
Citation: Hofele, M.; Roth, A.;

Hegele, P.; Schubert, T.; Schanz, J.;

Harrison, D.K.; De Silva, A.K.M.;

Riegel, H. Influence of Laser

Polishing on the Material Properties

of Aluminium L-PBF Components.

Metals 2022, 12, 750. https://

doi.org/10.3390/met12050750

Academic Editors: Victor A. Klinkov

and Vera Popovich

Received: 17 March 2022

Accepted: 21 April 2022

Published: 27 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metals

Article

Influence of Laser Polishing on the Material Properties of
Aluminium L-PBF Components
Markus Hofele 1,2,* , André Roth 1, Patrick Hegele 3, Tim Schubert 4, Jochen Schanz 1,2 , David K. Harrison 2,
Anjali K. M. De Silva 2 and Harald Riegel 1

1 Laser Application Center, Aalen University, 73430 Aalen, Germany; andre.roth@hs-aalen.de (A.R.);
jochen.schanz@hs-aalen.de (J.S.); harald.riegel@hs-aalen.de (H.R.)

2 School of Computing, Engineering and Built Environment, Glasgow Caledonian University,
Glasgow G4 0BA, UK; d.harrison@gcu.ac.uk (D.K.H.); a.desilva@gcu.ac.uk (A.K.M.D.S.)

3 School of Engineering and Design, Technical University of Munich, 85748 Garching, Germany;
patrick.hegele@tum.de

4 Material Research Institute, Aalen University, 73430 Aalen, Germany; tim.schubert@hs-aalen.de
* Correspondence: markus.hofele@hs-aalen.de; Tel.: +49-7361-576-2664

Abstract: In this study, the influence of laser polishing on the microstructural and mechanical
properties of additively manufactured aluminium AlSi10Mg Laser Powder Bed Fusion (L-PBF) parts
is analysed. The investigation is carried out on a 5-axis laser cell equipped with 1D Scanner optics
driven by a solid-state disc laser at a wavelength of 1030 nm. Laser polishing is performed with pulsed
or continuous laser radiation on samples in the initial L-PBF state or after stress relief treatment
in a furnace. The metallurgical investigation of the remelting zone with a depth of 101–237 µm
revealed an unchanged and homogeneous chemical composition, with a coarsened α-phase and
a changed grain structure. The hardness within the remelting zone is reduced to 102–104 HV 0.1
compared to 146 HV 0.1 at the L-PBF initial state. Below the remelting zone, within the heat affected
zone, a reduced microhardness, which can reach a thickness up to 1.5 mm, occurs. Laser polishing
results in a reduction in residual stresses and resulting distortions compared to the L-PBF initial
state. Nevertheless, the re-solidification shrinkage of the polished surface layer introduces additional
tensions, resulting in sample distortions well above ones remaining after a stress relieve heat treatment
of the initial state. The mechanical properties, analysed on laser polished flat tensile specimens,
revealed an increase in the ultimate elongation from 4.5% to 5.4–10.7% and a reduction in the tensile
strength from 346 N/mm2 to 247–271 N/mm2 through laser polishing. Hence, the strength resulting
from this is comparable to the initial L-PBF specimens after stress relieve heat treatment.

Keywords: laser polishing; material properties; residual stress; distortion; hardness; tensile strength;
additive manufacturing; selective laser melting (SLM); aluminium AlSi10Mg; surface remelting; Laser
Powder Bed Fusion (L-PBF)

1. Introduction

An additive manufacturing method for complex metal parts is the Laser Powder Bed
Fusion (L-PBF). The layer-wise powder-based melting process with typical beam diam-
eters between 50 and 100 µm in combination with fast beam velocities in the range of
400–1500 mm/s generates small melt pools with extremely high cooling rates, resulting in
a very fine grain size. Furthermore, the hardness and the static mechanical properties of
the additive manufactured aluminium parts are increased in comparison to conventional
manufactured parts [1]. Due to the layer-wise manufacturing process, high thermal differ-
ences between the layers of the solid part below and the melt pool within the overlapping
weld lines of the topmost layer occurs. Thus, the shrinkage by material solidification and
cooling is impeded by the underneath solid layers and introduces residual stresses, which
can reach the material’s yield strength and result in plastic deformation, delamination
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or distortion. These effects can be reduced by pre-heating the built platform, which also
causes a decrease in material hardness [2]. Another approach of reducing these detrimental
effects is stress relief treatment/annealing of the printed components after the built process
but before cutting off from the built platform.

Due to this fast-cooling precipitation hardening, hypo-eutectic aluminium silicon
magnesium alloys such as AlSi10Mg exhibit, after manufacturing by L-PBF in the as-built
state, a high mechanical strength of up to Rm = 477 MPa, accompanied with a high hardness
value of up to 134 HV and a reduced max elongation [1].

As the main disadvantage, the L-PBF process generates a surface with residual powder
particles or agglomerates, which are sintered together. This increased roughness is insuffi-
cient for industrial applications in the die field of cleanroom applications, food industry or
medical implementation [3–5]. The resulting roughness is affected by the geometry of the
part and its orientation in the manufacturing process [6–8]. Furthermore, the high surface
roughness and subsurface failures cause a decreasing fatigue performance [9].

Laser polishing is a volume-maintaining and contact-free technology, which causes the
flattening of surface-by-surface remelting of a thin layer and material relocation from the
surface elevations to the surface depressions, driven predominantly by surface tensions [10].
Laser polishing is commonly carried out with pulsed or continuous laser radiation in
combination with a beam diameter of several hundred microns [11]. In order to reach
high roughness reduction rates, high pulse and track overlaps are required, which result
in a widespread thermal input and heat affected zone below the remelting zone. Laser
polishing of additive manufactured metal parts revealed high roughness reduction rates
on a broad range of metal alloys such as Cobalt-Chromium alloys (CoCr) [12–14], Inconel
718 [15,16], tool steel H13 [17], maraging steel 1.2709 [18], Titanium Ti6Al-4V [19–21] and
corrosion resistant steel 316 L [22,23]. The laser polishing of L-PBF-aluminium AlSi10Mg
parts with different laser operation modes has already been comprehensively investigated
with roughness reduction rates above 98% Ra of the initial surface roughness [24–29]. Due to
low laser beam absorption of Al-Si alloys and, at the same time, high process energy losses
due to comparatively high thermal conductivity, high intensities and energy densities are
required for laser polishing. Hofele et al., 2021, revealed that following process parameters
(pulse duration of 0.3 ms, beam intensity of 1285 W/mm2, energy density (energy input
per square area) 76.5 J/mm2) enable the highest roughness reduction from Ra = 7.9 µm
to Ra = 0.66 µm on vertically built specimens. This result can be further improved by
multiple polishing passes [25]. It was also shown that the remelting depth is in the range
of 130–160 µm [28]. With continuous laser radiation, a suitable laser beam intensity of
1057 W/mm2 and an energy density of 42 J/mm2 was found and a roughness Ra = 0.23 µm
with single polishing was reached [25]. Varied beam intensities between 0.9 kW/mm2 and
1.6 kW/mm2 result in remelting depths from approximately 50–150 µm [28]. Polishing
with a CO2 laser (λ = 10.6 µm) enabled the highest roughness improvement of 85% from
Sa = 22.3 µm to 7.9 µm with an energy density of 330 J/mm2 [26]. The porosity of the
remelting zone on vertical printed specimens varied between 0.98% and 1.7%.

To sum up, due to the high thermal conductivity of aluminium alloys, high energy
densities are necessary to create a sufficient melt pool depth for a high roughness reduction
rate. The influence of laser polishing of additive manufactured aluminium alloys on the
microstructure formation and mechanical properties within the remelting zone and heat
affected zone, as well as changes in the residual stresses due to global heating of the part
and shrinkage by solidification and cooling down of the remelting zone, is still an open
field for investigation.

This paper deals with investigations on the influence of laser polishing with pulsed
and continuous laser radiation on the material properties of AlSi10Mg. Therefore, the
microstructure of the resulting remelting zone and the chemical composition and micro-
hardness is analysed. The influence of laser polishing on the residual stresses and distortion
of the parts is investigated on a printed cantilever geometry in the initial L-PBF state and
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annealed state. The influence of the surface remelting process on the mechanical properties
are characterized on tensile specimens.

2. Applied Methods and Experimental Design
2.1. Material and Samples

The experimental investigations in this study are executed on the aluminium alloy
AlSi10Mg. The chemical composition of the used powder, according to the test report of
the delivered powder batch in comparison to DIN ISO 1706:2020 [30], is given in Table 1.

Table 1. Chemical composition of the used powder according to the powder batch test report and the
part after 3D printing by L-PBF, measured by emission spectroscopy of type BRUKER Q4 Tasman, in
comparison to DIN ISO 1706:2020 [30].

State
Chemical Composition of AlSi10Mg (%)

Al Si Mg Fe Mn Cu Others

DIN ISO 1706 Residual 9.0–11.0 0.20–0.45 <0.55 0.45 <0.05 <0.55
Powder 89.52 9.90 0.37 0.10 <0.01 <0.01 <0.12

Printed part 88.73 10.77 0.29 0.12 <0.01 0.05 0.04

The influence of laser polishing on residual stresses and distortion, as well as the
resulting material structure and hardness, is analysed by means of a horizontal printed
cantilever, see Figure 1. In this, the layer wise L-PBF process introduces rising tensions
with increasing cantilever thickness [31]. The specimen with a dimension of 60 mm in
length and a width of 10 mm consists of a solid block, which is directly printed on the
built platform and a cantilever with a thickness of 3 mm, which is connected to the built
platform by support structures, see Figure 1a. Six specimens, positioned nearly in recoating
direction, are printed on a built platform (see Figure 1b). L-PBF is carried out on a TRUMPF
TruPrint 1000 Multilaser (TRUMPF, Ditzingen, Germany) with a cylindrical fabrication
volume (diameter = 100 mm; height = 100 mm). The TruPrint 1000 is equipped with
two 200 W fibre lasers with a focal diameter of 55 µm for a parallel layer exposure. The
used aluminium powder has a powder grain diameter D10 of 25.4 µm and D90 of 56.3 µm.
The average powder grain diameter D50 amounts to 39.5 µm. The aluminium powder
grain diameter was measured by the manufacturer at D10 25.4 µm and D90 56.3 µm. The
average powder grain diameter D50 amounts to 39.5 µm. Printing of the specimens was
executed with recommend process parameters from TRUMPF with a slicing thickness of
20 µm. The outer contour was exposed with a laser power of 175 W and a beam velocity of
2000 mm/s. The core of the part is treated with 175 W, a beam velocity 1400 mm/s and
hatch distance of 120 µm.

After 3D printing, the analyzation of the chemical composition of the printed part
revealed an almost unchanged composition of the main alloying elements Si = 10.77%,
Mg = 0.29% and Fe = 0.12%, see Table 1.

From a manufacturing batch of six specimens, two specimens each for the initial
state (IS), pulsed laser radiation (PW) and continuous laser radiation (CW) were used, see
Figure 1b. The area and dimension of the rectangular polished area can be taken from
Figure 1c. To reveal the differences in the treatments, as well as the process variations,
four built platforms were used. To be able to differentiate between stresses and distortions
introduced by laser polishing and the freeing of existing residual stresses from the L-PBF
process, two print jobs underwent stress-relief annealing in a furnace at 300 ◦C for 2 h
before laser polishing. Two additional built platforms with cantilevers were used for the
material investigations. The cross sections were taken from the central position of the laser
polished area. A complete sample allocation in terms of heat treatment, performed laser
polishing and usage is given in Table 2.
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Figure 1. (a) Geometry of the cantilever specimens, (b) Positioning of the specimens on the built plate
during L-PBF in the TruPrint 1000, (c) Dimension of laser polishing area and position of the taken
cross sections.

Table 2. Cantilever sample allocation, labelling and usage for the material investigations.

Built Job Heat Treatment Sample No. Laser Treatment Label Investigations

1 No
1.1; 1.4 no IS

Surface roughness,
Distortion

1.2; 1.5 pw-polished CW
1.3; 1.6 cw-polished PW

2 No
2.1; 2.4 cw-polished CW
2.2; 2.5 pw-polished PW
2.3; 2.6 no IS

3 Yes
3.1; 3.4 no IS, heat treated
3.2; 3.5 pw-polished CW, heat treated
3.3; 3.6 cw-polished PW, heat treated

4 Yes
4.1; 4.4 no IS, heat treated
4.2; 4.5 pw-polished CW, heat treated
4.3; 4.6 cw-polished PW, heat treated

5 Yes
5.1; 5.4 no IS, heat treated

Remelting depth, Micro
structure, Hardness,

Chemical composition,
Residual stress (XRD)

5.2; 5.5 pw-polished CW, heat treated
5.3; 5.6 cw-polished PW, heat treated

6 No
6.1; 6.4 no IS
6.2; 6.5 pw-polished CW
6.3; 6.6 cw-polished PW

The influence of laser polishing on the mechanical properties of L-PBF AlSi10Mg parts
was investigated on flat tensile specimens with a dimension of 12 mm width and 104 mm
length and a material thickness of 3 mm, according to DIN 50125:2016-12, see Figure 2.
There, laser polishing was executed in the tapered zone on both sides. The polishing area
was divided into two polishing sections with a field overlap of 1 mm. Polishing starts at the
middle of the area to be treated, which is close to the centre and is executed longitudinally
outwards until the area for clamping is reached.



Metals 2022, 12, 750 5 of 28

Figure 2. Geometry of the flat tensile specimens and definition of the polishing area with two sections
and a field overlap of 1 mm.

The flat tensile specimens are built up by L-PBF on a SLM280HL from SLM Solutions
in a vertical direction, see Figure 3b. The machine has a fabrication chamber with a size
of 280 × 280 × 280 mm3. A 400 W Yb-fibre laser with a beam diameter of 70 µm was
implemented. The used AlSi10Mg powder has a powder grain diameter D10 of 26.4 µm
and D90 of 71.0 µm. The average powder grain diameter D50 amounts to 43.1 µm. The
samples were built with recommended fabrication parameters from SLM Solutions and
a built platform pre-heating nominally at 200 ◦C. Printing was carried out with a slicing
thickness of 50 µm. The exposure on the outer contour was carried out with a laser power
of 350 W and scanning velocity = 600 mm/s. The core of the part is built with 350 W laser
power, 1150 mm/s scanning velocity and 170 µm hatch distance.

Figure 3. Positioning and orientation of the tensile specimens on the built plate, Sample allocation to
different post-processing states. (a) Sample allocation. (b) Position on the built plate.

The investigation on the mechanical properties was divided into six different post-
treatment states with four samples per group, see Figure 3a. Therefore, one half of the
samples were heat treated (HT) in a furnace at 300 ◦C for two hours self-cooled over
83 min to 100 ◦C afterwards to reduce the internal stress, comparable to [32–34]. Laser
polishing was executed with pulsed and continuous laser radiation with and without the
heat treatment in advance. As a reference, tensile samples in the L-PBF initial state without
laser polishing were tested.
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The specimens were pre-treated by laser cleaning directly before laser polishing, in
order to ablate the existing oxide layer and reduce the adhering powder particles from
the surface. Laser cleaning was carried out with a short pulse laser TRUMPF TruMark
5020 (TRUMPF, Ditzingen, Germany). Process parameters based on Hofele et al. [35] with
an average laser power of 20 W, a pulse duration of 70 ns, a pulse frequency of 65.5 kHz
and a beam diameter of 122 µm were applied. A hatching with a track offset of 70 µm in
combination with a scanning velocity of 3000 mm/s was used. The laser cleaning cycle was
performed three times.

2.2. Applied Laser Polishing Setup

A TRUMPF TruDisk 4002 (TRUMPF, Ditzingen, Germany) with a wavelength of
1030 nm, a max. output power of 4000 W and a gradient index fiber with a diameter of
200 µm and a numerical aperture NA of 0.1 was used. The laser polishing was conducted
in a 5-axis TRUMPF Laser Cell TLC 40 (TRUMPF, Ditzingen, Germany), see Figure 4.

Figure 4. Experimental setup of the laser polishing in a TRUMPF Laser Cell TLC 40 with a SAO 1.06/1D
scanner optics, process chamber and oxygen measurement device ORBITALSERVICE PRO2 plus.

The laser polishing was conducted in a process chamber under a purified inert gas
atmosphere with monitored residual oxygen concentration with a ORBITALSERVICE PRO2
plus (Orbitalservice GmbH, Heimbuchenthal, Germany). The deflection of the laser beam
in y-direction is achieved by one-dimensional (1D) FRAUENHOFER IWS SAO 1.06/1D
scanner optics (Fraunhofer IWS, Dresden, Germany), which offers a maximum pendulum
frequency fP of 300 Hz, see Figure 4. The focusing lens exhibits a focal length of 230 mm,
which results in a focal diameter of 450 µm. The average pendulum speed vP,avg in the focal
plane at a pendulum width x can be calculated by Equation (1)

vP,avg = 2·x· fP (1)

Figure 5 gives a schematic illustration of the one-dimensional scanner beam deflection,
in conjunction with the axis machine movement in X-direction. During laser polishing, the
vertical printed tensile specimens were mounted horizontally in a clamping device. The
X-direction is equal to the fabrication direction of the L-PBF process. Consequently, the
laser beam was oriented perpendicular to the vertically built surface.
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Figure 5. Schematic illustration of the orientation of the tensile specimens and used clamping device.
Laser beam guidance by scanner one dimensional pendulum beam deflection and superimposed
axis movement.

2.3. Used Process Parameters for Laser Polishing

Laser polishing was executed with pulsed and continuous laser radiation with one
polishing pass. During polishing, the process chamber was flooded with Argon. The
process started with a residual oxygen content below 50 ppm. Polishing was carried out
with a defocussed laser with a focal position z of 12 mm above the surface and a laser beam
diameter at the workpiece of dl = 1298 µm. The process parameters for the cantilever tests
and the tensile tests can be taken from Table 3. Basic process parameters for both laser
operation modes were taken from Hofele et al., 2021 [25]. In order to improve the polishing
result, depending on the geometric shape of the specimen, different laser powers for the
cantilevers and the tensile specimens were taken at the continuous laser operation mode.

For the optimisation of the remelting process on the edges of the specimens, individual
power curves over the scanner pendulum movement for the tensile tests and cantilever
tests were implemented, see Figure 6. The cantilever specimens are treated with a laser
power at the turning points of 1320 W with pulsed laser polishing (PW) and 640 W with
continuous laser polishing (CW). At the tensile specimens, the laser power at the turning
points was reduced to 720 W (PW) and 360 W (CW), respectively.

Figure 6. Used laser power curves over the pendulum movement, depending on the laser operation
mode and specimen geometry.
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Table 3. Used process parameters at laser polishing.

Process Parameter

Cantilever Tests Tensile Tests

Pulsed Mode
(PW)

Continuous Mode
(CW)

Pulsed Mode
(PW)

Continuous Mode
(CW)

Laser power Pl (W) 1700 - 1700
Average laser power Plavg (W) 510 1000 510 1200

Pulse duration tp (ms) 0.3 - 0.3 -
Pulse frequency f (Hz) 1000 - 1000 -
Focal position z (mm) 12

Laser beam diameter dl (µm) 1298
Laser beam intensity Iavg (W/mm2) 1285 756 1285 907

Pendulum frequency fscan (Hz) 10 50 10 50
Average pulse overlap POavg (%) 84.6 - 84.6 -

Axis velocity vf (mm/min) 40 200 40 200
Track overlap TO (%) 94.9 93.7 94.9 93.7

Energy density ED (J/mm2) 76.5 30 76.5 36
Process gas Argon

Oxygen content (ppm) 50

2.4. Measurement Devices and Evaluation Methods

The surface roughness Ra is measured tactilely by means of MAHR MarSurf M400
perthometer (Mahr GmbH, Göttingen, Germany). According to EN ISO 4288:1997 [36], for
the initial surface with Ra >> 2 µm, a cut-off wavelength of 2500 µm is used, whereas for
the polished surfaces with Ra < 2 µm the cut-off wavelength is set to 800 µm. The linear
measurement takes place on the tensile specimens in a loading direction (in fabrication
direction). The roughness of the cantilevers is analysed lengthways (in x-direction).

The chemical composition of the printed parts is analysed by means of an elemental
emission spectrometer of type BRUKER Q4 Tasman (Bruker, Billerica, MA, USA).

The surface behaviour and the failure plane is analysed using an optical microscope
of type CARL ZEISS Axio Zoom V16 (Carl Zeiss AG, Jena, Germany) with a 50-fold
magnification. This analysis is complemented by scanning electron microscopy (SEM) and
energy dispersive X-ray spectroscopy (EDX) on a CARL ZEISS Sigma 300VP microscope.
The remelting zone geometry and relative porosity is analysed on polished and etched
cross sections with a 200-fold magnification by use of a CARL ZEISS Vario Axio Imager.Z2
Vario. The porosity is measured via threshold-based image analysis using the ZEISS Zen
core software (3.2).

The micro hardness is analysed by means of a STRUERS Durascan 70 G5 with Vickers
(EMCO-TEST Prüfmaschinen GmbH, Kuchl, Austria), according to DIN EN 6507-1 [37],
with a load of 0.1 N (HV 0.1), in order to realize hardness indentations within the small
remelting zone. Thereby, it should be noted that the measured hardness values can be
increased compared to hardness tests determined with a higher test load.

The height profile and the distortion of the cantilever was measured tactilely with
a CARL ZEISS DuraMax coordinate measuring device with a measurement accuracy of
2.4 µm before laser polishing, after laser treatment and cutting of the support structure.
The tactile measurement was carried out in an interval of 1 mm over a length of 56 mm,
starting at the start position of L = 2 mm up to the end position of L = 58 mm, see Figure 7.
Two parallel measuring lines were created on each cantilever and averaged afterwards.
After laser processing, the cantilevers were separated from the substrate plate at their
support structures with a water-cooled cutting machine (STRUERS Discotom-100, Struers,
Willich, Germany) and tactilely measured again.

A strain-controlled Schenck RSA 100 universal tensile testing machine (Schenck, Ger-
many) with a maximum load of 100 kN, equipped with a corresponding load cell was
used to carry out the tensile tests. The tensile tests were carried out with a test speed of
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5 mm/min based on DIN EN ISO 6892-1 [38]. In addition, the strain of the sample was
measured with a built-in extensometer with a measuring length of 2 mm.

Figure 7. Schematic illustration of the measuring strategy of the surface profile height and the measur-
ing position and orientation of the internal stress by X-ray diffraction on the used cantilever geometry.

The residual stress of the cantilevers in the initial and annealed state was analysed
non-destructively, employing X-ray diffraction (XRD) according to DIN EN 15305. Measure-
ments were conducted on a Stresstech Xstress 3000 G2R (Stresstech Ltd., Jyväskylä, Finland)
equipped with a Cr-tube (operated at 30 kV, 8 mA), a 3 mm pinhole collimator (9.9 mm away
from the cantilever surface), and two position-sensitive detectors with V-filters mounted
in front of these. The x- and y-centre of the supported section on the top surface of the
respective cantilever coincided with the goniometer centre and, hence, represented the
measuring position, see Figure 6. The instrument operates in modified χ-geometry, where
χ describes the angle between the normal to the sample surface and the normal to the
diffracting lattice plane. It was set up to record the {222}-fcc-peak for various χ-angles
between −45◦ and 45◦ in a specific tilt-plane, which is normal to the cantilever surface and
contains the goniometer centre. The peak position was subsequently determined by fitting
pseudo-voigt-functions (applied separately to the Kα,1 and Kα,2 component) to the records.
Finally, an evaluation of these position values with a simplified triaxial model (σ33 = 0),
relying on the diffraction elastic constants E = 70, 600 MPa and ν = 0.34499, yielded the
normal and shear residual stress values just below the sample surface in the direction of
the tilt plane. Repeated measurements at orientation angles ϕ of 0◦, 30◦, 60◦, 90◦ and 150◦

between the tilt-plane and the traverse axis of the cantilever (y-axis) access residual stress
values in the respective direction.

3. Results and Discussion
3.1. Influence of Laser Polishing on the Internal Stress and Distortion

The investigations on the cantilevers were carried out according to Figure 1 at a L-PBF
built platform with two unprocessed and two polished samples in each case with pulsed
and continuous laser radiation, see Figure 8. Polishing with pulsed laser radiation revealed
a homogeneously treated surface. CW laser polishing exhibits, after polishing, still visible
surface structures on the surface, see Figure 8. When comparing the surface appearance in
contrast to the laser cleaned unpolished area, pulsed mode polishing results in a darker
surface, which was already noticed elsewhere [25].
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Figure 8. Built platform in the initial state (IS) and polished cantilevers with pulsed laser radiation
(PW) and continuous laser radiation (CW).

The cantilever specimens exhibit an average roughness Ra in the L-PBF initial state
of Raavg = 8.68 µm. Laser polishing with continuous laser radiation (CW) can reduce
it to Raavg = 2.56 µm. With pulsed laser radiation an average roughness reduction to
Raavg = 0.87 µm was reached, see Table 4.

Table 4. Roughness improvement by laser polishing with continuous (CW) and pulsed laser radia-
tion (PW).

Roughness
Initial L-PBF State CW Polished PW Polished

Ra Ra Percental Reduction Ra Percental Reduction

Average 8.68 µm 2.56 µm 70.5% 0.87 µm 90.0%
Min 6.58 µm 1.28 µm 0.60 µm
Max 14.23 µm 4.74 µm 1.13 µm

In comparison to laser polishing of vertical built surfaces, where a roughness reduction
rate of 91.6% with pulsed mode polishing and 95.8% with CW-polishing is reached on
2 mm thick samples [25], the roughness reduction ability on the top surface with a different
initial microstructure was reduced. At pulsed mode polishing (PW), an average roughness
reduction rate of 90.0% is achieved. With continuous laser radiation (CW), set up with
a laser power of 1000 W, the average roughness reduction rate decreased to 70.5%.

3.1.1. Analyzation of the Remelting Zone

The resulting remelting zone, analysed by cross sections at the centre of the polishing
length, shows considerable differences between the laser operation modes, see Figure 9.
With pulsed laser radiation, a material accumulation in combination with a rounding of the
edges can be observed. With CW laser polishing, a flat surface profile with an increased
melt pool depth at the turning points of the laser beam deflection can be seen. Starting
from the maximum remelting depth, the remelting depth decreases continuously up to the
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component edge. The remelting zone at the analysed cross sections exhibits sporadic pores.
The porosity measurement revealed for pulsed mode polishing (PW) a relative porosity of
2.2% and, with continuous laser radiation (CW), a porosity of the remelting zone of 1.3% in
the considered cutting plane.

6.41S 

�y

Figure 9. Etched cross sections of the cantilevers in y-direction.

The remelting depth s, measured according to the schematic illustration in Figure 10,
is characterized with nine measuring points with a measuring point distance of 1 mm.
When comparing the average remelting depth, polishing with pulsed laser radiation (PW)
results in a considerably deeper remelting depth. Thus, at pulsed mode polishing, the
remelting depth is in the range of 132–237 µm. CW laser polishing results in a remelting
depth of 101–218 µm. Furthermore, heat treatment in a furnace before laser polishing has
no significant influence on the remelting process.

Figure 10. Remelting depth, measured at the cross section at the centre of the cantilever.
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3.1.2. Microstructure and Hardness

The microstructure of the hypoeutectic aluminium-silicon alloy (AlSi10Mg) at the etched
cross sections of the initial L-PBF parts (IS), the resulting changes of the material structure due to
heat treatment (IS, heat treated), and the resulting microstructure in the remolten surface layer
by polishing with pulsed laser radiation (PW) and continuous laser radiation (CW) are given in
Figure 11. In the initial state, the component consists of the typical superimposed weld tracks
of the L-PBF process, see Figure 11a. Due to the extremely fast scanning speed of 1400 mm/s at
L-PBF, a fine microstructure with very small dendrites of the α-phase (bright coloured) occurs.
At the borders of the melting zone of each weld seam due to remelting between the laser beam
paths and layers, a zone with slightly increased microstructures of primary Al-phase exists with
a width of 2–8 µm, comparable to [39]. Annealing at 300 ◦C for 2 h causes a reduction in the
visible transition zones between the welding paths, see Figure 11b. There, the differences in the
microstructure between the aluminium α-phase and eutectic phase are equalised by diffusive
dissolution, which was also observed and discussed at [39,40]. Laser polishing with both
laser operation modes (PW and CW) results in significant structural change. The re-melting
iterations during laser polishing with the used track overlaps of 93.7% (CW) and 94.9% (PW),
respectively, leads to a coarsening of the material structure, which tends to from a structure
known from cast parts. The dendritic structures of the α-phase are predominantly vertically
aligned due to their growth from the melting zone bottom, where the solidification starts from
the bottom to the top. For pulsed mode polishing, and as the presented cross section is almost
perpendicular to the pendulum movement, the remelting zones of the overlapping laser pulses
become visible (marked in a red dotted line of Figure 11c). In addition to the L-PBF scanning
paths at the border of each single remelting zone, a coarsened α-phase can also be observed.
At laser polishing with continuous laser radiation, a surface parallel layered remelting zone
exists due to multiple remeltings caused by the track overlap of 93.7%, superimposed with
the existing gaussian-like laser beam intensity profile, see Figure 11f. Polishing with both laser
operation modes results in the formation of scattered pores with dimensions below 20 µm.

A more detailed view of the existing microstructures is given by the SEM images of
the etched cross sections in Figure 12. While at the L-PBF initial state structures of the
aluminium α-phase are in the dimension of sub microns (dark grey areas at the bottom
of Figure 12b,d), a considerably larger microstructure of the α-phase and eutectic phase
(bright structures), which exists at the remelting zone of laser polishing. With pulsed mode
polishing (PW), at the transition zone between the remelting area of each pulse, a partly
melted zone and heat affected zone exists, which causes a changed microstructure, visible
in the outlined area 2 in Figure 12a. There the eutectic phase is partly changed from lamellar
to a predominant spherical shape. At continuous mode polishing, similar transition zones,
see, e.g., area 3 in Figure 12c, are created due to the iterative remelting caused by the used
track overlap of 93.7%. With both laser operation modes, a closed bright surface layer is
visible, which may consist of Silicon or an oxide layer by reaction of the melt pool with the
residual oxygen in the process chamber, see the marker labelled with number 4 in Figure 12.

The EBSD analysis shows that in the L-PBF initial state, the individual weld tracks
consist predominantly of elongated grains in the dimension of the major axis of 15–40 µm,
which are preferentially oriented in a built direction, see Figure 13. Sporadic epitaxial grain
grown over several weld tracks can be seen at the L-PBF base material, with grain sizes
in the major axis of up to 110 µm (Figure 13 position 3) and into the remelting zone of the
polishing process, see Figure 13 position 4. At the edge of the individual overlapping weld
tracks, a finer structure with equiaxed grains smaller than 10 µm exists due to the heat
affection by subsequently added and adjacent weld tracks. The same effect can be seen in
the transition area between the laser-polished remelting zone and the L-PBF base material.
Within the polished remelting zone, the shape of the grains changes towards the surface
from columnar to equiaxed. Directly beneath the surface, small grains with dimensions
below 15 µm are created. Overall, fundamental differences in the formed grains between
the used laser operation modes CW (Figure 13a), where a constant melt pool is created, and
PW (Figure 13b), with a pulsed discontinuous energy input, do not exist.
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Figure 11. Microstructure at the cross section in y-direction, etched with Murakami, (a) initial state,
(b) initial state, heat treated, (c) polished with pulsed laser radiation, (d) heat treated and polished
with pulsed laser radiation, (e) polished with continuous laser radiation, (f) heat treated and polished
with continuous laser radiation.

Figure 12. SE-SEM images at 2500-fold magnification of the surface near top area and border of
the remelting zone polished with pulsed laser radiation (PW) (a,b) and continuous laser radiation
(CW) (c,d).
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Figure 13. EBSD inverse pole figure map of the remelting zone after laser polishing without heat
treatment: (a) CW-polished; (b) PW polished.

The influence of laser polishing on the material hardness, analysed in a vertical
direction with a measurement point distance of 0.1 mm through the material thickness
of 3 mm, is given in Figure 14. At a depth of 0.1 mm below the surface, within the
remelting zone (RZ), the material hardness amounts to 102 HV 0.1 with CW-polishing
and 106 HV 0.1 with PW-polishing, which is a hardness reduction of 40–44 HV 0.1, in
comparison to the average L-PBF state, and tends to reflect the average hardness after
heat treatment of 96 HV 0.1. Underneath the remelting zone within the heat affected
zone, a hardness reduction up to a depth of 0.4 mm with PW-polishing and 0.6 mm with
CW-polishing occurs.

Figure 14. Micro hardness according to Vickers HV 0.1 over the material thickness after laser
polishing, measured at the cross section at half of the polishing length.
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When focusing on the surface near the area measured in a measuring line 0.1 mm
below the surface, the average micro hardness of the initial L-PBF state (as-built) amounts
to 146 HV 0.1, see Table 5. Therefore, this lies above the collected hardness variations of
84–134 HV 1, depending on the used scanning parameter, orientation of the parts on the
built platform, and pre-heating of the built platform given by Sert et al. [1]. Within the
remelting zone after laser polishing, an average hardness reduction of 42–44 HV 0.1 can
be observed. Between the different polishing strategies with pulsed and continuous laser
radiation, no significant differences can be observed. Annealing (300 ◦C, 2 h) results in
a hardness reduction of 50 HV 0.1 to an average value of 96 HV 0.1, which range on the
same hardness level as presented by [32], where 93.1 HV 1 was measured after identic
annealing conditions starting from 119 HV 1 (as built). If laser polishing is executed after
annealing (heat treated state) a hardness increase within the remelting zone to an average
hardness of 116 HV 0.1 (CW-polished) and 115 HV 0.1 (PW-polished) occurs, which is
considerably higher compared to laser polishing the initial L-PBF state (as-built).

Table 5. Material hardness according to Vickers HV 0.1, measured 0.1 mm below the surface at the
initial state and heat-treated state, respectively, at the centre of the polishing zone.

State Average Min Max

Initial L-PBF state (as built) 145.8 142.0 150.0
IS, heat treated 96.4 94.3 99.4
CW polished 102.0 95.9 108.0

CW polished, heat treated 116.0 109.0 124.0
PW-polished 103.8 97.8 115.0

PW polished, heat treated 114.9 111.0 118.0

For a qualitative comparison of the chemical composition of the remelting zone and
the initial L-PBF material, areal measurements using EDX at the cross section are carried
out. Through laser polishing with both laser operation modes, the average chemical com-
position between the surface near the remelting zone and the L-PBF initial microstructure
is unchanged, see Table 6. Between both operation modes, slight differences regarding the
silicon content can be measured.

Table 6. Chemical composition of the remelting zone in comparison to the LPBF-initial state, measured
by EDX.

Average Weight % LPBF Initial State Remelting Zone CW
Polished

Remelting Zone PW
Polished

Al 88.2–88.6 87.8 88.9
Si 10.0–10.1 10.3 9.9

Mg 1.4 1.4 1.3
Others 0.0–0.3 0.6 0.0

An EDX line scan from the polished surface through the remelting zone and the transi-
tion zone into the initial L-PBF material was performed in order to analyse homogeneity
and find segregation, see Figure 15. Based on the three main alloying elements Al, Si, and
Mg, the measurements reveal a homogeneous material composition throughout the sample,
including the remelting zone (RZ) and the initial L-PBF core for both laser operation modes.
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Figure 15. Chemical composition in vertical direction from the surface through the remelting zone
(RZ) and L-PBF initial state. (a) PW, (b) CW.

3.1.3. Analyzation of Residual Stresses and Distortions

In the initial L-PBF state, the cantilever geometry exhibits high residual stresses in
tension between 118 and 162 MPa (see Figure 16) and negligible ones in shear of 3.5–0.1 MPa
for all the measured directions parallel to and just below the sample surface. Generally,
the directional dependence of these stresses is not pronounced. The highest tensile stress
value is found to be on an ϕ-angle of 60◦ in relation to the transversal direction of the
cantilever. The principal stresses are calculated to be σ1 = 162 MPa and σ2 = 118 MPa. In
contrast to the initial state, specimens after stress relief treatment/annealing at 300 ◦C for
2 h, while still attached to build the platform, exhibit almost no residual stresses. Their
measured residual tensions are in the range of 0.7–9.9 MPa, which is mostly within the
precision [−6 MPa, 6 MPa] interval, tolerated as a stress-free state during calibration. The
accuracy and precision of all these measurements could, additionally, be affected by minor
violations of the fundamental assumptions applied for the residual stress calculations
regarding the roughness, microstructure, and finite geometry of the samples. Hence, the
presented residual stress values are qualitative in nature.

Figure 16. Residual tensile stress depending on the orientation ϕ, and principal stresses at the initial
L-PBF state and heat-treated state, measured by XRD.
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For cantilevers in the polished state, regardless of the laser operation mode, the XRD
peak intensities varied heavily with the applied χ-angles. This could indicate the presence
of a strong texture and, hence, a major violation of the fundamental assumptions. Stress
values for these states are therefore not presented here.

After disjoining the support structures between the cantilever and the built platform,
the relieve and redistribution of residual stresses within the cantilever results in distortion
and a bending upwards motion. The widening of the kerf and the bending of the cantilevers
at the front side is shown in Figure 17. Without heat treatment, the specimens in the initial
state exhibit the highest distortion. With pulsed laser polishing (PW), the bending is visibly
reduced. CW laser polishing results in further reduction in the distortion. The cantilevers
on the built platform, after heat treatment/annealing, exhibit a strongly reduced distortion
in the initial state (IS) without laser polishing. Laser polishing afterwards causes increased
bending in comparison to the annealed state without laser polishing, see Figure 17b.

Figure 17. Distortion of the cantilevers depending on the laser polishing process, (a) without prior
heat treatment, (b) with prior heat treatment.

The displacement as a function of the length of the cantilever, given by the differences
in the height profile of the surface after post processing of the cantilevers by annealing, and
laser polishing before and after cutting of the support structures, is shown in Figure 18.

The displacement due to residual stresses, introduced by the L-PBF 3D printing
process, can be decreased at the frontside of the cantilever (measuring length = 58 mm)
from 1.64 mm to 0.26 mm by annealing in a furnace at 300 ◦C for two hours. Laser polishing
also leads to a reduced maximum displacement of 0.42 mm with CW-polishing and 0.89
mm at the pulsed mode (PW). Thus, the remelting process of laser polishing with its large
melt pool with a laser beam diameter dl of 1298 µm compared to the beam diameter of 55
µm L-PBF machine (TruPrint 1000) and the widespread energy input due to high pulse
and track overlaps results in a reduction in residual stresses. The laser polishing process at
itself introduces new residual stresses in the form of tensile stresses in the treated surface
layer due to the areal heating and remelting of the surface layer and the solidification and
cooling shrinkage. Therefore, laser polishing of the annealed state (heat treated) results
in an increasing maximum displacement of 0.70 mm with CW-laser polishing and 1.08
mm with PW-laser polishing. The differences between the laser operation modes can be
explained with the increased remelting depth at PW laser polishing, which results in an
increased shrinkage zone. Full results are given in Table A1 in Appendix A.



Metals 2022, 12, 750 18 of 28

Figure 18. Measured average distortion of four samples, depending on the type of post treatment.

3.2. Mechanical Properties Affected by Laser Polishing

The vertical printed tensile specimens exhibit a varying initial roughness Ra of
8.7–15.0 µm, measured in a fabrication direction at the tapered test area, Figure 19. Contin-
uous mode laser polishing (CW) can reduce the roughness Ra to 2.1–2.8 µm, respectively,
to Ra = 1.4–2.4 µm at the annealed specimens. Pulsed mode laser polishing (PW) achieves
lower roughness values of 0.63–0.78 µm and 0.59–0.67 µm in the annealed state.

Figure 19. Initial and achieved surface roughness Ra by laser polishing of the tensile specimens,
measured in fabrication direction.
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3.2.1. Analyzation of the Remelting Zone

At the centre of the treated area, which is equal to the starting position of the laser
treatment, pulsed mode laser polishing of the tensile specimens results in a deeper remelting
zone compared to CW-polishing, in combination with pronounced edge rounding of the
specimens due to the increased melt pool, see Figure 20. With continuous laser radiation,
the surface exhibits several adhering material accumulations, which may be a result of
material ejection out of the melt pool.

Figure 20. Etched cross section parallel to the y-z-plane of the polished tensile specimens at the centre
of the tensile specimens near to the starting position of laser polishing.

The relative porosity within the remelting zone at the starting position, measured at
the cross sections of Figure 20, amounts with continuous laser radiation (CW) 2.77% and
with pulsed laser radiation (PW) 2.02%. The pore size, given by the equivalent pore size
diameter, with CW polishing is in the range of 0.6–19.9 µm and 0.6–30.3 µm, respectively,
with PW polishing, see Table 7.

Table 7. Porosity at starting position within the remelting zone of the laser polished tensile specimens.

Laser Operation
Mode

Relative
Porosity (%)

Equivalent Pore Circle Diameter (µm)

Average Min Max

CW 2.77 3.9 0.6 19.9
PW 2.02 4.1 0.6 30.3

With ongoing laser polishing, the remelting depth s, measured through the centre of
the specimens in the fabrication direction and polishing direction, respectively, strongly
increases, see Figure 21a. Thus, the remelting depth s increases with increasing polishing
length l within the polishing segment at CW-laser polishing from s = 81 to 296 µm. At PW
laser polishing, the remelting depth s increases from 98 to 165 µm.

Furthermore, with increasing remelting depth s a rising relative porosity can be
detected, measured in the polishing direction, see Figure 22. Especially with CW polishing,
large pores up to a diameter of 156 µm are created in the remelting zone (Figure 22a).
Overall, the average relative porosity amounts to 8.7% with continuous laser radiation and
3.5% with pulsed laser radiation.

In contrast to the microstructure at the starting position (Figure 20), especially with
continuous laser radiation, an elementary change into a cast-like microstructure can be
seen. With the ongoing laser polishing process (with increasing polishing length l) due
to thermal through heating, accompanied with a decreasing cooling rate, an increasing
melt pool size and remelting depth occurs. With reaching a melt pool solidification time
greater than the period of one pendulum movement of the fast-scanning axis, the melt
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pool, created by the polishing process, changes from a discontinuous melt bath over the
fast scanner pendulum axis into a continuous melt bath over the whole pendulum width
and an ongoing solidification front behind the axis movement in the x-direction.

Figure 21. Resulting remelting depth s on the tensile specimens depending on the laser operation
mode, (a) remelting depth in polishing direction, (b) remelting depth over polishing width at the
starting position.

Figure 22. Longitudinal cutting of the remelting zone at position with the highest remelting depth,
(a) CW-polishing at l = 15–16 mm, (b) PW-polishing at l = 12 mm.

The material hardness is measured within a distance from the surface between 0.1 and
1.5 mm and a measuring point spacing of 0.1 mm. The hardness within the tensile specimens
at the L-PBF initial state and annealed state is almost constant over the material thickness,
see Figure 23. The average hardness in the initial L-PBF state amounts to 117 HV 0.1, which
is considerably lower compared to the printed cantilevers due to platform heating of 200 ◦C.
In the annealed state, the average hardness amounts to 81.5 HV 0.1. With laser polishing,
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the average material hardness, measured at the starting point of the process (close to the
centre of the tensile specimen), amounts to 103.9 HV 0.1 with continuous laser radiation
and 102.9 HV 0.1 polished with pulsed laser radiation, respectively. At the position with
the highest remelting depth s, the average hardness further decreases to 85.5 HV 0.1 (CW)
and 84.8 HV 0.1 (PW) compared to the starting area of the polishing process. So, it is
likely to be that due to thermal heating effects, the heat affected zone below the remelting
zone increases and causes a decrease in the material hardness with the increasing melt
pool depth.

Figure 23. (a) Hardness distribution over the thickness of the tensile specimens at the L-PBF state,
heat treated state and laser polishing depending at starting position and position with the highest
remelting depth smax, (b) schematic description of the measuring strategy.

3.2.2. Tensile Strength and Fracture Strain

The resulting load elongation curves of the tensile tests are given in Figure 24. The
highest tensile strength Rm of 337–355 N/mm2 is achieved with the initial L-PBF state at
ultimate elongations between 3.4 and 4.5%. Heat stress relief treatment results in a reduction
in tensile strength in the range of 241–243 µm, but in an almost three-times higher elongation
at break AB of 11.5–13.4%. A strong decrease in the average tensile strength Rm to values
of 252 N/mm2 and 271 N/mm2 for CW and PW, respectively, is also induced by laser
polishing. While PW laser polishing results in an almost doubled ultimate elongation,
samples after CW laser polishing have only slightly improved ductility. With an additional
heat treatment before laser polishing, a further reduction in average yield strength Rp0.2

and tensile strength Rm to values of 247 N/mm2 for CW laser polishing and 249 N/mm2

for PW laser polishing is yielded, but in doing so, the maximum elongation at break further
increases, see Figure 24. A full list of the specific values is given in Table A2 in Appendix A.
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Figure 24. Stress elongation curves depending on the post-treatment of the tensile specimens.

While the tensile specimens in the initial state (IS) exhibit no necking accompanied
with a reduction in the tension before fracture, annealing and laser polishing results in
a visible material flow by necking in the surrounding area of the fracture, see Figure 25.
Without laser polishing, the position of break between the specimens with and without
(IS) heat treatment (IS, heat treated) strongly varies between the specimens. The polished
samples exhibit similar breaking positions around the area, with the greatest remelting
depth independent from the applied heat treatment.

Figure 25. Tensile specimens after tensile test.
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The fracture surface of the tensile specimens shows similar fracture characteristics,
with some sporadic pores at the core of the parts, see Figure 26. The outer melting contour
of the L-PBF process at the initial state (IS) and heat treated state (IS, heat treated) is highly
dense, see Figure 26a,b. The deep sections of the remelting zone, created by the laser
polishing process, exhibit increased porosity and pore diameters, which are partly larger
than 100 µm, compared to measurements at the starting position of polishing (Table 7) and
the L-PBF core of the specimen. This increase in surface near porosity leads to a reduction
in the cross-sectional area. In addition, the elongation at break is particularly reduced by
large pores due to the acting notch stresses. The measured relative porosity in the fracture
plain is given in Table 8. In the initial state the relative porosity of the complete fracture
plane amounts 0.21% and 0.45% prior and post heat treatment, respectively. CW polishing
causes an increased porosity of 1.67% and 1.71% with prior heat treatment. Pulsed mode
polishing results in a porosity of 0.70–0.81%.

Figure 26. Fracture plain of the tensile specimens at the L-PBF state (a), with heat treatment (b) laser
polished (c,d) and polished after heat treatment (e,f).

The relative reduction in the fracture area compared to the nominal cross section area
of 24 mm2 amounts to 12.35% for the IS specimens and up to 24.2% for the heat-treated
state without laser polishing. This relative reduction varies between 18.2 and 21.4% after
polishing and, thus, ranges between the initial state (IS) and the heat-treated state (IS,
heat treated).
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Table 8. Cross sectional area, relative porosity and relative reduction of the nominal cross section
area depending on the sample state: L-PBF initial state (IS), heat treated HT, CW polished (CW), heat
treated and CW polished (HT, CW), PW polished and heat treated and PW polished (HT, PW).

Sample
Category Sample No. Cross Sectional

Break Area (mm2)
Relative

Porosity (%)
Area of Fracture

Plane (mm2)
Relative Reduction of

Nominal Cross Section Area (%)

IS 3 21.080 0.21 21.035 12.35%
IS, HT 6 18.273 0.45 18.191 24.20%

CW 1 19.959 1.67 19.626 18.23%
HT, CW 4 19.599 1.71 19.264 19.73%

PW 2 19.432 0.81 19.275 19.69%
HT, PW 5 19.021 0.79 18.871 21.37%

3.3. Comparison and Classification of Laser Polishing as a Surface Treatment Method for AM Parts

Depending on the used process parameters and powder, built platform heating,
built orientation and post heat treatment, a wide variety of the mechanical material
properties can be reached in L-PBF parts, comprising AlSi10Mg alloys [1]. According
to Sert et al., values presented in the literature for the yield strength Rp0.2, manufac-
tured without built platform pre-heating, range between 206 and 319 MPa and the tensile
strength Rm between 325 and 477 MPa [1]. The used vertically printed specimens from
this study in the initial state (as built) achieve average strength and elongation values of
Rp0.2 = 192 N/mm2, RM = 346 N/mm2, AB = 3.9% and are, hence, lower than comparative
ones, see Figure 27 [32–34]. After processing with the identic heat treatment (300 ◦C, 2 h),
the yield and tensile strength with Rp0.2 = 125 N/mm2, RM = 242 N/mm2 is still below that
stated in the literature, while the ultimate elongation AB of 12.6% ranges in the middle.

Figure 27. Mechanical properties of L-PBF AlSi10Mg between the L-PBF state (IS, as built), after heat
treatment of 300 ◦C, 2 h (IS, heat treated) and after laser polishing the surface with continuous and
pulsed laser radiation on the initial state (CW, PW) and after previous heat treatment (HT, CW; HT,
PW) in comparison to Zhang [34], Uzan [32] and Dai [33].

Due to the physical properties of aluminium alloys with their comparatively high
thermal conductivity of 130–150 W/m·K [41], thermal based surface treatment techniques
have a high process energy loss into the bulk material, which results in a deep heat affected
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zone and global heating of the part. Thus, laser polishing as a thermal surface post
processing technique requires a high energy density ED of 30–76 J/mm2. Due to this,
laser polishing not only acts as a surface smoothing process, but also as a heat treatment.
On the tensile specimens examined here with a material thickness of 3 mm, a hardness
reduction over the complete cross section after polishing from both sides was observed,
which was, in its amount, comparable to the reductions achieved by conventional stress
relief heat treatment in a furnace. That is why the yield and tensile strength of the parts
after laser polishing are on the same level as specimens after a stress relief heat treatment,
see Figure 27. Furthermore, it is noteworthy that polishing the top layers of L-PBF parts
causes a considerable reduction in residual tensions close to the surface. The ultimate
elongation at break can be enhanced even more with a heat treatment prior to polishing,
irrespective of the laser operation mode. Typically known from the literature, a reduction
in the surface roughness results in an increase in ultimate elongation due to a reduction
in notch stresses and crack initiation sites. However, this is not applicable here as the
state with a heat treatment prior to laser polishing with PW (and CW) reaches only 76%
(and 62%, respectively) of the ultimate elongation AB determined on reference samples,
which were also heat treated but still had the initial L-PBF roughness. This suggests that
the insertion of the increasing surface near porosity superimposes the effect of surface
smoothing regarding the mechanical performance.

4. Conclusions

In this study, the material influence by laser polishing of additive manufactured
AlSi10Mg is investigated. The dimensions and porosity of the resulting remelting zone, as
well as the microstructure, chemical composition and hardness, were analysed. Addition-
ally, the residual stresses induced by the L-PBF process and the influence on these by post
processing through laser polishing are examined on printed specimens in a cantilever ge-
ometry. Furthermore, the influences of a reduced surface roughness due to laser polishing,
which is accompanied by microstructural changes in the remelting zone, on the mechanical
properties are analysed by means of tensile testing. The following correlations and findings
can be summarised:

1. The chemical composition of the remelting zone is unaltered and homogeneous
compared to the untreated specimens and the bulk material.

2. Due to larger melt pools and slower cooling rates, the remelting zone exhibits a con-
siderably coarser eutectic microstructure in comparison to the L-PBF initial state.

3. Due to high pulse and track overlaps, which causes recurrent melting, a layered
microstructure within the remelting zone occurs that is distinct from the one at the
transition and heat affected zones close to the remelting borders.

4. Laser polishing causes a change from predominantly lamellar grains to uniform grains
and a changed orientation independent of the laser operation modes. The average
grain size in the remelting zone is comparable to the L-PBF base material. With both
laser operation modes, an area at the border of the remelting zone with a smaller
grain size of less than 10 µm, comparable to the remelting borders of the L-PBF weld
tracks, is formed. Sporadic epitaxial grain growth can be seen between the initial
L-PBF material and the remelting zone.

5. The material hardness of 146 HV 0.1 measured on samples in the initial L-PBF state,
manufactured without pre-heating of the built platform, is reduced by 28.8–30.1%
within the surface near the remelting zone. Polishing after annealing increases hardness
to values above the ones measured in the remelting zone without any heat treatment.

6. Within the heat affected zone underneath the remelting zone, a zone with reduced
hardness values extends four to six times of the remelting depth.

7. Starting from the initial L-PBF state with a high internal stress of 118–162 MPa, laser
polishing results in a reduction in the residual stresses and, thus, the resulting distor-
tions. With a max. displacement of 0.89 mm, polished with pulsed laser radiation,
and 0.42 mm with continuous laser radiation, the resulting deformation is reduced by
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a factor of 2–4 compared to the L-PBF state, exhibiting 1.64 mm. In turn, polishing
after stress relief treatment (with residual internal stress below 10 MPa close to the
surface) introduces residual stresses and, hence, distortions due to the shrinkage of
the remelting zone.

8. Yield strength after laser polishing is Rp0.2 = 131–138 N/mm2 and tensile strength Rm

is 252–271 N/mm2. Hence, laser polishing results in comparable values to annealing
of the L-PBF initial state.

9. Starting from the L-PBF initial state, the ultimate elongation AB is increased by means
of laser polishing from 3.9% to 4.8–7.4%. Due to the introduction of surface near
a relative porosity of 3.5% (PW) and 8.7% (CW) within the remelting zone, polishing
after previous heat treatment causes a reduction in the ultimate elongation from 12.6%
to 7.9% after CW polishing and 9.6% after PW polishing.

10. The mechanical performance after laser polishing is mainly influenced by the hard-
ness reduction over the complete profile, the increased surface near porosity, and
the coarsening of the microstructure. Improvements in the surface roughness by
laser polishing and, hence, a decrease in notch stress originating at the surface have
subordinate influences at parts with a material thickness of less than 3 mm.
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Appendix A

Table A1. Maximum distortion at the front side of the cantilevers (measuring length = 58 mm)
depending on the type of post-treatment.

Maximum Distortion at the
Frontside (mm)

Average of
4 Specimens Minimum Maximum

IS 1.64 1.59 1.69
IS, heat treated 0.26 0.22 0.30

CW 0.42 0.03 0.77
CW, heat treated 0.70 0.52 0.90

PW 0.89 0.66 1.12
PW, heat treated 1.08 0.75 1.44
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Table A2. Mechanical properties of the tensile specimens depending on the post-treatment.

State
Yield Strength Rp 0.2 (N/mm2) Tensile Strength Rm (N/mm2) Ultimate Elongation AB (%)

Average Min Max Average Min Max Average Min Max

IS 192 188 195 346 337 355 3.9 3.4 4.5
IS, heat treated 125 122 127 242 241 243 12.6 11.5 13.4

CW 131 127 134 252 248 256 4.8 3.7 5.4
CW, heat treated 119 117 121 247 242 250 7.9 6.5 8.5

PW 138 134 144 271 263 281 7.4 6.8 8.0
PW, heat treated 123 121 124 249 244 252 9.6 8.7 10.1
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