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Immune responses in human tissues rely on the concerted action of different cell types.
Inter-cellular communication shapes both the function of the multicellular interaction
networks and the fate of the individual cells that comprise them. With the advent of
new methods to profile and experimentally perturb primary human tissues, we are now in
a position to systematically identify and mechanistically dissect these cell-cell interactions
and their modulators. Here, we introduce the concept of multicellular hubs, functional
modules of immune responses in tissues. We outline a roadmap to discover multicellular
hubs in human tissues and discuss how emerging technologies may further accelerate
progress in this field.
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INTRODUCTION

The cells of our body do not function in isolation. Instead, they work together in spatially organized
teams to ensure proper tissue function. Each cell relies on input from its surrounding
microenvironment to fulfill its specific role and to contribute to the concerted function of its
multicellular unit. For example, the proliferation and differentiation of stem cells is tightly regulated
by their niche, as seen with Lgr5+ stem cells at the bottom of the intestinal crypt (1). Such spatial
restriction of interactions is essential to keep tissue organization intact. Spatial organization is also
important in the immune system, which consists of both tissue-resident cells and cells that circulate
through the body and can dynamically come together in a coordinated manner. At sites of immune
education, defined regions of the tissue enable specific cellular interactions through which
lymphocytes acquire their functional capabilities, such as in the thymus where T cells mature (2),
or lymph nodes where T and B cells get activated (3). In diseased tissues, immune cells assemble on
demand to respond to threats and reconstitute homeostasis (4). Neutrophils swarm into acutely
inflamed tissues by attracting each other to sites of injury, but also cross-inhibit their migration to
prevent uncontrolled aggregation (5, 6). Tertiary lymphoid structures are examples of spatially
restricted sites of immune cell interaction that can arise during chronic inflammation and
cancer (7).

While some of the interactions governing tissue homeostasis, fate decisions, and immune cell
education are well understood, we are just beginning to unveil the rules behind the cooperation
org May 2022 | Volume 13 | Article 8841851
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between immune and non-immune cells in the diverse spectrum
of human diseases. To understand how healthy tissues function,
how diseased tissues are altered, and which perturbations could
be exploited therapeutically, we need a simplified concept of how
cells are organized in tissues. Furthermore, we need experimental
and computational methods that systematically identify
multicellular interaction networks and their components and
mechanistically dissect their concerted multicellular behaviors.

Here, we describe the concept of multicellular hubs, which we
define as dynamic, spatially proximal cells that interact and
cooperatively enable specific tissue functions. We postulate that
multicellular hubs represent functional modules of immune
responses and that the functional state of healthy and diseased
tissues can be described as a combination of those modules with
varying activity, state, and localization. Finally, we outline a
roadmap to systematically discover, experimentally model, and
mechanistically dissect these modules.
MULTICELLULAR HUBS - FUNCTIONAL
UNITS OF IMMUNE RESPONSES

Several recent publications support the idea that immune and
tissue-resident non-immune cells are spatially organized into
multicellular interaction networks in healthy and diseased tissues
(8–10) including in tumors (11–16). The exact networks that
were identified differed between studies, potentially due to
differences in technologies and patient cohorts, and further
investigation is required to understand if and how the
interaction networks from different studies correspond to each
other. However, profiling efforts of tumor biopsies suggest that a
limited number of dominant multicellular interaction networks
can explain even the large heterogeneity and variability seen in
cancer (11, 14, 17, 18). Importantly, some of these multicellular
interaction networks were furthermore found to be associated
with survival (9, 12, 14–18).

Based on this, we suggest that multicellular hubs represent a
valuable lens through which we can investigate immune
responses in tissues. Multicellular hubs form an intermediate
level in a hierarchical model of tissue organization that connects
the molecular processes governing cellular behavior with the
structure and functional state of the entire tissue. Specifically, we
can now start to understand which genes function together in
gene expression programs (19), how the combination of active
gene expression programs defines a cell’s transcriptional state
(20), which specific cell states interact to form multicellular hubs,
and how the localization and combination of hubs defines the
functional organization of a tissue (Figure 1A).

We postulate five key features of multicellular hubs
(Figure 1B).

(1) Multicellular hubs are spatially organized units with a
specific, limited function. The functional state of a tissue is
defined by its composition of different multicellular hubs,
their activity, and their location.

(2) The function of a multicellular hub arises from cellular
cooperation, whereby each cell depends on the other cells to
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fulfill its specific task and contribute to the function of
the hub.

(3) The interactions within multicellular hubs impact the cells of
the hub by altering their cell-state trajectory and, in some
cases, the developmental trajectory of their daughter cells.

(4) Multicellular hubs are not static. They form when specific
environmental cues, such as chemokines that attract cells
towards the same location, are present. Their cellular
composition, size, and function can change over time, and
they may eventually dissolve. For example, hubs may arise
during physiological or pathological responses, change over
the course of a disease, and disappear after treatment.

(5) The absolute number of different types ofmulticellular hubs is
finite with each type of hub potentially existing in different
activation states across healthy and diseased human tissues,
analogous to cell types and their activation states. Given a sufficient
sample size and the necessarymethods, we can potentially catalog at
least the different types of hubs in their entirety.
HOW CAN WE IDENTIFY
MULTICELLULAR HUBS?

The advent of novel experimental technologies and computational
methods provides us with an unprecedented opportunity to
comprehensively map multicellular interaction networks in
primary human tissues. Traditional hypothesis-driven approaches
have been invaluable in building our current understanding of
immune responses and tissue biology. However, they also have
constraints that limit what we can learn from them. Firstly, these
methods are usually limited to probing the interaction only between
a specific subset of cell types of interest and cannot assemble a
complete picture of the cellular interactions within tissues. Secondly,
they often rely on the use of model organisms which do not always
recapitulate human biology (21). Here, we describe how recent
technological advances are now allowing us to systematically
identify multicellular interaction networks in human tissues.

Profiling of Primary Human Tissues
A major challenge in generating a comprehensive dictionary of
multicellular hubs is access to clinically annotated primary
human tissues (Figure 2A). The comparison of healthy and
diseased tissues is vital to identify both steady-state and disease-
specific hubs. Furthermore, a large number of samples will be
required to identify rare multicellular hubs and assess their
variability across patients. Ideally, tissues should be sampled
from the same patients at different time points to evaluate how
multicellular hubs change during the course of the disease or
after treatment. For some diseased tissues, such as certain types
of cancer or inflammatory bowel diseases, biopsies or resections
are part of the clinical workup and are thus accessible to research.
For the vast majority of human diseases longitudinal sampling of
tissues remains impossible. However, insights from accessible
sites and diseases might provide for example blood biomarkers
that reflect how hubs develop in inaccessible tissues of interest.
May 2022 | Volume 13 | Article 884185
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To date, cellular interaction networks have been predicted based
on high-plex profiling approaches (e.g., by single-cell RNA
sequencing or CODEX) applied to relatively limited cohort sizes or
by targeted low-plexprofilingof large cohorts (e.g., byflowcytometry
or immunohistochemistry) (8, 9, 11, 12, 15–17, 22–26). A growing
number of studies are incorporating high-plex spatial information
(27) tomap cells and cellular interactions to specific locations within
tissues. In the future, technological advances should make profiling
methods more cost-efficient and scalable to large cohorts of human
tissues, cover the full spectrum of analytes of a given modality (e.g.,
full transcriptome or full proteome), allow for single-cell resolution,
and capture the spatial organization of the tissue.

To achieve a comprehensive picture, studies should
furthermore integrate multiple different profiling modalities.
Methods such as single-cell and single-nuclei RNA sequencing
as well as single-cell ATAC sequencing are well established, while
methods like single-cell proteomics are emerging to capture
post-transcriptional changes in cell state (28). In addition,
measuring non-cell autonomous characteristics of a tissue (e.g.,
microbiome, extracellular matrix) may be essential to fully
understand tissue function. Pairing such relatively unbiased
approaches with traditional methods like flow cytometry for
established cell type markers or H&E staining to assess tissue
histology will furthermore enable us to link newly gained global
insights with the rich body of immunology literature.
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Computational Prediction of Hubs and
Their Function
In the following sections, we outline how computational analyses
can find signs of cellular interactions, predict possible ligand-
receptor pairs that mediate these interactions, and define
hubs (Figure 2B).

In recent years, a plethora of methods has been developed to
infer cell-cell interaction from transcriptomic data (29)
(Figure 2B1). Cellular interactions are commonly predicted
based on the expression levels of known receptor-ligand pairs
(30). Such an approach can identify which cells have the
molecular equipment to interact and provide hypotheses
regarding the directionality of the potential interactions.
However, it does not address which interactions actually
happened in the tissue analyzed. It also misses scenarios in
which low receptor expression is sufficient to elicit a response,
or in which activation of a receptor triggers its downregulation.
The expression of target genes downstream of the engaged
receptor in receiver cells together with ligand expression in
donor cells (31) provides support as to which cells have likely
interacted and functionally impacted each other. However, our
knowledge of how different human cell types respond to specific
stimuli is not yet complete. Signatures obtained through the
increasing number of single-cell studies on primary human
tissues should vastly improve the power of such approaches.
A B

FIGURE 1 | Multicellular hubs as coordinated modules in a hierarchical model of tissue organization and function. (A) Tissues can be viewed as a combination of multicellular
hubs. Multicellular hubs are composed of interacting cells that express particular gene expression programs. (B) (1) The combination of type, activity, and location of different
spatially organized hubs determines the functional state of the tissue. (2) The function of each hub arises from the concerted action of its cellular components. (3) The cells of
the hub are influenced by their interaction with other cells in the hub. (4) Multicellular hubs are not static, but can change over time. (5) The number of different types of hubs is
limited, with each type of hub potentially existing in different activation states analogous to cell types and their activation states.
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Furthermore, targeted but spatially resolved measurements of
ligands, receptors, and downstream targets could confirm
receptor/l igand-based predictions regarding cellular
interactions and the formation of multicellular hubs.

Methods that test for the co-variation of coordinated groups
of genes or cell states across patient samples (11, 14, 17, 32) or
space (16, 33, 34) do not rely on prior knowledge. Co-variation
might indicate either that a common factor induces both
signatures or that one signature induces another, representing
a trace of cellular interaction. Querying the co-varying gene
programs for enriched gene sets, transcription factor motifs, and
receptor-ligand pairs can provide clues regarding the underlying
mechanism and directionality of the interaction (Figure 2B2).

Once cellular interactions have been identified, graph-based
methods e.g., (35, 36) can be used to group cell states into strongly
connected modules, the multicellular hubs (Figure 2B3). It would
also be interesting to use analysis methods that allow cell states or
gene expression programs to be part of several multicellular hubs,
executing different functions depending on the combination of
interaction partners in each hub. With spatially-resolved methods,
one can furthermore address how these hubs are organized within
the tissue (Figure 2B4) and whether they are associated with
histologically distinct regions.

Importantly, a dictionary of hubs only becomes valuable once
we identify the function of each hub (Figure 2B5). Prior studies
on genes, gene expression programs and cell types that compose
the hub can help with its functional annotation. The location and
spatial organization of the hub in the tissue, e.g., localization to
areas of tissue damage or hypoxia, can provide further context
regarding potential drivers or effects of the hub. Since the
interpretation of high-plex omics datasets spans many areas of
biology, input from experts in the respective fields is immensely
helpful. Altogether, these steps create the dictionary of spatially
organized hubs in primary human tissues that can guide and
prioritize subsequent mechanistic studies.
HOW CAN WE GAIN A MECHANISTIC
UNDERSTANDING OF THE
COMMUNICATION PATHWAYS IN HUBS
AND DETERMINE THE HUB’S FUNCTION?

Experimental Model Systems
Experimental model systems are vital to validate computationally
derived predictions (Figure 2C). In recent years, several model
systems based on primary human cells have been developed, which
are more likely than non-primary or non-human systems to
recapitulate the signaling pathways occurring in human tissues, an
important consideration for drug discovery (21). Organoids derived
frompatient samples, for example, retain inter-patient variability and
can be used in co-cultures to study cellular interactions and test
treatment responses ex vivo (12, 37, 38). To better capture
heterogeneous cellular compositions, such as the tumor-
microenvironment, patient-derived organotypic tumor spheroids
May 2022 | Volume 13 | Article 88418
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FIGURE 2 | A roadmap to identify and mechanistically dissect multicellular
hubs. (A) Profiling of healthy and diseased tissues across different timepoints
using high-plex methods to discover multicellular hubs in primary human
tissues. (B) Based on the profiling data, prediction of (1) which cells interact and
(2) which signals they use. (3) Grouping of cell states into strongly connected
modules to generate a dictionary of multicellular hubs. (4) Spatial map of hubs
and their components in tissues. (5) Prediction of the hubs’ modular function.
(C) Modeling of multicellular hubs in primary human ex vivo systems or animal
models. (D) Experimental tracing of cell-cell communication. (E) Experimental
perturbation to gain mechanistic understanding.
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(PDOTS) grown in microfluidic devices (39) and patient-derived
organoids (PDOs) grown at an air-liquid interface (ALI) have been
developed (40). Such culture systems can be used to study how
perturbations including therapeutic agents used in the clinic impact
cell-cell interactions and reshape multicellular hubs. Furthermore,
Organ-on-a-chip systems can provide necessary physico-chemical
cues present in primary tissues that may be important for
multicellular hub formation, stability, and/or function (41).

While much progress has been made in developing these
human ex vivo model systems, several limitations remain. Some
cell types, e.g., neutrophils (42), have an inherently short life-
span or cannot be cultured long enough to study intermediate- or
long-term interactions. Furthermore, crucial environmental
factors required for primary cell states to persist (38) or for
cellular interactions to occur may be missing from these systems.
In these cases, options currently available are to work with
freshly isolated cells, mimic certain cell states experimentally
(e.g., by cytokine stimulation or addition of physico-chemical
stimuli), or switch to carefully chosen animal models.
Independent of the model system, transcriptional or proteomic
profiling of the cells should confirm the accurate resemblance to
the cell states found in primary tissues.

Tracing Cell-Cell Interactions
and Their Effects
Several technologies to trace cell-cell interactions have been
developed recently (Figure 2D) (43). These technologies test for
proximity or direct contact between cells as an indicator of cellular
interaction. One important consideration in choosing an approach
is whether the interactions of interest are contact-dependent or
contact-independent, e.g., through cytokines or chemokines, or
both. Imaging-based technologies can assess both cells that are in
direct contact with each other and cells that are close enough to
communicate via paracrine signaling molecules. To study dynamic
cellular interactions, e.g., between immune and non-immune cells
in settings of acute injury or infection, live imaging-based readouts
are particularly suitable (44–46).

Cell interactions can also be identified by methods that rely
on the transfer of markers or signals between sender and receiver
cells. These methods are suitable to study cell-cell interactions in
living model organisms. However, tracing interactions in this
way often requires genetic modifications of the sender and/or
receiver cells, which makes it difficult to apply these technologies
to primaryhuman model systems. Transferred markers can be
chemicals [e.g., FucoID (47), LIPSTIC (48)], proteins [e.g.,
mCherry-niche (49), G-baToN (50)], or virally transmitted
barcodes [e.g., RABIDseq (51)]. Alternatively, receiver cells can
be equipped with genetically engineered receptors [e.g.,
SynNotch receptors (52)] that trigger the expression of a
marker upon engaging in cell-cell interactions of interest.
FucoID, LIPSTIC, G-baToN, and SynNotch receptors identify
contact-dependent interactions, while mCherry-niche marks
cells that are in close proximity to each other.

Depending on the research question, it might be necessary to
not only identify which cell types interacted with each other, but
to precisely know which individual cells were talking to each
Frontiers in Immunology | www.frontiersin.org 5
other. This can be accomplished by using imaging-based
methods or methods that rely on the transfer of barcodes (e.g.,
RABIDseq). Furthermore, transcriptional, proteomic, or
functional readouts can be used to demonstrate the impact of
the observed interaction on the cells involved.

Perturbation
Experimental perturbations are necessary to determine the
directionality, mediators, and regulators of cell-cell interactions,
and to identify which cellular components are needed for the
concerted function of the hub (Figure 2E). In many cases,
predictions of possible communication pathways can guide the
choice of targeted perturbations, e.g., targeting specific ligand-
receptor pairs. In other cases, a more comprehensive hypothesis-
independent perturbation screen may be desirable to clarify the
hub’s molecular circuits.

Different kinds of perturbations can be used to probe
multicellular hubs. Recombinant ligands or cell supernatants
from putative donor cells can be added to receiver cells to study
individual cell-cell interactions. In multi-component hub model
systems, individual cellular players can be added or depleted.
Furthermore, genetic perturbations can be employed to turn
signaling pathways off (CRISPR-mediated gene knockouts or
interference) or on (CRISPR-mediated activation), identify key
regulators, and when applied in co-culture systems, identify
mediators of interaction (53–56). Importantly, these
technologies are now becoming applicable to various primary
human cell types (57–59). Lastly, small-molecule screens in
organoids (60), PDOTs (39), ALI-PDOs (40), or Organ-on-a-
chip systems (41) can be used to identify candidates for targeted
therapeutic interventions (60).

In addition to the mode of perturbation, experimental
readouts need to be carefully chosen to dissect how intra- and
inter-cellular signaling pathways influence cellular behavior, hub
formation, and hub function. Possible readouts include the
measurement of markers of activated signaling pathways (61),
the transcriptional state of single cells (62), assays of complex
cellular phenotypes (63) and functions (53), the previously
outlined methods to trace cell-cell interactions, or assessment
of histological tissue organization (64). Together, these
approaches can experimentally dissect computationally
predicted multicellular hubs and provide a mechanistic
understanding of the underlying molecular communication
pathways and the concerted function they enable.
DISCUSSION

We predict that the number of ways that cells can interact and
form multicellular hubs is finite. Given this hypothesis, it should
be possible to map the entire multicellular hub space in healthy
and diseased human tissues. Indeed, large-scale profiling efforts
from consortia such as the Human Cell Atlas (HCA) (65),
Human Tumor Atlas Network (HTAN) (66), Human
Biomolecular Atlas Program (HuBMAP) (67), LifeTime
Initiative (68) and others, are already in the process of
May 2022 | Volume 13 | Article 884185
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generating and annotating dictionaries of cell types and states,
gene expression programs, and ultimately also multicellular
interaction networks. Furthermore, the toolbox of experimental
model systems and technologies to trace and perturb cell-cell
interactions is rapidly growing. Thus, not only profiling efforts
but also mechanistic follow-up studies should become
increasingly feasible at larger scales and in human
model systems.

Thinking of tissues as a combination of multicellular hubs is
certainly a simplification. Nevertheless, organizing cells and gene
programs into hubs can help us to learn the cell- and context-
specific function of genes, and point us to key regulators of
physiologic and pathologic processes in human tissues. This is
crucial in order to extract clinically relevant and therapeutically
actionable knowledge from these increasingly complex data sets and
derive universal principles of cellular interaction and cooperation.
OPEN QUESTIONS

• Is the simplified view of tissues as a combination of
multicellular hubs sufficient to describe the relevant
immunologic processes in healthy and diseased tissues?

• How are cell trajectories influenced by the multicellular
interactions within hubs?

• Is there a limited set of multicellular hubs that reoccur across
different patients and diseases?

• Are the same hubs identified with different technologies?
• Which multicellular hubs are predictive of disease outcome

and therapy responsiveness?
Frontiers in Immunology | www.frontiersin.org 6
• Can disease-specific multicellular hubs be targeted
therapeutically?
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/supplementary material. Further inquiries can be
directed to the corresponding author.
AUTHOR CONTRIBUTIONS

JA and KP conceptualized, wrote, and reviewed the manuscript.
All authors approved the submitted version.
FUNDING

We are also thankful for the Stand Up to Cancer (SU2C) Peggy
Prescott Early Career Scientist Award PA- 6146, SU2C Phillip A.
Sharp Award SU2C-AACR-PS-32, BroadIgnite, and NIH/NCI
R00CA259511 (to KP), and funds from the TUM Medical
Graduate Center and the Studienstiftung des deutschen Volkes
(to JA).

ACKNOWLEDGMENTS

We thank Nir Hacohen for many fruitful discussions and Kathryn
Claiborn, Bruce Schaar, and Stacie Dodgson for feedback, language
editing and proofreading of the manuscript. Figures were created
with BioRender.com.
REFERENCES
1. Santos AJM, Lo Y-H, Mah AT, Kuo CJ. The Intestinal Stem Cell Niche:

Homeostasis and Adaptations. Trends Cell Biol (2018) 28:1062–78. doi:
10.1016/j.tcb.2018.08.001

2. Kumar BV, Connors TJ, Farber DL. Human T Cell Development,
Localization, and Function Throughout Life. Immunity (2018) 48:202–13.
doi: 10.1016/j.immuni.2018.01.007

3. Grant SM, Lou M, Yao L, Germain RN, Radtke AJ. The Lymph Node at a
Glance - How Spatial Organization Optimizes the Immune Response. J Cell
Sci (2020) 133:241828. doi: 10.1242/jcs.241828

4. Medzhitov R. The Spectrum of Inflammatory Responses. Science (2021)
374:1070–5. doi: 10.1126/science.abi5200

5. Kienle K, Lämmermann T. Neutrophil Swarming: An Essential Process of the
Neutrophil Tissue Response. Immunol Rev (2016) 273:76–93. doi: 10.1111/
imr.12458

6. Kienle K, Glaser KM, Eickhoff S, Mihlan M, Knöpper K, Reátegui E, et al.
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