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The call for evidence-based practice in education emphasizes the need for research

to provide evidence for particular fields of educational practice. With this systematic

literature reviewwe summarize and analyze aggregated effectiveness information from 41

meta-analyses published between 2004 and 2019 to inform evidence-based practice in a

particular field. In line with target specifications in education that are provided for a certain

school subject and educational level, we developed and adopted a selection heuristic for

filtering aggregated effect sizes specific to both science and mathematics education and

the secondary student population. The results include 78 context-specific aggregated

effect sizes based on data from over one million students. The findings encompass a

multitude of different teaching strategies, most of which offer a measurable advantage to

alternatives. Findings demonstrate that context-specific effect size information may often

differ from more general effect size information on teaching effectiveness and adherence

to quality standards varies in sampled meta-analyses. Thus, although meta-analytic

research has strongly developed over the last few years, providing context-specific and

high-quality evidence still needs to be a focus in the field of secondary mathematics and

science teaching and beyond.

Keywords: meta-analyses, systematic review, evidence-based/evidence-informed practice, Science Technology

Engineering Mathematics (STEM), teaching effectiveness

INTRODUCTION

Educational science is a comparably young and dynamic research field. Despite ongoing discussions
on the merits and demerits of research in this field, it is remarkable how research activities and
applied methodologies have developed over the last few decades (Hedges, 2018). For example,
recent years have witnessed a surge of empirical studies on teaching and its associations with
learning (Seidel and Shavelson, 2007; Schneider and Preckel, 2017). Simultaneously, there is a
greater demand from policymakers that educational policy and practicemust be guided by evidence
of effectiveness (e.g., No Child Left Behind Act, 2002; Every Student Succeeds Act, 2015).
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Due to these developments, it is increasingly imperative
for educators as well as policymakers to obtain reliable and
accessible information of “what works” in education. Yet, given
the proliferation of educational research output and potential
evidence that stems from diverse disciplines and methodologies,
this is a challenging task. In order to address this challenge
and to render the best available evidence usable as a resource,
the question of how these research findings can be selected and
organized in a specific evidence base is paramount.

Through this systematic review, we address the need
for research to provide evidence for evidence-based practice
with regard to particular fields of educational practice. The
determination of such an evidence base is a multiple step
process. In a first step we identify secondary mathematics and
science teaching as a particular field of educational practice.
Here, we highlight the fact, that goals in teaching at schools are
provided on the level of a certain subject and educational level
(e.g., Common Core State Standards; Next Generation Science
Standards), and conclude that effectiveness information that cuts
across these two categories for specification is best suitable for
informing effective teaching. In a second step, we then develop
a heuristic for selecting the best available evidence for informing
decisions within this particular field of practice. In a third step,
we operationalize and apply the selection heuristic and analyze
the findings by describing the state of accumulated knowledge
relevant for this field. Finally, we provide some reflections and
suggestions for the further development of this evidence base.

Evidence for Particular Fields of
Educational Practice: Secondary
Mathematics and Science Teaching
There has been a growing consensus in numerous countries
regarding the general importance as well as specific goals
of science and mathematics education (OECD, 2019), which
has resulted in the development of (national) educational
standards (e.g., Common Core State Standards; Next Generation
Science Standards). These standards identify concepts, ideas, and
practices that must be emphasized in schools and provide clear
normative criteria for successful education in these subjects. It
must be noted that educational standards do not merely provide
orientation but they are also a core instrument in standards-
based reforms aimed at improving educational outcomes. It is
on the basis of certain standards that student achievement is
assessed and that educators are held accountable for ensuring
that their students meet the standard requirements. Importantly,
however, standards do not specify effective means for teachers to
attain these goals with their students. Thus, identifying effective
teaching strategies is one of the hallmark tasks of empirical
educational research (Shavelson and Towne, 2002; Mayer, 2004;
Hattie, 2009).

Over the last decade, research in science and mathematics
education has been particularly productive in terms of collecting
high-quality empirical information regarding effective teaching
in these subjects (Cheung et al., 2017; Hedges, 2018; Lin
et al., 2019). However, the rapid development in scholarship
in STEM education has produced an enormous number of

studies published in a wide range of journals (Li et al., 2020).
The underlying research of these studies is complex as it
covers different subjects, grade-levels, student outcomes, among
others, and relies on a multitude of different qualitative and
quantitative methodological approaches (Brown, 2012; Li et al.,
2020). Consequently, this body of empirical research remains
rather fragmented, and for educators, it remains unclear what
kind of research and which research outlets to consult in order
to find out which teaching strategies1 they can employ to
ensure that students will succeed in meeting the set standards
(Kloser, 2014; Cheung et al., 2017). In other words, there is a
clear mismatch between the specific, agreed-upon, and easy-to-
access information available on binding standards and targets
of teaching and an increasing number of scientific literature,
which includes complex information on the effectiveness of
practices related to reaching those targets. Moreover, compared
to the consensus in goals, there seems to be much more
diversity regarding a consensus in effective strategies. This lack of
consensus is considered one of the main obstacles in addressing
calls for evidence-based teaching and in the further advancement
of teacher preparation and professional development (Grossman
et al., 2009; Windschitl et al., 2012; Kloser, 2014; Lynch et al.,
2019), as well as in improving the outcomes of education in
general (Cohen et al., 2018). Consequently, the current situation
in mathematics and science education both enables and requires
working on an evidence base for this particular field of practice.

Selecting Evidence for a Particular Field of
Educational Practice
Determining an evidence base for a particular field of
practice is a process of information selection based on
well-considered specifications. Some of these specifications
are substantive; they define the field of practice for which
research findings can serve as warrants in evaluation, decision-
making, reflection, and so on (see Cain et al., 2019). Other
specifications are methodological; they define the research
method that generated the finding (and thus determines its
weight as a warrant). In the ensuing paragraphs, we further
elaborate on substantive and methodological specifications
with regard to the aim of this systematic review—that is,
to identify an evidence base for secondary mathematics and
science education.

Substantive specifications follow the logic of effective practice
(in teaching) including its goals—for example, in terms of
educational standards. In simple terms, this logic can be stated
in the following manner: an effective teaching strategy X leads
to changes in a learning outcome Y in population Z. As
highlighted above, educational standards are specific regarding Y
and Z (and non-specific regarding X). Standards define learning
outcomes in certain subjects and for certain levels of schooling,
which in our case are outcomes related to mathematics and
science education on the secondary schooling level. Empirical

1We employ the term “strategy” to delineate all kinds of instructional

interventions, ranging frommulticomponent programmes to specific instructional

approaches and practices that can be adopted by teachers to support

student learning.
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studies in educational research specify all three parameters
(and many more). Thus, for establishing an evidence base on
effective mathematics and science teaching for the secondary
population, it is important to identify research on effective
strategies that includes outcomes related to mathematics and
science education on the secondary level. This is already a
strong limiting factor compared to the vast sources of potentially
relevant information. Nevertheless, the resulting evidence base
still includes a diverse set of learning outcomes (knowledge,
specific and generic skills, attitudes, etc.). Moreover, the evidence
base also includes a diverse set of teaching strategies (e.g.,
inquiry-based teaching), which are often linked to specific
outcomes and have previously been categorized on the level of
practices (e.g., Bisra et al., 2018), interventions (e.g., Donker
et al., 2014), and programs (e.g., Cheung and Slavin, 2013).
Thus, although these substantive specifications considerably
narrow the scope of eligible research, there is still a lot of
diversity in selected evidence, which further calls for a systematic
organization of findings in order to support their inclusion for an
evidence base.

Methodological specifications result from the properties of
the underlying research paradigm (i.e., educational/teaching
effectiveness research) and the methodological prerequisites
underlying claims for effectiveness. Thus, while the substantive
specifications generally define the parameters (X, Y, and
Z), methodological specifications pertain to the relationships
among these parameters. Again, simply stated, the applied
research methodology must support both claims for causality
(X causes Y) and claims for (causal) generalizability (X causes
Y and this is true for Z). There is considerable consensus
that claims for causality are best supported by experimental
research (e.g., Shadish et al., 2002), which is characterized
by high internal or statistical-conclusion validity. Internal
validity depends on a number of factors (type of experimental
design, assignment procedure, fidelity of implementation,
elimination of experimental confounds, etc.), which often
are not optimally realized in teaching effectiveness research
(Slavin, 2008, 2020). However, a more general weakness of
the experimental approach is the generalizability of this causal
relationship (causal generalizability), as most experiments rely
on non-representative samples (e.g., convenience samples) of
populations and replications are rare. Both aspects reduce
the external validity of a study, and the extrapolation of
findings from a study to an inference population is often
not warranted. Therefore, in the general field of psychology,
researchers have proposed measures to increase causal validity
in research (e.g., Staines, 2008), and these have been echoed in
educational research (e.g., Robinson et al., 2013). With regard
to primary studies, authors have encouraged researchers to
better address factors that increase internal validity (Shavelson
and Towne, 2002; Robinson et al., 2013), which led to a
broader implementation of more rigorous research designs
in education (Hedges, 2018). Moreover, causal generalizability
increases when an effect is found to be present in more than
one study (conceptual replication). The effects of the same
or of a similar intervention from multiple studies lead to
the aggregation of effect sizes. Aggregated effect size estimates

are superior to individual studies with respect to replication
probability (e.g., Hedges, 2013), and they enable correction of
the distorting effects of different error types (e.g., sampling
error, measurement error) that often produce the illusion of
conflicting findings. Thus, from a methodological perspective,
effectiveness claims for the field of teaching are currently
best supported by aggregated findings from experimental
research. With regard to the process of research to practice
transfer, Schraw and Patall (2013, p. 364) also more generally
argue that “good practice does not always follow directly
from good research, but usually is mediated by synthesis of
findings.” Hence, in order to identify the best available evidence
for this particular field of practice, we propose considering
both substantive and methodological specifications by pooling
aggregated effect sizes from experimental research on teaching
effectiveness that are specific regarding outcomes and the
inference population.

The Present Review
With this systematic review of meta-analyses, we aim to make
a valuable contribution toward creating an evidence-base in a
particular field of educational practice. While recent systematic
reviews of meta-analytic research provide broad and inclusive
summaries (e.g., Hattie, 2009; Schneider and Preckel, 2017),
this review seeks to harness the power of focus with regard
to the scope and content of analysis. In order to match the
level of specificity of educational goals and standards that are
both domain and schooling-level specific, we seek to develop
an evidence base on effective teaching strategies in mathematics
and science subjects for secondary student populations. This
also takes into consideration that context variables (such as
domain and schooling-level) can have considerable impact on
the effectiveness of particular teaching strategies (e.g., ; Seidel
and Shavelson, 2007; Dignath and Buttner, 2008; Dunlosky et al.,
2013; Donker et al., 2014). Due to its strict focus and selection
criteria, our approach is limited in that it cannot utilize the
full range of knowledge provided by a broader selection of
meta-analyses in the field of teaching effectiveness and by the
single studies cited therein. Moreover, although we highlight
this selective information as particularly relevant for an evidence
base, we do acknowledge that there are also other forms of
evidence that can or must inform decision-making such as
multiple types of data (e.g., Howe, 2009; Windschitl et al.,
2012; Dunlosky et al., 2013; Kloser, 2014). Overall, this review
closes a gap by providing and analyzing effectiveness information
for evidence-based practice specifically in a particular field of
educational practice.

For systematic selection and analysis, we developed a selection
heuristic which enabled us to filter all meta-analyses that provide
at least one aggregated effect size specific to mathematics and
science domains and the secondary student population. Our
research interest was fourfold. First, we were interested in the
number of aggregated effect sizes that are specific to the context of
secondary mathematics and science teaching and the particular
foci and design of published meta-analyses that provide this
information. To this end, we extracted all aggregated effect
size estimates matching our selection criteria and described the
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design of the meta-analyses. Second, we wanted to know to what
extent context-specific effect size estimates (for the secondary
mathematics and science population) differ from more general
effect size estimates (overall effects) reported in selected meta-
analyses on teaching effectiveness. If overall effects do not differ
from context-specific effects, this may provide some indication
that overall effects can provide some orientation for judging
the effectiveness of teaching strategies, particularly when more
specific effect estimates are not available. Third, in a bottom-
up approach, we identified major types of teaching strategies
and categorized all aggregated effect sizes from our selected
sample into coherent categories (such as inquiry learning or
self-regulated learning). This categorization offers a clear and
integrated summary of effectiveness information that is both
reliable and relevant for the context of secondary mathematics
and science education. It enables educators and researchers in the
field of effective mathematics and science teaching to estimate
the stage of accumulated knowledge, which they can use to
further advance work in this field. Fourth, we wanted to analyze
the extent to which meta-analyses in the field of mathematics
and science teaching currently meet standards for high-quality
meta-analytic research. Thereto, we identified established quality
criteria from the literature and rated meta-analyses in our
sample against these criteria. Findings regarding quality can help
to further raise the standard for meta-analyses in educational
effectiveness research and thus contribute to a more transparent
and reliable evidence base.

METHODS

Search and Selection
Until May 2019, we systematically searched databases and
relevant individual educational review and science and
mathematics education journals. We utilized a search string that
combined the term “meta-analysis” with further specifications
such as “learning,” “teaching,” “teaching effectiveness,” “STEM
subjects,” “mathematics,” “science,” “biology,” “physics,”
“chemistry,” “secondary education population,” and “student
learning outcomes.” We used several approaches to locate
relevant literature, including database search (Web of Science,
Scopus, ERIC, PsycINFO, and Psych Index), hand-search
in top review and (science and mathematics) educational
journals, and adopted an ancestral approach by scanning the
reference lists of identified publications for further relevant
publications. We supplemented all details on the databases,
search strings, and the complete list of hand-searched journals
(see Supplementary Material S1). The selection process covered
two steps: first, the first two authors scanned titles and abstracts
for relevance (agreement: Cohen’s kappa = 0.65; disagreements
were resolved by discussion). Second, from the remaining
publications, we assessed full texts in detail for a match to the
following eligibility criteria:

1. The study is a meta-analysis, that is, averaged at least two
standardized effect sizes obtained from different samples.

2. The meta-analysis analyzed studies2 on teaching effectiveness,
which include interventions that manipulated an
independent variable.

3. The meta-analysis included a student-level outcome measure
as a dependent variable.

4. The meta-analysis reported at least one separate effect size
specific for secondary education AND mathematics and
science subjects.3

5. The search filter of the meta-analysis was not explicitly
limited to a specific subgroup of students (e.g., students with
special needs, low socioeconomic status, gifted students, at-
risk students).

6. The meta-analysis was published in a peer-reviewed journal.
7. Themeta-analysis was published in or after the year 2004 (cut-

off year of inclusion by previous research synthesis: Seidel and
Shavelson (2007) and Hattie (2009).

8. The report must be available in English.

We double coded each study: Cohen’s kappa = 0.63 to 1.00
(Mean = 0.77) and inconsistencies were resolved by discussion.
In case of missing or insufficient information, we contacted the
first authors. Figure 1 depicts the details of the selection process.

Data Extraction, Coding, and Analysis
Procedures
For data extraction and coding, we created an extensive
coding manual. All sections of the manual build on existing
literature (details in the descriptions below) and underwent a
cyclical process of testing, coder training, reliability checks, and
adaptation. Using the final version of the manual, the two first
authors coded all sampled meta-analyses. Further, agreement
rates were checked for each item, and inconsistencies were
resolved by discussion. The complete coding manual is pre-
registered and together with Supplemental Material provided on
Open Science Framework (Weblink: https://osf.io/9n99n/?view_
only=bb30c83e9bf34d73a79138ddcf91da5c).

Extraction of Effect Sizes
Generally, we extracted effect sizes based on random-effects
models (Hedges and Vevea, 1998), including 95% confidence
intervals (CI) and the underlying number of primary effect
sizes (k). In line with the goal of this systematic review,
we extracted all effect sizes specific to both subject-domain
(i.e., mathematics, science) and schooling level (i.e., secondary
students from middle and high school), as well as overall
effects reported in the selected meta-analyses. We consider
these specific effect sizes to provide the best available estimate
for the context-specific effectiveness of a particular teaching
strategy. In order to extract these specific effect sizes, we
followed the heuristic depicted in Table 1. Meta-analyses that
fulfill our eligibility criteria fall into four categories, depending
on their focus of investigation. Meta-analyses belonging to the
first category investigate mathematics and science interventions

2This specification allows for multiple types of study designs related to the

experimental research paradigm.
3For details on the operationalization of specificity, please consult the following

section on “extraction of effect sizes”.
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FIGURE 1 | PRISMA flow diagram.

within the secondary student population. These meta-analyses
only include primary studies conducted with secondary students
in mathematics and science education. All effect sizes included
in these meta-analyses are automatically specific and, thus,
were extracted. Meta-analyses in the remaining categories are
more inclusive (i.e., different educational levels and/or subject
domains) and thus use standard methods such as subgroup-
analysis or meta-regression (Borenstein et al., 2011) to test for
generalizability to the context of secondary mathematics and
science education. Thus, the extraction of effect sizes in categories
2–4 meta-analyses can be limited due to restrictions because of
a statistically significant moderator influence. For example, if
a meta-analysis in category 2 yielded a statistically significant
moderating effect of level of schooling, we only extracted the
effect size(s) relevant for the secondary level, as only this/these
effect size(s) is/are specific for both mathematics and science
as well as secondary students. However, if a meta-analysis in
category 2 yielded a statistically non-significant moderation by
schooling level, we inferred that all effects are robust with regard

to the level of schooling. Consequently, we extracted all effect
sizes reported in this meta-analysis. The first two authors double
coded each meta-analysis that met the above criteria. The rate
of agreement was 92%, and the remaining differences were
discussed and resolved.

Comparison of Overall and Specific Effect Sizes
Since the meta-analyses in our sample include both a specific
aggregated effect size (often based on a subset of the primary
data) as well as overall effects (based on all primary data), we
analyzed the extent to which overall effects differ from specific
effects in order to determine whether overall effects in general
provide good orientation in cases in which more specific effect
estimates are not available. To compare specific and overall
effects, we extracted all reported overall effect sizes and analyzed
the difference between the overall and the specific effect sizes. We
thereby distinguished between four levels of difference (see, e.g.,
Fan et al., 2017): (0) no difference: numeric values of the two-
point estimates of the statistical means are identical; (1) weak
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TABLE 1 | Heuristic for extracting effect sizes specifically for secondary

mathematics and science teaching.

Category Focus of

meta-analysis

Moderating

effects results

Extraction of

effect sizes

Code

1 Mathematics and

science

interventions

within secondary

student population

All effect sizes

extracted

1

2 Mathematics and

science

interventions with

schooling level as

moderator

Schooling level

sign

Secondary level

effect size

extracted

2

Schooling level

n.s.

All effect sizes

extracted

3

3 Secondary school

interventions with

subject domain as

moderator

Subject domain

sign.

Mathematics and

science effect

size(s) extracted

4

Subject domain

n.s.

All effect sizes

extracted

5

4 Teaching

interventions with

subject domain

and schooling level

as moderators

Subject domain

n.s. + schooling

level n.s.

All effect sizes

extracted

6

Subject domain

sign. + schooling

level sign.

No effect size

extracted

(publication

excluded)

7

Subject domain

sign. + schooling

level n.s.

Mathematics and

science effect

size(s) extracted

8

Subject domain

n.s. + schooling

level sign.

Secondary effect

size extracted

9

sign., significant; n.s., not significant; Code: listed for matching information with Table 2.

level of difference: numeric values of the two-point estimates
of the statistical means are not identical; (2) moderate level of
difference: at least one-point estimates of the statistical mean is
not encompassed by the 95% confidence interval of the other
mean; (3) high level of difference: 95% confidence intervals of the
two-point estimates of the means do not overlap.

Analysis of Context-Specific Effectiveness
As a next step in the analysis, the selected effectiveness
information was categorized and summarized in a meaningful
manner. A particular challenge was given by the heterogeneity
of the study characteristics. Although almost all sampled meta-
analyses are exclusively based on experimental research to
determine the effectiveness of educational interventions on
student achievement, our sample demonstrates considerable
variations on many parameters that have shown to influence
effect sizes (e.g., Slavin and Madden, 2011; de Boer et al.,
2014; Cheung and Slavin, 2016). This simultaneous variation on
several parameters, particularly in research methodology (e.g.,

sampling, group assignment, comparison condition, outcome
measure, effect size calculation, etc.), complicates comparing
and contrasting results across different meta-analyses. The
resulting complexity of effect size comparisons, highlighted in the
literature (see e.g., Coe, 2002; Hill et al., 2008; Ferguson, 2009;
Dunlosky et al., 2013; Belland et al., 2017; Schneider and Preckel,
2017; Simpson, 2018), does not favor rank-ordering effect sizes
on a single scale in terms of their magnitude. Thus, instead of
providing rank orders, we categorized all aggregated effect sizes
into coherent categories with regard to meta-analytic design,
teaching strategies, and learning outcomes (see Table 2).

Analysis of Scientific Quality
In order to enable reproducibility and alleviate threats to validity,
researchers in different fields have developed manuals and
standard documents that offer guidelines for meta-analysts (e.g.,
AMSTAR: Shea et al., 2007; APA’s Meta-Analysis Reporting
Standards (MARS), PRISMA: Moher et al., 2009). In addition to
handbooks (e.g., Borenstein et al., 2011; Cooper, 2015; Higgins
et al., 2019) and recent scientific evaluations of meta-analytic
practice (e.g., Ahn et al., 2012; Cooper and Koenka, 2012; Polanin
et al., 2017; Schalken and Rietbergen, 2017; Siddaway et al., 2019),
these provide a strong resource to ensure the scientific quality of
meta-analytic work. Moreover, systematic reviews are in danger
of accumulating bias and error when the methods utilized at
the level of included meta-analyses and primary studies are not
evaluated (e.g., Polanin et al., 2017). Since researchers have noted
a wide variation in transparent reporting and employing sound
methodologies (Ahn et al., 2012), we analyzed all 41 publications
in terms of their implementation of strategies to avoid biased
findings. Our coding scheme is based on the abovementioned
literature review, finally comprising 37 items. It has to be
noted that the quality of meta-analyses depends on numerous
details and our items do not intend to exhaustively capture all
these aspects. However, taken together, these criteria provide a
reasonable indication of efforts that have been made to ensure a
high quality of scientific information justified by recent literature,
even signaling room for improvement. We organized all items
in accordance with the guidelines for conducting a meta-analysis
of experimental research. These include open science (2 items),
search and selection (7 items), coding and data collection (10
items), and meta-analytic methods (18 items). The intercoder
agreement for all items ranged from Cohen’s kappa = 0.74 to
1.00. Inconsistencies were resolved by discussion. For a detailed
description of each item, see Table 3.

RESULTS

Availability of Specific Aggregated
Evidence
A total of 41 meta-analyses published between January 2004
and May 2019 met all our inclusion criteria. In a stepwise
process of selection, 378 publications were excluded because they
did not meet one or several inclusion criteria. For example,
in the second step, 188 publications were excluded because
they did not provide a context-specific effect size. Although
these publications might have also been omitted because of
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TABLE 2 | Effectiveness summary.

References Code Quality Type of

effect size

Independent

variable

(overall effect)

Dependent

variable (overall

effect)

k ES CI -/+ Independent

variable

(specific

effect)

Dependent variable

(specific effect)

k ES CI -/+ ES diff

Effectiveness of individual strategies

Inquiry-based and project-based learning

Furtak et al.

(2012)

1 45% Glass’ d Inquiry-based

science teaching

Science

achievement

37 0.50 0.27; 0.73 Inquiry-based

science

teaching

Science achievement 37 0.50 0.27; 0.73 n.a.

Lazonder and

Harmsen

(2016)

3 74% Cohen’s d Guidance in

inquiry-based

learning

Learning activities 20 0.66 0.44; 0.88 Guidance in

inquiry-based

learning

Learning activities 20 0.66 0.44; 0.88 n.a.

3 Cohen’s d Guidance in

inquiry-based

learning

Performance

success

17 0.71 0.52; 0.90 Guidance in

inquiry-based

learning

Performance success 17 0.71 0.52; 0.90 n.a.

3 Cohen’s d Guidance in

inquiry-based

learning

Learning

outcomes

60 0.50 0.37; 0.62 Guidance in

inquiry-based

learning

Learning outcomes 60 0.50 0.37; 0.62 n.a.

Chen and

Yang (2019)

8 71% Hedges‘ g Project-based

learning

Academic

achievement

30 0.71 0.67; 0.75 Project-based

learning

Academic achievement 11 0.64 0.54; 0.75 1

Game-based learning

Wouters et al.

(2013)

8 69% Cohen’s d Game-based

learning

Learning 77 0.29 0.17; 0.42 Game-based

learning

Learning in biology 28 0.11 −0.11;

0.33

1

Game-based

learning

Learning in math 16 0.17 0.07; 0.28 1

6 Cohen’s d Game-based

learning

Motivation 31 0.26 −0.03;

0.56

Motivation 31 0.26 −0.03;

0.56

n.a.

6 Cohen’s d Game-based

learning

Retention 17 0.36 not

reported

Retention 17 0.36 Not

reported

n.a.

Wouters et al.

(2013)

8 69% Cohen’s d Instructional

support in GBL

Learning

outcomes

107 0.34 not

reported

Instructional

support in

GBL

Learning outcomes in

biology

35 0.59 0.38; 1.76 1

Instructional

support in

GBL

Learning outcomes in

math

11 0.40 0.10; 1.19 1

Tokac et al.

(2019)

3 69% Hedges’d Game-based

learning

Mathematics

achievement

39 0.13 0.02; 0.24 Game-based

learning

Mathematics

achievement

39 0.13 0.02; 0.24 n.a.

(Continued)
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TABLE 2 | Continued

References Code Quality Type of

effect size

Independent

variable

(overall effect)

Dependent

variable (overall

effect)

k ES CI -/+ Independent

variable

(specific

effect)

Dependent variable

(specific effect)

k ES CI -/+ ES diff

Self-regulated learning/learning strategies training

Dignath and

Buttner

(2008)

4 56% Weighted es SRL training

characteristics

Performance 357 0.69 not

reported

SRL training

characteristics

Performance math

secondary

12 0.23 0.07; 0.38 1

de Boer et al.

(2014)

8 73% Hedges’ g Attributes of

interventions

Academic

performance

(math and science)

95 0.66 0.56; 0.76 Attributes of

interventions

Academic performance

(math and science)

95 0.66 0.56; 0.76 n.a.

Donker et al.

(2014)

8 69% Hedges’ g SRL instruction Academic

performance

(math and science)

180 0.66 0.56; 0.76 SRL

instruction

Academic performance

math

44 0.66 Not

reported

0

Academic performance

science

9 0.73 Not

reported

1

Bisra et al.

(2018)

6 56% Hedges’ g Self-explanation

prompts

Cognitive learning

outcomes

69 0.55 0.45; 0.65 Self-

explanation

prompts

Cognitive learning

outcomes

69 0.55 0.45; 0.65 n.a.

Lee et al.

(2018)

3 45% Cohen’s d Metacognitive

training

Algebraic

reasoning

21 0.97 0.88; 1.06 Metacognitive

training

Algebraic reasoning 21 0.97 0.88; 1.06 n.a.

Zheng (2016) 6 60% Cohen’s d SRL scaffolds in

computer-based

learning

environments

Academic

performance

29 0.44 0.23; 0.65 SRL scaffolds

in computer-

based

learning

environments

Academic performance 29 0.44 0.23; 0.65 n.a.

Educational technology: software/individualized learning

Li and Ma

(2010)

2 74% Cohen’s d Computer

technology

Math achievement 85 0.28 0.13; 0.43 Computer

technology

Math achievement 37 0.61 0.43; 0.79 2

Cheung and

Slavin (2013)

3 74% Weighted ES Technology

applications

Math achievement 74 0.16 0.11; 0.20 Technology

applications

Math achievement 74 0.16 0.11; 0.20 n.a.

Ma et al.

(2014)

6 62% Hedges’ g Intelligent

tutoring systems

Learning

outcomes

107 0.41 0.34; 0.48 Intelligent

tutoring

systems

Learning outcomes 107 0.41 0.34; 0.48 n.a.

Steenbergen-

Hu and

Cooper

(2013)

3 74% Hedges’ g Intelligent

tutoring systems

Math learning 17 0.01 −0.10;

0.12

Intelligent

tutoring

systems

Math learning 17 0.01 −0.10;

0.12

n.a.

(Continued)
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TABLE 2 | Continued

References Code Quality Type of

effect size

Independent

variable

(overall effect)

Dependent

variable (overall

effect)

k ES CI -/+ Independent

variable

(specific

effect)

Dependent variable

(specific effect)

k ES CI -/+ ES diff

Gerard et al.

(2015)

6 57% Hedges’ g Automated

adaptive

guidance

Academic

achievement

24 0.34 0.23; 0.45 Automated

adaptive

guidance

Academic achievement 24 0.34 0.23; 0.45 n.a.

6 Hedges’ g Advanced vs.

Simple adaptive

guidance

Academic

achievement

29 0.27 0.15; 0.38 Advanced vs.

Simple

adaptive

guidance

Academic achievement 29 0.27 0.15; 0.38 n.a.

Belland et al.

(2017)

2 86% Hedges’ g Computer-based

scaffolding

Cognitive

outcomes

333 0.46 0.37; 0.55 Computer-

based

scaffolding

Cognitive outcomes:

middle school

108 0.37 0.28; 0.48 2

Computer-

based

scaffolding

Cognitive outcomes:

secondary school

53 0.48 0.35; 0.60 1

Educational technology: hardware/mobile learning

Sung et al.

(2016)

9 62% Hedges’ g Integrating

mobile devices

with teaching

Academic

achievement

108 0.52 0.43; 0.61 Integrating

mobile

devices with

teaching

Academic

achievement:

secondary school

20 0.45 0.24; 0.66 1

Tingir et al.

(2017)

8 76% Cohen’s d Mobile devices Achievement 23 0.48 0.26; 0.71 Mobile

devices

Math achievement 3 0.16 −0.55;

0.87

2

Science achievement 8 0.53 0.40; 0.66 1

Sung et al.

(2017)

6 57% Hedges’ g Mobile

computer-

supported-

collaborative

learning

Learning

outcomes

(achievement,

attitude,

peer-interaction)

163 0.52 0.38; 0.66 Mobile

computer-

supported-

collaborative

learning

Learning outcomes

(achievement, attitude,

peer-interaction)

163 0.52 0.38; 0.66 n.a.

Design of learning material

Ginns et al.

(2013)

6 63% Cohen’s d Conversational

style

instructional text

Retention 30 0.30 0.18; 0.41 Conversational

style

instructional

text

retention 30 0.30 0.18; 0.41 n.a.

Transfer 25 0.54 0.25; 0.83 Transfer 25 0.54 0.25; 0.83 n.a.

Schneider

et al. (2018)

8 89% Hedges’ g Signaled

multimedia

material

Retention 139 0.53 0.42; 0.64 Signaled

multimedia

material

Retention in biology 32 0.35 0.11; 0.59 2

Retention in chemistry 4 0.80 0.15; 1.45 2

Retention in math 9 0.08 −0.32;

0.49

2

Retention in physics 36 0.43 0.21; 0.65 1

Retention in geography 17 0.61 0.31; 0.92 1

(Continued)
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TABLE 2 | Continued

References Code Quality Type of

effect size

Independent

variable

(overall effect)

Dependent

variable (overall

effect)

k ES CI -/+ Independent

variable

(specific

effect)

Dependent variable

(specific effect)

k ES CI -/+ ES diff

6 Signaled

multimedia

material

Transfer 70 0.33 0.22; 0.43 Signaled

multimedia

material

Transfer 70 0.33 0.22; 0.43 n.a.

Schroeder

and Cenkci

(2018)

9 75% Hedges’ g integrated

multimedia

design

learning 58 0.63 not

reported

Integrated

multimedia

design

Learning grade 6–8 7 0.43 0.22; 0.63 1

Learning grade 9–12 7 0.81 0.55; 1.08 1

Using similarities and differences

Apthorp et al.

(2012)

6 60% Hedges’ g Similarities and

differences

Achievement

(math and science)

14 0.65 0.39; 0.91 Similarities

and

differences

Achievement (math and

science)

14 0.65 0.39; 0.91 n.a.

Mathematical modeling

Sokolowski

(2015)

2 71% Hedges’ g Mathematical

modeling

Math achievement 14 0.69 0.59; 0.79 Mathematical

modeling

Math achievement high

school

7 0.94 0.79; 1.08 3

Self-grading

Sanchez et al.

(2017)

6 86% Hedges’ g Self-grading Test performance 22 0.34 0.15; 0.52 Self-grading Test performance 22 0.34 0.15; 0.52 n.a.

Peer instruction

Balta et al.

(2017)

8 72% Cohen’s d Peer instruction Learning gains 35 0.94 0.70; 1.17 Peer

instruction

Learning gains in

physics

15 1.30 0.88; 1.71 2

Learning gains in math 6 0.91 0.41; 1.4 1

Learning gains in

biology

4 0.78 0.48; 1.06 1

Learning gains in

geography

1 0.19 −0.24;

0.63

3

Learning gains in

chemistry

1 0.34 −0.07;

0.75

2

Homework

Fan et al.

(2017)

2 91% Weighted r Homework Performance math

and science

61 0.22 0.19; 0.25 homework Performance math and

science junior high

school

23 0.15 0.11; 0.18 2

Performance math and

science senior high

school

17 0.3 0.25; 0.34 1

(Continued)
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TABLE 2 | Continued

References Code Quality Type of

effect size

Independent

variable

(overall effect)

Dependent

variable (overall

effect)

k ES CI -/+ Independent

variable

(specific

effect)

Dependent variable

(specific effect)

k ES CI -/+ ES diff

Concept maps

Schroeder

et al. (2017)

6 67% Hedges’ g Concept maps Learning 142 0.58 Not

reported

Concept

maps

Learning 142 0.58 Not

reported

n.a.

6 Concept maps

constructed

Learning 75 0.72 0.56; 0.88 Concept

maps

constructed

Learning 75 0.72 0.56; 0.88 n.a.

9 Concept maps

studied

Learning 67 0.43 0.29; 0.57 Concept

maps studied

Learning intermediate

level

7 0.82 0.62; 1.02 3

Learning secondary

level

4 1.24 0.79; 1.69 3

Social and Emotional Learning Programs

Corcoran

et al. (2017)

3 81% Hedges’ g School-based

social and

emotional

learning

programs

Academic

achievement in

math

33 0.26 0.18; 0.34 School-based

social and

emotional

learning

programs

Academic achievement

in math

33 0.26 0.18; 0.34 n.a.

School-based

social and

emotional

learning

programs

Academic

achievement in

science

5 0.19 0.05; 0.33 School-based

social and

emotional

learning

programs

Academic achievement

in science

5 0.19 0.05; 0.33 n.a.

Learning from failure

Darabi et al.

(2018)

6 64% Hedges’ g Learning from

failure

Learning

performance

23 0.43 0.19; 0.68 Learning from

failure

Learning performance 23 0.43 0.19; 0.68 n.a.

Flipped classroom

van Alten

et al. (2019)

6 92% Hedges’ g Flipped

classroom

teaching

Achievement 115 0.36 0.28; 0.44 Flipped

classroom

teaching

Achievement 114 0.36 0.28; 0.44 n.a.

6 Hedges’ g Flipped

classroom

teaching

Satisfaction 22 0.05 −0.23;

0.32

Flipped

classroom

teaching

Satisfaction 22 0.05 −0.23;

0.32

n.a.

Comparisons between strategies

Comparisons between innovative approaches

Schroeder

et al. (2007)

3 62% Glass’ d Teaching

strategies

Science

achievement

61 0.67 0.66; 0.68 Teaching

strategies

Science achievement 61 0.67 0.66; 0.68 n.a.

Savelsbergh

et al. (2016)

2 64% Pooled d

(Morris, 2008)

Innovative

teaching

strategies

Math & science

attitude

60 0.35 0.24; 0.47 Innovative

teaching

strategies

Math and science

attitude

60 0.35 0.24; 0.47 n.a.

(Continued)
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TABLE 2 | Continued

References Code Quality Type of

effect size

Independent

variable

(overall effect)

Dependent

variable (overall

effect)

k ES CI -/+ Independent

variable

(specific

effect)

Dependent variable

(specific effect)

k ES CI -/+ ES diff

2 Pooled d

(Morris, 2008)

Innovative

teaching

strategies

Math and science

achievement

40 0.78 0.60; 0.97 Innovative

teaching

strategies

Math and science

achievement

40 0.78 0.60; 0.97 n.a.

Cheung et al.

(2017)

1 52% Weighted ES Science

programs

Science

achievement

21 0.17 Not

reported

Science

programs

Science achievement 21 0.17 Not

reported

n.a.

Comparisons of instructional methods for learning algebra

Haas (2005) 1 26% Glass’ d Direct instruction Algebra

achievement

19 0.55 0.41; 0.69 Direct

instruction

Algebra achievement 19 0.55 0.41; 0.69 n.a.

Problem-based

learning

Algebra

achievement

14 0.52 0.35; 0.69 Problem-

based

learning

Algebra achievement 14 0.52 0.35; 0.69 n.a.

Manipulatives,

models, multiple

representations

Algebra

achievement

13 0.38 0.28; 0.48 Manipulatives,

models,

multiple

representations

Algebra achievement 13 0.38 0.28; 0.48 n.a.

Cooperative

learning

Algebra

achievement

3 0.34 0.30; 0.38 Cooperative

learning

Algebra achievement 3 0.34 0.30; 0.38 n.a.

Communication

and study skills

Algebra

achievement

5 0.07 0.01; 0.13 Communication

and study

skills

Algebra achievement 5 0.07 0.01; 0.13 n.a.

Technology

aided instruction

Algebra

achievement

12 0.07 −0.10;

0.24

Technology

aided

instruction

Algebra achievement 12 0.07 −0.10;

0.24

n.a.

Rakes et al.

(2010)

1 63% Weighted ES New

non-technology

curricula

Algebra

achievement

Not

reported

0.40 −0.16;

0.64

New non-

technology

curricula

Algebra achievement Not

reported

0.40 −0.16;

0.64

n.a.

Instructional

strategies

Algebra

achievement

Not

reported

0.35 −0.21;

0.49

Instructional

strategies

Algebra achievement Not

reported

0.35 −0.21;

0.49

n.a.

Use of

manipulatives

Algebra

achievement

Not

reported

0.34 0.08; 0.60 Use of

manipulatives

Algebra achievement Not

reported

0.34 0.08; 0.60 n.a.

Technology tools Algebra

achievement

Not

reported

0.17 −0.03;

0.31

Technology

tools

Algebra achievement Not

reported

0.17 −0.03;

0.31

n.a.

Technology-

based

curricula

Algebra

achievement

Not

reported

0.15 −0.46;

0.76

Technology–

based

curricula

Algebra achievement Not

reported

0.15 −0.46;

0.76

n.a.
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not meeting other criteria (e.g., not investigating teaching
effectiveness; focusing on a particular group of students), this
number is still an indication that a substantial number of
meta-analyses might not provide context-specific information.
With one exception,4 all the selected meta-analyses used
aggregated d-family effect sizes based on comparisons between
specific teaching strategy interventions and alternatives (mostly
certain regular or traditional teaching practices as control
condition). All publications provided information on the number
of studies that were included. In sum, analyses are based on
a total of 2,708 (M = 66.05; SD = 104.59)5 primary studies
reporting 4,594 (M = 112.05; SD = 1,151.99) effect sizes and
involving an estimated number of 1,159,143 (M = 28,271.78;
SD = 60,438.86) participants. The sampled meta-analyses were
published by 17 different peer-reviewed journals and include an
average time span of 21 years (SD = 13.61) of primary research
(see Supplementary Material S2 for details).

Overall, we extracted 78 aggregated effect sizes specific for
both science and mathematics education and the secondary
student population that are not disaggregated for other
(moderating) variables (i.e., variations in sample population,
treatment, method, study context, etc.). These effect sizes provide
the most inclusive estimate of context-specific effectiveness (see
Table 2). Of these 78 context-specific aggregated effect sizes, 13
(17%) stem from 4 meta-analyses on mathematics and science
interventions within the secondary student population (category
1),6 20 (26%) stem from 14 meta-analyses on mathematics
and science interventions with schooling level as a moderator
(category 2), 1 (1%) stems from 1 meta-analysis on secondary
school interventions with school subject as amoderator (category
3), and 44 (56%) stem from 22 meta-analyses on teaching
interventions with subject domain and schooling level as
moderators (category 4).

In sum, the majority of meta-analyses providing context-
specific aggregated effect size estimates in our sample are
meta-analyses on teaching interventions across subjects and
schooling levels (56% of extracted context-specific effect sizes)
and meta-analyses on mathematics and science interventions
across different schooling levels (26% of extracted context-
specific effect sizes). With 17% of all extracted context-specific
effect sizes, context-specific meta-analyses with a focus on
mathematics and science subjects as well as the secondary student
population provide a relatively small proportion of context-
specific effectiveness information.

Comparison Between Overall and Specific
Effect Sizes
Using 78 domain and schooling level-specific aggregated effect
sizes that are not disaggregated for other variables, we compared
overall and specific effect sizes in the sampled meta-analyses.
In 47 cases, the overall effect reported in the meta-analysis

4In their meta-analysis on homework and student achievement, Fan et al. (2017)

used an aggregated correlation coefficient r to provide estimates on how different

homework practices relate to student achievement outcomes.
5Statistical average for individual meta-analyses.
6See Table 1 for category description.
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TABLE 3 | Scientific quality.

Item Code Item description % of sample

Open science

Open protocol q_pr Is a pre-registered study plan/protocol published? (y/n) 0%

Open data q_od Are relevant data for reproducibility of statistical analyses published? (y/n) 44%

Search and selection

Search terms q_st Is a complete description of database search terms/full search string provided?

(y/n)

93%

Search strategies q_sp Were additional search strategies applied? (e.g., hand-search) (y/n) 73%

Exclusion criteria q_ec Are inclusion/exclusion criteria clearly stated? (y/n) 100%

Search period q_spr Is information about search period provided? (y/n) 95%

NPR publications included q_pi Are effect sizes from non-peer-reviewed (NPR) publications included? (y/n) 71%

Selection reliability q_sr Is an indicator for selection reliability provided? (y/n) 34%

List of included publications q_lip Is a complete list of included publications provided? (y/n) 98%

Coding and data collection

Sample description q_ip Is the sample population for each included primary study specified? (y/n) 54%

Intervention description q_ii Is the intervention for each included primary study specified? (y/n) 78%

Control description q_ic Are control conditions for each included primary study specified? (y/n/na) 55%

Outcome description q_io Are outcome variables for each included primary study specified? (y/n) 51%

Outcome statistics q_rs Are descriptive statistics for outcome variables reported? (y/n) 41%

Study design q_id Is the study design for each included primary study specified? (y/n) 41%

Coding process q_cp Is the coding/data collection process described? (y/n) 78%

Coder qualification q_cq Is the qualification of coders reported? (y/n) 49%

Coding categories q_cd Are coding categories for all variables clearly defined? (y/n) 85%

Coding reliability q_cr Is an indicator for coding reliability provided? (y/n) 80%

Meta-analytic methods

Missing data handling q_hdm Is a procedure for handling of missing data described? (y/n) 71%

Effect size description q_esd Is there a verbal description of how raw effect sizes are determined? (y/n) 95%

Effect size calculation q_esc Is an exact formula for the calculation of raw effect sizes reported? (y/n) 39%

OAE: Statistical model q_rm Is a statistical model for the overall effect size estimation (OAE) reported? (y/n/na) 92%

OAE: Model justification q_jm Is a justification for the statistical model selection of the OAE provided? (y/n/na) 89%

OAE: Confidence intervals q_rci Are confidence intervals for OAE reported? (y/n/na) 90%

ME: Statistical model q_rma Is a statistical model for moderator effect size estimation (ME) reported? (y/n/na) 97%

ME: Model justification q_jmm Is a justification for the statistical model selection for ME provided? (y/n/na) 95%

ME: Confidence intervals q_rcm Are confidence intervals for ME reported? (y/n/na) 95%

ME: Multiple moderators q_rmm Is the issue of multiple moderator tests discussed? (y/n/na) 48%

BSV: indicator q_rabv Is an indicator for the quantity of between-study variance (BSV) reported?

(y/n/na)

89%

BSV: estimation q_rmbv Is an exact formula for the estimation of between-study variance reported?

(y/n/na)

50%

Dependent measures q_rdm Is a procedure for handling dependent data points reported? (y/n/na) 79%

Application of HLM q_aa Is hierarchical linear modeling applied for dependent data points? (y/n/na) 60%

Statistical power q_stpr Is a statistical power analysis reported? (y/n) 5%

Publication bias m_pb Is a publication bias test reported? (y/n) 83%

Outlier sensitivity analysis m_os Is an outlier sensitivity analysis reported? (y/n) 56%

Scientific quality m_sq Is an indicator for scientific quality (e.g., standardized measures; study design;

publication status) of primary studies used for moderator analysis? (y/n)

61%

Code (code information for matching with Supplemental Material); y, yes; n, no; na, not applicable (this item was not applicable for an individual meta-analysis and thus, the individual

meta-analysis was not included in the percentage score).

is specific for secondary mathematics and science and, thus,
represents the best available context-specific effect size. In 31
cases, the overall effect is not specific for secondary mathematics

and science. In these cases, we compared the context-specific
effect size based on a subsample of primary studies to the
overall effect reported in the meta-analysis. Table 2 provides
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a summary of overall effects, specific effects, and comparison
results for all dependent and independent variables. In 1 out
of 31 comparisons (3%), the overall effect and context-specific
effect have the same numerical value (level 0). Further, 17 out
of 31 comparisons (55%) yielded a weak level of difference with
numerical values of means being different (level 1); 9 out of 31
comparisons (29%) yielded a moderate level of difference with
at least one mean not being covered in the confidence interval
of the other mean (level 2); and 4 out of 31 comparisons (13%)
yielded a high level of difference with no overlap between the
confidence intervals of the two means (level 3). In summary, the
majority of comparisons (60%) yielded no or small differences
between overall and specific effects, 29% of comparisons resulted
in moderate differences, and a small number of comparisons
(13%) indicated large differences.

Summary of Effectiveness Information
Table 2 provides a comprehensive summary of effectiveness
information. Row-wise, the table lists all 41 meta-analyses7 that
matched our selection criteria organized in specific categories
(see the following paragraph). Column-wise, the table details
information both on the overall effect reported in the publication,
which is based on all primary studies (mid columns) of the
meta-analyses, and on the aggregated effect size(s) specific for
the context of secondary mathematics and science education
(right columns). As regards the categorization applied, our
analysis showed that sampled meta-analyses follow two major
organizing principles: First, most meta-analyses (N = 33) are
teaching strategy-focused, that is, they analyze the effectiveness
of a specific teaching strategy (e.g., inquiry learning, flipped
classroom)with regard to one or several student outcomes related
to mathematics and science learning (e.g., mathematics/science
achievement, student motivation in mathematics/science) (see
e.g., Furtak et al., 2012). Second, some meta-analyses (N =

8) are outcome-focused, that is, they compare several different
teaching strategies (e.g., direct instruction vs. problem-based
learning vs. cooperative learning etc.) with regard to a specific
student outcome related to mathematics and science learning
(e.g., critical thinking, algebraic reasoning). In addition, some
sampled meta-analyses focused on similar teaching strategies
(e.g., three meta-analyses investigated inquiry project-based
learning strategies) or similar student outcomes (e.g., critical
thinking and scientific reasoning) and were thus further
grouped together.

In line with our selection criteria, all sampled meta-analyses
provide at least one aggregated effect size estimate specific for
the effectiveness of mathematics and science teaching on the
secondary level. Without exception, all of these 78 effect sizes

7Although several meta-analyses contain some of the same studies, we decided

to retain all selected meta-analyses and effect sizes in our summary for several

reasons. First, the overlap of primary studies is limited to only a fewmeta-analyses.

Second, the overlap is usually small and concerns only a few primary studies.

Third, although somemeta-analyses include some of the same studies, they adopt a

different focus of analysis. Fourth, our aim is to provide an overview of the existing

meta-analyses and effect sizes for secondary mathematics and science teaching and

not to conduct a second-order meta-analysis.

are positive. Figure 2 presents the distribution of all context-
specific mean effect sizes. Effect size estimates range between ES
= 0.01 and ES = 1.3 with 12 effect size estimates transcending
conventional thresholds of statistical significance (i.e., 0.95%
confidence intervals include the value zero). About 80% of
context-specific aggregated mean effect sizes are 0.2 or larger and
54% are 0.4 or larger. Overall, the size of our sample signals
that research has accumulated a substantial number of meta-
analyses on various teaching strategies and student outcomes
related to secondary mathematics and science teaching. With
all effect sizes being positive, this research indicates higher
aggregated effectiveness of experimental conditions compared to
control conditions.

Scientific Quality of Included
Meta-Analyses
In order to provide a concise summary of quality information,
we organized scientific quality data in two ways: (a) Table 3

depicts all the quality items that were coded and summarizes
the percentage of the 41 meta-analyses that performed and/or
reported what was required by this item. (b) The third row
of Table 2 reports a summary quality score averaged across
all 37 quality items for each meta-analysis individually (see
Supplementary Material S3 for details).

On average, sampled meta-analyses fulfilled 68% (SD = 13%)
of all criteria coded. Table 3 indicates that on 15 items, over 80%
of sampled meta-analyses provided sufficient information. With
no meta-analysis being pre-registered and less than half (44%)
offering sufficient information to reproduce statistical analyses,
issues of open science were not adequately addressed. Criteria
relating to search and selectionmostly achieved high ratings—for
example, with all meta-analyses clearly stating inclusion criteria
(100%) and 93% providing sufficient information to reproduce
the database search. When it comes to transparency of coding
and data collection, approximately half of the sampled meta-
analyses failed to provide sufficient information on which data
they extracted from primary studies [e.g., specification of control
condition (55%), outcome variable (51%), and related descriptive
statistics (41%)]—for example, by publishing a primary study
coding table (Polanin et al., 2020). The category meta-analytic
methods yielded mixed results. Numerous issues relating to data
aggregation and bias reduction were reported by a majority of
meta-analyses. Yet, although 95% verbally describe how they
determined raw effect sizes from primary studies, less than half
(39%) provide precise formulas, which clearly describe how
data from different primary study designs (e.g., comparison of
post measures vs. comparison of pre-post gains) were converted
into effect sizes. Similarly, most meta-analyses (89%) provide
at least one indicator for between-study variance, but only half
(50%) report the exact estimation method (Hedges et al., 2010;
Borenstein et al., 2011).

Further, although almost all meta-analyses conducted
multiple moderator tests, only half of these (48%) discussed
issues such as Type 1 error inflation and confounding
(moderator) variables (see Cafri et al., 2010). A majority,
but not all, of the meta-analyses (83%) tested for publication
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FIGURE 2 | Distribution of effect sizes.

bias; moreover, although numbers and magnitude of raw
effect sizes in moderator analyses are often relatively small,
only two meta-analyses (5%) (Corcoran et al., 2017; van Alten
et al., 2019) reported retrospective statistical power for the
significance test used to determine the number of studies
necessary for detecting a statistically significant effect (Hempel
et al., 2013). Further, 56% of the meta-analyses scanned their
data for outliers, which could have biased the results; 61%
of the meta-analyses investigated the moderating effects of
at least one scientific quality indicator of the primary studies
(e.g., utilization of standardized vs. non-standardized outcome
measures), yet none of these included a multidimensional
assessment based on a quality assessment tool (see, e.g., Valentine
and Cooper, 2008). Table 2 indicates that scientific quality
scores of individual meta-analyses ranged from 26% (min)
to 92% (max), with half of the meta-analyses having a score
lower or higher than 65%. In summary, the majority of sampled
meta-analyses adheres to most quality criteria. A high level of
scientific quality, however, is not a consistent finding, since
some quality criteria are not adequately addressed by many

meta-analyses and a few meta-analyses do not meet several
important quality criteria.

DISCUSSION

In order to be successful, educational systems require orientation
both in terms of goals as well as in pathways to attain these
goals. Numerous countries have been successful in agreeing
on common standards and, thus, specifying binding goals for
mathematics and science education. As a consequence, pathways
to attain these goals must be further specified. Educational
research can contribute to attaining these goals by providing
information on those pathways that have been revealed to be
most effective. If this information is recognized and accounted
for by different stakeholders, one of the most important
capacities of educational sciences can be used to contribute to
an ongoing improvement of educational systems (Kloser, 2014;
Slavin, 2020).

This systematic review seeks to provide a systematic analysis
and review of aggregated findings within the experimental or
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quasi-experimental framework for a certain subject domain
and a certain educational level. Furthermore, this systematic
review investigated to what extent reported effects sizes on an
overall level systematically differ from effect sizes particularly
determined for the field of secondary mathematics and science
teaching. It also outlines to what extent included meta-analyses
meet established quality criteria in meta-analysis research.
Overall, this contribution complements efforts that seek to
identify a set of core or high-leverage practices (Windschitl
et al., 2012; Kloser, 2014) in science and mathematics education
as well as more general efforts to synthesizing knowledge on
effective teaching and learning (e.g., Seidel and Shavelson, 2007;
Hattie, 2009; Dunlosky et al., 2013). In the following account,
we summarize five major findings and highlight implications to
inform future research.

Research on Secondary Mathematics and
Science Teaching Provides a Substantial
Amount of Context-Specific Effectiveness
Information
Regarding the field of mathematics and science teaching
and current meta-analyses in this specific field, our results
demonstrate that research offers a substantial number of specific
aggregated effect sizes that encompass various kinds of teaching
interventions that are relevant for secondary science and
mathematics classrooms. We identified 78 aggregated effect
sizes from the last 15 years that provide information that
is specific to mathematics and science education. A majority
of these effect sizes stem from more general meta-analyses
on teaching interventions, which include mathematics and
science subjects as well as secondary students as subpopulations.
However, specificmeta-analyses with a focus onmathematics and
science teaching (e.g., Furtak et al., 2012) or even an exclusive
focus on secondary mathematics and science populations are
forthcoming (e.g., Cheung et al., 2017). Summarizing research
from the previous decade (until 2004), Seidel and Shavelson
(2007) concluded (for this time period) that the underlying
primary research on teaching effectiveness was largely dominated
by correlational design studies. The included meta-analyses
in our current sample demonstrate (for the following 15
years) that experimental research on teaching effectiveness
is increasingly available. In a majority of the underlying
experimental primary studies, innovative teaching strategies
were compared to some form of conventional, traditional,
business-as-usual practice. In aggregating these effects, the meta-
analyses in our sample generally enable conclusions regarding
whether or not and under what circumstances the innovation
is more effective than traditional practice. Moreover, this review
also demonstrates that in current meta-analytic research, these
comparisons are organized in three major ways, which allow for
additional conclusions.

First, a minority of included meta-analyses (20%) were
focused on a dependent variable specific to mathematics and
science education (e.g., critical thinking, scientific reasoning,
attitudes toward science), synthesizing all teaching-related

research with this variable as a target outcome (“outcome-
focused meta-analyses”). This entails that a number of teaching
strategies (inquiry learning vs. collaborative learning vs. digital
learning etc.) potentially fostering this outcome are included.
While Schroeder et al. (2007) focused on achievement as an
outcome, several years later, other outcomes (that were less
frequently covered in primary research) have been included in
meta-analyses. For example, Savelsbergh et al. (2016) collected
research on student attitudes toward mathematics and science,
which is still a less frequently studied outcome in primary
studies. Their meta-analysis (of k = 63 studies) includes various
teaching strategies such as inquiry learning, digital learning,
and collaborative learning. Second, a majority of included meta-
analyses (80%) were focused on a specific teaching strategy in
the field of mathematics and science teaching as an independent
variable (e.g., inquiry learning, game-based learning etc.),
synthesizing all outcome-related research (“teaching strategy-
focused meta-analyses”). These meta-analyses enable a nuanced
analysis of the effectiveness of that strategy under different
conditions and for different learning outcomes (e.g., Wouters
et al., 2013). Third, researchers are able to shift the focus
of not only their meta-analytic investigation from dependent
to independent variables but also with regard to the kind of
comparison in the underlying primary research.While numerous
meta-analyses include primary research that compares some kind
of innovative practice to a traditional practice to determine an
effect size, a few more recent meta-analyses include primary
studies that compare variations of innovative approaches, such
as inquiry learning or game-based learning, with vs. without
guidance (Wouters et al., 2013; Lazonder and Harmsen, 2016),
or simple versions of automated adaptive guidance vs. advanced
versions of automated adaptive guidance (Gerard et al., 2015).
Thus, following the establishment of the general effectiveness of a
certain teaching strategy, research and research synthesis is now
moving forward by carefully studying specific features (and their
variations), which can render the application of that teaching
strategy more effective. Thus, while previous systematic reviews
of STEM research mainly documented quantitative growth, for
example, in the increasing number of journal publications (see
Li et al., 2020), this review shows the cumulative nature of
this research.

Context (Subject Domain/Educational
Level) Is Important in Research on
Teaching Effectiveness
Since this systematic review seeks to provide context-specific
information, we filtered meta-analyses that include aggregated
effect sizes for outcomes of secondary mathematics and science
teaching. Using this rationale for selection led to the exclusion
of numerous meta-analyses that did not offer information that
was sufficiently specific for this context. This is not surprising,
as specific areas of teaching effectiveness research may not
have accumulated a sufficient number of studies for context-
specific analysis. Yet another reason lies in the fact that research
syntheses are often not undertaken for the sake of providing
context-specific effectiveness information in line with a particular
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field of practice, but rather for synthesizing findings in a
particular research area for theory-building and for reaching
broad generalizations (Gurevitch et al., 2018).

However, this review highlights a research synthesis
perspective for a particular field of practice. Conceptually, it
provides a heuristic for formulating specific inclusion/exclusion
criteria that are appropriate for selecting context-specific
effectiveness information. In this sense, it showcases
requirements that can be considered by researchers and meta-
analysts in order to generate more context-specific information
for evidence-based practice. Empirically, it demonstrates that
context is of significance in terms of teaching effectiveness:
when comparing context-specific effect sizes with overall effects
in our sampled meta-analyses, we observe varying degrees
of difference. Although the majority of comparisons (60%)
indicated no or small differences, we also observed many
instances (40%) with relevant differences (Schauer and Hedges,
2020), in which case, using the overall effect could lead to
different conclusions for evidence-based practice as compared to
using the context-specific effect size.

In line with previous research (e.g., de Boer et al., 2014),
the findings of this review demonstrate that teaching strategies
vary in terms of their effectiveness depending on the contextual
conditions designated by a certain field of practice (Taylor
et al., 2018). This makes a good case for research and
research synthesis that generates and provides context-specific
effectiveness information. With this review, we hope to create
more awareness for these issues so that researchers can
take appropriate action, like conducting context-specific meta-
analyses that select and synthesize context-specific primary
studies (e.g., Hillmayr et al., 2020).

Standards-Related Targets Are Addressed
by Research on Effective Teaching
Strategies
Beyond documenting the availability of specific effectiveness
information, this review reveals that a variety of outcomes
specified by current standards (such as the Framework for K-12
Science education (National Research Council, 2012), the Next
Generation Science Standards, or the Common Core Standards
in mathematics) can be attained through instruction using a
number of effective pathways (de Kock et al., 2004). In the
context of the current standards, process skills such as inquiry
and argumentation represent broader educational goals that are
addressed in literacy conceptualizations. In this context, student
attitudes and motivation, both as prerequisites to learning as
well as desirable outcomes, are considered as important goals
in their own terms (Kuhn, 2007). The research encompassed
by this review includes outcomes such as attitudes and interest
in science (e.g., Savelsbergh et al., 2016), motivation (e.g.,
Wouters et al., 2013), inquiry skills (Lazonder and Harmsen,
2016), critical thinking skills (Abrami et al., 2015), control
of variables strategy skills (Schwichow et al., 2016), scientific
reasoning and argumentation skills (Engelmann et al., 2016),
knowledge transfer skills (e.g., Ginns et al., 2013), and skills of
knowledge acquisition and self-regulation (Donker et al., 2014).

Thus, in addition to traditional outcomemeasures such as factual
knowledge and achievement, a broader range of educational
goals, particularly relevant for current mathematics and science
curricula, is encompassed in primary studies and synthesized in
meta-analyses. Moreover, a few multicriterial investigations in
meta-analyses, assessing effectiveness simultaneously for more
than one outcome, were able to demonstrate multicriterial
effectiveness of a variety of teaching strategies (e.g., Savelsbergh
et al., 2016).

Our results also demonstrate that the sampled meta-analyses
address goals of varying scope. Certain teaching strategies
support specific targets in terms of standards. For example,
the teaching strategy “inquiry learning” can support students
effectively in acquiring inquiry skills in addition to domain-
specific knowledge (Lazonder and Harmsen, 2016). Other
strategies are more universal and do not serve so much as general
approaches to teaching but as tools to be incorporated into any
lesson or instructional unit to foster mathematics and science
learning. Teaching strategies such as using concept maps, self-
explaining, or self-grading are not merely easy and cost-efficient
to integrate, they are also not restricted to a certain specific
content but lend themselves to fostering various learning goals
related to standards and curricula.

In order to attain complex goals (such as critical thinking
skills etc.) set by standards and curricula in secondary
mathematics and science education, classroom learning requires
the implementation of more open-ended and complex tasks,
which place higher demands on students and thus often require
adequate guidance. In reviewing the results of this review,
guidance seems to be an important element across different
teaching strategies. Students involved in problem-based learning,
inquiry learning, or game-based learning were able to profit
from teacher or software guidance (Furtak et al., 2012; Wouters
and van Oostendorp, 2013; Belland et al., 2017). Importantly,
effect sizes in comparisons between guided and non-guided
versions of these strategies were as high as effect sizes in the
basic comparisons between an innovative strategy (i.e., inquiry
and game-based) and a traditional approach (Furtak et al., 2012;
Wouters et al., 2013; Lazonder and Harmsen, 2016). Thus, in
the context of the learner population of secondary students, the
increasing complexity of the demands of the curriculum and with
practice moving from a teacher-centered to a learner-centered
pedagogy, this seems to suggest that guidance is a crucial element
for students succeeding on standard targets.

The Majority of Aggregated Effect Sizes
Are Positive
All of8 the investigated teaching strategies indicate beneficial
effects on student outcomes in terms of positive aggregated mean
effect sizes. Although research on the effectiveness of teaching
rests on the basic assumption that research-based teaching
strategies can be and generally are effective, it may still be
surprising that virtually all aggregated effect sizes selected and

8Our sampled meta-analyses did not report any negative context-specific effect

size (see Table 2). For 13 out of 78 (17%) context-specific effect sizes, statistical

significance levels exceeded conventional thresholds (p > 0.05).
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presented here were positive. In other words, given the wide
range of teaching strategies investigated, one might expect some
of these strategies on average to have negative effect sizes and not
every tested strategy to work well. This review, however, is not
the first systematic review on treatment effectiveness in education
yielding mostly positive findings. Other research synthesists have
found similar results (e.g., Lipsey and Wilson, 1993; Hattie,
2009; Schneider and Preckel, 2017). In their comprehensive
review of 320 independentmeta-analyses analyzing the efficacy of
psychological, educational, and behavioral interventions, Lipsey
and Wilson (1993) found almost only positive mean effect
sizes. Similarly, Hattie (2009) synthesis of over 800 meta-
analyses, which includes 520 individual meta-analyses on the
effects of different teaching approaches on student achievement
across different educational levels and subject domains, yielded
no negative aggregated effect size for any of the included
teaching approaches.

More recently, Schneider and Preckel (2017), in their
systematic review on variables associated with achievement in the
context of higher education, identified only 2 out of 42 aggregated
effect sizes (< 5%) indicating a negative association (with all
others being positive) between an instructional approach and
student achievement with 1 of the 2 effect sizes representing
evidence for the seductive detail effect and thus being expected
to be negative. Moreover, after testing for different potential
biases and finding no indication for a particular upward
bias, Lipsey and Wilson (1993) concluded that “the treatment
approaches represented in meta-analysis and reviewed in this
article represent rather mature instances that are sufficiently well
developed and credible to attract practitioners and sufficiently
promising (or controversial) to attract a critical mass of research.
For treatment approaches meeting these criteria, it is perhaps not
surprising that a high proportion do prove at least moderately
efficacious” (Lipsey and Wilson, 1993, p.1200). Thus, based
on previous systematic reviews of meta-analytic research on
educational intervention, our result of all available effect sizes
in the context of secondary mathematics and science teaching
being positive was to be expected and our results confirm
this expectation.

Although, there seems to be no controversy around the
positive direction of results of educational or instructional
interventions, there is an ongoing controversy about the
magnitude of standardized effect sizes as a metric for evaluating
and interpreting the effectiveness of educational interventions
(de Boer et al., 2014; Cheung and Slavin, 2016; Simpson, 2018).
A focal point of this discussion constitutes the numerous factors
(including potential biases) that have been shown to influence
standardized effect sizes. By adopting a selection heuristic that
takes into account effect size variation due to subject domain
and educational level, we have filtered for two of these factors
(educational level and subject domain) in order to provide a
reliable estimate of the effectiveness of educational intervention
in the context of secondary mathematics and science teaching
(e.g., de Boer et al., 2014). Nevertheless, previous research has
documented other and equally important factors that influence
results and should be considered when interpreting (aggregated)

effect sizes of educational interventions (Cheung and Slavin,
2016; Kraft, 2020).

For example, Cheung and Slavin (2016) examined
methodological impacts on effect sizes using a rather
homogenous sample of 645 high-quality studies of educational
program evaluations across the grades of prekindergarten to
12, involving reading, mathematics, and science. Their results
indicate that research design (randomized vs. non-randomized),
sample size (small sample size < N = 250 participants <

large sample size), outcome measures (researcher-made vs.
standardized measures), and type of publication (published
vs. non-published) were all independently associated with
effect-size magnitude. Consequently, the authors conclude that
these factors need to be accounted for by researchers and policy
makers before interpreting and comparing effect sizes from
program evaluations. Similarly, de Boer et al. (2014), in their
meta-analysis of learning strategy interventions, found that four
factors related to how interventions were implemented and how
effects were examined together explained 64% of the variance
in intervention effect size. Clearly, our sampled meta-analyses
demonstrate variations on many parameters that have shown
to influence effect sizes (e.g., Slavin and Madden, 2011; de
Boer et al., 2014; Cheung and Slavin, 2016). This simultaneous
variation on several parameters, particularly in but not limited
to variations in research methodology (e.g., sampling, group
assignment, comparison condition, outcome measure, effect size
calculation etc.) both on the level of primary research and on
the synthesis-level, complicates interpreting effect sizes as well
comparing and contrasting results across different meta-analyses.

Although this systematic review takes into account some of
these aspects by filtering aggregations of experimental research
in a particular context, it does not provide an in-depth analysis
and discussion of all aspects. One reason is that information
necessary for such an in-depth evaluation is oftentimes missing
or not sufficiently documented in published meta-analyses. We
address this issue in our analysis and discussion of scientific
quality (see below). Another reason is that each meta-analysis
in our sample, despite communalities, represents a specific
configuration with regard to study sampling and analysis of
teaching effectiveness research. Thus, a thorough analyses and
interpretation of findings that does justice to the complexity
of such configurations needs to consider each meta-analysis
individually, which is beyond the scope of this publication. We
agree with many previous researchers (e.g., Coe, 2002; Ferguson,
2009; Schneider and Preckel, 2017; Simpson, 2018; Kraft, 2020)
who have cautioned readers not to reach simple conclusions from
complex effect-size estimates. To receive some orientation when
interpreting effect sizes, readers can consult recent literature
(e.g., Kraft, 2020) or team up with trained researchers to reach
informed conclusions.

To increase the potential for coherent interpretation and
comparison of findings in future research synthesis, meta-
analysts need to reduce heterogeneity when sampling primary
research. Cheung and Slavin (2013, 2017), for instance, put
together a set of inclusion criteria—particularly suited for the
study of educational interventions in classrooms—to increase
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quality and comparability of findings in meta-analytic research
in this field (see also Slavin and Lake, 2008). Similarly,
Abrami et al. (2015) increased the homogeneity and the
quality of sampled primary research by testing the influence
of methodological study features on the effect sizes and
consequently excluding pre-experimental designs and non-
standardized measures from further analyses. Although these
strategies depend on the availability of appropriate numbers
and sufficient quality or similarity of primary research, they
might also encourage and orient researchers to design primary
studies in accordance with such criteria and thus contribute to a
more homogenous database. Moreover, homogeneity of sampled
primary research is also an important prerequisite for decisions
regarding implementation of teaching strategies and educational
interventions and related discussions about possible benchmarks
for implementation. In this context, researchers have advocated
empirical benchmarks “for specific classes of studies and outcome
types based on the distribution of effect sizes from relevant
literature” (Kraft, 2020, p. 247). Consequently, results from
research synthesis in education can only appropriately inform the
interpretation of intervention effectiveness and implementation
decisions, as far as the interpreter considers the fact that
aggregated mean effect sizes represent highly compounded
information. Effect sizes generated by meta-analytic aggregation
are atop a hierarchy that ultimately rests on the individual
research design elements of all single primary studies included in
the synthesis. Given the large heterogeneity of research included
in this review, which is typical for the field, our results defy
broad effectiveness conclusions and instead put the spotlight on
each individual meta-analysis and aggregated mean effect size(s)
reported therein.

Sampled Meta-Analytic Research Varies in
Terms of Scientific Quality
The validity of information from empirical educational
science rests on the appropriate application and reporting of
research methodology to determine educational effectiveness.
Consequently, systematic syntheses of research beyond
summarizing results must also assess the scientific quality
of the underlying research (Polanin et al., 2017). Based on 37
selected assessment criteria, our results demonstrate that the
sampled meta-analyses overall meet the current quality criteria
in meta-analysis research to a large extent. However, single
meta-analyses also still vary in their adherence to the complete
set of quality criteria. As high quality cannot be taken for granted,
quality ratings of individual meta-analyses should be considered
when interpreting aggregated effectiveness information. Low
ratings imply that the recommended research methodology was
not employed or sufficient reporting was not provided (or both).
While the former can often lead to biased results (Borenstein
et al., 2010), the latter at least impedes reproducibility and
jeopardizes research progress (Polanin et al., 2020). However,
despite some heterogeneity of the observed scientific quality
in our sample, a substantial number of meta-analyses followed
most of the guidelines (e.g., Fan et al., 2017; Schneider et al.,
2018; van Alten et al., 2019). Along with guidance from standard

documents (e.g., MARS) and recent publications (Pigott and
Polanin, 2020), these can provide practical examples on how
to adequately conduct and report meta-analytic research.
Moreover, certain important criteria (e.g., search details, clear
statement of inclusion criteria, analysis of publication bias)
have been considered by a large majority of authors, thereby
demonstrating additional improvement as compared to previous
reviews (Ahn et al., 2012). Further, recent analyses of the
quality of quantitative research synthesis in education and
psychology (Schneider and Preckel, 2017; Polanin et al., 2020;
Wedderhoff and Bosnjak, 2020) has revealed that our results
are in line with the current practice in high-impact publication
outlets. A few recurring issues in the literature as well as in
our sample include insufficient reporting and accessibility
of raw data—that is, coding information and insufficient
application of meta-analytic methods to prevent biased results
(Schneider and Preckel, 2017). Since none of the sampled
publications was pre-registered and less than half (44%) of the
publications provide sufficient data for replication, open research
practices are still a matter of concern in research synthesis as
they are in educational research more generally (Makel et al.,
2021). This underlines the importance of efforts to facilitate
preregistration of research synthesis for example by providing
elaborated templates that specify information necessary for
transparent reporting.

Importantly, the scientific quality of meta-analytic findings
also rests on the quality of primary research. Even in their most
advanced and differentiated form, the meta-analytic technique
is limited by the number and quality of the primary studies
to which it is applied (Lipsey and Wilson, 1993). This aspect
deserves special attention as the so-called “garbage in–garbage
out” problem has been around as long as meta-analytic research
(see Eysenck, 1978); thus, the issue remains unresolved. A recent
review (Wedderhoff and Bosnjak, 2020) on the assessment of
primary study quality in quantitative reviews revealed that from
among 225 meta-analyses published in Psychological Bulletin in
the last 10 years, 40 (18%) considered quality differences in
primary studies. Moreover, assessment strategies varied widely,
which is attributed to a lack of a consensual operationalization of
study quality. Considering that the underlying primary research
of this review also demonstrates variation in terms of several
quality indicators and that this variation can be associated
with effect size variance (Cheung and Slavin, 2016; Lazonder
and Harmsen, 2016), a more systematic investigation—that
transcends testing single indicators as moderators and employs
existing study quality assessment tools (e.g., Study DIAD,
Valentine and Cooper, 2008)—is paramount for the further
development of this evidence base.

Thus, echoing the concerns about the quality of research
in education—both on a primary research and research
synthesis level—(see Makel et al., 2021), our quality analysis
demonstrates that despite increasing adherence to quality criteria
in published meta-analyses, there is still considerable room for
improvement. Initial action has been taken by the research
community in providing standard documents, assessment tools,
protocols, templates and websites (e.g., https://osf.io/) to increase
transparency and quality. It is now up to researchers to make
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better use of these aids and guidelines in planning, conducting
and reporting their research given their high responsibility for the
research community but also for communities of practice who
rely on their expertise and integrity.

Limitations and Implications for Future
Research
In this section, we describe salient limitations that warrant
attention and further discussion in future research. Our
conclusions extend a few of the general concerns and potential
biases that are almost inherent in educational effectiveness
research, such as general bias to overestimate the effects of new
forms of instruction compared with regular forms (e.g., Ma et al.,
2014; Schneider and Preckel, 2017).

One of the first limitations concerns the generalizability of our
findings for current and international secondary mathematics
and science education. Although most of the included meta-
analyses were published within the last 5 years, there is still
a considerable time-lag between the experiment that generated
the primary data and the publication of this review. Within
this time interval, the development of effective interventions
and technologies has continued and studies that document
this effectiveness have been published, which are not part
of this review. This is a common concern in the review
literature, which is more pronounced in systematic reviews
of meta-analytic research (as a second-order synthesis), and
in rapidly developing fields of research such as educational
instructions (see Polanin et al., 2017). For future research,
open and transparent study protocols and open data could
facilitate the updating process for rapidly outdated meta-
analyses (Pigott and Polanin, 2020; Polanin et al., 2020).
Similar to research in higher education (Schneider and Preckel,
2017), a large proportion of included research stem from the
United States, followed by a substantially fewer studies from
other countries (see also Li et al., 2020). However, the results
from several meta-analyses in our sample, demonstrate that
the geographical origin of a study can significantly moderate
effect sizes (e.g., Schroeder et al., 2017; Chen and Yang, 2019).
This raises the question of how experimental research on
educational effectiveness can be promoted in countries outside
North America in order to enhance the generalizability of
findings worldwide.

A second drawback concerns our reliance on results from
statistical significance testing, particularly in moderator analyses.
The authors in our sampled meta-analyses either used analogs
to analysis-of-variance models to examine the moderating effects
of single moderatos or meta-regression models to test multiple
moderators and their association with effect-size variation in a
single model. Both model types rely on statistical significance
testing to ascertain whether or not a moderator effect is
present. Since this systematic review utilizes information from
moderator tests both for study selection and in reporting context-
specific effectiveness information, we have implicitly accepted
the criterion of statistical significance (at a 0.05 Alpha level)
for crucial decisions in what we present as evidence. Although
recently criticized, the practice of null-hypothesis statistical

significance testing remains a dominant practice in the social
sciences, and there is evidence from psychological research that
statistical significance tests and Bayes factors as alternatives
almost always agreed with regard to which hypothesis is better
supported by the data (Wetzels et al., 2011). However, a common
problem in meta-analyses—particularly in moderator tests—is
the issue of low statistical power due to the small numbers of
available effect sizes from primary research, which brings an
increased likelihood of false negatives or type II errors when
applying statistical significance tests (Cafri et al., 2010; Hempel
et al., 2013). Consequently, our sample might suffer from the
inappropriate inclusion of certain aggregated effect sizes, because
the significance test failed to detect the presence of a moderator
effect (by schooling level and/or subject domain), when the effect
is actually present. Conversely, numerous meta-analyses in our
sample conducted multiple univariate moderator tests without
correcting Alpha levels, which raises concerns about the inflation
of Type I error rates and increases the likelihood of falsely
identifiedmoderator effects (Polanin and Pigott, 2015). However,
this practice is more a problem of the accurate application of
statistical significance testing in moderator analysis rather than
one of statistical significance testing per se.

A third limitation that warrants discussion concerns the
usage of the presented findings as evidence in context-specific
decision-making. Although meta-analytic findings are often
praised for their usefulness to decision-makers—since they
represent comprehensive summaries based on a robust database
(e.g., Pigott and Polanin, 2020)—interventions adopted on the
basis of this aggregated evidence often fail to be effective in
practice. According to Joyce and Cartwright (2020), this is not
surprising, as findings based on one or several experimental
studies provide evidence that the intervention worked in the
past (causal ascription) but no evidence that the intervention
will work in a specific context in the future (local effectiveness
prediction). Nevertheless, findings related to aggregated positive
effectiveness for a certain context play a role in supporting a
prediction, as they indicate that the intervention can produce
the effect under more or less similar sets of circumstances.
A targeted collection of such indications is where we believe
the contribution of this review lies. Even though we selected
and summarized this information not only for the research
community, but also to address practitioners as e.g., teachers
and teacher educators, it seems clear that these non-specialist
audiences often face challenges in accessing and interpreting
current research (see Diery et al., 2020, 2021). One way to offer
support is to provide some supportive services which select
and translate research for non-specialist audiences. Whereas
the selection part is mainly described by this contribution,
for the translation part we have established an online service
platform that provides plain language summaries for meta-
analyses which are selected and included in this review (Seidel
et al., 2017a,b). This service, funded by the German ministry
of education and research, can be accessed by any teacher and
teacher educator free of charge via http://www.clearinghouse-
unterricht.de. The website additionally includes a glossary and
other educative material to empower practitioners in order to
help them adequately interpret research evidence.
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CONCLUSION

Through this systematic review of meta-analyses, we put forward
a multiple steps approach to determine an evidence base for
a particular field of educational practice. As a first step we
chose effective teaching as a prominent field of educational
practice. Since targets in teaching are provided on the level
of a certain subject and educational level, we argued that
effectiveness information that cuts across these two categories
for specification is best suitable for informing the practice
of effective teaching. In this regard, our study is the first to
provide and apply a heuristic for filtering the best available
effectiveness information based on such a context specification.
Our results from the field of secondary mathematics and
science teaching demonstrate that context-specific effect sizes
information may often differ from more general effect size
information on teaching effectiveness. Although our findings
indicate that there is substantial amount of relevant and
encouraging context-specific information available they also
show that we had to exclude many studies because they did
not offer information generalizable to this specific context.
Thus, although meta-analytic research has strongly developed
over the last few years, providing context-specific and high-
quality evidence still needs to be a focus in the field of
secondary mathematics and science teaching and beyond. This
systematic review could offer guidance and encouragement on
this continuous path.
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