However, using such predefined functions can lead to poor predictions as
they involve the assumption of a specific function family. As stated in [57, 63, 71, 112, 123],
prior knowledge regarding the covariance function should improve the prediction of Gaussian
processes. In practice, engineers usually have good a priori knowledge about the system behav-
ior/output due to pre-executed simulations or tests. Nevertheless, defining a Gaussian process
model might still be challenging resulting in choosing default priors such as a zero mean and
a squared-exponential covariance function. Therefore, an approach for inferring a Gaussian
process model from previous data seems worthwhile.

4.2 Prognostics with a multivariate normal distribution

A prerequisite for using Gaussian processes is assuming the system output y to be normally
distributed. As explained in Section 2.3, the probability density function for a finite number of
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data points y is p(y) = N (y|µ,Σ), where µ is the mean vector and Σ the covariance matrix
of y. If we have m previously gathered trajectories {yi|i = 1, . . . , n}j with j = 1, . . . ,m of the
system output (e.g., crack length) at the locations {xi|i = 1, . . . , n} (e.g., number of cycles), we
can build a model based on a multivariate normal distribution by simply computing the sample
mean vector µ̂ with µ̂i = 1

m

∑m
j=1 xi,j and the sample covariance matrix Σ̂ with σ̂2

i = σ̂i,i and

σ̂i,k = 1
m−1

∑m
j=1(xi,j − µ̂i)(xk,j − µ̂k) of the previously collected data. Without any current

data of the monitored system, the prediction of this model is the sample mean. The symmetric
95% credible interval, i.e., the interval between the 2.5% and the 97.5% quantiles, is determined
by ŷi,2.5% = µ̂i–1.96σ̂i and ŷi,97.5% = µ̂i+1.96σ̂i. If now current data y+ at x+ of the monitored
system is observed, the prediction can be updated by computing the conditional distribution
as

p(y∗|y+) = N
(
y∗|µ̂∗ + Σ̂∗,+Σ̂−1

+,+(y+ − µ̂+), Σ̂∗,∗ − Σ̂∗,+Σ̂−1
+,+Σ̂>∗,+

)
, (4.1)

where µ̂+ is the sample mean vector and Σ̂+,+ the sample covariance matrix at the the currently
observed locations x+. µ̂∗ is the sample mean vector and Σ̂∗,∗ the sample covariance matrix
at the prediction locations x∗, and Σ̂+,∗ is the sample covariance matrix between the values
at x+ and x∗. Note that the currently observed locations x+ and the prediction locations x∗
have to be subsets of the locations x where the previously collected trajectories were observed.

Based on this simple model, we can predict the crack growth in an infinite plate. As an
example, let us assume to have 20 previously collected trajectories, as shown in bright grey in
Figure 4.1a. The trajectories are determined by

a(N) =

(
(2− α)C∆σα∞π

α/2

2
N + a

2−α
2

0

) 2
2−α

, (4.2)

which was derived in Section 3.1. The remote stress range is set to ∆σ∞ = 48.26 MPa, the
material exponent to α = 2.9, and the initial crack length to a0 = 9 × 10−3 m. The different
trajectories are generated by varying the parameter C according to a normal distribution
N (C|µC , σ2

C) with µC = 8.7096× 10−11 and σC = 1.5190× 10−11 (C with [da/dN ] = m/cycle
and [∆KI ] = MPa

√
m). In this example, the crack lengths are computed every 10, 000 cycles

until 200, 000 cycles. With this previous data, we can determine the sample mean vector and
the sample covariance matrix. They are shown in Figures 4.1b and 4.1c, respectively.

(a) (b) (c)

Figure 4.1: (a) Crack growth trajectories, (b) mean vector and credible intervals, and (c)
sample covariance matrix.

Figure 4.1b shows the crack growth prediction with a symmetric 95% credible region for the
initial state, i.e., no monitoring data is available. The prediction is thus completely based on
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the computed sample mean vector and sample covariance matrix. Now, we suppose that crack
growth in a new plate is gradually observed. For this, we use the test trajectory highlighted
in Figure 4.1a. The crack growth prediction can be updated based on the currently measured
crack lengths by computing the conditional distribution given in Equation 4.1. Figures 4.2a–
4.2c show the updated predictions for an early, medium, and late observation state of the test
trajectory. We can see that the more data we observe, the narrower the credible region of the
prediction becomes.

(a) (b) (c)

Figure 4.2: Crack growth prediction at an (a) early stage, (b) medium stage, and (c) late stage.

Considering imprecision due to measurement, we add the variance of the observation error
σ2
y to the principal diagonal of the covariance matrix at the observed locations Σ̃+,+ = Σ̂+,+ +
σ2
yI. In doing so, the predicted mean does not follow the measured data exactly anymore.

The higher the observation error’s variance is, the less precisely the predicted mean follows the
currently observed data, and the less the predicted variance is reduced, see Figures 4.3a and
4.3b.

(a) (b)

Figure 4.3: Crack growth predictions with a (a) small and (b) large observation error.

A drawback of using a multivariate normal distribution is that states can only be predicted
at locations where the previously collected trajectories are measured. One could train a re-
gression model on the sample mean vector and the sample covariance matrix mapping x→ µ̂
and (x,x′)→ Σ̂ to bypass this restriction. Yet, a problem arises for fitting a regression model
to the sample covariance matrix: One must ensure that the model leads to a symmetric and
positive semidefinite matrix for every possible input (x, x′) [128]. Another problem of this
approach occurs when the previous trajectories are not equally long, or data points within
trajectories are missing. Then, the sample mean vector and the sample covariance matrix
cannot be determined with the standard equations anymore. As Gaussian processes describe
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an infinite number of random variables, they could solve these problems. This is why we try
to integrate the information of the previously collected trajectories into Gaussian processes in
the next section.

4.3 Integrating prior knowledge into Gaussian processes

As already introduced in Chapter 2, a Gaussian process is defined by its mean mθ(x) and
covariance function kθ(x, x

′) which typically have some free parameters θ. Table 4.1 shows
that a frequent choice is the squared-exponential covariance function that additionally considers
noise

kθ(x, x
′) = σ2

f exp

(
−(x− x′)2

2`2

)
+ δ σ2

y (4.3)

and a zero mean function, where δ is the Kronecker delta with δ = 0 for x 6= x′ and δ = 1 for
x = x′, and θ = [σf , `, σy]

> are the free parameters. Typically, these parameters are trained
by maximizing the log-likelihood

log p(y+|θ) =− n+

2
log(2π)− 1

2
log (det kθ(x+,x+))

− 1

2

(
y+ −mθ(x+)

)>
kθ(x+,x+)−1

(
y+ −mθ(x+)

)
,

(4.4)

with n+ as the dimensionality of the observed data, e.g., crack length,

y+ =
[
y+,1, . . . , y+,n+

]>
(4.5)

at the locations, e.g., number of cycles,

x+ =
[
x+,1, . . . , x+,n+

]>
, (4.6)

the mean vector
mθ(x+) =

[
mθ(x+,1), . . . ,mθ(x+,n+)

]>
, (4.7)

and the covariance matrix

kθ(x+,x
′
+) =

 kθ(x+,1, x+,1) . . . kθ(x+,1, x+,n+)
...

. . .
...

kθ(x+,n+ , x+,1) . . . kθ(x+,n, x+,n+)

 , (4.8)

leading to the optimized parameters θ̂. Then, the conditional distribution at a location x is
given as

f(x) | x+,y+, θ̂ ∼ N (mθ(x) + kθ(x,x+)kθ(x+,x+)−1(y+ −mθ(x+)),

kθ(x, x)− kθ(x,x+)kθ(x+,x+)−1kθ(x,x+)>).
(4.9)

This algorithm is especially powerful for regression problems, see [116], and is referred to as
Gaussian process regression. The algorithm was used, for example in [5, 52, 57, 71], to predict
damage states: Each time a new currently observed data point is available, the Gaussian pro-
cess model is optimized, and its conditional distribution computed, leading to a new prediction
for upcoming states. However, no prior information is integrated into the Gaussian process
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model besides the a priori chosen mean and covariance function, which often leads to poor pre-
dictions and a short look-ahead time. Therefore, we present how to integrate prior knowledge
into a predefined Gaussian process model in the following. In the presented state-of-the-art
algorithm, the mean and covariance functions have to be chosen a priori, involving the assump-
tion of a specific function family. As this can also be a reason for poor predictions, we further
propose an approach that infers an appropriate Gaussian process model from previous data
and thus weakens the assumption about a certain function family made by choosing prescribed
models.

Training of a prescribed Gaussian process model with previous data

Instead of optimizing a prescribed Gaussian process model only on currently observed data,
we can also train the parameters of a prescribed mean and covariance function on previous
data. As previously, we assume a Gaussian process model chosen a priori which is dependent
on a set of parameters θ. The standard deviation of the observation error can be seen as one
parameter of this set. With Bayes’ rule, the posterior distribution based on a given trajectory(
xj ,yj = fj(xj)

)
is given by

p(θ | yj) =
p(yj | θ) p(θ)∫
p(yj | θ) p(θ) dθ

∝ p(yj | θ) p(θ), (4.10)

where p(θ) and p(yj | θ) are the prior and the likelihood distribution, respectively. Assuming
an uninformative prior and that all m trajectories are independent and identically distributed,
the posterior distribution reads

p(θ | y1, ...,ym) =

m∏
j=1

p(yj | θ)∫
p(yj | θ) dθ

∝
m∏
j=1

p(yj | θ) (4.11)

and its log-likelihood is

log p(θ | y1, ...,ym) ∝
m∑
j=1

log p(yj | θ) (4.12)

with

log p(yj |θ) =− n

2
log(2π)− 1

2
log (det kθ(xj ,xj))

− 1

2

(
yj −mθ(xj)

)>
kθ(xj ,xj)

−1
(
yj −mθ(xj)

)
,

(4.13)

Therefore, the sum of the trajectories’ log-likelihoods must be maximized, as also stated in
[91]. By optimizing the parameters such that the sum of the trajectories’ log-likelihoods is
maximized, prior knowledge is integrated into the Gaussian process model. However, we still
have to choose a mean and a covariance function and thus assume a specific function family.
Therefore, we propose an approach for inferring the mean function and the covariance function
from previous data in the following.
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Inferring Gaussian process models from previous data

In contrast to the previously explained models, no Gaussian process model is chosen a priori.
The following approach aims to weaken the assumption about the function family by inferring
an appropriate Gaussian process model from previous data. Instead of implicitly making
assumptions about the system output by choosing a mean and a covariance function, we
explicitly specify which (basis) functions the system output consists of. In doing so, we assume
that each realization fj(x) can be approximated using a linear combination of a finite set of
basis functions φk(x) with k = 1, ..., p so that

fj(x) =

p∑
k=1

φk(x)βk,j = φ(x)>βj , (4.14)

where βk,j is the coefficient of realization j belonging to the basis function φk(x). Then, the
mean function reads

m(x) =E[f(x)]

=E[φ(x)>β]

=φ(x)>E[β]

=φ(x)>µβ

≈φ(x)>µ̂β.

(4.15)

and the covariance function is

k(x, x′) =cov[f(x), f(x′)] = E[(f(x)− E[f(x)])(f(x′)− E[f(x′)])]

=E[(f(x)−m(x))(f(x′)−m(x′))]

=E[f(x)f(x′)− f(x)m(x′)−m(x)f(x′) +m(x)m(x′)]

=E[f(x)f(x′)]− E[f(x)m(x′)]− E[m(x)f(x′)] + E[m(x)m(x′)]

=E[φ(x)>βφ(x′)>β]− E[φ(x)>βφ(x′)>E[β]]− E[φ(x)>E[β]φ(x′)>β]

+ E[φ(x)>E[β]φ(x′)>E[β]]

=E[φ(x)>β β>φ(x′)]− E[φ(x)>β E[β>]φ(x′)]− E[φ(x)>E[β]β>φ(x′)]

+ E[φ(x)>E[β]E[β>]φ(x′)]

=φ(x)>
(
E[β β>]− E[β]E[β>]− E[β]E[β>] + E[β]E[β>]

)
φ(x′)

=φ(x)>
(
E[β β>]− E[β]E[β>]

)
φ(x′)

=φ(x)>cov[β]φ(x′)

=φ(x)>Σβφ(x′)

≈φ(x)>Σ̂βφ(x′),

(4.16)

where φ(x) is a vector consisting of all basis functions

φ(x) =
[
φ1(x), . . . , φp(x)

]>
, (4.17)

µ̂β is the sample mean vector

µ̂β =
1

m

m∑
j=1

βj =
[
µ̂β1 , . . . , µ̂βp

]>
, (4.18)
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and Σ̂β is the sample covariance matrix

Σ̂β =

σ̂1,1 · · · σ̂1,p
...

. . .
...

σ̂p,1 · · · σ̂p,p

 , σ̂k,l =
1

m− 1

m∑
j=1

(βk,j − µ̂βk)(βl,j − µ̂βl) (4.19)

of the coefficients B = [β1, ...,βm]. The approach is similar to assuming a Bayesian linear
regression model, the weights’ distribution to be multivariate normal (see [116]), and approx-
imating the distribution by the sample mean vector and the sample covariance matrix. Fur-
thermore, this idea is similar to modeling the residuals of a global linear model by a Gaussian
process, which was explored as early as 1975 for polynomials by Blight and Ott [18] and for a
linear combination of basis functions by O’Hagan [99].

To apply the presented approach, let xj ∈ Rnj be the previously gathered inputs and
yj ∈ Rnj the corresponding function values, where trajectory j consists of nj data points.
We first approximate each trajectory (xj ,yj) using a linear regression with p basis functions,

where β̂j are the estimated coefficients of trajectory j with

β̂j = (Φ>j Φj)
−1Φ>j yj (4.20)

and

Φj = Φ(xj) =

 φ1(x1,j) · · · φp(x1,j)
...

. . .
...

φ1(xnj ,j) · · · φp(xnj ,j)

 , (4.21)

where nj ≥ p and m > p. If nj < p, (Φ>j Φj) becomes rank deficient and therefore has no
inverse, which causes problems in Equation 4.20. One could use the Moore-Penrose pseudoin-
verse instead. If m ≤ p, rank(Σ̂a) = m− 1 and therefore the sample covariance matrix has no
inverse. This problem could be solved by adding a small perturbation to the main diagonal of
the sample covariance matrix so that the sample covariance matrix has full rank.

After fitting every trajectory by a set of basis functions, we are able to compute the sample
mean vector µ̂β̂ and the sample covariance matrix Σ̂β̂ of the estimated coefficients B̂, leading to

an approximate mean (Equation 4.15) and covariance function (Equation 4.16). Additionally,
the observation error’s variance σ2

y can be estimated using the mean square of the residuals r̂

r̂j =Φjβ̂j − yj (4.22)

σ̂2
y =

1

m

m∑
j=1

1

nj − p

nj∑
i=1

r̂2
i,j (4.23)

or by maximizing the sum of the trajectories’ log-likelihoods in Equation 4.12 with its derivative

∂ log p(y1, . . . ,ym|σ2
y)

∂σ2
y

=

m∑
j=1

(
−1

2
tr(K−1) +

1

2
(yj −m(xj))

>K−2(yj −m(xj))

)
,

(4.24)

where the covariance matrix K = kIGP (xj ,xj)+σ2
y I. The denominator nj−p in Equation 4.23

results from the reduced degrees of freedom due to fitting p basis functions to the trajectories.
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See [7] for a derivation. The entire inferred model reads

m(x) = φ(x)>µ̂β̂

k(x, x′) = kIGP (x, x′) + δ σ̂2
y = φ(x)>Σ̂β̂φ(x′) + δ σ̂2

y .
(4.25)

As an example, let us consider the 20 trajectories shown in Figure 4.4a that are realized
by the Gaussian process f(x) ∼ N (m(x), k(x, x′)) with

m(x) = x (4.26)

and
k(x, x′) = θ1 + θ2xx

′, (4.27)

where the parameters are set to θ1 = 0.001 and θ2 = 0.05 (true values). Based on Equa-
tion 4.12, the negative sum of the trajectories’ log-likelihoods is minimized to find the param-
eters of a prescribed Gaussian process model. For this example, we use the same Gaussian

(a) (b)

Figure 4.4: (a) Linear training trajectories and (b) objective function with determined values.

process model defined in Equations 4.26–4.27 with the free parameters θ1 and θ2. The contour
lines of the objective function are displayed in Figure 4.4b. Furthermore, the objective func-
tion’s optimum is shown as a black star and the true values θ1 = 0.001 and θ2 = 0.05 as a blue
square. The true parameter values are off the optimum as the objective function is based on
the limited 20 true trajectories. If the number of trajectories goes towards infinity, the realized
and optimum parameter values become the same. We can also apply the method of inferring
a Gaussian process model from the previous data to the 20 trajectories. For this, we assume a
constant and linear basis function, leading to the values shown as a red circle in Figure 4.4b.
We can see that this method leads to values close to the optimum of the objective function.
The small difference between them results from the mean function, which is also determined
by the inferring method but fixed to m(x) = x for the objective function.

The inferring method can also be applied to the crack growth trajectories in Figure 4.1a,
for which the multivariate normal distribution was introduced. The inferred mean function
with the polynomial basis functions of order four is shown in blue in Figure 4.5. It well matches
the computed sample mean of the trajectories displayed as a dashed black line. Figure 4.5 also
illustrates that the symmetric 95% credible regions shown in blue for the inferring method
and framed in black for the multivariate normal distribution are very similar. In contrast to
the multivariate normal distribution approach, the proposed inferring method can deal with
previous trajectories that are not equally long or miss data points in between.
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Figure 4.5: Comparison of inferred Gaussian process model (IGPM) with multivariate normal
distribution (MVN) for the crack growth problem.

In the following, we apply the proposed Gaussian process methods, i.e., Gaussian processes
with (1) current data & a prescribed Gaussian process model, (2) previous data & a prescribed
Gaussian process model, and (3) inferred model from previous data, to four data sets in order
to show the impact of the different assumptions.

4.4 Effect of integrating prior knowledge

In this section, we investigate the effect of integrating prior knowledge into Gaussian processes.
In order to compare the three methods proposed in the previous section, we apply them
to published data sets, which represent fatigue crack growth, laser degradation, and milling
machine wear. The three data sets are shown in Figure 3.4 and were previously introduced
in Section 3.2. The results presented in this section are based on a leave-one-out validation
scheme, i.e., each trajectory is used as test data while the other ones are used for training.
The highlighted test trajectory in Figure 4.6 is used to visualize the results.

Figure 4.6: Fatigue crack growth trajectories of a compact tension specimen (FCG Hudak).
The highlighted line is used to visualize the results.

For comparing the methods proposed, underlying models have to be assumed. As the data
sets of Figure 3.4 predominantly follow a polynomial behavior, we assume polynomial mean
and covariance functions in the following. Additionally, a zero mean and a squared-exponential
covariance function are considered as they have been frequently used by other researchers. In
order to find the maximum polynomial order, we split each previous data trajectory into a
train (≈ 70%) and a test set (≈ 30%) and evaluate the mean squared error for the test set.
The smallest test set error is obtained with a maximum order of q = 1 for the laser degradation
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and the milling machine wear data sets, and an order of q = 2 for the FCG Hudak data set.
Table 4.2 summarizes the models explained in the following.

Table 4.2: Investigated Gaussian process models (GPM).

Abbreviation Model Mean function Covariance function Data for
parameter
estimation

Data for
conditional
distribution

GPM curr. predefined GPM zero polynomial current data current data
GPM prev. ZM & SE predefined GPM zero squared-exponential previous data current data
GPM prev. POLY predefined GPM polynomial polynomial previous data current data
IGPM inferred GPM polynomial polynomial previous data current data

For training Gaussian process models with current data (GPM curr.), we use only the
currently observed data points and no previous trajectories, i.e., each trajectory is predicted
without knowing the other ones. For this method, we assume a zero mean and a polynomial
covariance function with the above determined maximum polynomial order q

kθ(x, x
′) = σ2

f (xx′ + b)q + δ σ2
y , (4.28)

where σf , b, and σy are the parameters θ of the Gaussian process model. These parameters θ
are trained for every new data point by maximizing the log-likelihood. We found that using
a polynomial mean function in this particular setup decreases the accuracy, which results
from too many parameters for a relatively small quantity of data. Moreover, the optimization
starting point strongly influences the result. Therefore, it is useful to start the optimization
with a set of different starting points. To be able to compare the results to the other methods,
we use the parameters optimized to the previous data as the starting point for this method.

For training Gaussian process models with previous data (GPM prev.), we assume all trajec-
tories but the currently investigated one to be previously observed. Due to the larger amount
of data, the assumed Gaussian process model consists of a polynomial covariance function, see
Equation 4.28, and a polynomial mean function

mθ(x) =

q+1∑
k=1

ckx
k−1, (4.29)

where σf , b, and ck are the parameters θ of the Gaussian process model (GPM prev. POLY).
Additionally, a Gaussian process model with a zero mean and a squared-exponential function,
see Equation 4.3, is trained with previous data (GPM prev. ZM & SE) in order to investigate
the influence of the prescribed model. As explained in Section 4.3, we maximize the sum of
the trajectories’ log-likelihood for optimizing the parameters θ. These parameters are fixed for
the entire prediction series. For this method, the currently observed data acts as a conditional
on the Gaussian process, leading to an updated prediction.

For inferring Gaussian process models (IGPM), we again assume all trajectories but the
currently investigated one to be previously observed. In order to determine the Gaussian
process model, first, each previous trajectory is approximated by a linear regression of poly-
nomial basis functions with the maximum order q, see Equation 4.20. Second, the estimated
coefficients are used to determine the mean and the covariance function, see Equations 4.15–
4.16. Additionally, the observation error’s standard deviation is estimated with Equation 4.23.
As for the Gaussian process model trained with previous data, the resulting mean function,
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covariance function, and the observation error’s standard deviation are fixed for the entire
prediction series. After observing a current data point, the conditional distribution of the
Gaussian process is computed, leading to an updated prediction, see Equation 4.9.

4.4.1 Results

The probabilistic predictions for the FCG Hudak data are shown in Figure 4.7. The figure
visualizes the true trajectory (red), the mean prediction (blue), and the symmetric 95% credible
region (light blue area), i.e., the region between the 2.5% and the 97.5% quantiles. Figure 4.7
compares the prediction of the Gaussian process model, which relies only on current data,
with the Gaussian process models trained with previous data (GPM prev. ZM & SE and
GPM prev. POLY), and with the inferred model. Two different time states of the currently
observed trajectory are visualized.

Table 4.3: Errors for different methods with respect to the corresponding data set.

Data set Model MAE MAPE MAE half MAPE half Prediction time Training time

FCG Hudak
predict: a(Nend)

IGPM 0.04 0.03 0.02 0.01 0.003 s 0.16 s
GPM curr. 0.13 +208.4% 0.09 +207.2% 0.05 +163.6% 0.03 +162.1% 0.91 s +26, 797.1% 0.00 s −100.0%
GPM prev. ZM & SE 0.20 +381.9% 0.13 +383.8% 0.07 +237.9% 0.04 +237.1% 0.01 s +261.8% 1.46 s +786.7%
GPM prev. POLY 0.05 +14.2% 0.03 +15.9% 0.02 +8.1% 0.01 +9.1% 0.02 s +352.9% 1.78 s +982.8%

Laser
degradation

predict: I(tend)

IGPM 0.67 A 0.09 0.38 A 0.05 0.004 s 0.18 s
GPM curr. 1.15 A +71.4% 0.15 +68.2% 0.38 A −1.6% 0.05 −1.2% 2.45 s +59, 624.4% 0.00 s −100.0%
GPM prev. ZM & SE 1.38 A +105.4% 0.17 +96.9% 0.49 A +28.3% 0.06 +20.4% 0.02 s +373.2% 1.00 s +465.1%
GPM prev. POLY 0.68 A +0.5% 0.09 +0.1% 0.38 A −1.2% 0.05 −1.0% 0.02 s +490.2% 2.72 s +1, 441.1%

Milling
machine wear

predict: V B(Nend,j)

IGPM 0.19 mm 0.27 0.13 mm 0.17 0.0009 s 0.17 s
GPM curr. 0.26 mm +35.3% 0.35 +28.8% 0.14 mm +7.8% 0.18 +11.7% 4.07 s +465, 892.9% 0.00 s −100.0%
GPM prev. ZM & SE 0.29 mm +53.6% 0.41 +53.6% 0.15 mm +12.8% 0.20 +20.9% 0.01 s +1, 422.4% 1.04 s +496.0%
GPM prev. POLY 0.19 mm 0.0% 0.27 +1.9% 0.13 mm −3.1% 0.16 −5.0% 0.02 s +1, 708.5% 1.57 s +796.5%

Common to all methods is that we obtain an updated prediction after observing a new
current data point, leading to nj predictions for each trajectory. The models are evaluated
in a leave-one-out validation scheme, i.e., each trajectory is used as test data while the other
ones are used for training. In this study, we evaluate the mean absolute error (MAE) and the
mean absolute percentage error (MAPE) of the last predicted point for one trajectory from
prediction 1 to prediction nj − 1 and compute the average of all investigated trajectories. In
order to get an idea of how the accuracy changes with an increasing number of current data
points, we also evaluate the MAE and MAPE starting from prediction dnj/2e. These are
referred to as MAE half and MAPE half. The evaluated errors for the three data sets are
presented in Table 4.3. Moreover, the average prediction time for one series, i.e., the total
time for all nj − 1 predictions of one trajectory including parameter optimization on current
data, as well as the training time for the Gaussian process model, i.e., the time for inferring or
optimizing the used Gaussian process model on previous data, are listed in Table 4.3.

Additionally, we evaluate how often the last measurement value lies within a certain pre-
dicted credible interval. This opens up the possibility of quantifying the predicted uncertainty
since the relative frequency of the real value lying within the credible interval should correspond
to the assumed credible interval itself. The symmetric 95% credible interval, for example, is
the interval between the 2.5% and the 97.5% quantile and should correspond to a relative
frequency of 95%. The results are plotted in Figures 4.8a and 4.8b for four symmetric credible
intervals {50%, 90%, 95%, 99%} where the inferred Gaussian process model is compared to the
model trained with current data and to the polynomial model trained with previous data,
respectively. A value above the black dashed line indicates an overly wide credible interval,



4.4 Effect of integrating prior knowledge 45

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.7: Probabilistic predictions of crack growth (FCG Hudak) at two different time states.
(a) GPM curr.: Gaussian process model trained with current data for an early and (b) a late
time state. (c) GPM prev. ZM & SE: Zero mean and squared-exponential function trained
with previous data for an early and (d) a late time state. (e) GPM prev. POLY: Polynomial
Gaussian process model trained with previous data for an early and (f) a late time state. (g)
IGPM: Inferred Gaussian process model for an early and (h) a late time state.
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(a) (b)

Figure 4.8: Credible interval comparison of inferred Gaussian process model (IGPM) with
(a) the Gaussian process model trained with current data (GPM curr.), and with (b) the
polynomial Gaussian process model trained with previous data (GPM prev. POLY).

which can be viewed as a too-conservative prediction. By contrast, a value below the dashed
line results from a too-small credible interval, which can be viewed as an overly optimistic
prediction.

4.4.2 Discussion

By comparing the inferred model to the Gaussian process model trained with current data,
we see that the inferring method results in higher accuracy, in particular at the beginning (see
Table 4.3). This results from using previous data since the inferred Gaussian process model
gains information about the shape of typical trajectories. This information is embedded in the
mean function. Furthermore, the information about how different locations are correlated and
distributed is embedded in the covariance function. The error margin decreases towards the end
of a prediction series (see MAE half and MAPE half) because of the larger amount of current
data, enabling better parameter training. At the beginning of the prediction series, the ratio
of the number of parameters to current data is high, and the optimization problem is prone
to overfit, whereas the ratio decreases towards the end. Moreover, Figures 4.7a and 4.7b show
that training a Gaussian process model only with current data leads to a shorter look-ahead
time, whereas the inferred model is able to accurately predict even points that are far away,
see Figures 4.7g and 4.7h. On the other hand, for the laser degradation data set, the MAE half
and MAPE half of the inferred model are larger than the ones based on the Gaussian process
model trained with current data (see Table 4.3). This is a result of the estimated standard
deviation of the observation error, which is flexible within a prediction series of one trajectory
for the model trained with current data. Another reason for this behavior is that the laser
degradation data set represents a relatively simple degradation behavior that is predominantly
linear. For more complex data sets, e.g., FCG Hudak and milling machine wear, the MAE half
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and MAPE half are larger.
Furthermore, the Gaussian process model trained with current data tends to underestimate

uncertainties. As Figure 4.8a shows, the colored dashed lines (GPM curr.) are further away
from the black dashed line than the solid lines (IGPM), resulting from a variance that was
underestimated, a wrong mean, or both. Again, this is due to the lack of previous data. There is
no prior information about how large the scatter is, resulting in wrong assumptions/estimations
of the Gaussian process model’s parameters. By contrast, this information is integrated into
the inferred covariance function.

By comparing the prediction times, we see that the inferring method obtains results more
quickly. This is because only the conditional distribution is computed for new current observa-
tions. By contrast, for the Gaussian process model trained with current data, an optimization
problem has to be solved every time a new current data point is observed. The training time
for the inferred model is larger because no previous selection process is carried out for the
Gaussian process model trained with current data.

The results of the inferred Gaussian process model and the polynomial model trained with
previous data are very similar since their determined mean functions are identical, and their
covariance functions are almost the same. The inferred model tends to have slightly higher
accuracy, see Figures 4.7e–4.7f and Table 4.3, because the model captures the correlation
between the coefficients. This improves accuracy if, for example, the coefficient of order 1
is correlated with the coefficient of order 2. By writing the covariance functions for q = 2
explicitly, the difference can be identified:

kprev(x, x
′) = σ2

f b
2 +2σ2

f b xx
′ +σ2

f (xx′)2

kIGPM (x, x′) = (E[β2
0 ]− E[β0]2) +(E[β2

1 ]− E[β1]2)xx′ +(E[β2
2 ]− E[β2]2) (xx′)2

+(E[β1 β0]− E[β1]E[β0]) (x+ x′)

+(E[β2 β0]− E[β2]E[β0]) (x2 + x′2)

+(E[β2 β1]− E[β2]E[β1]) (x2x′ + x′2x)

Of course, parameters could be added to the modeled covariance function in order to capture
the correlation. This, however, would lead to a more complex optimization problem due to the
possibility of including other local optima. Ultimately, the predicted mean and variance are
also almost the same, see Figure 4.8b, as the mean and the covariance functions are similar.

Additionally, a prescribed zero mean and a squared-exponential covariance function are
trained with previous data. Due to the poorly chosen Gaussian process model, the accuracy
is significantly worse than the accuracy of the inferred model. As the mean function is set to
zero, the mean prediction converges to zero for points that are far away from the currently
measured data, see Figure 4.7c. For close points, the error is smaller, see Table 4.3 and
Figure 4.7d. Consequently, it can be derived that the chosen prescribed Gaussian process
model has a significant influence on the accuracy.

We see that the inferring method is faster than training a predefined model by looking
at the training time. This is due to the fact that, in general, optimizing the parameters
of a Gaussian process model is a non-convex optimization problem [116]. By contrast, the
coefficients of a linear combination of basis functions can be estimated by solving a linear
system of equations for the inferring method. Furthermore, we found that the starting point
of the optimization problem associated with choosing a prescribed Gaussian process model
significantly influences the results. For a couple of runs, the optimized parameters lead to a
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completely different covariance function, resulting in poor predictions. Since this optimization
problem is, in general, non-convex, a gradient-based optimizer can lead to local optima.

Figure 4.9: Predicted symmetric 95% credible interval of the crack length at 90, 000 cycles.
The x-axis indicates at which time the prediction is made. The shown credible interval is
known before any current data point is observed. Yet, the predicted mean of the crack length
is unknown as it depends on the observed function values.

Moreover, we recognized an interesting property of Gaussian processes with fixed param-
eters, i.e., all free parameters including the standard deviation of the observation error are
determined: the variance of the conditional distribution is known over the entire range of x
once the Gaussian process model, the observation error’s standard deviation, and the measure-
ment locations are determined. This is due to the fact that the (co-)variance of a conditioned
Gaussian distribution is independent of the conditioning values, see Equation 4.9. Therefore,
we know for every point in time with what certainty we will be able to predict the system
output before we have observed any current data point. This is not possible if the Gaus-
sian process model is re-optimized for every new current data point because this changes the
model’s parameters. Figure 4.9 shows the symmetric 95% credible interval of the crack length
at 90, 000 cycles predicted at different times. The x-axis shows the point in time up to which
current data is measured. The credible interval at 90, 000 cycles shrinks as more and more data
is collected. This figure can be created before any data point is measured since the variance
of the conditional distribution depends only on the measurement locations, i.e., the number of
cycles at which new data is observed. Yet, the mean depends also on the measured function
values, which is why it is not known beforehand.

4.5 Physics-informed basis functions

For the inferring method, see Equations 4.15 and 4.16, we can also choose other types of basis
functions. In this section, we apply physics-informed basis functions to a set of published
fatigue crack growth data and examine the effect of using such basis functions. The measure-
ments of the investigated data set were performed by Virkler in 1977 [148] and consists of 68
crack growth experiments. A detailed description of the experiment was given in Chapter 3.2.
The first 47 trajectories of this data set are shown in Figure 4.10 and used for inferring the
Gaussian process model. The highlighted test trajectory in Figure 4.10 is used to visualize the
results.

The crack growth rate can be modeled by Paris’ law [101] da
dN = C(∆KI)

α, and according
to [8], the SIF range ∆KI for a center-cracked metal sheet with a finite width W can be
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Figure 4.10: Utilized fatigue crack growth data published by Virkler. The highlighted line is
used to visualize the results.

computed as

∆KI =
∆σ∞

√
πa√

cos
(
πa
W

) . (4.30)

Assuming that C and α are independent of a, with the initial condition N0 = 0, the differential
equation can be solved for the number of cycles N as

N(a) =
1

C ∆σα∞ π
α/2

∫ a

a0

(
cos
(
π ā
W

)
ā

)α/2
dā. (4.31)

We can now use φ ≡ N as our basis function. The total width W = 152.4 × 10−3 m and the
initial crack size of a0 = 9 × 10−3 m are set according to the experiment, and the exponent
is set to α = 2.9 according to [153]. The parameter C is not important since we compute
a multiplicative coefficient for each trajectory, see Equation 4.20. However, in order to avoid
small values for the coefficients, we set the material parameter to C = 8.7096 × 10−11. The
trajectories 1-47 are used to infer the Gaussian process model. The factor σx of the observation
error’s standard deviation

σy(x) = σx

∣∣∣∣dm(x)

dx

∣∣∣∣ (4.32)

is optimized by maximizing the log-likelihood of the last measured point.
In general, the exponent α might not be the same for all trajectories. To take this into

account, we can set several values for α, which results in multiple basis functions

φ(x) =
[
φ1(x, α = α1), . . . , φp(x, α = αp)

]>
. (4.33)

In this study, we apply the proposed method with α = 2.9 and compare it to a polynomial basis
function of order q = 4 and to the physics-informed basis functions with α = {2.6, 2.8, 3.0, 3.2}.
Actually, from a mathematical point of perspective, it would be necessary to prove linear
independence such that the corresponding regression system matrix Φ>j Φj is invertible, see
Equation 4.20.

4.5.1 Results

As in Section 4.3, we evaluate the MAE and the MAPE of the last predicted point. The results
are listed in Table 4.4.
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Table 4.4: Errors for different basis functions with respect to Virkler’s crack growth data set.

Data set Model MAE MAPE MAE half MAPE half

FCG Virkler
predict: N(aend)

Physics-informed α = 2.9 7525 0.03 3128 0.01

Polynomial p = 4 7448 −1.0% 0.03 −2.1% 4578 +46.3% 0.02 +50.4%

Physics-informed α = {2.6, 2.8, 3.0, 3.2} 5393 −28.3% 0.02 −28.3% 2737 −12.5% 0.01 −10.9%

(a) (b)

(c) (d)

(e) (f)

Figure 4.11: Probabilistic predictions of crack growth with different basis functions at two
different time states. Note that x = a and f ≡ N are flipped. (a) Physics-informed mean and
covariance function with α = 2.9 for an early and (b) a late time state. (c) Polynomial mean
and covariance function with q = 4 for an early and (d) a late time state. (e) Physics-informed
mean and covariance function with α = {2.6, 2.8, 3.0, 3.2} for an early and (f) a late time state.

Additionally, the probabilistic predictions for the three different basis functions are shown in
Figure 4.11. The figure depicts the true trajectory (red), the mean prediction (blue), and the
symmetric 95% credible region (light blue area). Two different time states of the currently
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observed trajectory are shown.

4.5.2 Discussion

Figure 4.11 shows that using different basis functions influences the predictions, see the cur-
vature of the mean towards the end in Figures 4.11c and 4.11d. The figure depicts that
the polynomial basis functions do not represent the crack growth trajectory as closely as the
physics-informed basis functions. This effect is particularly apparent towards the end of a
prediction series, see MAE half and MAPE half in Table 4.4. The reasons for this are that
the polynomial covariance function (Figure 4.12b) is significantly different from the computed
covariance matrix (Figure 4.12a) in the regions of larger crack lengths and the polynomial
mean function does not represent the data well.

(a) (b)

(c) (d)

Figure 4.12: Comparison of (a) computed covariance matrix, (b) polynomial covariance func-
tion with q = 4, (c) physics-informed covariance function with α = 2.9, and (d) physics-
informed covariance function with α = {2.6, 2.8, 3.0, 3.2}.

The effect of using several exponents can be observed by comparing Figures 4.11a and 4.11b
to Figures 4.11e and 4.11f. Towards the end, the credible region predicted with several basis
functions α = {2.6, 2.8, 3.0, 3.2} becomes wider than the credible region predicted with only
one α = 2.9. Moreover, the optimized standard error of the observation error is smaller for
α = {2.6, 2.8, 3.0, 3.2}. Using additional exponents further improves prediction accuracy, see
Table 4.4. The reason for this might be that not only C but also the material parameter α
scatters over different trajectories. The effect of using several values for α can also be seen in
Figure 4.12: the covariance function shown in Figure 4.12d is closer to the computed covariance
matrix (Figure 4.12a) than the covariance function for α = 2.9 in Figure 4.12c.
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Other physics-based models can also be used for predicting crack growth. However, these
are restricted to data sets that have problem-specific governing equations. The method pre-
sented in this chapter can treat data sets with and without problem-specific equations.

4.6 Summary

In this chapter, we first introduced how multivariate normal distributions can be used for
prognostics. By first computing the sample mean vector and the sample covariance matrix
and then conditioning the normal distribution on current data, we can predict the entire
degradation trajectory and update the prediction based on currently observed data as shown
on a crack growth example. The model not only outputs the mean degradation behavior but
also credible intervals, estimating the prediction’s uncertainty. However, to use this method,
all previously observed trajectories must be equally long and measured at the same locations
to compute the sample mean vector and the sample covariance matrix. Moreover, predictions
can only be made at locations where previous data points were collected.

In order to solve these drawbacks, the chapter further presents two methods (GPM prev. &
IGPM) to integrate previous data into Gaussian processes. The methods are applied to three
data sets representing fatigue crack growth, laser degradation, and milling machine wear. The
results show that integrating prior knowledge into Gaussian processes improves prediction
accuracy significantly.

One way of incorporating previous data into Gaussian processes is to train a predefined
Gaussian process model by maximizing the sum of the trajectory’s log-likelihoods. However,
optimization tends to be numerically expensive, and due to generally missing convexity, the
result may not be globally optimal. By contrast, following the inferring method, only a linear
equation system has to be solved which reduces the computation effort significantly. Addi-
tionally, the latter method allows the user to specify which basis functions best represent the
system output rather than implicitly making assumptions about it by choosing a mean and a
covariance function. Inferring Gaussian process models thus bypasses the challenge of select-
ing predefined mean and covariance functions and opens the way to physics-informed Gaussian
processes, which further increases accuracy, see Section 4.5.

Additionally, we recognized a useful property for using models with fixed parameters in the
context of prognostics and health management: the variance of the conditional distribution
is known over the entire range of x once the Gaussian process model, the observation error’s
standard deviation, and the measurement locations, e.g., number of cycles, are determined,
see Section 4.4.

In summary, the results of this chapter show that (1) taking previous data into account
increases accuracy and look-ahead time significantly, (2) deriving the mean and the covariance
function by using basis functions decreases computational effort remarkably, and (3) using
physics-informed basis functions further increases accuracy.



Chapter 5
Comparison with other Machine Learning
Methods

”All models are wrong, but some are useful.”

– George Box

The previous chapter introduced a new approach for deriving a Gaussian process from previous
data in order to predict the degradation of mechanical systems. As indicated in the introduction
of this thesis, there exist various other machine learning methods that can be useful to predict
structural degradation. Most of the time, however, they do not provide any information about
their predictions’ uncertainties. Therefore, this chapter presents different machine learning
methods and how to estimate their prediction’s uncertainty. This study was conducted together
with my master’s student Jose Ignacio Rios, who coded the first attempts of the recurrent
neural network and the support vector machine methods. The work was further supervised
and discussed with Prof. Dr. Horst Baier, the former director of the Institute of Lightweight
Design at TUM, and my supervisor Prof. Dr. Markus Zimmermann.

The chapter begins by motivating the study, giving an overview of different machine learn-
ing methods, and introducing the data sets used. Afterwards, we present the k-nearest neigh-
bors algorithm and explain how it can be applied to predict the degradation of mechanical
systems. Section 5.3 explains support vector machines and an extension to estimate their
prediction’s uncertainty. The use of recurrent neural networks for prognostics and their im-
plementation for probabilistic predictions are presented in Section 5.4. This is followed by
a summary of the applied multivariate normal distribution and the inferred Gaussian pro-
cess methods. Section 5.6 summarizes the results of the conducted study and discusses them.
Lastly, conclusions are drawn from the presented work.

5.1 Motivation

Many researchers have recently proposed new types of models for predicting fatigue life due
to the recent advances in machine learning, surrogate modeling, and uncertainty quantifica-
tion research [131]. Research particularly focused on using machine learning methods, such as
k-nearest neighbors [28], support vector machines [27, 145, 146, 147] and artificial neural net-
works, which have been used frequently in the context of prognostics and health management.

53
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Some of the publications related to prognostics and health management use similarity
approaches, such as k-nearest neighbors, to diagnose and predict the health states of mechanical
systems. The k-nearest neighbors algorithm, which is based on a distance measure between
existing data points, can be used for classification and regression problems. The method has
been especially popular for damage detection and classification. For example, He et al. [53]
used k-nearest neighbors to identify different types of faults in plastic bearings. Also, Safizadeh
and Latifi [122] and Tian et al. [138] utilized k-nearest neighbors to identify the condition of
ball bearings based on vibration signals. In [60, 61], a k-nearest neighbors classifier was used to
characterize various fault conditions of rolling bearings after obtaining low-dimensional features
based on Marginal Fisher analysis. Van and Kang [143] also present a method on feature
selection before they diagnose faults in rolling element bearings based on a k-nearest neighbors
classifier. In order to take into account correlations between features, the Mahalanobis distance
can be used as shown in [160] for rolling element bearing fault diagnosis. The k-nearest
neighbors algorithm is also used for other applications. For example, Gharavian et al. [41] used
it to detect faults in an automotive multi-speed gearbox and Li et al. [78], Wang [150] and
Vanraj et al. [144] to identify fault patterns in experimental gearboxes. Moreover, Park et al.
[102] classified spall and crack faults in gear teeth with k-nearest neighbors and Glowacz and
Glowacz [42] different stator faults of a single-phase induction motor. In our work, however, we
predict the degradation of mechanical systems with k-nearest neighbors and compute credible
intervals for the predicted states based on the variance of the k closest neighbors.

Since recurrent neural networks are explicitly suitable for dealing with time-series data,
they are widely used for prognostics [74]. For example, Zemouri et al. [164] and Malhi et al.
[86] used recurrent neural networks for predicting sensor signal evolution and the degradation
process of bearings, respectively. Heimes [54] and Peng et al. [103] ranked second and 22nd in
the PHM08 challenge [114] utilized recurrent neural networks to forecast the time to failure of
turbines. Additionally, Narendhar Gugulothu et al. [96] and Yuan et al. [162] tried to predict
turbine degradation with recurrent neural networks. In [30], the authors predict the fatigue
crack growth in structures with recurrent networks. Zhao et al. [165] further used recurrent
neural networks for monitoring the tool wear of a milling machine and Liu et al. [80] to detect
faults in rolling bearings. However, a drawback of recurrent neural networks is that they do
not provide any information about the prediction’s uncertainty by default. Therefore, Xie
et al. [159] and Ma and Mao [85] combined them with a particle filter to predict the remaining
useful life of fuel cells and the crack growth in structures, respectively. This enables predictions
with credible intervals, yet, a particle filter requires physical knowledge about the structural
system and can thus only be utilized if the physical behavior is known. In the present work,
we combine recurrent neural networks with a mixture density network [15] in order to obtain
probabilistic predictions without the knowledge of physical behavior.

Moreover, support vector machines have been used in the context of prognostics and health
management. According to Lei et al. [75], support vector machines have been extensively used
for fault diagnosis of rolling element bearings, gears, engines, and rotor systems. Support
vector machines have also been utilized to predict the degradation of mechanical systems.
For example, the authors of [12, 22, 31, 81, 135, 155] utilized support vector machines to
predict the degradation of bearings and Fumeo et al. [37] to estimate the remaining useful
life of railway transportation systems. Benkedjouh et al. [13] utilized support vector machines
to assess the wear of machining tools and predict their remaining useful lives. Moreover,
Khelif et al. [64] predict the remaining useful life of an aero-propulsion system with support
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vector machines, and in [134], the authors use XFEM and support vector machines to predict
the fatigue crack growth. One of the major disadvantages of support vector machines is
that they provide only point predictions rather than predictive distributions [17]. Therefore,
Tipping [140] introduced relevance vector machines, a probabilistic model whose function form
is identical to support vector machines. Widodo and Yang [154] utilized relevance vector
machines, for example, to assess the degradation of bearings and Wang et al. [152] to predict
the degradation of turbine engines and cooling fans. There exist also other publications and
methods that enable support vector regression to predict states with credible intervals. Authors
introduced, for example, probabilistic predictions for the degradation of a methane compressor
[98], bearings [84], and reactor coolant pumps [82, 83]. In the present study, we also apply
support vector machines to predict the degradation of mechanical systems. In order to estimate
the prediction’s uncertainty, we utilize a k-nearest neighbors estimator as suggested by Quicit
[113]. Moreover, we compare the results to those determined with relevant vector machines.

The machine learning approaches based on k-nearest neighbors, recurrent neural networks,
and support vector machines are compared to the multivariate normal distribution and Gaus-
sian process approaches proposed in the previous chapter. The presented study is carried out
in order to quantify and compare the models’ accuracies and to find the advantages and disad-
vantages of each method. In particular, we are interested in the performance of the approaches
presented in the previous chapter compared to other machine learning methods. All approaches

(a) (b) (c)

Figure 5.1: Training and test trajectories of the investigated (a) FCG Hudak, (b) laser degra-
dation, and (b) FCG Virkler data set.

are applied to the three data sets shown in Figure 5.1, representing fatigue crack growth and
laser degradation, which were introduced in Section 3.2. These data sets are chosen because
their trajectories end at the same last state. The data sets are split into training (≈ 70%) and
test trajectories (≈ 30%), as shown in Figure 5.1. The models are trained to predict the last
damage state with credible intervals. The inputs of the models are the damage states and their
corresponding measurement locations. We train the models such that they map the damage
states of each trajectory to the corresponding last damage state. This means that we predict
the last damage state based on the first, the first two, the first three, and so on measured
damage states. The models should therefore be able to update their predictions over time.
Note that the numbers of cycles are measured according to certain crack length intervals for
the data set shown in Figure 5.1c. Therefore, the number of cycles and not the crack length
is predicted for this particular data set. Figure 5.1c also shows two highlighted trajectories on
which we illustrate our predictions.
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5.2 K-nearest neighbors

The k-nearest neighbors algorithm is a rather simple approach that first computes the distances
in the input space between all existing (training) data points and the new input. Then, the
output is classified by the majority class of the k closest neighbors, i.e., the k training data
points with the least distances compared to the input. For regression problems, the output can
be determined by taking the mean of the k nearest neighbors. Computing the sample variance
of the k nearest neighbors further enables predicting the output with credible intervals and
thus estimating the prediction’s uncertainty. An advantage of k-nearest neighbors is that
the algorithm does not assume any specific property of the underlying function. However, a
disadvantage is that the distances between the input data point and all training data points
must be computed. If the training set is large, the computational time for predicting a new
state can be significant. Moreover, the results strongly depend on the training data set as no
underlying function is assumed. If the training set is small, the predictions might lack variety
since they are based on the sparse diversity of the training data points.

We denote (xj ,yj) ∈ Rn with j = 1, ...,m as our training data and (x1:i,+,y1:i,+) ∈ Ri as
the currently observed input data, where yi,j is measured at xi,j and yi,+ at xi,+. In this study,
we want to predict the last damage state of a degradation trajectory based on the already
measured states. Therefore, we want to predict yn,+ based on (x1:i,+,y1:i,+). There exist
multiple options to quantify the distance between the input and the training data. We can,
for example, evaluate the Euclidean distance for all measured points

d
(all)
i,j =

√√√√ i∑
l=1

(yl,+–yl,j)2, (5.1)

for only the last point

d
(1)
i,j =

√
(yi,+–yi,j)2, (5.2)

or, in general, for the last s points

d
(s)
i,j =

√√√√ i∑
l=i−s+1

(yl,+–yl,j)2, (5.3)

where j ∈ 1, ...,m for m training trajectories. Since all trajectories of our data sets are
measured at the same locations, we quantify only the distance of the damage states y observed
at x. Otherwise, we could also take the measurement locations x for the distance measure
into account. For dealing with multiple input variables, one can normalize them to avoid
overestimating the effect of the variable with the lowest scale. After computing the distances
to the m training trajectories, we sort the trajectories according to their distance measures.
Then, we take the outputs yn,1, ..., yn,k corresponding to the k smallest distances di,1, ..., di,k
in order to compute the sample mean

µ̂i,+ =
1

k

k∑
l=1

yn,l (5.4)

and the sample variance

σ̂2
i,+ =

1

k − 1

k∑
l=1

(yn,l − µ̂i,+)2 (5.5)
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for our prediction. Moreover, we can apply different distance measures such as the Manhattan
or the Minkowski distance. This study, however, is restricted to the Euclidean distance as we
have shown for other cases that simple distance measures are often sufficient, see Pfingstl et al.
[111]. Figure 5.2 visualizes the 13 nearest neighbors for two different input sizes.

(a) (b)

Figure 5.2: 13 nearest neighbors for (a) the last data point and (b) all data points as input.

In order to determine the hyperparameter k, we utilize a leave-one-out validation scheme.
This means we predict the last damage state of each trajectory by using the remaining trajec-
tories as the training set. This is repeated for every training trajectory being the one to be
predicted. The objective function for the corresponding optimization problem is the average
of all predictions’ negative log-likelihoods

L̄ = − 1

m

m∑
j=1

1

n− 1

n∑
i=2

log p(yn,j |x1:i,j ,y1:i,j) (5.6)

with

p(yn,j |x1:i,j ,y1:i,j) =
1√

2πσ̂2
i,j

exp

(
−(yn,j − µ̂i,j)2

2σ̂2
i,j

)
(5.7)

beginning from two data points since the first data points of all trajectories are the same in our
data sets. Computing the distance measure for the first data point would lead for all training
trajectories to zero, and the k-nearest neighbors algorithm would fail. Minimizing the negative
log-likelihood leads to the optimized design variable k̂. Table 5.1 summarizes the results of k̂
and L̄ for three different distances considering only the latest, the latest two, and all observed
data points.

Table 5.1: Optimized hyperparameter k̂ and mean negative log-likelihood L̄ for considering
different numbers of input data points. The minimum negative log-likelihood of each data set
is written in italics.

FCG Hudak Laser degradation FCG Virkler
last 1 last 2 all last 1 last 2 all last 1 last 2 all

k̂ 4 5 4 5 4 4 13 13 14
L̄ −1.3544 −1.3541 −1.3469 1.6780 1.7091 1.7144 10.5739 10.5798 10.7605
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Table 5.1 shows that the distance based on the latest measured damage state outperforms
the other distance measures. One rationale is that the latest measured damage state incor-
porates the best information about the last damage state. Taking previously measured data
points also into account decreases the influence of the latest measured data point, leading to
a worse prediction. This is especially true for late predictions. The difference is particularly
present for trajectories with many data points like the Virkler data set and almost negligible
for trajectories with only a few data points like the Hudak data set.

5.3 Support vector machines

The support vector algorithm is a nonlinear generalization of the generalized portrait algo-
rithm [145] developed in the sixties and improved by Vapnik and Chervonenkis [147]. Support
vector machines can be used for both classification and regression analyses. For a classification
problem and given the training data {(xi, yi)|i = 1, . . . , n; yi ∈ {−1, 1}}, a support vector
machine determines a hyperplane such that it maximizes the distances between the different
classes. A hyperplane can be defined as the set of points x satisfying

w>x+ b = 0, (5.8)

where w is the normal vector to the hyperplane and b
||w|| the offset of the hyperplane from

the origin along the opposite direction of the normal vector w. If the training data set is
normalized or standardized and linearly separable, we can define two parallel hyperplanes the
following way: The first one

w>x+ b = 1, (5.9)

which classifies anything on or above this plane as the category y = 1, and the second one

w>x+ b = −1, (5.10)

which classifies anything on or below this plane as the category y = −1. Therefore, the distance
between those two hyperplanes is 2

||w|| . In order to maximize this distance, we have to choose w

and b such that they minimize ||w|| while ensuring that every data point is classified correctly
as

w>xi + b ≥ 1 for yi = 1 (5.11)

and
w>xi + b ≤ −1 for yi = −1 (5.12)

The underlying optimization problem can be written as

min
w,b

1

2
w>w (5.13)

subject to
yi(w

>xi + b) ≥ 1 for i = 1, . . . , n. (5.14)

The algorithm can be extended to cases in which the training data cannot be linearly
separated. For these cases, we allow some samples to be at a distance ζ from their correct
margin boundary, leading to

min
w,b,ζ

1

2
w>w + C

n∑
i=1

ζi (5.15)
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x2

x1

(a) (b)

Figure 5.3: Support vector machines for (a) classification and (b) regression.

subject to

yi(w
>xi + b) ≥ 1− ζi,
ζi ≥ 0, i = 1, . . . , n,

(5.16)

where C is the penalty factor that controls the tradeoff between increasing the margin size
and ensuring that xi lies on the correct side of the margin boundary. Moreover, we can use
this approach to learn a nonlinear classification rule by transforming our data with φ(xi).
This corresponds to a linear classification rule of the transformed data points φ(xi). The
optimization problem in Equations 5.15–5.16 becomes

min
w,b

1

2
w>w + C

n∑
i=1

max(0, 1− yi(w>φ(xi) + b)). (5.17)

The concept can also be applied for regression problems. In the case of regression analyses, we
penalize all points that are further away than ε. The optimization problem becomes therefore

min
w,b

1

2
w>w + C

n∑
i=1

max(0, |yi −w>φ(xi) + b| − ε). (5.18)

Like most regression algorithms, support vector machines require a fixed number of inputs.
The previous section shows that the latest monitored data point includes the most important
information. Therefore, we use the most recent data point as the input, similar to the k-nearest
neighbors approach. The input vector of the support vector machine model consists of both
the most recent damage state and its measurement location in order to predict the last damage
state. Furthermore, the popular radial basis function is used to transform the data.

Error estimator. Since support vector machines do not provide probabilistic outputs, we
apply an error estimator that estimates the squared error made by the trained support vector
machine model. The value predicted by the error estimator serves as the prediction’s variance.
We choose a k-nearest neighbors model to predict the squared error as it was shown in other
cases to work better than alternatives [113]. For this approach, we split the training set further
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into a training (≈ 70%) and a validation (≈ 30%) data set. We first train the support vector
machine model on the training set to predict the last damage state. As the input, we use
the latest measurement location and the latest damage state. Second, the trained model is
applied to predict the last damage state of the validation set, and the squared error between
the model’s prediction and the true value is computed. Third, the k-nearest neighbors model
is trained on the validation set to predict the squared error. It is then applied to predict the
variance for the training set. The parameter k is chosen such that the negative log-likelihood
is minimized.

Relevance vector machines. Another possibility to quantify the prediction’s uncertainty
is using relevance vector machines. They were first introduced by Tipping [140] and gener-
ate predictive distributions rather than point predictions. Relevance vector machines are a
probabilistic model whose functional form is equivalent to support vector machines [17]. Like
support vector machines, relevance vector machines assume a linear model

f(x) =

n∑
i=1

wik(x,xi) + w0, (5.19)

where w are the weights and k(x,xi) is the kernel function to transform the data. The model
tries to predict the output y based on the input x according to y = f(x) + ε, where ε are
independent noise samples from a normal distribution with a zero mean and a variance of σ2

y .
The likelihood of the data set can be written as

p(y|w, σ2
y) =

1√
2πσ2

y

exp

(
− 1

2σ2
y

||y −Φw||2
)
, (5.20)

where y = [y1, ..., yn]>, w = [w0, ..., wn]>, and Φ is the n × (n + 1) design matrix with
Φ = [φ(x1), ...,φ(xn)]>, wherein φ(xi) = [1, k(xi,x1), ..., k(xi,xn)]>. As maximum likelihood
estimation of w and σy would generally lead to overfitting, Tipping [140] encoded a preference
for smoother functions by defining an automatic relevance determination Gaussian prior over
the weights:

p(w|α) =
n∏
i=0

N (wi|0, α−1
i ) (5.21)

According to Tipping [140], the posterior over the weights is obtained from Bayes’ rule by

p(w|y,α, σ2
y) =

1√
(2π)n+1 det Σ

exp

(
−1

2
(w − µ)>Σ−1(w − µ)

)
, (5.22)

with
Σ = (Φ>BΦ +A)−1 (5.23)

and
µ = ΣΦ>By, (5.24)

where A = diag(α0, . . . , αn) and B = σ−2
y I. The likelihood for the parameters is obtained by

integrating out the weights

p(y|α, σ2
y) =

1√
(2π)n det(B−1 + ΦA−1Φ>)

exp

(
−1

2
y>(B−1 + ΦA−1Φ>)−1y

)
. (5.25)
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For more information, see [141]. In contrast to the approach with the error estimator, we do
not have to split our training set for the relevance vector machine approach. We can directly
train the model on the training set and obtain a probabilistic model. As for the previous
support vector machines model, we use a radial basis function as our kernel. The results of
predicting the last damage states of our three data sets are presented in Section 5.6.

5.4 Recurrent neural networks

Recurrent neural networks, developed in the 1980s, are a class of neural networks that cap-
tures time dynamics. They constitute a set of traditional neural networks in order to process
information across time steps. Due to their internal state memory, they can treat a sequence
of inputs [97]. This type of algorithm is an effective method for addressing time series [131].
Figure 5.4a shows a compressed version of a recurrent neural network. Like regular neural net-
works, it predicts the output yi based on the input xi. Moreover, it outputs another variable
that serves as an additional input for the next prediction. Recurrent neural networks are thus
able to inhere information from previous data. Figure 5.4b depicts an unfolded recurrent neu-
ral network and shows how the additional output is used as the input for the next prediction.
In the figure, the recurrent neural network seems to have several layers. However, these are
different time steps of the same neural network. Due to the vanishing gradient problem that
recurrent neural networks face during backpropagation, long short-term memory (LSTM) [56]
were developed. Therefore, an LSTM is used in this study.

NN

(a)

NN NN NN

(b)

Figure 5.4: Recurrent neural network (a) compressed and (b) unfolded.

In our case, we would like to predict the last damage state yn,j of each trajectory j = 1, ..,m
based on the already observed damage states y1:i,j collected at x1:i,j . Therefore, we use x1:i,j

and y1:i,j as the input and yn,j as the targets of our model. Moreover, the model should predict
not only the last damage state but also provide information about the prediction’s uncertainty.
In order to obtain probabilistic predictions, we combine LSTM with a mixture density network
and assume the output to be normally distributed. Therefore, the model predicts two outputs,
the mean µ̂ and the standard deviation σ̂ of the last damage state. We denote µ̂i,j and σ̂i,j
as the i-th prediction for the last damage state of trajectory j. The model is illustrated in
Figure 5.5.

The objective function is based on the probability density

p(yn,j |x1:i,j ,y1:i,j) = N (yn,j |µ̂i,j , σ2
i,j). (5.26)

For n data points per trajectory and m trajectories, we can maximize the product of all



62 5 Comparison with other Machine Learning Methods

NN NN NN

Figure 5.5: Illustration of the recurrent neural network used in this study.

likelihoods
m∏
j=1

n∏
i=1

p(yn,j |x1:i,j ,y1:i,j). (5.27)

Instead of maximizing the product of all likelihoods, we can minimize the sum of all negative
log-likelihoods

m∑
j=1

n∑
i=1

− log p(yn,j |x1:i,j ,y1:i,j). (5.28)

In order to avoid dependencies on the trajectory size, we use the mean of all negative log-
likelihoods

L̄ = − 1

m

m∑
j=1

1

n

n∑
i=1

log p(yn,j |x1:i,j ,y1:i,j) (5.29)

as our objective function.
Before training the model, we have to choose the number of neurons in our recurrent

neural network. In order to find this number, we split our training set into a training (≈ 70%)
and validation set (≈ 30%), train different models on the training set, and evaluate their
performance on the validation set. We increase the number of neurons in 2u steps with u ∈ N
starting from u = 1 until L̄ rises. This approach results in a neural network with 8, 4, and
8 neurons for the Virkler data set, the Hudak data set, and the laser degradation data set,
respectively. We present the results together with the outcomes from the other models in
Section 5.6.

5.5 Multivariate normal distributions and inferred Gaussian processes

Using a multivariate normal distribution is a simple approach to update predictions based
on currently measured data. As explained in Section 4.2, we can compute the sample mean
vector and the sample covariance matrix from the training trajectories to estimate the normal
distribution parameters. Since we compare the negative log-likelihood of the last damage
state and the other models are trained to minimize this measure, we estimate the observation
error by minimizing Equation 5.29. As the observation error is already incorporated in the
sample covariance matrix, an attempt to estimate it by minimizing the negative log-likelihood
on the training data set leads to very small values and thus to overfitting. Therefore, the
observation error is determined in a leave-one-out scheme, i.e., each training trajectory is used
for evaluating the mean negative log-likelihood of all predicted last damage states while the
other ones are used to determine the sample mean vector and the sample covariance matrix.
This is repeated for every training trajectory being the one to predict.
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An advantage of the multivariate normal distribution approach is that we do not need to
assume any underlying function. For the presented Gaussian process method, however, the
basis functions have to be specified in advance. As in the previous chapter, we use polynomial
basis functions for the FCG Hudak and the laser degradation data. In order to determine the
polynomial order q, we split the training set into training (≈ 70%) and validation (≈ 30%)
trajectories as we did for finding the number of neurons in the recurrent neural network. To
find the best underlying basis functions, we

(1) choose a maximum polynomial order q,

(2) infer the mean function mIGP (x) and covariance function kIGP (x, x′) from the training
trajectories,

(3) estimate the observation error’s standard deviation σy
(a) by computing the square root of the mean squared errors between the fitted basis

functions and the data regarding all training trajectories, see Equation 4.23, or
(b) by minimizing the mean negative log-likelihood of all training trajectories with the

covariance function k(x, x′) = kIGP (x, x′) + δ σ2
y , and

(4) evaluate the mean negative log-likelihood of all validation trajectories based on the re-
sulting mean function, covariance function, and observation error.

The four steps are repeated for different polynomial orders. Eventually, the model that mini-
mizes the mean negative log-likelihood of all validation trajectories is used. Compared to 3b,
step 3a is faster since it removes solving an optimization problem. In cases where the observa-
tion error is not the same over the entire trajectory, step 3b with σ2

y(x) can be used. After the
optimized polynomial order q̂ is determined, a Gaussian process model can be inferred from
the training and validation trajectories.

The explained procedure executed with q ∈ {1, 2, . . . , 6} leads to q̂Hudak = 5 for the FCG
Hudak data set and to q̂laser = 4 for the laser degradation data set. The same optimized
polynomial order is found using either step (3 a) or (3 b). The resulting model chosen by min-
imizing the mean negative log-likelihood is not the one with the highest polynomial degree for
both data sets, even though a higher polynomial degree leads to a better fit of each trajectory.
Therefore, the procedure does not tend to overfit. This is what we strive for, as overfitting
should be avoided.

The procedure based on minimizing the negative log-likelihood is also used for the Virkler
data. As in the previous chapter, we use physics-informed basis functions. We saw that the
exponent α influences the results strongly. Therefore, we train four different models with
the basis functions α = [2.6, 2.8, 3.0, 3.2] (from previous chapter), α = [2.6, 2.75, 2.9, 3.05, 3.2],
α = [2.3, 2.6, 2.9, 3.2, 3.5], and α = [2.0, 2.45, 2.9, 3.35, 3.8], and follow the steps 1-4 (with
step 3b since the observation error is not constant over the trajectories, see Section 4.5).
α = [2.6, 2.75, 2.9, 3.05, 3.2] leads to the lowest mean of the negative log-likelihoods of all
validation trajectories and is therefore used. Introducing one more coefficient reduced the
negative log-likelihood compared to the ones used in the previous chapter. Broadening the
range of α did not improve the results.

The results differ from the ones determined in the last chapter, where we estimated the
polynomial order by splitting each training trajectory into training and validation data points
and minimizing the average mean squared error (qHudak = 2, qlaser = 1). The mean negative
log-likelihoods of all validation trajectories for the models used in the previous chapter are
compared to those determined in this chapter in Table 5.2. The procedure based on the
negative log-likelihood leads to a lower negative log-likelihood than the one based on the mean
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Table 5.2: Mean negative log-likelihoods of the validation trajectories for the FCG Hudak,
laser degradation, and FCG Virkler data set.

FCG
Hudak

Laser
degradation

FCG
Virkler

L̄ (prev. chapter) -21.7 -3.33 1405
L̄ (this chapter) -34.4 -5.70 1400

(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Mean comparisons (left) and errors of mean functions (right) for the (a & b) FCG
Hudak, (c & d) laser degradation, and (e & f) FCG Virkler data set.

squared error. This is because not only the observation error but also the polynomial order is
chosen such that it minimizes the negative log-likelihood.

As a Gaussian process is fully defined by its mean and covariance function, we addition-
ally compare them to the ones determined in the previous chapter. Figure 5.6 compares the
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resulting mean functions for each data set to the sample mean vectors and the mean functions
derived in the last chapter. Compared to the sample mean vector, the mean functions deter-

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.7: Previous covariance functions (left), sample covariance matrices (center), and new
covariance functions (right) for the (a–c) FCG Hudak, (d–f) laser degradation, and (g–i) FCG
Virkler data set.

mined by the procedure based on the negative log-likelihood lead to smaller MAEs than those
used in the previous chapter. This is due to the higher polynomial order and the additional
basis function for the Virkler data set, leading to a better fit for each trajectory.

The covariance functions are shown in Figure 5.7. We can see that the higher polynomial
order for the FCG Hudak data set enables the method to better approximate the sample
covariance matrix. The light blue areas in Figure 5.7b are non-convex, which can be modeled
with a higher polynomial degree, see Figure 5.7c, but not with the polynomial order used
in the previous chapter, see Figure 5.7a. By contrast, the covariance functions for the laser
degradation data set are very similar (Figures 5.7d–5.7f). The covariance function determined
in this chapter represents the covariance matrix only slightly better. For the Virkler data
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set, however, we can see a larger difference towards higher crack lengths again. The orange
area of the sample covariance matrix in Figure 5.7h can be better approximated by the model
determined with the procedure based on the negative log-likelihood (Figure 5.7i) than the
model used in the previous chapter (Figure 5.7g).

After selecting the polynomial degree and the basis functions, we infer the Gaussian process
from the entire training data set (training and validation trajectories). As the other models are
trained to minimize the mean of the negative log-likelihoods of all predicted last damage states,
we estimate the observation error likewise. Table 5.3 summarizes the estimated observation
errors’ standard deviations of the multivariate normal distribution and the inferred Gaussian
process approaches. The results show that the observation errors’ standard deviations of the
models determined by the presented procedure are smaller than the previous ones. Again, this
indicates that the Gaussian processes derived in this chapter better capture the underlying
structure of the data and are not forced to do that by increasing the observation error’s
standard deviation.

Table 5.3: Estimated observation errors’ standard deviations of the multivariate normal dis-
tribution (MVN) and the inferred Gaussian process model (IGPM).

Model
FCG
Hudak
σy/(0.9 in)

Laser
degradation

σy/A

FCG
Virkler
σy/mm

MVN 0.0054 0.4585 0.5561
IGPM (prev. chapter) 0.0136 0.6153 0.9572
IGPM (this chapter) 0.0037 0.1613 0.7446

5.6 Results and discussion

After training all models explained in the previous sections, we can evaluate their predictive
capabilities over time. Figure 5.8 shows the probabilistic predictions of all trained models for
the Virkler set trajectory #50, which is a line close to the data set’s mean. In each figure,
the abscissa represents the last measured crack length ai at which the fatigue life is predicted.
The blue line displays the mean value of the predicted fatigue life (i.e., the last damage state),
and the light blue area indicates the symmetric 95% credible region. The red straight line
determines the actual fatigue life to be predicted.

We see in Figure 5.8a that the predicted credible region of the support vector machines
model with the error estimator narrows towards longer crack lengths. This follows our intuition
that the more data we have and the closer we are to the fatigue life, the better we can predict the
final number of cycles. By contrast, the model based on relevance vector machines (Figure 5.8b)
is not able to capture this behavior. Since a relevance vector machine is equivalent to a Gaussian
process with a zero mean and the covariance function

k(x,x′) = σ2
yI +

n∑
i=0

1

αi
viv
>
i (5.30)

with vi = [φi(x1), ..., φi(xn)]> (see Section 5.2 in [141]), the underlying model with the assumed
radial basis kernel constrains the predictive capabilities.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Predicted fatigue life for trajectory #50 of the model based on (a) support vector
machines with error estimator, (b) relevance vector machines, (c) recurrent neural networks,
(d) k-nearest neighbors, (e) inferred Gaussian process, and (f) multivariate normal distribution.

Furthermore, the k-nearest neighbors’ probabilistic predictions in Figure 5.8d narrow down
towards larger crack lengths since the model is able to choose lines closer to the trajectory
to be predicted. Whenever the set of the 13 closest trajectories changes, the credible interval
adjusts accordingly, leading to a stepwise evolution of the credible interval. The predicted
mean value and credible interval do not alter after a crack length of approximately 0.04 m as
the set of the 13 closest trajectories does not change either.

The recurrent neural network predicts a tight credible region around the true fatigue life
that narrows towards larger crack lengths, see Figure 5.8c. The credible intervals for large crack
lengths are particularly tight around the true value, leading to precise predictions towards the
end. The first mean prediction is too small but adjusts after the second one, indicating that the
first prediction hardly influences the objective function, i.e., the mean negative log-likelihood
of all predictions. This is because predictions at larger crack lengths lead to lower negative
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log-likelihoods as the predicted credible intervals are smaller, and the mean estimations are
closer to the true values.

Moreover, Figures 5.8e and 5.8f show that the predictions of the inferred Gaussian process
and the multivariate normal distribution are very similar. Both predicted credible regions have
similar sizes and narrow towards larger crack lengths. A slightly narrower credible interval for
the multivariate normal distribution can be noticed towards the end. Also, the predicted mean
values of both approaches follow a similar path, indicating that the inferred Gaussian process
is akin to the derived multivariate normal distribution.

(a) (b)

(c) (d)

(e) (f)

Figure 5.9: Predicted fatigue life for trajectory #48 of the model based on (a) support vector
machines with error estimator, (b) relevance vector machines, (c) recurrent neural networks,
(d) k-nearest neighbors, (e) inferred Gaussian process, and (f) multivariate normal distribution.

In order to investigate the predictions for a trajectory that represents a rather unusual
behavior, Figure 5.9 shows the probabilistic predictions for trajectory #48, a line that resembles
a specimen with a rather long fatigue life. For this trajectory, the credible region of the support
vector machines model (Figure 5.9a) first narrows down but broadens again after a current crack
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length of about a = 0.015 m. A similar behavior can be seen for the recurrent neural network in
Figure 5.9c and the k-nearest neighbors model in Figure 5.9d. This is because trajectory #48
follows a similar trend as the mean until a crack length of approximately 0.015 m, leading to
overly confident predictions. However, the crack grows slower than the mean trajectory towards
larger crack lengths, resulting in broadened predicted credible intervals. Since trajectory #48
is close to the boundary of the training trajectories, the k-nearest neighbors model cannot
change its set of the 13 closest trajectories towards larger crack lengths and thus ends up in
predicting the same large credible intervals, see Figure 5.9d. Since the trajectory resembles
a rather unusual behavior, the recurrent neural network struggles to predict the true fatigue
life. This is especially apparent towards the end, see Figure 5.9c, where the prediction seems
to be unreasonable. This indicates that the trained recurrent neural network is not able to
treat data at the training boundaries well and that its predictions are difficult to interpret.
The relevance vector machines model is again unable to narrow its credible region for larger
crack lengths, see Figure 5.9b.

In contrast to the before-mentioned models, the credible regions predicted by the inferred
Gaussian process in Figure 5.9e and the multivariate normal distribution in Figure 5.9f grad-
ually narrow towards larger crack lengths. Due to the equations for a conditional normal
distribution, the updating scheme of the variance is fixed, leading to a credible region that
narrows down with more observed data points. Furthermore, the mean prediction gradually
shifts towards the true value for more input data, leading to accurate predictions especially
towards the end. The probabilistic predictions of both approaches are very similar again.

In order to quantify and compare the prediction accuracy of all models, we evaluate the
mean negative log-likelihood and the MAE of all predicted last damage states for the test
trajectories. Since the first data points of each data set are the same, we start evaluating from
prediction 2. Therefore, the predicted spike of the recurrent neural network at the beginning
of each trajectory is excluded from the evaluation. As the last point n of a trajectory is the
damage state to be predicted, prediction n − 1 is the last one considered for our evaluation.
Table 5.4 shows the evaluated measures and ranks the models according to each data set’s
lowest mean negative log-likelihood.

The lowest mean negative log-likelihood for the Virkler data set is achieved by the recurrent
neural network followed by the multivariate normal distribution and inferred Gaussian process
models. The predictions of those three models are based on all observed data points. By con-
trast, the support vector machines, relevance vector machines, and k-nearest neighbors models
are only based on the most recently observed data point. As a recurrent neural network is a
highly flexible model, it is able to predict small credible intervals and accurate mean values
especially towards the end, leading to very low negative log-likelihoods. In contrast to the
recurrent neural network, the updating scheme of the Gaussian process and the multivariate
normal distribution is based on the equation of the conditional normal distribution. Since the
standard deviation of the observation error is fixed, these models lead to accurate predictions,
however, not to very low negative log-likelihoods. By looking further in detail, we recognized
that the recurrent neural network has lower negative log-likelihoods for trajectories close to the
mean and greater ones for trajectories further off the mean. This agrees with the previously
described pattern, where we stated that the recurrent neural network lacks predicting data on
or slightly outside the training boundary well. The normal distribution approaches, however,
also predict those data points rather accurately. Yet, due to the prescribed updating scheme,
they have greater negative log-likelihoods for data close to the mean. Even though the inferred



70 5 Comparison with other Machine Learning Methods

Gaussian process and the multivariate normal distribution models have slightly greater mean
negative log-likelihoods, their predictions lead to lower MAEs. This reveals their good predic-
tive capabilities and indicates that their greater mean negative log-likelihoods result from too
broad credible intervals.

Table 5.4: Mean negative log-likelihood L̄, MAE, and training time for k-nearest neigh-
bors (KNN), support vector machines with error estimator (SVM), relevance vector machines
(RVM), recurrent neural networks (RNN), multivariate normal distribution (MVN), and in-
ferred Gaussian process model (IGPM) for the FCG Hudak, laser degradation, and FCG Virkler
data set.

Data set Model L̄ MAE Training time in min

FCG Hudak
predict: a(Nend)

MVN −1.85 0.0334 0.0166
IGPM −1.72 +6.9% 0.0308 −7.8% 0.0910 +448.2%
RVM −1.19 +35.6% 0.0446 +33.5% 0.00164 −90.1%
RNN −0.846 +54.2% 0.0571 +71.0% 8.15 +49010.8%
KNN 3.29 +277.9% 0.0718 +115.0% 0.00110 −93.4%
SVM 42.4 +2397.3% 0.0559 +67.4% 0.0376 +126.7%

Laser
degradation

predict: I(tend)

RNN 0.663 0.426 A 19.6
IGPM 0.820 +23.7% 0.473 A +11.1% 0.109 −99.4%
MVN 0.942 +42.1% 0.446 A +4.6% 0.0172 −99.9%
SVM 0.957 +44.3% 0.402 A −5.7% 0.0920 −99.5%
KNN 1.07 +61.3% 0.490 A +14.9% 0.00130 −100.0%
RVM 1.12 +69.6% 0.397 A −6.9% 0.00424 −100.0%

FCG Virkler
predict: N(aend)

RNN 9.90 5.38× 103 976
MVN 9.96 +0.6% 5.14× 103 −4.4% 0.712 −99.9%
IGPM 10.0 +1.2% 5.23× 103 −2.7% 1.51 −99.8%
SVM 10.2 +3.2% 6.27× 103 +16.7% 11.0 −98.9%
KNN 10.4 +4.8% 7.36× 103 +36.8% 0.0369 −100.0%
RVM 10.4 +5.1% 5.22× 103 −3.0% 6.93 −99.3%

Similar good performances of the multivariate normal distribution and inferred Gaussian
process models are determined for the FCG Hudak data set. Both models have the lowest
mean negative log-likelihoods and MAEs. The results differ between those models due to the
different observation errors obtained from optimization. For the FCG Hudak data set, the
recurrent neural network performs significantly worse than the previously mentioned models
since one test trajectory lies outside the training trajectories, see Figure 5.1c. As explained
earlier, the recurrent neural network struggles to predict data that is not included in the
training set. Table 5.4 shows that this is also the case for the models based on relevance vector
machines, support vector machines, and k-nearest neighbors. In contrast to merely mapping
the input data to the last damage state, the inferred Gaussian process and the multivariate
normal distribution model the distribution of entire trajectories. Therefore, they are less prone
to overfitting than the other models, which is essential especially for real-life applications, as
outliers can always occur in an uncertain environment.

Based on the mean negative log-likelihood for the laser degradation data set, the best model
is again the recurrent neural network, followed by the inferred Gaussian process and the derived
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multivariate normal distribution. This time, the predictions of the recurrent neural network
result in a much lower mean negative log-likelihood than the inferred Gaussian process and
the multivariate normal distribution models since all test trajectories are surrounded by the
training trajectories and follow their predominant behavior. Moreover, the inferred Gaussian
process and the multivariate normal distribution models struggle to predict the last damage
state as accurately as the recurrent neural network since they rely on normally distributed
data. As explained earlier, they model the distribution of trajectories and thus need the tra-
jectories to be normally distributed. Yet, Figure 3.4b clearly shows that the laser degradation
trajectories do not follow a normal distribution which is why their performances are worse
than the recurrent neural network.

Table 5.4 also shows the training time of each model, including the time for selecting
the model, i.e., choosing the number of neurons or the polynomial order and optimizing the
standard deviation of the observation error. The k-nearest neighbors model is trained in the
shortest time for all data sets. Support vector machines and relevance vector machines are
trained quickly for small data sets like the FCG Hudak and laser degradation data sets. Yet,
they need substantial training time for larger data sets like the Virkler data. Moreover, we
can see that the recurrent neural network needs the longest training time. Compared to the
inferred Gaussian process method, the recurrent neural network takes about 100 times longer
to be trained. The multivariate normal distribution is derived in about 1/10 of the Gaussian
process training time. Even though both normal distribution models determine the distribution
of trajectories, they need significantly less training time than recurrent neural networks.

The models based on multivariate normal distributions and Gaussian processes can predict
not only the last damage state but also the entire degradation trajectory. Thus, they enable
computing the probability of failure at every time in the future, which greatly benefits prog-
nostics and health management applications. Predicting only the last damage state is, in fact,
not very helpful since merely one state in time is estimated. No maintenance schedule can be
adjusted based on predicting the last damage condition as the stages in between are unknown.
Of course, the other machine learning models might be trained such that they are able to
predict multiple damage states. However, the training process of recurrent neural networks is
even for predicting only the last state 100 times longer than the one of Gaussian processes.
Therefore, Gaussian processes reveal excellent predictive capabilities since they are able to
predict all future damage states without any adjustments and are trained quickly.

5.7 Summary

This chapter presents six different models for predicting damage states with credible intervals.
The results show that the best models are the ones based on recurrent neural networks, in-
ferred Gaussian processes, and multivariate normal distributions. In general, inferred Gaussian
processes lead to similar prediction accuracies as recurrent neural networks. While recurrent
neural networks lead to lower negative log-likelihoods for non-normally distributed degrada-
tion trajectories, Gaussian processes are able to treat data that is close to or slightly outside
the training boundaries better. Furthermore, inferred Gaussian processes lead to more in-
tuitive predictions than recurrent neural networks and need only a fraction of training time
(≈ 1/100). Gaussian processes can further predict the entire degradation trajectory, which
enables computing the probability of failure for every future time. This is essential for prog-
nostics applications. By introducing a selection procedure for inferring Gaussian processes, the
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polynomial order can be chosen to minimize the negative log-likelihood, which further improves
their predictive capabilities.

In summary, this chapter reveals that Gaussian processes are very suitable for prognostics
and health management applications as they are able to predict the entire degradation tra-
jectory and have great predictive performance measures compared to other models. However,
we see that Gaussian processes struggle to accurately predict non-normally distributed tra-
jectories. Therefore, the next chapter is concerned with the question of how to improve their
predictions for data that does not follow a normal distribution.



Chapter 6
Warped Gaussian Processes

”...all models are wrong, but yours are stupid too.”

– ML Hipster

We know that Gaussian processes rely on normally distributed functions and that crack lengths
cannot be subject to a normal distribution since they assume only positive values. Therefore,
modeling crack lengths with a Gaussian process might not only be wrong but ”stupid too”. ML
Hipster ascribes the posted quote on Twitter to ”George Box in a less magnanimous mood”
and amusingly clarifies that we should think before simply applying machine learning models
to data sets. In this chapter, we would like to revisit the approach for inferring Gaussian
processes from previous degradation trajectories and adjust the method such that it is able to
treat non-normally distributed data.

The work presented in Sections 6.1–6.3 and Sections 6.5–6.6 of this chapter is fully based
on the publication Pfingstl et al. [108] and resulted from a strong collaboration with my
master’s student Christian Braun. The results were further discussed with Dr. Amir Nas-
rollahi, PostDoc at Stanford University, Prof. Dr. Fu-Kuo Chang, director of the Structures
and Composites Laboratory at Stanford University, and my supervisor Prof. Dr. Markus
Zimmermann.

The chapter’s first section motivates the conducted study and gives an overview of related
works. Section 6.2 presents an extension to the approach for inferring Gaussian processes
from previous data in order to treat non-normally distributed trajectories, which is founded
on the concept of warped Gaussian processes. In the third section, the extension is applied to
an academic example, an infinite pre-cracked plate, revealing the advantages and drawbacks
of the advanced method. Since collecting several experimental degradation trajectories is
cumbersome and sometimes infeasible, integrating simulation data into Gaussian processes is
considered in Section 6.4. As simulation data lacks noise, we present a method for estimating
the standard deviation of the observation error from currently monitored data. The section
also explains how to compute the probability of failure for future time steps. This is followed
by applying warped Gaussian processes to a real aerospace structure, a wing section of an
aircraft, in order to predict crack growth. The results of all sub-studies are summarized and
concluded in the last section.

73
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6.1 Motivation

As shown in the two previous chapters, Gaussian processes have excellent predictive capabil-
ities, estimating outputs with credible intervals. Many researchers have demonstrated their
usefulness for various tasks. Yet, Gaussian processes are constrained by relying on a normal
distribution. There are many examples where data is non-normally distributed, and Gaussian
processes would lead to non-physical predictions. Especially in prognostics and health man-
agement applications, where we deal with crack lengths and damage indices, the data cannot
be normally distributed since the variables are only defined on the positive domain.

For a better treatment of data that is not normally distributed, Snelson et al. [133] intro-
duced warped Gaussian processes. The idea is to transform the observed data y into a latent
space z by a so-called warping function ψθ(y) = z. The warping function usually has some free
parameters θ, which are determined by optimization. The Gaussian process is then modeled
in the latent space fz(x) = z as

N (fz(x) | mz,θ(x), kz,θ(x, x
′)), (6.1)

where mz,θ(x) and kz,θ(x, x
′) are the mean and covariance function in the latent space. Note

that we write an index to the functions to indicate which space they are related to. For
estimating future values in the observed space, the predictions are transformed by the inverse
warping function ψ−1

θ (z) = y.
Some researchers have already used warped Gaussian processes, for example, to predict

power supplies of wind turbines. In contrast to wind speeds, power supplies cannot be assumed
to be normally distributed due to the nonlinear correlation between wind speed and power [72].
Therefore, the authors of [67, 68, 69] utilized warped Gaussian processes to predict the power
supplies of wind turbines. They used a sum of tanh as their warping function and proved
the approach’s usefulness on real data. Moreover, Mateo-Sanchis et al. [88] applied warped
Gaussian processes to oceanic content data. They predicted the oceanic chlorophyll content
from multispectral data and concluded that warped Gaussian processes outperform standard
Gaussian processes. Again, a sum of tanh as the warping function was used.

If the inverse warping function is not available in closed form, which is the case in the
before-mentioned papers, additional complexity arises from numerical approximations [118].
One can use, for example, the Box-Cox transformation [21]

ψθ(y) =

{
yθ1−1
θ1

, if θ1 6= 0

log y, if θ1 = 0 .
(6.2)

as the warping function to bypass this problem. Rios and Tobar [118] utilized a type of
Box-Cox transformation function and showed its effectiveness on real data, enforcing their
predicted yearly sunspot numbers to be strictly positive. A similar application of warped
Gaussian processes was presented by Gonçalves et al. [45]. The authors estimated future
sunspot numbers and enforced their predictions to be positive by using an integrated softplus
function in their warping function.

Even though these studies show that warped Gaussian processes are able to deal with non-
normally distributed data, researchers tend to use them rarely. This might be because the
warping function introduces additional parameters to the modeling task. These parameters
must be optimized in addition to the mean and covariance function parameters. Therefore,
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one entailed problem is the arising computational complexity by determining not only the
mean and covariance function parameters but also the ones of the warping function. Another
problem is that after introducing a warping function, an optimizer might find, in fact, a different
solution. But the result is not necessarily better, as minimizing the negative log-likelihood is,
in general, a non-convex optimization problem. In order to remove the mean and covariance
function parameters, we can derive these functions from previously gathered trajectories. In
this way, we significantly reduce the computational complexity and additionally integrate prior
knowledge into warped Gaussian processes.

6.2 Inferred warped Gaussian processes

Both approaches are combined in the following to exploit the advantages of warped Gaussian
processes and the use of basis functions for inferring the Gaussian process model quickly from
previously collected data. For doing so, we assume that the warped realizations fz;j(x) can
be approximated by a linear combination of p linearly independent basis functions φz(x) =
[φz;1, ..., φz;p]

> in the latent space z. Therefore, the warped trajectories {xj , ψθ(yj) = zj} can
be represented with j = 1, ...,m as

fz;j(xj) = zj = ψθ(yj) = φz(xj)
>βj (6.3)

and the Gaussian process in the latent space as

mz(x) = φz(x)>µ̂β (6.4)

kz(x, x
′) = φz(x)>Σ̂β φz(x

′) (6.5)

pz(z) = N (fz(x) | mz(x), kz(x, x
′)). (6.6)

Note that the Gaussian process model is independent of any free parameters θ. Therefore,
no optimization problem regarding the mean and covariance function parameters has to be
solved. However, by introducing a warping function, free parameters are integrated into the
formulation. In order to determine the warping function parameters, the negative log-likelihood
in the observed space py is minimized. Since the probability distribution of py is unknown,
we have to find a different way to represent it. In this case, we can take advantage of the
change of variables. For a one-dimensional random variable Y that is transformed by a strictly
increasing differentiable function Z = ψ(Y ), we can write

Py(y) = Pr(Y ≤ y) = Pr(ψ−1(Z) ≤ y) = Pr(Z ≤ ψ(y)) = Pz(ψ(y))

dPy(y)

dy
=
dPz(ψ(y))

dy

py(y) = pz(ψ(y))
dψ

dy
(y) = pz(z)

dψ

dy
(y). (6.7)

In the case of a strictly decreasing function, the inequality sign flips by putting the warping
function to the other side, which leads to

Py(y) = Pr(ψ−1(Z) ≤ y) = Pr(Z ≥ ψ(y)) = 1− Pz(ψ(y))

dPy(y)

dy
=
d(1− Pz(ψ(y)))

dy
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py(y) = −pz(ψ(y))
dψ

dy
(y) = −pz(z)

dψ

dy
(y). (6.8)

Therefore, we can write for the general case of a monotonic function

py(y) = pz(z)

∣∣∣∣dψdy (y)

∣∣∣∣ . (6.9)

Since we know that the distribution in the latent space pz is Gaussian, we found an analytical
equation for the distribution in the observed space py. If Y is a vector-valued random variable
in Rn, we get an n× n Jacobian matrix

J(y) =

[
∂zi1
∂yi2

]
i1,i2

=

[
∂ψ(yi1)

∂yi2

]
i1,i2

(6.10)

with i1 = 1, ..., n and i2 = 1, ..., n instead of dψ
dy (y), and thus

py(y) = pz(z) |detJ(y)| , (6.11)

see [157]. For the same mapping in every dimension, we can write

J(y) = diag
dψ

dy
(y). (6.12)

Now, if our warping function is monotonic, the optimization problem for determining the
parameters of the warping function can be stated as

θ∗ = arg min
θ

−
m∑
j=1

log py(yj)

= arg min
θ

−
m∑
j=1

log

(
pz(zj)

∣∣∣∣det

(
diag

dψθ
dy

(yj)

)∣∣∣∣)

= arg min
θ

−
m∑
j=1

(
log pz(ψθ(yj)) +

nj∑
i=1

log

∣∣∣∣dψθdy (yi,j)

∣∣∣∣
)

(6.13)

with the log-likelihood in the latent space

log pz(ψθ(yj)) =− nj
2

log(2π)− 1

2
log (det kz(xj ,xj))

− 1

2

(
ψθ(yj)−mz(xj)

)>
kz(xj ,xj)

−1
(
ψθ(yj)−mz(xj)

) (6.14)

and its gradient

−
∂(log py(yj))

∂θk
=

1

2

((
∂ψθ
∂θk

(yj)

)>
kz(xj ,xj)

−1
(
ψθ(yj)−mz(xj)

)
+
(
ψθ(yj)−mz(xj)

)>
kz(xj ,xj)

−1

(
∂ψθ
∂θk

(yj)

))
−

nj∑
i=1

((
dψθ
dy

(yi,j)

)−1 ∂2ψθ
∂θk∂y

(yi,j)

) (6.15)
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with nj being the number of data points of trajectory j and k = 1, ..., l for l warping function
parameters.

By transforming the observed data into the latent space, the observation error is warped
too. The standard deviation of a Gaussian observation error in the observed space σy can be
approximated in the latent space with

σz(y) = σy

∣∣∣∣dψθdy (y)

∣∣∣∣ . (6.16)

This approximation is particularly accurate if the standard deviation σy and the second deriva-
tive of the warping function at y are rather small. Considering this non-constant noise term
in the latent space, a weighted least squares regression with the diagonal weight matrix

W j = σ−2
y V j , (6.17)

where

V j = diag(V1,j , ..., Vnj ,j) with Vi,j =

(
dψθ
dy

(yi,j)

)−2

, (6.18)

can be applied to determine the weights of the basis functions

β̂j =
(
Φ>z;jW jΦz;j

)−1
Φ>z;jW jzj

=

(
Φ>z;j

1

σ2
y

V jΦz;j

)−1

Φ>z;j
1

σ2
y

V jzj

=
(
Φ>z;jV jΦz;j

)−1
Φ>z;jV jψθ(yj) (6.19)

with
Φz;j = Φz(xj) = [φz;1(xj), ..., φz;p(xj)] . (6.20)

Note that the weights can be determined without knowing σy. After estimating the weights, the
sample mean µ̂β̂ and the sample covariance matrix Σ̂β̂ of the estimated weights B̂ = [β̂1, ..., β̂m]
can be computed. The standard deviation of the observation error σy can be approximated by

σ̂y =

√√√√ 1

m

m∑
j=1

1

nj − p

nj∑
i=1

(
ψ−1
θ (Φz;jβ̂j)− yj

)2
, (6.21)

where p is the number of basis functions. This removes all parameters from the mean and
covariance function and thus reduces the computational complexity significantly. Now, the
mean function in Equation 6.4 and the covariance function in Equation 6.5 are completely
specified.

In order to determine the maximum polynomial order of the basis functions, we can use the
main parts of the procedure presented in the previous chapter. The training trajectories are
again split into training (≈ 70%) and validation (≈ 30%) trajectories. Now, we have to solve
an optimization task for every chosen polynomial order. Therefore, the steps are as follows:

(1) Choose maximum polynomial order q.

(2) Determine the optimized free parameters θ̂ of the warping function by minimizing the
sum of all training trajectories’ negative log-likelihoods in the observed space, see Equa-
tion 6.13:
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(a) Choose the free parameters θ.
(b) Infer the mean functionmz(x) and covariance function kz,IGP (x, x′) from the warped

training trajectories based on the chosen free parameters.
(c) Estimate the standard deviation of the observation error σy by Equation 6.21.
(d) Compute the sum of all training trajectories’ negative log-likelihoods with mz(x)

and kz(x, x
′) = kz,IGP (x, x′) + δ σ2

y

(
dψθ
dy (y)

)2
.

(3) Infer the mean function mz(x) and covariance function kz,IGP (x, x′) from the warped
training trajectories based on the optimized free parameters θ̂.

(4) Estimate the standard deviation of the observation error σy by Equation 6.21 based on
the optimized free parameters θ̂.

(5) Evaluate the negative log-likelihood sum of all validation trajectories in the observed

space by using mz(x) and kz(x, x
′) = kz,IGP (x, x′)+ δ σ2

y

(
dψθ
dy (y)

)2
as the mean function

and covariance function in the latent space.

After repeating the five steps for different polynomial orders, the order that minimizes the
summed negative log-likelihoods of all validation trajectories in the observed space is eventually
used. The design variable that minimizes our objective function is the same for using the mean
or the sum of all negative log-likelihoods as our objective.

After the basis functions are chosen, the warping function’s parameters are optimized,
and the mean and covariance functions are derived from the entire training set (training and
validation trajectories), we can compute the latent mean by mz(x) and, for example, the
symmetric 95% credible region in the latent space with

zm±1.96σ(x) = mz(x)± 1.96
√
kz(x, x). (6.22)

The corresponding median m̃y(x) and the 95% credible region in the observed space are de-
termined by

m̃y(x) = ψ−1
θ (mz(x)) (6.23)

and
ym̃±1.96σ(x) = ψ−1

θ

(
mz(x)± 1.96

√
kz(x, x)

)
, (6.24)

respectively [133].
When we collect the data y+ observed at x+ from the monitored system, we can com-

pute the conditional distribution in the latent space in order to update the Gaussian process’
prediction by

fz(x) | x+,y+, θ̂ ∼ N (mz(x) + kz(x,x+)kz(x+,x+)−1
(
ψθ(y+)−mz(x+)

)
,

kz(x, x)− kz(x,x+)kz(x+,x+)−1kz(x,x+)>).
(6.25)

6.3 Predicting crack growth in an infinite plate

As a first example, we apply the proposed method to an academic problem, a pre-cracked
infinite plate, for which the governing equations are known. We consider the infinite plate
data set which we described in Section 3.1. As a recap: The governing equation is explicitly
given by

a(N) =

(
(2− α)C∆σα∞π

α/2

2
N + a

2−α
2

0

) 2
2−α

, (6.26)
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where a is the crack length, N the number of cycles, ∆σ∞ the remotely applied stress range,
a0 the initial crack length, and C and α two material parameters. We generated 50 crack
growth trajectories by setting ∆σ∞ = 48.26 MPa, a0 = 9 × 10−3 m, α = 2.9, and sampling
C from a normal distribution with µC = 8.7096 × 10−11 and σC = 1.519 × 10−11 (C with
[da/dN ] = m/cycle and [∆KI ] = MPa

√
m) for each trajectory. In order to represent the

measurement noise, an observation error with a variance of σ2
y = 0.16× 10−6 m2 was added to

the crack lengths. The data points of each trajectory were computed every 2, 000 cycles and
stop before a crack length longer than 0.05 m is reached. In order to infer a Gaussian process
model from this data set, we split it into training, validation, and test trajectories. Figure 6.1a
displays the subsets.

(a) (b)

(c) (d)

Figure 6.1: (a) Crack growth trajectories, (b) GP in the observed space, (c) warped GP in the
latent space, and (d) in the observed space

First, we infer a Gaussian process model without a warping function from the data set
using polynomial basis functions. In contrast to the Virkler data set, where the numbers of
cycles are measured for a fixed incremental crack length, we now are concerned with crack
lengths measured for a fixed step size of the number of cycles. Therefore, the physics-informed
basis functions used in the two previous chapters are not applied in this example. In order
to select the maximum polynomial order, we follow the four steps of the procedure presented
in Section 5.5, which results in q̂stand = 5. The determined Gaussian process with its mean
function and symmetric 95% credible region is shown in Figure 6.1b. It can be seen that
the credible region reaches negative values, which is non-physical since crack lengths can only
assume non-negative numbers.

In the second case, we consider the warping function of Equation 6.2. The procedure
for determining the maximum polynomial order presented in Section 6.2 is followed. We
optimize the free parameter θ1 with respect to Equation 6.13 for the maximum polynomial
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orders q = {1, 2, 3}. For the infinite plate example, the resulting polynomial order should be
q∗ = 1 since the inner part of Equation 6.26 represents a Gaussian process with straight lines.
This is the case because C is normally distributed, and the formulation between the brackets
in Equation 6.26 describes straights. Furthermore, the optimization of the warping function
should lead to the inverse of the outer exponent θ∗1 = 2−α

2 = −0.45.
In our example, the procedure leads to a maximum polynomial order of q̂warp = 1 and an

optimized value of θ̂1 = −0.4489 with a relative error of 0.25 % compared to the exact value.
The difference compared to the analytical solution results from approximating the observation
error’s standard deviation in the latent space with Equation 6.16. By contrast, if we remove the
added noise from the data, the optimization leads to the analytical solution θ̂1 = θ∗1 = −0.45.
The resulting Gaussian process in the latent space and the corresponding warped Gaussian
process, which is mapped to the observed space by the inverse warping function, are shown in
Figures 6.1c and 6.1d, respectively. Figure 6.1d shows that the credible region of the warped
Gaussian process assumes only positive values and surrounds the training data also on the
right-hand side. Figure 6.1c additionally shows that the combination of the warping function
and the choice of the polynomial basis functions with orders 0 and 1 leads to the desired
solution. This is because, on the one hand, the optimizer tries to warp the data such that
the trajectories follow a normal distribution. On the other hand, the simulated data are
straightened to fit the trajectories by the given basis functions in the latent space.

Figure 6.2 shows the effect on the observation error when a trajectory is warped. The
observation error (Figure 6.2a) is warped too, leading to a non-constant standard deviation of
the observation error over x in the latent space, see Figure 6.2b. For higher cycle numbers,
the standard deviation in the latent space σz decreases. The proposed approach takes this
into account by applying weighted least squares regression and approximating σz according to
Equation 6.16. Since Equation 6.16 is dependent on the observed data points yj , which are
subject to observation error, σz varies according to the observed data, see Figure 6.2b.

(a) (b)

Figure 6.2: Observation error in (a) observed space and (b) latent space.

Conditional Gaussian process based on crack length data

In the next step, we gradually condition the Gaussian process on currently observed data,
updating the prediction for an unseen trajectory according to Equation 6.25. In order to
compare the two models, the negative log-likelihood and the absolute error between the crack
length predicted at the trajectory’s last number of cycles and the latest realized crack length
are computed for every prediction step. The results are summarized in Table 6.1 by evaluating
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the mean of all negative log-likelihoods and the mean of all absolute errors. The warped
Gaussian process performs better than the standard one for both metrics.

Table 6.1: Mean negative log-likelihood L̄, MAE, and training time of the standard and warped
Gaussian process for predicting the crack growth in an infinite plate.

Data set Model L̄ MAE Training time in s

crack growth simulation
predict: a(Nend,j)

standard IGPM −3.6 14.7 mm 4.1
warped IGPM −4.7 −32.2% 6.8 mm −53.6% 39.9 +866%

Figure 6.7 shows the Gaussian processes’ predictions for the shortest and the longest test
trajectories conditioned on current data observed up to 40,000 cycles. The test trajectories
are plotted in red, and the currently observed data is depicted in black. Additionally, the
predicted mean and median are displayed in blue, and the symmetric 95% credible regions in
light blue. Regarding the long trajectory, the updated mean function of the standard Gaussian

(a) (b)

(c) (d)

Figure 6.3: Crack growth prediction of the standard (left) and warped Gaussian process (right)
for the longest (a & b) and shortest (c & d) trajectories at 40,000 cycles.

process becomes negative for larger numbers of cycles since the current data has a relatively
flat trend which in combination with the assumed basis functions results in such predictions.
By comparison, the warped Gaussian process in Figure 6.3b shows strictly positive predictions.
Furthermore, we can see that the credible region of the standard Gaussian process for the long
test trajectory still includes negative values even though it is conditioned on observed data,
see Figure 6.3a. By contrast, Figure 6.3b shows that the warped Gaussian process’ credible
region embraces only positive values. With more available data, both credible regions narrow
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down. However, the standard Gaussian process considers negative crack lengths within its 95%
credible region also for predictions later in time. By contrast, the warped Gaussian process
predicts strictly positive values, and its credible region narrows quicker.

In contrast to the results for the long trajectory, the predictions of the standard and the
warped Gaussian processes for the short trajectory show similar quantities, see Figures 6.3c
and 6.3d. In this case, the standard Gaussian process’ symmetric 95% credible region excludes
negative values. However, since the prediction relies on a normal distribution, the distribution
related to the ordinate axis is symmetric around the mean. This is not the case for the warped
Gaussian process. While the warped Gaussian process’ median is similar to the mean of the
standard Gaussian process, its 95% credible region, which is transformed by the inverse warping
function to the observed space, is smaller.

Additionally, the times for training a standard Gaussian process with a given polynomial
order of q̂stand = 5 and a warped Gaussian process with q̂warp = 1 are evaluated. A starting
point of θ0 = −0.1 is chosen for the training process of the warped Gaussian process. Table 6.1
shows that training a warped Gaussian process needs longer than inferring a standard one since
the parameter of the warping functions needs to be additionally optimized besides inferring
the mean and covariance function. Its training time is about ten times larger than using a
standard Gaussian process. The time depends, of course, on the starting point. It decreases if
the starting point is chosen closer to the optimum.

Using the Box-Cox transformation for warping our data leads to approximations close to the
analytical solution for the infinite plate example. However, using this transformation results
in imaginary numbers if θ1 is not an integer and y is negative as indicated by the missing lines
for θ1 = −0.5 and θ1 = 0.2 in Figure 6.4a. Additionally, if θ1 is an even number, the warping
function becomes non-monotonic over y ∈ R, violating our assumption. As presented earlier,
we first compute our predictions in the latent space and second map them by the inverse
warping function to the observed space. Since the inverse of the Box-Cox transformation reads

ψ−1
θ (z) = y = (θ1z + 1)

1
θ1 = θ1

√
θ1z + 1, (6.27)

we must ensure that z ≥ − 1
θ1

for θ1 > 0 and z ≤ − 1
θ1

for θ1 < 0 (both with θ1 6= 0 and θ1 6= 1).
In the infinite plate example, we do not encounter any of the before-mentioned problems as
our data is strictly positive (y > 0) and our predictions in the latent space comply with the
requirement z ≤ − 1

θ1
(θ̂1 = −0.4489).

(a) (b)

Figure 6.4: Box-Cox transformation functions for different θ1 values based on (a) the original
and (b) the modified Box-Cox transformation.
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Although the Box-Cox transformation can be useful even in situations where no power
transformation can produce normality exactly [32], these constraints limit the applicability
of the Box-Cox transformation. Therefore, Bickel and Doksum [14] presented the modified
Box-Cox transformation function

ψ(y) = z =
sgn(y) |y|θ1 − 1

θ1
for θ1 > 0, (6.28)

which is also used in [118]. This modification leads to strictly monotonic warping functions
over y ∈ R also if θ1 becomes an even number, as shown in Figure 6.4b. Yet, the one-sided
limits become

lim
y→0+

s���
+1

gn(y)
1

θ1


�

�
���
∞

1

|y|−θ1
– 1

→ −∞ (6.29)

and

lim
y→0−

s���
−1

gn(y)
1

θ1


�

�
���
∞

1

|y|−θ1
– 1

→ +∞ (6.30)

for θ1 < 0, resulting in a discontinuity at y = 0 as also shown in Figure 6.4b. Therefore, we
must constrain θ1 to be positive, ensuring our warping function complies with the assumptions
made for our approach.

The infinite plate example shows that the advantage of warped Gaussian processes is par-
ticularly apparent for long trajectories. One possible reason for this is that long trajectories
have a relatively small slope at the beginning. Since the standard Gaussian process relies on
polynomials of order 5, the possible functions of the conditional distribution can still become
negative. Yet, one drawback of warped Gaussian processes is that the parameters of the warp-
ing function need to be optimized, leading to more computational effort. Even though the
Box-Cox transformation function leads to the analytical solution and physical predictions for
the presented infinite plate example, only its modified version stated in Equation 6.27 complies
with our assumptions when y ∈ R.

6.4 Estimating observation errors and future probabilities of failure

Sometimes gathering degradation trajectories is tedious, including high expenses for exper-
iments and equipment. Collecting several degradation lines can even be impossible if, for
example, the test rig is massive, as is the case for full-scale fatigue tests. Simulations of-
ten provide a good understanding of the mechanical system’s degradation and yield, therefore,
valuable information. By considering the parameters’ uncertainties, simulations can be used to
quantify the scatter of the quantity of interest, such as the fatigue behavior. In these cases, we
can extract valuable information from simulation data and integrate it into Gaussian processes.
More specifically, after conducting Monte-Carlo computations to simulate various ways of how
the mechanical system degrades, the simulated degradation trajectories can be used to derive
a Gaussian process model. A drawback of doing so is that the Gaussian process entirely relies
on the simulated data. Therefore, the simulation must have shown that it accurately describes
the real mechanical system’s behavior and includes all uncertainty sources associated with the
problem. Luckily, the fatigue and fracture mechanics equations explained in the fundamentals
chapter are well established. Researchers have shown that they are suitable for describing the
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crack growth in structures. Moreover, values for estimating the parameters’ uncertainties are
found in the literature and can be used to simulate various degradation trajectories. Yet, the
observation error is not included in simulated data and differs from use case to use case. This
is why the observation error should be estimated from experimentally gathered data directly.

If the degradation behavior can be observed, the standard deviation of the observation
error can be estimated in the following way. In the case of a standard Gaussian process, we
can add the noise term δ σ2

y to the main diagonal of the covariance function inferred from sim-
ulated trajectories ky,IGP (x, x′) so that the resulting covariance function becomes ky(x, x

′) =
ky,IGP (x, x′) + δ σ2

y . After observing a part of the trajectory to predict (x+,y+) ∈ Rn+ , we
can minimize the negative log-likelihood

− log py(y+) =
n+

2
log(2π) +

1

2
log(det(ky,IGP (x+,x+) + σ2

yI))

+
1

2

(
y+ −my(x+)

)> (
ky,IGP (x+,x+) + σ2

yI
)−1 (

y+ −my(x+)
) (6.31)

to determine the observation error’s variance σ2
y . The gradient with respect to σ2

y is given by

−
∂(log py(y+))

∂σ2
y

=
1

2
tr
(
(ky,IGP (x+,x+) + σ2

yI)−1
)

− 1

2

(
y+ −my(x+)

)> (
ky,IGP (x+,x+) + σ2

yI
)−2(

y+ −my(x+)
)
.

(6.32)

Alternatively, we can determine the observation error’s variance by

σ̂2
y =

1

n+ − p

(
Φ(x+)β̂+ − y+

)2
, (6.33)

where

β̂+ =
(
Φ(x+)>Φ(x+)

)−1
Φ(x+)>y+, (6.34)

which is only meaningful when the number of gathered data points n+ is larger than the
number of basis functions p.

We can apply the same concept to warped Gaussian processes by adding a noise term to
the main diagonal of the derived covariance function in the latent space

kz(x, x
′) = kz,IGP (x, x′) + δ σ2

y

(
dψθ
dy

(yi,j)

)2

. (6.35)

The observation error’s variance σ2
y can be optimized by minimizing the negative log-likelihood

of the currently observed data

− log py(y+) = − log pz(ψθ(y+))−
n+∑
i=1

log

∣∣∣∣dψθdy (yi,+)

∣∣∣∣ (6.36)
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with

− log pz(ψθ(y+)) =
n+

2
log(2π)

+
1

2
log

(
det

(
kz,IGP (x+,x+) + σ2

y diag

(
dψθ
dy

(y+)

)2
))

+
1

2

(
ψθ(y+)–mz(x+)

)>(
kz,IGP (x+,x+) + σ2

y diag

(
dψθ
dy

(y+)

)2
)−1

(
ψθ(y+)–mz(x+)

)

(6.37)

and its gradient with respect to σ2
y

−
∂(log py(y+))

∂σ2
y

=

1

2
tr

(kz,IGP (x+,x+) + σ2
y diag

(
dψθ
dy

(y+)

)2
)−1

diag

(
dψθ
dy

(y+)

)2


− 1

2

(
ψθ(y+)−mz(x+)

)>(
kz,IGP (x+,x+) + σ2

y diag

(
dψθ
dy

(y+)

)2
)−2

(
ψθ(y+)−mz(x+)

)
.

(6.38)

The observation error’s standard deviation can also be estimated with Equation 6.21. With
the estimated standard deviation of the observation error, we are now able to compute the
conditional distribution.

In many cases, operators base their decision on probability quantities rather than likelihoods
or probability density values. Often the probability of failure is used to decide when mechanical
systems shall be maintained. If the probability density function of the damage threshold
pth(y), e.g., the critical crack length, and the predictive probability density function pp(y)
follow normal distributions (pth(y) = N (y|µth, σ2

th) and pp(y) = N (y|µp, σ2
p)), see Figure 6.5a,

the probability of failure can be analytically computed. We denote Yp as the random variable
of the prediction and Yth as the random variable of the threshold. In order to determine the
probability of the prediction being larger than the threshold, we introduce the auxiliary random
variable U = Yp−Yth with pu(u) = N (u|µp−µth, σ2

p+σ2
th), which is shown in Figure 6.5b. The

probability of failure, i.e., the probability that the predicted value is larger than the threshold
or that U > 0, is

Pf = Pr(U > 0) =

∫ ∞
0

pu(u)du = 1−
∫ 0

−∞
pu(u)du = 1− Pu(0) (6.39)

with

Pu(0) =
1√

2π(σ2
p + σ2

th)

∫ 0

−∞
exp

(
−(u− µp + µth)2

2(σ2
p + σ2

th)

)
du, (6.40)

see Figure 6.5b.



86 6 Warped Gaussian Processes

(a) (b)

Figure 6.5: (a) Probability density function of the prediction pp(y) and the threshold pth(y),
and (b) the probability density function of the auxiliary variable pu(u) and the probability of
failure Pf .

In the case of warped Gaussian processes with strictly increasing warping functions, the
same Equations are valid in the latent space z. If the warping function is strictly decreasing,
the probability of failure is computed by Pf = Pu(0).

The methods for estimating the observation error’s standard deviation and computing the
probability of failure are applied to the already investigated infinite plate. As in the previous
section, we model the latent space by the inner part of Equation 6.26 and thus by a polynomial
of order q = 1, and define the distribution of the coefficients by N (β|µβ,Σβ) with

µβ =
[
a

2−α
2

0 , (2−α)µCσ
α
∞π

α
2

2

]>
(6.41)

and

Σβ =

0 0

0

(
(2−α)σCσ

α
∞π

α
2

2

)2

 . (6.42)

Therefore, the underlying Gaussian process is defined by

N (fz(x) | φz(x)>µβ,φz(x)>Σβφz(x)) (6.43)

with φz(x) = [x0, x1]>.
The grey lines in Figure 6.6a are produced by sampling the coefficients from the normal

distribution and transforming the trajectories from the latent space to the observed space with

the inverse warping function ψ−1(z) = z
2

2−α . Additionally, the median function is shown in
blue, and the test trajectory, which is to be predicted, in red. Note that in contrast to the
training trajectories, the test trajectory embeds observation error with a standard deviation
of σy = 0.4 × 10−3 m, which is why we need to add the before-mentioned noise term to the
covariance function. We gradually observe the test data points and optimize the observation
error’s standard deviation after every additional data point according to the two previously de-
scribed methods. Figure 6.6b summarizes the results. The red line illustrates the true standard
deviation, the green line the optimized standard deviation based on minimizing the negative
log-likelihood, and the orange line the estimates based on Equation 6.21. The green and or-
ange lines approach the true value for more and more data points and eventually converge.
The outputs settle around the correct solution after about 20 data points. The method based
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(a) (b)

Figure 6.6: (a) Data of the infinite plate example and (b) approximated standard deviation of
the observation error.

on minimizing the negative log-likelihood outputs zero for one data point and estimates the
standard deviation fairly well (< 20% error) after two data points. By contrast, the estimator
based on Equation 6.21 produces similar estimates (< 30% error) after three data points since
the number of data points has to be larger than the number of basis functions, which is in this
case two.

Moreover, we can predict the probability of failure: For each future time step that we are
interested in, we can compute the probability for which the predicted crack length is larger
than the critical one. Since the warping function is strictly decreasing, we use Pf = Pu(0).

(a) (b)

(c) (d)

Figure 6.7: Predictive mean, credible region, and threshold distribution for the prediction at
(a) N ≈ 20, 000 and (c) N ≈ 54, 000. Last point of trajectory and predicted probability of
failure at (b) N ≈ 20, 000 and (d) N ≈ 54, 000.



88 6 Warped Gaussian Processes

We further assume the critical crack length to be normally distributed in the latent space
with N (zth|µz,th, σ2

z,th), where µz,th = ψ−1(ac) and σz,th = σac
dψ
dy (ac), with ac = 0.05 m and

σac = 0.005 m. Figures 6.7a and 6.7c show the predictions and the threshold distribution in
the latent space for two different time states. The corresponding failure probabilities over the
number of cycles are depicted in Figures 6.7b and 6.7d, where the red line indicates the last
data point of the test trajectory. The prediction allows the operator to know the probability
of failure at every future time step based on the currently observed data. Again, we can see
that the credible region of the predictive distribution narrows with more observed data points.
At the same time, the s-shaped failure probability function over the number of cycles narrows
down, indicating that the time to failure is known more precisely, see Figures 6.7b and 6.7d.

6.5 Predicting crack growth in an aerospace structure

The approach of warped Gaussian processes with integrated prior knowledge proposed in Sec-
tion 6.2 is also applied to an aluminum panel that resembles a lower section of a civil aircraft
wing. The investigated structure is 1, 920 mm long and 570 mm wide. The centered elliptical
armhole, shown in Figure 6.8, with a length of 135 mm and width of 75 mm is usually used
to inspect the inner surfaces of the wing. Sixteen holes surround the armhole to attach a
lid. In total, two equally manufactured specimens were loaded with the same sequence of four
different flight types that were consecutively repeated until the structures eventually failed.
The detailed procedure of the experiment can be found in Section 3.3.
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Figure 6.8: Elliptical armhole surrounded by 16 small holes.

The approach proposed in Section 6.2 infers the Gaussian process model from previously
collected degradation trajectories. As large structural fatigue tests are usually carried out
only once, previously measured degradation trajectories are missing. However, due to analyt-
ical equations and FEAs, much of the degradation behavior is understood a priori. In order
to integrate this knowledge into Gaussian processes, we produce degradation trajectories by
conducting virtual simulations and use them for inferring our Gaussian process. After explain-
ing the simulation procedure in the following, we propose a method to infer the crack length
present in the structure from strain gauge data. The values are finally used to compute the
conditional Gaussian process, updating our predictions.



6.5 Predicting crack growth in an aerospace structure 89

6.5.1 Simulating crack growth trajectories

In contrast to the infinite plate example, the specimens regarded in this section have no initial
cracks. Therefore, we have to consider in our simulations the time of the structure being sound
until a crack initiates. To simulate the structure’s degradation, we aggregate the time-based
loading program by rainflow-counting. Then, we first compute the fatigue life and second the
crack growth. The procedure of simulating the degradation trajectories is schematically shown
in Figure 6.9 and explained in detail in the following.

acurr

Figure 6.9: Schematic representation of how the crack growth in the aerospace structure is
simulated, where Fmax is the maximum force in the loading program.

Fatigue life. First, an FEA is executed to quantify the stresses in the structure. Two local
hot spots, at the small holes 5 and 6 on the side towards the armhole, are found. In the
following, we assume the crack to start at hole 6. However, the methodology can also be
extended to consider cracks forming from multiple spots. By applying rainflow-counting and
the Haigh diagram to the computed stresses at the hot spot of hole 6 corresponding to the
various load levels, the stresses for the entire loading program can be mapped to amplitude
stress blocks with a constant stress ratio of R = −1.0. The median number of cycles after
a crack will occur can be determined using Miner’s linear damage accumulation rule and a
50% S-N curve, which corresponds to our used material Al 2024–T351. In order to quantify

Figure 6.10: S-N curve and log10 normal distribution for the present loading program.

the uncertainty of the crack initiation, a material corresponding scatter parameter s = 0.197



90 6 Warped Gaussian Processes

of the S-N curve found in [50] is used. The log10 normal distribution and the S-N curve are
shown in Figure 6.10. Now, the number of cycles for an initial crack N0 can be sampled from
the defined distribution. For detailed descriptions of the methods used in this paragraph, see
Section 2.1.

Crack growth. Second, the crack growth in the structure is computed. Multiple crack
computations are evaluated using XFEM to quantify the relationship between the SIF and the
crack length a. The concept of XFEM is described in depth in Section 2.2. For our structure, we
assume the crack to first propagate towards the armhole (crack length a1) and then towards the
edge of the structure (crack length a2), see Figure 6.11. In total, 382 static XFEM analyses with

hole 6hole 6

a1 a1

a2

crack

crack growth
direction

crack growth
direction

r

Figure 6.11: Assumption for crack propagation where crack 1 first propagates towards the
armhole (left) and crack 2 to the edge of the specimen afterwards (right).

different crack lengths and the maximum load Fmax are evaluated to quantify the relationship
between the crack length a and the SIF at the maximum load KI,Fmax . Figure 6.12a shows
one of the 382 XFEM computations. Two separate neural networks, for a1 and a2, are trained
to map the crack length onto the SIF, see Figure 6.12b.

(a) (b)

Figure 6.12: (a) XFEM computation and (b) trained neural networks (NN).

In this study, we define the total crack length a as

a =

{
a1, if a ≤ 10 mm

a1 + 2r + a2, if a > 10 mm ,
(6.44)

where r is the radius of the small hole where the crack initiates. An initial crack length of
a0 = 0.635 mm which is, according to [121], the smallest crack length detectable by eddy current
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testing, is assumed. In order to reduce computational time, the crack growth computations are
simplified by applying rainflow-counting to the load steps of 100 flights in order to compute the
load ranges ∆F̄ and using 1/100 of their frequencies for each flight. In doing so, we average
the severity of the flights and assume every flight to be equally destructive. We also set

∆KI = KI,Fmax

∆F

Fmax
. (6.45)

The crack growth can then be computed by the well-known Paris law.
According to [148], crack growth is subject to great uncertainties. Therefore, C is assumed

to be a random variable that is normally distributed with µC = 8.7096 × 10−11 and σC =
6.5680× 10−12 (determined from the crack growth data published by Virkler et al. [148] with
[da/dN ] = m/cycle and [∆KI ] = MPa

√
m). The material parameter α is set to α = 2.9

according to Spencer et al. [136]. Moreover, the load ranges are varied according to a normal
distribution with N (ε∆F |0, 0.052) and ∆F = ∆F̄ × (1 + ε∆F ). For computing different crack
growth trajectories, a set of parameters (N0, C, ε∆F ) is sampled for each trajectory. Figure 6.13
shows the computed degradation trajectories. Note that the step in each trajectory results
from the two different cracks, a1 and a2, and the added diameter of the small hole once crack 1
reaches the armhole. Now, a Gaussian process model can be inferred from those crack growth
trajectories.

Figure 6.13: Computed degradation trajectories.

6.5.2 Inferring crack lengths from strain data

In order to compute the conditional distribution of a trained Gaussian process, the current
state of the mechanical system and its uncertainty has to be known. In this application, the
current crack length is not directly observed, as was the case for the infinite plate example.
Therefore, we determine the state of the mechanical system by using the data gathered from
the attached strain gauges. Since Bayesian inference offers a neat way to solve inverse problems
which also considers uncertainties, we exploit it for our purposes in the following. With Bayes
law, the crack length a can be inferred from the measured strains εSG by

p(a|εSG) =
p(εSG|a)p(a)∫ ac

a0
p(εSG|a)p(a)da

, (6.46)

where p(a) is the prior distribution and p(εSG|a) the likelihood. For measuring multiple strains
and assuming them to be measured independently, the probability density function of εSG for



92 6 Warped Gaussian Processes

s applied strain gauges given the crack length a becomes

p(εSG|a) = p(εSG;1, ..., εSG;s|a) =
s∏
l=1

p(εSG;l|a). (6.47)

By also assuming the prior p(a) to be uniformly distributed within the bounds a ∈ [a0, ac], the
probability density function of a given all strain measurements becomes

p(a|εSG) =

∏s
l=1 p(εSG;l|a)∫ ac

a0

∏s
l=1 p(εSG;l|a)da

. (6.48)

In order to be able to use Equation 6.48, the likelihoods p(εSG;l|a) with l ∈ 1, ..., s must
be known as they incorporate how the measured data εSG varies with the crack length a.
Therefore, the strains of all XFEM computations (see Figure 6.12) are evaluated for each
sensor position to quantify the relationship between the crack lengths and the strains. Then,
the results are used to fit a neural network for each strain gauge position. Since we only
consider strictly monotonic strain gauges, in total, seven neural networks εNN ;l(a) are trained.
By assuming a normally distributed measurement error with a standard deviation of σε =
200µm/m, the likelihoods p(εSG;l|a) are completely defined and can be evaluated. However,
in order to cancel out the bias term which might emerge from the difference between the FEA
and the real measurement, only the relative changes of the strains due to a crack

∆εNN,rel;l(a) =
εNN ;l(a)− εNN ;l(a0 = 0)

εNN ;l(a0 = 0)
(6.49)

and

∆εSG,rel;l =
εSG;l − εSG;l(a0 = 0)

εSG;l(a0 = 0)
(6.50)

are considered. Since at the beginning of each test settlement effects happen, the measurement
of flight 500 is used as εSG;l(a0 = 0). The likelihood becomes

p(∆εSG,rel;l|a) =
1√

2π
(

σε
εNN,l(a0)

)2
exp

−(∆εSG,rel;l −∆εNN,rel;l(a))2

2
(

σε
εNN ;l(a0)

)2

, (6.51)

which we use instead of p(εSG;l|a). The current crack length is determined by

â = arg max p(a|εSG) (6.52)

and its variance by

σ2
a =

∫ ac

a0

(a− µa)2p(a|εSG)da. (6.53)

with

µa =

∫ ac

a0

a p(a|εSG)da (6.54)

Figures 6.14a and 6.14b show the crack lengths inferred from the measured strains and
the corresponding crack lengths that test engineers visually obtained for both specimens. The
inferred crack lengths for P03T01 closely match the inspected ones (R2 = 0.926), whereas
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the match of the P02T01 trajectory is further off (R2 = 0.656). Figure 6.14a reveals a big
step in the inspected data of specimen P02T01 at about 9,000 flights. It is likely that the
test engineers did not detect the crack at the other side of the small hole (a2) right when it
started to grow. As the P03T01 specimen was tested after P02T01, the test engineers were
already familiar with the type of structure and could therefore measure the crack lengths more
accurately. Both crack growth behaviors closely resemble the simulations regarding locations,
numbers, and crack growth rate.

(a) (b)

Figure 6.14: Inferred and visually observed crack lengths for specimen (a) P02T01 and (b)
P03T01.

6.5.3 Enabling Gaussian processes for crack growth prediction

Training of the Gaussian process. Section 6.3 revealed that the Box-Cox transformation
leads to straight lines in the latent space for the pre-cracked infinite plate. Straight lines are
strictly monotonic, and thus their inverse Box-Cox transformations are as well. By choosing
polynomials of order 0 and 1 (intersection and slope) in the latent space, we ensure that the
crack growth is strictly monotonic, which agrees with the physics since cracks cannot become
shorter while loading the structure. Therefore, we choose the basis functions accordingly. Ad-
ditionally, we utilize the modified Box-Cox transformation function stated in Equation 6.27
and infer the Gaussian process model from the simulated training trajectories. Since no obser-
vation error is present in the simulation data, a non-weighted least squares regression is applied
to determine the basis functions’ weights. Due to the chosen basis functions, the applied opti-

(a) (b)

Figure 6.15: Trained Gaussian process in the (a) observed space and (b) latent space.
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mizer tries not only to achieve a normal distribution in the latent space but also straight lines.
The optimized solution is θ̂1 = 4.46 × 10−8 which is close to a log transformation. For a log
transformation, we know that the predicted crack lengths will solely assume positive values
after transforming the predictions from the latent space to the observed space. The modeling
error in the latent space σ̂z,m approximated by the residuals is assumed to be constant in the
latent space. Figures 6.15a and 6.15b show the training data and the determined Gaussian
process in the observed and the latent space, respectively. The figures reveal that the trajecto-
ries in the latent space are nearly linear. Moreover, the mean function and the credible region
in the observed space assume only positive values, which agrees with the physics. Figure 6.15a
depicts the prediction before any data of the monitored structure is available.

Updating GP predictions. Although Figures 6.14a and 6.14b show the entire trajecto-
ries of the inferred crack lengths, during the test, the crack length is gradually determined.
After each new flight, the current crack length and its uncertainty can be estimated based
on Bayesian inference and used to compute the conditional Gaussian process, leading to an
updated prediction. For doing so, all inferred crack lengths â up to the current flight cycle and
their estimated standard deviations σ̂a are transformed to the latent space using Equations 6.2
and 6.16, respectively. In this case, the variance of the total observation error in the latent
space σ2

z is assumed to be the sum of the modeling error’s variance σ2
z,m and the transformed

variance of the observation error σ2
z,a, i.e., σ2

z = σ2
z,a + σ2

z,m. Furthermore, crack sizes smaller
than 0.635 mm are ignored since the Gaussian process is trained on trajectories starting from
that crack length. Then, the conditional Gaussian process is computed in the latent space us-
ing Equation 6.25. The updated prediction can be transformed into the observed space using
the inverse warping function.

Figure 6.16 show the updated predictions for specimens P02T01 and P03T01 at different
time states. Initially, the Gaussian process prediction is entirely based on the knowledge gained
from analytical equations and FEAs. Once a crack length greater than 0.635 mm is inferred
from the strain data, the median starts to change, and the credible region narrows down,
leading to a more accurate prediction. Since the Gaussian process model is defined by a set of
polynomial basis functions with orders 0 and 1, the step due to the two different crack regimes
is not apparent in the prediction. Figures 6.16a and 6.16b show that the uncertainties up to the
current state (black point) are relatively large. This is because we neglect crack lengths whose
most likely length is below 0.635 mm. Moreover, the variances estimated based on Bayesian
inference become in the approximately logarithmic latent space at small crack lengths rather
large which is why the prediction is hardly affected. Therefore, actions based on crack lengths
whose estimated mean is below 0.635 mm should be decided regarding the results of Bayesian
inference. Figure 6.16 also shows that the predictions are strictly positive, which complies with
the physics.

Figure 6.17 displays all predicted median values and credible intervals for the critical crack
length ac ≈ 120 mm. The x-axis resembles the current state up to which we have conducted the
experiment. The y-axis shows the predicted and the realized number of cycles. The realized
last numbers of cycles corresponding to the two specimens are colored in orange and red. The
credible interval colored in light blue surrounds the realized value, indicating that the prediction
does not lead to overly confident estimations. Once a crack length greater than 0.635 mm is
determined, the credible interval narrows quickly. After about 8, 000 and 11, 000 cycles, see
Figures 6.17a and 6.17b, the Gaussian process leads to predictions that indicate an earlier final
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.16: Predictions for specimen P02T01 at number of flights equal to (a) 4,000, (c) 7,000,
(e) 8,000, and (g) 10,000, and for specimen P03T01 at (b) 4,000, (d) 9,000, (f) 11,000, and (h)
13,000 flights.

fracture than was realized. This is because the two crack regimes are not distinguished in the
model, and a1 exhibits a rapid crack growth before a2 initiates and starts propagating slowly.
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(a) (b)

(c) (d)

Figure 6.17: Fatigue life predictions with ac = 120 mm for specimen (a) P02T01 and (b)
P03T01 with σε = 200µm/m and (c) P02T01 and (d) P03T01 with σε = 100µm/m.

Therefore, the model leads to predictions that are slightly conservative.
Figures 6.17c and 6.17d show the predicted fatigue lives for an assumed standard de-

viation of the measurement error of σε = 100µm/m. Compared to the predictions with
σε = 200µm/m, the credible interval based on σε = 100µm/m narrows earlier and slightly
quicker since the standard deviation of the crack length determined with Bayesian inference
is smaller. Especially towards larger observed number of cycles, the credible intervals of the
predictions based on σε = 100µm/m become very small, leading to overconfident predictions.
Table 6.2 lists the evaluated MAEs between the predicted and true fatigue life for the two dif-
ferent standard deviations. The errors for σε = 100µm/m and σε = 200µm/m are very similar.
While the predictions with σε = 100µm/m lead to a lower MAE for specimen P02T01, the er-
ror for specimen P03T01 is larger than the one based on σε = 200µm/m. Table 6.2 also shows
how often the true fatigue life lies within the predicted 95% credible interval. For specimen
P03T01, the relative frequencies for both standard deviations are almost identical and close to
the targeted 95%, indicating that the predicted credible intervals are valid. Similar results are
achieved with σε = 200µm/m for specimen P02T01. By contrast, the predictions for specimen
P02T01 based on σε = 100µm/m result in a relative frequency of 82.2%, indicating too narrow
predicted credible intervals.

Figures 6.17a–6.17d show large credible intervals for the initial prediction, indicating that
the fatigue computation exhibits significant uncertainties. Without the proposed method, early
and many inspections would be necessary to ensure structural integrity. Since the approach
presented in this chapter estimates the current crack length, unnecessary examinations can
be avoided. Moreover, not only the current but also future crack lengths can be estimated
with credible regions. Therefore, we can predict future failure probabilities and schedule the
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maintenance tasks accordingly. Once the method determines a crack length, predictions with
narrow credible intervals are possible. This allows us to wait until multiple parts need to be
maintained or the entire fatigue life of a structure is exploited. Thus, unnecessary inspections
can be skipped, and structures are only maintained when they have to be.

In total, the method leads to low MAEs and relative frequencies close to the targeted ones
for both standard deviations. Yet, the standard deviation of the measurement error should
not be underestimated to avoid too narrow predicted credible intervals.

Table 6.2: MAE and relative frequencies within the predicted 95% credible interval for two
different standard deviations of the measurement error.

P02T01 P03T01

Data set σε MAE
rel. frequency
within 95% ci

MAE
rel. frequency
within 95% ci

aerospace structure
predict: N(aend)

200µm/m 1680 95.5% 836 93.0%
100µm/m 1645 -2.1% 82.2% 874 +4.6% 92.9%

6.6 Summary

As demonstrated for an infinite plate and an aerospace structure, the proposed approach of
warped Gaussian processes can handle data that is non-normally distributed. In both cases,
introducing a warping function leads to predictions that are solely defined on the positive
domain. This agrees with the physics since crack lengths can only be positive. The approach
reproduces the analytical solution for problems without an observation error and leads to a
close approximation (< 0.25%) for the case where an observation error is present. By using
warped Gaussian processes, free parameters θ are introduced. These need to be determined by
minimizing the negative log-likelihood which is, in general, a non-convex optimization problem,
requiring increased computational effort. As the Gaussian process is derived by solving a
linear regression problem, no additional model parameters must be determined, enabling quick
training. Moreover, using warped Gaussian processes reduced the MAE by 53.6% and the
negative log-likelihood by 32.2% for the infinite plate example investigated in this chapter.
The established model not only predicts the crack length for every future time step but also
their credible intervals. The predictions can be used to compute future failure probabilities,
which we showcased on the infinite plate example. The information can be used to schedule
maintenance tasks according to a failure probability threshold.

Prior knowledge in the form of degradation trajectories is often rare, especially if the
mechanical system is large and expensive. Using analytical and FEA-based simulations can
produce valuable information that can be incorporated into Gaussian processes by the approach
proposed. Two methods for estimating the observation error of the currently observed data are
shown. Both methods lead to similar results and converge to the correct solution. Nevertheless,
incorrect simulations resulting, for example, from using wrong parameters or assumptions can
lead to weak predictions. Therefore, the simulation, parameters, and uncertainties should be
well known. As there might be sources of uncertainties that are not known in advance, it is
better to assume overly large variances than variances that are too small.

After a Gaussian process is defined by its mean and covariance function, it can be condi-
tioned on current data. The current state of the system, however, is often hidden. Therefore,



98 6 Warped Gaussian Processes

the chapter presents how to apply Bayesian inference to infer the crack length from strain
data. Based on the coefficient of determination, the resulting crack lengths using Bayesian
inference match the crack lengths observed during inspection with R2 = 0.656 and R2 = 0.926
for the first and second aerospace specimen, respectively. The approach enables continuous
monitoring of the crack length and its uncertainty. By using this information, the Gaussian
process predictions can be continuously updated.

In summary, the results of this chapter show that (1) simulation data can be used to infer
Gaussian process models but must be carefully evaluated beforehand, (2) crack lengths can be
inferred from strain gauges based on Bayesian inference, and (3) warped Gaussian processes
lead to physical results and increase prediction accuracy for crack growth problems.



Chapter 7
Concluding Remarks

”The illusion that we understand the past fosters overconfidence in our ability to predict the
future.”

– Daniel Kahneman

7.1 Discussion

In this thesis, we deal with the question of how to utilize Gaussian processes for prognostics.
In contrast to the existing Gaussian process regression approach, where an underlying model
is assumed and optimized, we first describe all possible degradation trajectories by a Gaussian
process and second update our predictions by computing the conditional distribution based
on monitoring data. The approach considers several previously gathered trajectories from
which we derive the Gaussian process model without using a prescribed mean and covariance
function. The approach proposed in Chapter 4 is based on a weighted sum of basis functions
that are used to fit all previously gathered trajectories. The mean and covariance function,
which define the Gaussian process, are directly derived from the resulting weights. Since
the derived model is based on a Gaussian process, it is able to predict future damage states
probabilistically, i.e., we obtain estimates of our predictions’ uncertainties. Therefore, we are
able to compute the future failure probabilities of mechanical systems. The approach is applied
to several examples, including fatigue crack growth, laser degradation, and milling machine
wear. The results show that the prediction accuracy is significantly increased compared to the
usually assumed Gaussian process models. The proposed approach also enables integrating
physical knowledge into Gaussian processes. By using governing equations as basis functions,
their predictive capabilities are further increased. Additionally, the approach requires only a
fraction (≈ 1/10) of training time compared to the standard method.

As previously described, the proposed method for deriving Gaussian process models from
previous data is based on a set of basis functions. In Section 4.4.2, we show that assuming, for
example, polynomial basis functions leads to a polynomial mean and covariance function that
additionally considers correlations between the weights. Therefore, the a priori defined basis
functions constrain the underlying model in a similar fashion to choosing a Gaussian process
model. Yet, the basis functions are explicitly defined, which might be easier than constructing a
mean and covariance function. Furthermore, we present a methodology for selecting the basis
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functions to tackle the difficulty of selecting a specific set. Another aspect of the proposed
approach is that the training process becomes much quicker when using basis functions, and
it also opens the way for physics-informed Gaussian processes. By utilizing problem-specific
governing equations as basis functions, physical knowledge can directly be integrated into
Gaussian processes, further increasing accuracy. The entire method was showcased on several
examples for prognostics which revealed an ever-decreasing uncertainty prediction for more and
more monitored data. This agrees with our intuition that the more data we have observed,
the more precise we are able to predict the future degradation of mechanical systems.

However, one must be aware that the selected basis functions are also assumed for the region
after the training trajectory ends. The basis functions fitted solely for the region where data
points exist might exhibit non-physical behavior outside the training trajectories, leading to
poor predictions after the shortest line. For fatigue crack growth problems, where trajectories
stop at a critical crack length, the x-y data might be flipped to assume a Gaussian process over
the number of cycles instead of the crack length in order to bypass this problem. Furthermore,
until now, the approach has only been applied to one-dimensional inputs, assuming the same
operation for each specimen. Yet, the method can be extended for handling multiple input
variables.

The approach for deriving Gaussian processes relies on multiple trajectories. This data
set must be gathered by executing experiments or simulations and should be collected on
the low-frequency domain. Solving the equation system for estimating the basis functions’
weights might be intractable if the trajectories consist of too many data points. A solution
to this is, for example, to compress the data points. Another problem that might be more
severe appears when the derived model does not represent the monitored mechanical system
well. Since we tend to overestimate our ability to understand the past, we are prone to
underestimate the existing uncertainties. This is followed by overconfident predictions or, as
the Nobel prize winner Daniel Kahneman puts it in his award-winning book ”Thinking, fast
and slow” [62]: ”The illusion that we understand the past fosters overconfidence in our ability
to predict the future.” Similar overconfident predictions are obtained from inferred Gaussian
processes if our simulations or experiments do not inherit all uncertainty sources present in
the monitored device or if the uncertainties are underestimated. If, for example, the standard
deviation of the measured strain data gathered from the strain gauges attached to the aerospace
structure is underestimated, the predicted credible intervals are too small, and the predictions
become wobbly. Therefore, the degradation process must be understood fully, and simulations
should be validated before using them as training data. Moreover, uncertainty sources must
be carefully determined, and scatter parameters might rather be assumed to be too big than
too small.

Moreover, three other machine learning methods, namely recurrent neural networks, sup-
port vector machines, and k-nearest neighbors are utilized for prognostics. The models are
constructed such that they predict the last damage state with credible intervals. They are
compared to the proposed Gaussian process method, revealing that recurrent neural networks
and the presented Gaussian process approach show the highest prediction accuracies. While
recurrent neural networks lead to better results for non-normally distributed data, Gaussian
processes are superior for trajectories that are close to or slightly outside the training bound-
aries. The training process of the presented Gaussian process method is much quicker than the
one based on recurrent neural networks (≈ 1/100). Furthermore, the Gaussian process is able
to predict the entire future degradation trajectory instead of only the last point. Even though
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the machine learning models that we constructed for comparison might be designed such that
they are also able to predict multiple future damage states, the results reveal that the training
process and time would explode. Even for predicting one future damage state, the training
time of recurrent neural networks is two orders of magnitude higher than the proposed Gaus-
sian process methodology. Additionally, the results of the machine learning methods tend to
be difficult to interpret, while the predictions of the inferred Gaussian process can be explained
by the assumed basis functions and the updating scheme based on normality assumptions.

Yet, the results of the comparison chapter also reveal that Gaussian processes are inferior to
recurrent neural networks for predicting non-normally distributed trajectories. This is because
the updating scheme is based on normality assumptions that do not hold in such cases. By
contrast, the process of updating the predictions of recurrent neural networks is not defined
beforehand but rather learned during the training phase. In order to tackle this drawback
of Gaussian processes, we present in Chapter 6 inferred warped Gaussian processes, which
are showcased on two fatigue crack growth problems. The extension treats non-normally
distributed trajectories by transforming them into a latent space where the Gaussian process
is modeled based on the method proposed in Chapter 4. The results of predicting fatigue crack
growth in an infinite plate show that the extension can significantly increase the predictive
capabilities of Gaussian processes. Moreover, the advanced method leads to strictly positive
predictions for the investigated crack growth examples, which agrees with the physics since
crack lengths are only defined on the positive domain. However, free parameters are introduced
to the training process by transforming the Gaussian process with a warping function. The
free parameters need to be optimized, which increases training time. Additionally, the basis
functions might be more difficult to choose since the degradation trajectories are warped to a
latent space where the trajectories’ shape is not known a priori. This challenge is tackled by
selecting multiple different basis functions, evaluating the log-likelihood of each, and choosing
the ones that maximize this measure. Many applications inherit log-normally distributed
variables and are defined solely on the positive domain. In those cases, taking the logarithm
as the warping function (without any free parameters) can be utilized. A warping function
with more free parameters can be chosen for more sophisticated scenarios. The extended
approach was also applied to predict the crack growth in a real aerospace structure. The
defined Gaussian process relies again on crack growth trajectories, which is why we need
current crack lengths to compute the conditional distribution for updating our predictions.
In a real-world scenario, however, crack lengths are not directly monitored. Therefore, we
further present a method for inferring crack lengths from strain gauge data in Chapter 6. The
determined crack lengths agree well with the conducted experiments and are used to compute
the conditional distribution, updating the prediction.

7.2 Conclusion

Concluding this work, the proposed approach for inferring Gaussian process models from sev-
eral trajectories and computing the conditional distribution based on monitoring data leverage
Gaussian processes for prognostics. The results show that taking previous data into account
increases prediction accuracy and look-ahead time significantly and leads to valid credible re-
gions for fatigue crack growth, laser degradation, and milling machine wear applications. The
approach also facilitates physics-informed Gaussian processes by using problem-specific gov-
erning equations, which further improves accuracy. Moreover, deriving the Gaussian process
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model from previously collected trajectories instead of training prescribed mean and covariance
functions decreases computational effort remarkably.

Compared to other machine learning methods, such as k-nearest neighbors, support vec-
tor machines, and recurrent neural networks, Gaussian processes exhibit excellent predictive
capabilities for normally distributed data since they predict entire trajectories without exces-
sive training. Their training process is much quicker (≈ 1/100) than the one of recurrent
neural networks. Yet, Gaussian processes struggle with predicting non-normally distributed
trajectories as their underlying updating scheme is based on normality assumptions.

The extended approach for deriving warped Gaussian processes from several trajectories
proposed in Chapter 6 tackles the challenge of applying Gaussian processes to non-normally
distributed data. For the fatigue crack growth problems presented in this thesis, the extension
forces the predictions to be strictly positive, thus leading to physical results. The advanced
method increases prediction accuracy even further and facilitates Gaussian processes for prog-
nostics of non-normally distributed trajectories.

In cases where previous trajectories are missing, simulation data can be used to derive
the underlying Gaussian process model. However, the utilized simulation must be evaluated
beforehand, uncertainty sources should be carefully determined, and involved uncertainties
must not be underestimated. In cases where the degradation variable cannot be directly
observed, Bayesian inference can be used to determine its current state from collected data,
as we present for inferring crack lengths from strain gauge data. Then, continuous updates of
the degradation prediction with credible intervals are obtained by computing the conditional
distribution. The entire approach is successfully applied to a real aerospace structure, leading
to accurate fatigue life estimations (MAPE of 15.6% for P02T01 and 5.9% for P03T01) and
valid credible regions. It can be used to schedule better maintenance plans based on failure
probabilities in place of the current but outdated manual crack inspection. In summary, we
have met our objectives and established a method that

(1) predicts entire degradation trajectories with valid credible regions,

(2) leads to high accuracy for normally and non-normally distributed data, and

(3) quickly infers the model from training data.

7.3 Outlook

As mentioned in the discussion section, one problem arises if the training trajectories are avail-
able in different regions, which is the case for crack growth trajectories. One possibility to
solve this challenge is to flip the x-y data such that the derived Gaussian process describes the
x variable. This, however, would mean that the measured current damage state and its obser-
vation error must be transformed too. Another possibility to gain higher prediction accuracy
is to not only warp the y variable but also the input x. Doing so would add more flexibil-
ity to the model, and a set of basis functions could better fit complicated trajectories. Also,
more sophisticated warping functions, such as the compositional warping functions presented
in [119], which have multiple free parameters, can be applied. An automatic way to select the
best option based on minimizing the negative log-likelihood would ensure usability.

A severe problem might occur if the training trajectories do not resemble the monitored
system. In order to loosen the dependency on previous trajectories, we can combine the de-
rived covariance function with state-of-the-art ones and update their free parameters based
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on minimizing the negative log-likelihood. Broadening the research field on kernel (covari-
ance function) construction with the proposed method promises physics-informed Gaussian
processes with integrated prior knowledge while preserving the flexibility for novel data. A
drawback of doing so might be that the predicted credible intervals do not necessarily narrow
down the more data points are observed since the Gaussian process model is updated each
time anew when data is gathered.

A promising future venue is also extending the presented approach to multiple inputs
and conditions. Several inputs can be considered by adjusting the set of basis functions.
Additionally, mixtures of multiple Gaussian processes can easily be formulated, leveraging the
proposed methodologies for applications with various scenarios where, for example, cracks can
occur and propagate from multiple locations. Moreover, different operational conditions can
then be considered. In total, the approach proposed in this thesis opens the way for various
advancements that can leverage Gaussian processes to be an indispensable tool for future
predictive maintenance scheduling.





Appendix A
Conditional Multivariate Normal
Distribution

For deriving the analytical equation for a conditional multivariate normal distribution, we
follow the derivation of Murphy [95] in Section 4.3.4.3. The joint distribution of two normally
distributed random vectors can be written as

p(x1,x2) = p(x1 | x2) p(x2) (A.1)

with the two marginal distributions

p(x1) = N (x1 | µ1,Σ1,1) (A.2)

and
p(x2) = N (x2 | µ2,Σ2,2) , (A.3)

and the joint normal distribution

p(x1,x2) = N
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In the following, we regard only the proportional exponent

p(x1,x2) ∝ exp
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The key to this derivation is to split the exponent such that we have a term that describes
the marginal distribution of x2 and another one for the conditional distribution of x1 given
x2. For doing so, we need to represent the inverse of the partitioned covariance matrix Σ in
a different way. One way is to utilize the Schur complement, which arises when performing a
block Gaussian elimination. Then, the inverse of the covariance matrix can be written as
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(A.6)

with
Σ/Σ2,2 = Σ1,1 −Σ1,2Σ

−1
2,2Σ2,1 (A.7)
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being the Schur complement of Σ with respect to Σ2,2. The exponent in Equation A.5 can be
substituted as
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The vectors and matrices can be multiplied out such that
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Since the second term of Equation A.9 describes the exponent of the marginal distribution
of x2, the first term must be the exponent of the conditional distribution of x1 given x2.
Therefore, we have successfully split the joint normal distribution as

p(x1,x2) = p(x1 | x2) p(x2)

= N
(
x1 | µ1|2,Σ1|2

)
×N (x2 | µ2,Σ2,2) .

(A.12)
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