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Abstract

We are interested in secure communication without sharing a secret key. Currently, the

construction of an explicit and practical secure encoder and decoder with an optimal

performance is still an unsolved problem in the general case, except for some special

cases.

In the first part of the thesis, we constructed codes for secure transmission for a so-called

wiretap channel model. In the model there is a third party listening to the conversation

between sender and receiver. The channels between the transmitter and receivers are

noisy in the general case, assuming that for physical reasons the eavesdropper’s channel is

noisier than that of the legitimate receiver. We have constructed codes with a small Galois

field size (which are preferably binary) for simplified wiretap models. In the simplified

wiretap model, bursts of erasure occur in the channel to the legitimate transmitter, and the

eavesdropper is able to observe an interval of a prescribed length noiselessly. Purposefully,

codes were constructed that provide perfect security (strongest security metric) and error-

free decoding, and can be transmitted at the maximum possible secrecy rate.

In the second part of the thesis, we considered the so-called modular wiretap coding

scheme for secure transmission. The modular wiretap coding scheme consists of three

layers. The first layer is for secure transmission, realized by a randomized function. The

second and third layers are for reliable transmission, realized by a conventional error-

correcting code and a modulation scheme, respectively. The advantage of the modular

scheme is that no new error-correcting codes need to be constructed and it can be inte-

grated into existing systems without the need for costly system modifications. We ana-

lyzed the modular wiretap code for the AWGN channel and implemented it in Matlab.

We used the 3GPP standard for reliable transmission and a ”Universal Hash Function”

(UHF) in the first layer. The eavesdropper uses the maximum likelihood (ML) test as

an attack strategy. We considered the distinguishing security which is equivalent to the

semantic security in the asymptotic case. The distinguishing security can be assessed

by the probability of error. We have seen that for a given signal-to-noise ratio (SNR)

with increasing randomness at the encoder, the error probability converges towards the

maximum possible error probability.
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Zusammenfassung

Wir sind an einer sicheren Kommunikation ohne gemeinsame Nutzung eines geheimen

Schlüssels interessiert. Derzeit ist die Konstruktion expliziter und praktischer sicherer

Einkodierer und Dekodierer mit optimaler Leistung im allgemeinen Fall noch ein un-

gelöstes Problem, abgesehen von einigen Spezialfällen.

Im ersten Teil der Thesis konstruieren wir Kodes zur sicheren Übertragung für ein

sogenanntes Wiretap Kanal Model. In dem Model gibt es eine dritte Partei die der Un-

terhaltung zwischen Sender und Empfänger lauscht. Die Kanäle zwischen Sender und

Empfängern sind im allgemeinen Fall verrauscht, wobei angenommen wird, dass aus

physikalischen Gründen der Kanal des Lauschers verrauschter ist als der des legitimen

Empfängers. Wir haben für vereinfachte Wiretap Modelle Kodes mit kleiner Galois-

Feldgröße (die vorzugsweise binär sind) konstruiert. In dem vereinfachten Wiretap Model

treten im Kanal zum legitimen Sender gebündelte Löschungen auf, und der Lauscher ist

in der Lage ein Intervall einer vorgeschriebenen Länge rauschfrei zu beobachten. Gezielt

wurden Kodes konstruiert die perfekte Sicherheit (stärkste Sicherheitsmetrik) und fehler-

freie Dekodierung gewährleisten und mit maximal möglicher sicheren Rate übertragen

werden können.

Im zweiten Teil der Thesis haben wir das sogenannte modulare Wiretap Kodierungs

Schema zur sicheren Übertragung betrachtet. Das modulare Wiretap Kodierungs Schema

besteht aus drei Schichten. Die erste Schicht dient der sicheren Übertragung, realisiert

durch eine randomisierte Funktion. Die zweite und dritte Schicht dient der zuverlässigen

Übertragung, realisiert durch jeweils einem konventionellen Fehlerkorrigierenden Kode

und einem Modulationsschema. Der Vorteil des modularen Schemas ist, dass keine neuen

fehlerkorrigierenden Kodes konstruiert werden müssen und es integriert werden kann in

bestehende Systeme ohne das System aufwendig anpassen zu müssen. Wir haben den

modularen Wiretap Kode für den AWGN Kanal analysiert und in Matlab implemen-

tiert. Zur zuverlässigen Übertragung haben wir den 3GPP Standard verwendet und in

der ersten Schicht eine Universal Hash Function (UHF). Der Lauscher verwendet den

Maximum-Likelihood (ML) Test als Angriffsstrategie. Wir haben die differenzierende

Sicherheit betrachtet die äquivalent zur semantischen Sicherheit im asymptotischen Fall

ist. Die differenzierende Sicherheit kann über die Fehlerwahrscheinlichkeit bewertet wer-

den. Wir haben gesehen, dass für gegebenes Signal Rausch Verhältnis (SNR) mit wach-

sendem Zufall am Einkodierer die Fehlerwahrscheinlichkeit gegen die maximal mögliche

Fehlerwahrscheinlichkeit konvergiert.
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Basic Notations

Unless otherwise specified, we define the following notation.

N natural numbers

R real numbers

C complex numbers

X alphabet or set

x` max tx, 0u, x P R
X random variable implicitly defined on alphabet X
|X | cardinality of X
xn sequence px1, . . . , xnq

PX probability distribution of the random variable X

pX probability density of the random variable X

PX|Y probability distribution of X conditioned on Y

Prp¨q probability of the event p¨q

Pe per bit error probability

P
pnq
e the average probability of error

hp¨q binary entropy function

HpXq entropy of the discrete random variable X

HpX|Y q entropy of X conditioned on Y

IpX;Y q mutual information between X and Y

Fq finite field with q elements

Fnq n-dimensional space over Fq
Fnˆkq the set of nˆ k matrices over Fq
Ik k ˆ k identity matrix

dHpx
n, ynq Hamming distance between xn and yn

dpCq minimum distance of a code C

GC generator matrix of a linear code C

HC parity check matrix of a linear code C

EX expectation with respect to X
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1. Introduction

The need for reliable and secure data communication over wireless networks is greater

than ever before. It is increasingly possible to listen into the communication between a

computer and a wireless router for example. Information-theoretic security is becoming

more significant as computation hardware is getting drastically cheaper every day; this

means that computational security schemes that are currently considered secure will no

longer be secure in the future. Information-theoretic security assumes that the eavesdrop-

per has limited access to the transmission, but an unlimited power to process it. On the

other hand, cryptographic security assumes that the eavesdropper of a secure transmis-

sion has unlimited access to the transmission, but a limited processing power. The idea

of using information theory to analyze cryptosystems was first introduced by Shannon in

his 1949 paper [1], in which a secret key is considered to protect confidential messages.

Wyner proposed an alternative approach to secure communication schemes in his seminal

paper [2], where he introduced the so-called wiretap channel model. He demonstrated

that secure communication is possible without sharing a secret key and determined the

secrecy capacity for a wiretap channel. Wyner’s model was later generalized by Csiszar

and Körner [3] and was further developed in [4]. Authors in [4] introduced the wiretap

channel II model, in which the legitimate transmitter communicates over a noiseless main

channel, while the eavesdropper has access to µ noiseless bits (of his own choice) of the

length-n binary codeword. Authors in [4] showed that perfect security is attainable pro-

vided that µ is not too large, and proposed a randomized coset coding scheme, where the

partition of the binary code C “ t0, 1un corresponds to a group code and its cosets, and

showed that it achieves the capacity-equivocation region.

Part II

Several recent papers have studied various wiretap channels and provided results on se-

crecy capacity, e.g. by Thangaraj et al. [5] and Liu et al. [6]. Also among them are

wiretap channel models with delay constraints, e.g. [7],[8], [9], [10]. Most of the literature

is concerned with wiretap channel models in which the eavesdropper only overhears the

transmission but does not try to modify the transmission. The wiretap channel with an

active eavesdropper was first considered by Lai et al. [11], where the goal of the receiver

is to detect whether the transmitted packet has been modified or not. Aggarwal et al.

[12] were the first who studied the model, where the eavesdropper not only noiselessly

1



1. Introduction

overhears a subset of the transmitted bits, but also modifies the bits, so that the legiti-

mate receiver receives a corrupted version of the sender’s codeword. In this model, they

designed a scheme that achieves a secrecy rate of p1 ´ ε ´ hpεqq`, where ε “ µ{n is the

portion of the bits observed and erased by the eavesdropper and hpεq is the binary entropy.

However, existence of better achievable rates for the described channels remains an open

problem for arbitrary fields and code lengths.

Moreover, design of efficient coding schemes for both the wiretap channel and the

model of wiretap channel II with an active eavesdropper is also an open problem. This

motivates us first to introduce and study a model of wiretap channel II, where the abilities

of the eavesdropper are more restricted compared to the one in r12s. In our models,

the eavesdropper can observe an interval of µ symbols from n transmitted symbols. In

addition, the active eavesdropper can erase the symbols in any interval of length B of

the transmitted codeword. It is worth noting that code constructions for this model

also work for the wiretap channel with an eavesdropper, where the main channel causes

erasures in any interval of length B. In both cases, the designer of the encoder has

to proceed on the assumption that the worst case can occur. In addition, neither the

transmitter nor the intended destination knows in advance which interval of length B

has been erased. However, we assume that the legitimate receiver of the message has a

physical advantage over the eavesdropper. In addition, we have constructed burst-erasure

wiretap codes for the streaming case where the legitimate receiver has to meet a decoding

delay deadline. In many emerging communication systems such as interactive voice and

video communication, internet of things, etc., low-delay is an important task along with

reconstruction of corrupted or lost data. The goal of our work is to design practical coding

schemes which achieve the maximum secrecy rate, perfect security, i.e., the adversary’s

observations are completely decoupled from the message, and perfect reliability, i.e., zero

error decoding.

Part III

We consider the wiretap channel, where Alice (the sender) wants to convey messages

from a finite message set to Bob (the legitimate receiver) over a noisy channel. Eve (an

eavesdropper) observes a different noisy version of the channel input. Alice has to encode

the message so that Bob is able to decode the channel output, and so that Eve learns

as little as possible about the message from her observation. There are different ways

to measure security under a given security paradigm (weak, strong, perfect, semantic),

e.g. the total variation distance, the mutual information, the equivocation rate or the

advantage. We use the advantage at Eve as the security measure. The target value for

the advantage is also zero. We consider three communication scenarios, each reflecting

the operational meaning of different security measures and different assumptions about

Eve’s strengths. In the first two scenarios, the message distribution may be arbitrary,

2



1.1. Outline and Contribution

so these setups would be variants of “semantic security” in common terminology. In the

third scenario, the advantage is measured under the assumption of a uniformly distributed

message. This is usually referred to as “strong security”.

We consider a seeded modular code for the additive white Gaussian noise (AWGN)

wiretap channel consisting of a security layer, an error-correction layer and a modulation

layer for the reliable transmission from Alice to Bob. In the security layer, a function fs

of certain properties is used, which depends on a randomly chosen seed s. We can assume

that before the transmission begins, the seed s is known to all participants. Practically, the

seed could have been sent by Alice before the communication started. Using seed recycling,

[13] showed that the rate loss can be asymptotically neglected. Note that a seed is different

from a key, because the seed is public and does not have to be kept secret from Eve. When

encoding the message, in the security layer the randomized inverse function f´1
s maps the

message M together with a randomly chosen seed s and a randomly generated vector r to

the input vector v of the forward error-correction (FEC) code. Any FEC code adapted for

the channel can be used. Then the codeword is modulated. At the receiver, the channel

output is demodulated, decoded and then the message is reconstructed using the seed and

fs. The error probability of the seeded modular code is at most as high as that of the

FEC code and of the modulation scheme. Eve knows the coding procedure, the channel,

the seed and the distribution of the message PM . The artificial randomness used in the

randomized inverse serves to confuse Eve.

The seeded modular coding scheme has the advantage that already-existing and long-

researched FEC codes can be used. Additionally, embedding in existing wireless systems

is associated with low refitting costs. The security aspect of wireless communications in

6G is of paramount importance to combat cybercriminal activities. This is especially true

because more and more people are using wireless networks (e.g. mobile networks and

WLAN) for online banking and personal e-mails, due to the widespread use of smart-

phones. But also in machine-to-machine communication in industry 4.0, the security of

wireless communication is enormously important for personal protection and to enable a

smooth production workstation. For further applications and more details, we refer to

[14], [15].

The functions we use for the security layer are universal hash functions (UHF). We call

a modular scheme that uses the UHF as the function in the security layer a modular UHF

scheme.

1.1. Outline and Contribution

Part I: Chapter 2 contains a review of fundamental results in information theory and

coding theory needed for the rest of the thesis. In Chapter 3, we first introduce the

notion of the wiretap channel and Wyner’s random encoding strategy which achieves the

secrecy capacity. Then we study the binary erasure wiretap channel II and describe an

3



1. Introduction

information-theoretic analysis of the coset coding scheme for this model.

Part II: In chapter 4, we consider a wiretap channel II with an active eavesdropper. The

eavesdropper is able to observe any interval of µ symbol positions and erase the symbols in

any interval of B positions of a transmitted codeword. We present an explicit construction

of nested linear codes that achieve maximum secrecy rate for the finite length coding

regime with perfect security and zero-error decoding for any admissible code parameters.

In Chapter 5, we consider transmission of secure messages over a burst-erasure wiretap

channel under decoding delay constraint. For block codes we introduce and study delay-

optimal secure burst-erasure correcting (DO-SBE) codes that provide perfect security

and recover a burst of erasures of a limited length with minimum possible delay. Our

explicit constructions of DO-SBE block codes achieve maximum secrecy rate. We also

consider a model of a burst erasure wiretap channel for the streaming setup, where in any

sliding window of a given size, in a stream of encoded source packets, the eavesdropper

is able to observe packets in an interval of a given size. For that model we obtain an

information-theoretic upper bound on the secrecy rate for delay-optimal streaming codes.

We show that our block codes can be used for construction of delay-optimal burst-erasure

correcting streaming codes which provide perfect security and meet the upper bound for

a certain class of code parameters.

In Chapter 6, for streaming applications, we consider parallel burst erasure channels

in the presence of an eavesdropper. The legitimate receiver must perfectly recover each

source symbol subject to a decoding delay constraint without the eavesdropper gaining

any information from his observation. For a certain class of code parameters, we propose

delay-optimal M -link codes that recover a certain number of bursts of erasures of a limited

length each occurring on a separate link, and where the codes provide perfect security

even if the eavesdropper can observe a link of his choice. Our codes achieve the maximum

secrecy rate for the channel model.

Part III: In Chapter 7, we consider a seeded modular code for the additive white Gaus-

sian noise (AWGN) wiretap channel consisting of a security layer, an error-correction layer

and a modulation layer. For reliable transmission, we use any forward error-correction

(FEC) code and modulation method. In the security layer, a universal hash function

(UHF) is used, which depends on a randomly chosen seed s. We consider three commu-

nication scenarios in which the advantage (the security measure) at the eavesdropper is

measured in different ways. To assess the security performance, we derive the operational

meaning of the advantages in terms of the error probability.

In Chapter 8, we experimentally verify the information-theoretic security of a seeded

modular code for the AWGN wiretap channel consisting of a security layer, an error-

correction layer and a modulation layer. In the security layer, a universal hash function

(UHF) is used, which depends on a randomly chosen seed s. In the error-correction

layer and the modulation layer we use polar codes and quadrature amplitude modulation

QAM, respectively. The eavesdropper uses the maximum likelihood (ML) test as an attack
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Part I.

Preliminaries





2. Basics of Information Theory and

Coding Theory

In this chapter, the first section contains a review of the basic notions of information

theory. In the second section we introduce basic notions of coding needed for the rest of

the thesis.

2.1. Elements of Information Theory

We need some definitions from information theory that will be used in the subsequent

chapters. Most of them can be found in the textbook [16]. In this section we use logarithms

to the base 2 and set 0 log 0 to 0.

Definition 2.1 (Shannon Entropy). Let X be a discrete random variable taking val-

ues in a finite alphabet X and probability distribution PXp¨q. The Shannon entropy or

uncertainty of X is defined as

HpXq “
ÿ

xPX
´PXpxq logPXpxq.

The units of the entropy in this case are bits.

The entropy is a measure of the average uncertainty in the random variable.

Definition 2.2 (Binary Entropy Function hppq). Consider the entropy H(X) of a

Bernoulli random variable X where X “ 1 with probability p and X “ 0 with probability

1´ p. The entropy of X is

hppq “ HpXq “ ´p log p´ p1´ pq logp1´ pq.

Definition 2.3 (Joint Entropy). The joint entropy of X and Y is defined by consid-

ering the concatenation XY as a new discrete random variable, i.e., we have

HpX, Y q “
ÿ

xPX

ÿ

yPY
´PXY px, yq logPXY px, yq.
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2. Basics of Information Theory and Coding Theory

Definition 2.4 (Conditional Entropy). Given a joint distribution PXY p¨q and two

random variables X and Y take on values in the finite alphabets X and Y , respectively,

the conditional entropy of Y given the event X “ x with probability PrpX “ xq ą 0 is

defined as

HpY |X “ xq “
ÿ

yPY
´PY |Xpy|xq logPY |Xpy|xq,

where

HpY |Xq “
ÿ

xPX
PXpxqHpY |X “ xq “ HpX, Y q ´HpXq.

Definition 2.5 (Mutual Information). The mutual information between two discrete

random variables X and Y is defined as

IpX;Y q “
ÿ

px,yqPXˆY

PXY px, yq log
PXY px, yq

PXpxqPY pyq
“ HpXq ´HpX|Y q.

The mutual information IpX;Y q is a symmetric function, that is

IpX;Y q “ IpY ;Xq,

which shows the dependence between the two random variables or, in other words, the

amount of information obtained about X by observing Y .

The mutual information IpX;Y q “ 0 iff the random variables X and Y are statistically

independent.

Chain rule for entropy: The chain rule for entropy is equivalent to

HpX1, X2, . . . , Xnq “ HpX1q `HpX2|X1q ` ¨ ¨ ¨ `HpXn|X1, X2, . . . , Xn´1q.

Definition 2.6 (Markov Chain). A discrete stochastic process X1, X2, . . . is said to be

a Markov chain or a Markov process if for n “ 1, 2, . . . ,

P rpXn`1 “ xn`1|Xn “ xn, Xn´1 “ xn´1, . . . , X1 “ x1q “ PrpXn`1 “ xn`1|Xn “ xnq

for all x1, x2, . . . , xn, xn`1 P X .

Data processing inequality: If X Ñ Y Ñ Z forms a Markov chain, then we have

IpX;Y q ě IpX;Zq and IpY ;Zq ě IpX;Zq.

10



2.1. Elements of Information Theory

Equality iff IpX;Y |Zq “ 0.

Fano’s inequality: Suppose both X and X̂ take on values in the alphabet X , and let

Pe “ PrpX̂ ‰ Xq. We have

HpX|X̂q ď hpPeq ` Pe logp|X | ´ 1q.

Definition 2.7 (Discrete Channel). Let X and Y be discrete alphabets, and P py|xq

(or W py|xq) be a transition probability matrix from X to Y . A discrete channel P py|xq

is a single-input single-output system with input random variable X taking values in X
and output random variable Y taking values in Y such that

PrpX “ x, Y “ yq “ PrpX “ xqP py|xq

for all px, yq P X ˆ Y .

Definition 2.8 (Continuous Channel). A continuous channel ppy|xq is a system with

input random variable X and output random variable Y taking values in R such that Y

is related to X through ppy|xq.

Definition 2.9 (Discrete Memoryless Channel (DMC)).

A sequence of channels tWn : X n Ñ Ynu
8

n“1 is called a discrete memoryless channel (DMC)

with transition probability matrix W if

Wnpy
n
|xnq “

n
ź

i“1

W pyi|xiq.

Definition 2.10 (Channel Code for a DMC). An pn, |M|q code for a DMC consists

of an encoding function

f : MÑ X n

and a decoding function

g : Yn
ÑM.

The sequence fpiq P X n with i P t1, 2, . . . , |M|u is called a codeword. The set of codewords

is called the codebook.

Definition 2.11 (Rate of a Channel Code). The rate of an pn, |M|q code for the

pX , P py|xq,Yq channel is

R “
log |M|

n

11



2. Basics of Information Theory and Coding Theory

and is measured in terms of bits/transmission (i.e. channel use).

Definition 2.12 (Capacity). The capacity of a DMC with input X and output Y is

defined by

C “ max
PX

IpY ;Xq.

The capacity of a DMC is the supremum of all achievable rates.

Definition 2.13 (Conditional Probability of Error). Let

λi “ PrpgpY n
q ‰ i|fpiqq “

ÿ

yn

Wnpy
n
|fpiqqIpgpynq ‰ iq

be the conditional probability of error given that index i was sent, where Ip¨q is the

indicator function.

Definition 2.14. The maximal probability of error of an pn, |M|q code is

P̂e “ max
i
λi.

Definition 2.15. The average probability of error P
pnq
e for an pn, |M|q code is defined as

P pnqe “
1

|M|

|M|
ÿ

i“1

λi.

Definition 2.16 (Achievability of a Rate). A rate R is said to be achievable if there

exists a sequence of pn, 2nRq codes such that the maximal probability of error λmax tends

to 0 as nÑ 8.

2.2. Elements of Error Correcting Codes

For our purposes we need to introduce only linear block codes. All definitions and state-

ments presented below can be found in a standard textbook on coding theory, e.g., [17]

or [16]. Throughout the thesis we use the following notation. Fq denotes a finite field

with q elements. Fnq is an n-dimensional vector space over Fq and Fnˆkq is the set of nˆ k

matrices over Fq.

Definition 2.17. A linear code with length n over Fq is a subspace of Fnq .

Definition 2.18. The weight of a codeword c, denoted by wtpcq, is defined as the number

of non-zero entries of c.

Definition 2.19. The Hamming distance dHpu
n, vnq between two vectors un, vn P Fn is

the number of coordinates in which they differ.
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Definition 2.20. Let C be a code with at least two codewords. The minimum distance

dpCq of C is the smallest distance between distinct codewords, that is

dpCq “ min tdHpu
n, vnq|un, vn P C;un ‰ vnu .

If C is a linear code, then dpCq “ mincPC,c‰0wtpcq.

Definition 2.21. If C is a linear code over Fq with length n, dimension k, and minimum

distance dpCq “ d, then we say that C is an rn, k, dsq code, or rn, ksq code if dpCq is not

specified. The numbers n, k, and d are called the parameters of the linear code.

Definition 2.22. The dual code of an rn, ksq code C denoted by CK is a null space of C.

Definition 2.23 (Generator matrix). A generator martix for a linear code C is a ma-

trix G whose rows form a basis for C.

Definition 2.24 (Parity-check matrix). A parity check matrix H for C is a generator

matrix for the dual code CK.

Let C be an rn, ksq code. Then C can be given by its generator matrix GC , or the

parity check matrix HC as follows

C “
 

vn P Fnq : ukG “ vn; uk P Fkq
(

C “
 

vn P Fnq : HpvnqT “ 0
(

.

Theorem 2.1. Let H be a parity check matrix for a linear code C of length n. Then C

has distance d if and only if every subset of d´ 1 columns of H are linearly independent,

and at least one set of d columns of H are linearly dependent.

Theorem 2.2 (Singleton bound). Let C be an rn, k, dsq code. Then |C| ď qn´d`1, or

equivalently d ď n´ k ´ 1.

Definition 2.25 (MDS code). An rn, k, dsq code achieving the singleton bound is called

a maximum distance separable (MDS) code.

Theorem 2.3 (Properties of MDS codes). Let C be a linear rn, k, dsq code. Let G

and H be respectively the generator and parity check matrices for C. The following claims

are equivalent:

• C is an MDS code.

• Every subset of n´ k columns in H is linearly independent.

• Every subset of k columns in G is linearly independent.

• CK is an MDS code.
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2. Basics of Information Theory and Coding Theory

An important class of MDS codes is the Reed-Solomon (RS) code. RS codes are rq ´

1, k, q ´ ksq MDS codes. A generator matrix of an RS code can be given with the help of

Vandermonde matrices. A Vandermonde matrix of order q ´ 1 over Fq is defined as

V “

¨

˚

˚

˚

˚

˚

˚

˚

˝

1 1 . . . 1

a1 a2 . . . aq´1

a2
1 a2

2 . . . a2
q´1

...
... . . .

...

aq´2
1 aq´2

2 . . . aq´2
q´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

,

where a1, . . . , aq´1 are the nonzero elements of Fq. Every first k pk ď q ´ 1q rows of

V results in a generator matrix of the rq ´ 1, k, q ´ ksq RS code. Thus RS codes have a

so called nested structure, that is every rq ´ 1, k, q ´ ksq RS code, where 2 ď k ď q ´ 1,

contains the rq ´ 1, k ´ 1, q ´ k ` 1sq RS code as a subcode.
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3. The Wiretap Channel

In the first section, we consider the wiretap channel model and summarize the notions of

information-theoretic security on this channel. In addition, we explain the secrecy coding

method for the wiretap channel. In Section 3.2, we introduce the binary erasure wiretap

channel II (BEWC-II) model and describe an information-theoretic analysis of the coset

coding scheme for this model.

3.1. Wiretap Channel and Information-theoretic Security

Wyner r2s introduced the notion of a wiretap channel in 1975. It is the most basic channel

model that takes security into account. In Wyner’s model of secure communication and its

generalization to a broadcast scenario [3], a transmitter (Alice) wants to convey a secret

message to a legitimate receiver (Bob) through a discrete memoryless channel (DMC). The

message must be kept secret from an eavesdropper (Eve) who has a degraded version of

the legitimate receiver’s observation. Wyner’s original work showed that communication

with (asymptotic) perfect security and reliability is possible if the eavesdropper’s channel

is noisier than the main channel. Importantly, security is information-theoretic and does

not require a pre-shared secret key.

3.1.1. The Wiretap Channel Model

Consider the communication system, in Fig. 3.1. This system consists of three parties,

• Alice - the transmitter

• Bob - the legitimate receiver

• Eve - the eavesdropper.

The eavesdropper cannot influence Alice or the channel in any way.

Information-theoretic security usually considers the case where the wiretap channel is

memoryless, and has a discrete input alphabet and a discrete output alphabet. The input

alphabet is X , and the output alphabets are Y and Z for Bob and Eve, respectively. The

alphabets X , Y and Z are finite. For a memoryless channel, successive transmissions are

independent of each other and the channel is defined by its joint transition probability

PY Z|Xpy, z|xq. In a wiretap channel, Alice communicates a message Sk to Bob through
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ENCODER DECODER

DECODER

ALICE BOB

EVE

Sk Xn

Zn

Y n Ŝk
Channel

Figure 3.1.: The wiretap channel model.

the main channel, which is chosen uniformly at random from the message set Sk. Alice

performs this task by encoding Sk as a vector Xn of length n and transmitting Xn. Bob

and Eve receive noisy versions of Sk, which we denote by Y n and Zn, via their respective

channels. The encoding of a message Sk by Alice should be such that Bob is able to

decode Sk reliably and Zn provides as little information as possible to Eve about Sk.

3.1.2. Historical Background

Wyner considered a physically degraded wiretap channel where the eavesdropper (Eve)

observes a degraded version of the signal obtained by the legitimate receiver. Thus,

Xn Ñ Y n Ñ Zn forms a Markov chain.

Degraded Wiretap Channel

ENCODER DECODER

DECODER

ALICE BOB

EVE

Sk Xn

Zn

Y n Ŝk

Wn,2pz
n|ynq

Wn,1py
n|xnq

Figure 3.2.: The general wiretap channel model.

A degraded wiretap channel Wn is one in which for every n P N, and for every pxn, yn, znq P

X n ˆ Yn ˆ Zn,

Wnpy
n, zn|xnq “ Wn,1py

n
|xnqWn,2pz

n
|ynq,

where Wn,1 : X n Ñ Yn and Wn,2 : Yn Ñ Zn.
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3.1. Wiretap Channel and Information-theoretic Security

A discrete memoryless wiretap channel is stationary and memoryless in the sense that

Wn,1py
n
|xnq “

n
ź

i“1

W1pyi|xiq, and Wn,2pz
n
|ynq “

n
ź

i“1

W2pzi|yiq

for every pxn, yn, znq P X n ˆ Yn ˆ Zn.

Non-degraded Wiretap Channel

Csiszár and Körner r3s generalized Wyner’s model, where Eve’s observation Zn need

not be a degraded version of Bob’s observation Y n. The channel is denoted by Xn Ñ

pY n, Znq and is depicted in Fig. 3.3. This channel and the channels tWn,1 : X n Ñ Ynu

and tWn,2 : X n Ñ Znu from Alice to Bob and Alice to Eve, respectively, are discrete and

memoryless.

ENCODER DECODER

DECODER

ALICE BOB

EVE

Sk Xn

Zn

Wnpy
n, zn|xnq

Y n Ŝk

Figure 3.3.: The generalized wiretap channel model.

3.1.3. Secrecy Capacity of the Wiretap Channel

In the information-theoretic approach, the secrecy performance of a code C of length n

is measured in terms of the mutual information between the secret and Eve’s observation
1
n
IpSk;Znq or by the equivocation rate at Eve

Rpnqe “
1

n
HpSk|Zn

q.

The equivocation rate is a measure of how much uncertainty Eve has about the message

Sk after observing Zn. Because the encoder is assumed to be one-to-many mapping, the

equivocation HpSk|Znq is a positive number. A code of rate Rpnq with block length n

for the wiretap channel is given by a message set Sk of cardinality |Sk| “ 2nR
pnq

, and a

collection of disjoint subcodes tCsk Ă X nuskPSk . To encode a message Sk, Alice chooses

one of the codewords in Csk uniformly at random and transmits it. Bob uses a decoder

g : Y n Ñ Sk to determine which message was sent. We assume that the message Sk is
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3. The Wiretap Channel

uniformly distributed over Sk. The average probability of error for the secrecy code is

defined as P
pnq
e “ PrpŜk ‰ Skq.

Remark 3.1. The pn, 2nR
pnq
q code C is assumed to be known by Alice, Bob and Eve,

although the source is only available to Alice and thus, the realizations of the discrete

memoryless source (DMS) used for encoding.

Definition 3.1. A rate-equivocation pair pR,Req is said to be achievable for the wiretap

channel, if for every ε ą 0 there exists a sequence of codes of rate Rpnq with the average

probability of error P
pnq
e ă ε as the code length n goes to infinity, and with the equivocation

rate R
pnq
e satisfying

lim
nÑ8

Rpnq ą R ´ ε,

lim
nÑ8

Rpnqe ą Re ´ ε.

Figure 3.4.: A typical pR,Req region.

We want Re to be as high as possible, and ideally it should equal the rate R.

Definition 3.2 (Perfect security). An encoder for the wiretap model achieves perfect

security in Shannon’s sense if the probability of error in Bob’s estimate Ŝk is zero and the

mutual information between Eve’s observation Zn and the secret Sk is zero; that is,

P pnqe “ 0, pReliabilityq

IpSk;Zn
q “ 0. pSecurityq

Hence, Sk and Zn have to be independent random variables and we can obtain this

requirement if all messages are equally likely, that is Sk „ unifpSkq, so that Eve can not

indicate the message.

Thus, perfect security can be obtained if

Re “ lim
nÑ8

1

n
HpSk|Zn

q “ lim
nÑ8

HpSkq

n
“ R.
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Definition 3.3 (Secrecy capacity). The maximum rate at which both objectives are

attainable is called the secrecy capacity Cs of the wiretap channel.

Theorem 3.2 (Csiszár and Körnerr3s). The maximum perfect secrecy rate, i.e., the

secrecy capacity Cs for a discret memoryless wiretap channel can be calculated as follows:

Cs “ max
UÑXÑpY Zq

rIpU ;Y q ´ IpU ;Zqs.

The notation U Ñ X Ñ pY Zq forms a Markov chain in this order with the random

variables U , X, Y and Z. The auxiliary random variable U is used for calculation purposes

with |U | ď |X |.

For a degraded wiretap channel, i.e., P py, z|xq “ P py|xqP pz|yq, follows

IpU ;Y q ´ IpU ;Zq “ IpU ;Y |Zq ď IpX;Y |Zq “ IpX;Y q ´ IpX;Zq.

Hence, the secrecy capacity simplifies to

Cs “ max
XÑpY Zq

rIpX;Y q ´ IpX;Zqs,

and also holds for a general wiretap channel if Y is more capable than Z.

The secrecy capacity Cs is always positive unless, channel X Ñ Y is less noisy than

channel X Ñ Z.

Theorem 3.3 (r3s). If channel X Ñ Y is less noisy than channel X Ñ Z, the rate-

equivocation region of the wiretap channel X Ñ pY Zq contains all rate-equivocation

pairs (R,Re) that satisfy

0 ď Re ď IpX;Y q ´ IpX;Zq,

Re ď R ď IpX;Y q.

In Wyner’s work the secrecy capacity was determined under weak security conditions.

Later, Csiszár [18], and independently Maurer and Wolf [19], defined the notion of strong

security, and argued that this is a much better security condition compared to weak

security.

Definition 3.4 (Weak security).

lim
nÑ8

1

n
IpSk;Zn

q “ 0, pSk „ unifpSkqq.

The rate of information leaked about Sk through observing Zn goes to zero as n goes to

infinity.
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Definition 3.5 (Strong security).

lim
nÑ8

IpSk;Zn
q “ 0, pSk „ unifpSkqq.

The total amount of information leaked about Sk through observing Zn goes to zero as n

goes to infinity.

The more stringent information-theoretic security metric was formalized by Bellare et

al. [20] by adapting the notion of semantic security used in computational cryptography

[21].

Definition 3.6 (Semantic security).

lim
nÑ8

max
P
Sk

IpSk;Zn
q “ 0.

Definition 3.7 (Perfect security).

IpSk;Zn
q “ 0.

The total amount of information leaked about Sk through observing Zn is zero.

3.1.4. Coding for the Wiretap Channel according to Wyner

Wyner r2s introduced the stochastic encoding scheme to achieve the secrecy capacity

Cs of the wiretap channel. The stochastic encoding scheme serves to confuse the eaves-

dropper by allocating a message to many codewords at random. In the secrecy coding

scenario, deterministic encoders, in general, have a poorer secrecy performance compared

to stochastic encoders. Due to this, almost all secrecy coding makes use of stochastic

encoders.

Suppose, Alice wants to transmit one out of |S|k equally likely messages, i.e., a mes-

sage denoted Sk is such that Sk P
!

sk1, s
k
2, . . . , s

k
|S|k

)

and PrpSk “ ski q “ 1{ |S|k, where

1 ď i ď |S|k. Consider a codebook C 1 of length n which is randomly partitioned into |S|k

subcodes Ci, i.e. C 1 “
Ť

iCi. Each message sk is associated with one subcode Csk . For

the case where |S| “ 2, Fig. 3.5 shows the encoding process for a wiretap channel.

A message sk is encoded into xn which is chosen uniformly at random from the subcode

Csk . The receiver on the main channel (Bob) decodes a word yn of length n with respect

to the overall code C 1 into ŝk. One such decoding method is the maximum likelihood

(ML) decoding.

Alice’s objective is to design a secure and reliable encoder. To guarantee reliability, the

legitimate receiver should be able to decode the message with error probability which

approaches zero for nÑ 8.
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1

2

...

2k

messages x1

x2

...

subcode with random selected
codewords for message 1

random selection
of codeword for

transmission of message 1

Figure 3.5.: Encoding process for a wiretap channel.

lim
nÑ8

P pnqe “ 0.

To guarantee security, Eve should not gather any information from her observation.

lim
nÑ8

1

n
IpSk;Zn

q “ 0. pweak securityq

If an encoder with Rs “ log |S|k {n satisfies the security and reliability constraints for

a given wiretap channel, then such an encoder is said to achieve a secrecy rate Rs.

A detailed information-theoretic overview of general wiretap channels can be found in

[22].

3.2. The Binary Erasure Wiretap Channel II

Before constructing efficient coding schemes for our channel models in Part II where the

main and wiretapper’s channel are both erasure channels, we first study the binary erasure

wiretap channel II (BEWC-II) model, because it is a fundamental model and its analysis

is extendable to a lot of different wiretap models. The wiretapper’s channel is a binary

erasure channel (BEC) and the main channel is noiseless, as shown in Fig. 3.6.

The BEWC-II model is a special case of the wiretap channel model. Thangaraj, et

al. r5s were the first who constructed explicit codes for the BEWC-II model. The two

legitimate nodes, Alice and Bob, want to communicate in the presence of an eavesdropper,

Eve.

We denote the channel between Alice and Eve by BEC(1 ´ ε), i.e. the probability of

erasure in the wiretapper’s channel is 1 ´ ε. The BEC is a memoryless channel, which

means that bits sent successively are erased independently. Alice’s objective is again to

convey a secret message Sk to Bob without revealing it to Eve. Therefore, Alice encodes
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Figure 3.6.: The binary erasure wiretap channel II (BEWC-II) model.

Sk to a random variable Xn and then sends Xn over the BEWC-II. The secrecy capacity

Cs of the BEWC-II is r23s

Cs “ CapacitypX Ñ Y q ´ CapacitypX Ñ Zq “ 1´ ε.

3.2.1. Coset Coding for the Binary Erasure Wiretap Channel II

A coset coding scheme, which was introduced by Wyner [2] and further studied by both

Ozarow and Wyner [4], is based on a linear code and its cosets. Given the blocklength

n and the rate R of the coset coding scheme, a binary linear block code C of length n is

used as a starting point.

.

.

.

C1 “ C ` a1

C2 “ C ` a2

C2k “ C ` a2k

C 1 “

Figure 3.7.: The partitioning of the code C 1 of all possible output vectors according to the
input message Sk, where ai P C

˚ and C˚ is an rn, ks code generated by G˚

and the input message. Each coset Ci, where i “ 1, . . . , 2k, represents output
codewords corresponding to a certain message.

The stochastic encoding scheme called the coset coding scheme is illustrated in Fig. 3.7.

To transmit k-bit messages, consider an rn, n´ ks linear code C as the base code. Let G

be the generator matrix of C with rows g1, . . . ,gn´k and let G˚ be the generator matrix

for the code C˚ with rows g˚1 , . . . ,g
˚
k. The rows of G and G˚ form a basis for t0, 1un so

that C ‘ C˚ “ t0, 1un. The coset corresponding to a k-bit message sk “ ps1, s2, ¨ ¨ ¨ , skq
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3.2. The Binary Erasure Wiretap Channel II

is determined as follows:

sk Ñ s1g
˚
1 ` s2g

˚
2 ` ¨ ¨ ¨ ` skg

˚
k ` C.

A secret k-bit message sk is mapped to a codeword xn using the transformation

xn “ s1g
˚
1 ` s2g

˚
2 ` ¨ ¨ ¨ ` skg

˚
k ` e1g1 ` e2g2 ` ¨ ¨ ¨ ` en´kgn´k,

where en´k “ pe1, e2, ¨ ¨ ¨ , en´kq is a uniformly random pn ´ kq-bit vector. The corre-

spondence is deterministic but the encoding procedure has a random component in the

selection of the transmitted codeword. A k-bit message sk is encoded into an n-bit code-

word randomly selected from the coset of C corresponding to sk. The encoding operation

can be described as a matrix multiplication:

xn “
“

sk en´k
‰

«

G˚

G

ff

,

where xn belongs to the code C 1 generated by G1. The goal of both the legitimate receiver

and the eavesdropper is to determine sk from their respective received vectors.

Restating the desired twofold objectives, the design of the codes C and C 1 should be such

that (1) sk can be determined without error across the main channel, and (2) every sk

is equally likely across the wiretapper’s channel. Since the channel between Alice and

Bob is error-free, i.e., PrpŜk ‰ Skq “ 0, Bob is able to find the syndrome sk of C by

sk “ H pxnqT , where C is an rn, n ´ ks code and H is a carefully constructed k ˆ n

parity-check matrix. How to provide security will be discussed in the next subsection.

3.2.2. Security Criterion for the Binary Erasure Wiretap Channel II

Consider an eavesdropper’s observation Zn with µ unerased bits in positions

pi1, . . . , iµq. The number and the position of these erasures may be random. To de-

velop a security criterion for the choice of C, we calculate the eavesdropper’s uncertainty

HpSk|Znq by first evaluating HpSk|Zn “ znq. We assume that the eavesdropper has infi-

nite computational power and complete knowledge of the code C. But the knowledge of

the allocation of the codeword to the message is secret. As mentioned before, the code

C is an rn, n ´ ks code and the code C 1 is chosen to be the entire vector space t0, 1un.

If a coset of code C contains at least one vector that agrees with zn P t0, 1, ?un in the

unerased positions, we say that the coset is consistent with zn. Each coset corresponds

to a possible message for the eavesdropper.
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Lemma 3.4 (r5s). All cosets of C that are consistent with zn contain the same number

of sequences consistent with zn.

Proof. Let vn be a vector consistent with zn in the coset vn ` C. Let S be the set of all

vectors in vn`C consistent with zn. Then, vn`S is the set of all vectors in C with zeros

in the positions revealed in zn. That is,

vn ` S “ tun P C : ui “ 0 whenever zni ‰?u .

Note that |S| “ |vn ` S|, and this holds for any vn which is consistent with zn.

Proposition 3.5 (r5s). The total number of cosets of C consistent with zn is denoted

by NpC, znq. Since each message is equally likely a priori, we get

HpSk|Zn
“ znq “ logNpC, znq.

Proof.

HpSk|Zn
“ znq “ HpSkXn

|znq ´HpXn
|Skznq

“ HpXn
|znq ´HpXn

|Skznq.

The first term HpXn|znq is the uncertainty in the codeword that was sent given the

observation zn. Suppose N is the number of sequences that are consistent with zn, then

HpXn|znq “ logN “ log 2n´µ, since all codewords are used with equal probability. For

the second term, holds

HpXn
|Skznq “

ÿ

sk

HpXn
|Sk “ sk, znqPSk|Znps

k
|znq.

Here, HpXn|Skznq is the uncertainty in the codeword that was sent given the observation

zn and the coset corresponding to sk that was used. Since all codewords are used with

equal probability, and by Lemma 3.4 all cosets consistent with zn contain the same number

of sequences consistent with zn, the term is reduced to HpXn|Sk “ sk, znq “ logNc, where

Nc is the number of sequences consistent with zn in a coset consistent with zn. Hence,

HpSk|znq “ logN ´ logNc “ log N
Nc
“ logNpC, znq.

The total number of cosets we have is 2k, which implies that the total number of cosets

of C consistent with zn, NpC, znq ď 2k. If NpC, znq “ 2k, we say that zn is secured by C

since the eavesdropper’s PrpSk “ sk|Zn “ znq “ 1{2k for every possible message sk. In

other words, if all cosets of C are consistent with zn and all cosets have the same number
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3.2. The Binary Erasure Wiretap Channel II

of vectors that match with zn, we obtain:

IpSk;Zn
q “ HpSkq ´HpSk|Zn

q

“ log 2k ´
ÿ

zn

Pznpz
n
qHpSk|Zn

“ znq

“ k ´HpSk|Zn
“ znq

“ k ´ logNpC, znq

“ k ´ k “ 0.

The following theorem states a condition for a vector zn to be secured by a code C.

Theorem 3.6 (r4s, Lemma 4.1). Let G be the generator matrix of an rn, n ´ ks code

C, and let gi denote the i´ th column of G, where i P t1, . . . , nu. The eavesdropper can

observe µ of n bits of the transmitted codeword and the unerased positions are given by

ti1, i2, ¨ ¨ ¨ , iµu. Then zn is secured by C if and only if the matrix Gµ “ pgi1 ,gi2 , ¨ ¨ ¨ ,giµq

has rank µ.

Sketch of Proof. Suppose µ are the unerased positions of any n bit vector xn. If Gµ has

rank µ then the code C has codewords with all 2µ possible sequences in the µ unerased

positions. Since cosets are obtained by translating C, all cosets also have codewords

with all possible binary sequences in the µ unerased positions. Therefore, NpC, znq “ 2k

and IpSk;Znq “ 0. If Gµ has rank less than µ, the code C does not have all µ-tuples

in the µ unerased positions. So there exists at least one coset that does not contain a

given µ-tuple in the µ unerased positions, and NpC, zq ă 2k. We obtain a necessary and

sufficient condition for communication in perfect security with respect to an eavesdropper

who observes any set of µ unerased bits.

Corollary 3.7. Let C be an rn, n´ks binary linear code with generator matrix G. Coset

coding with C guarantees perfect security against an eavesdropper who observes any set

of µ unerased bits, if and only if all submatrices of G with µ columns have rank µ.

In the next chapter we will discuss a wiretap channel model in which the eavesdropper

is known to access no more than µ of n transmitted bits. This model differs from the

BEWC-II of Fig. 3.6 in that the eavesdropper can, in principle, choose which µ bits are

observed.
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4. Block Codes for a Burst-Erasure

Wiretap Channel

4.1. Introduction

In this chapter we present the wiretap channel II model with an active eavesdropper.

Ozarow and Wyner [4] introduced the wiretap channel II model, in which the transmitter

communicates over a noiseless main channel, while the eavesdropper can observe µ bits

of the n-bit binary codeword transmitted to the legitimate receiver. They showed that

information-theoretic security can be achieved over this channel, introducing a stochastic

encoding scheme, called coset coding. Since then, researchers have studied various types

of wiretap channels and have provided fundamental results on secrecy capacity (see [24],

[22]). Most of the studies in this direction consider a passive eavesdropper model in which

the eavesdropper only overhears the transmission.

Contribution

In this chapter we present the wiretap channel II model with an active eavesdropper,

where the eavesdropper is not only able to overhear, but can also modify the transmission

sent to the legitimate receiver. In general, Bob observes a sequence Y n, which is a function

of a codeword Xn and of the eavesdropper’s transformation T n.

In the following, the eavesdropper is able to observe any interval of µ symbol positions

and erase the symbols in any interval of B positions of a transmitted codeword. We

present explicit constructions of binary and non binary nested linear codes that achieve

the maximum secrecy rate for the finite length coding regime, with perfect security and

zero-error decoding for any admissible code parameters. It is worth to mention that our

construction works for both the burst-erasure wiretap channel model with an eavesdropper

and for the wiretap channel II model with an active eavesdropper that can cause a burst

of erasures.

Related Work

The wiretap channel with an active eavesdropper was first considered by Lai et al. r11s,

where the goal of the receiver is to detect whether the transmitted packet has been mod-

ified or not. Aggarwal et al. r12s were the first who studied the model where the receiver
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4. Block Codes for a Burst-Erasure Wiretap Channel

not only needs to detect the changes made by the eavesdropper, but also to correct the

errors introduced by the eavesdropper. Boche and Schaefer [25] introduced and studied

arbitrarily varying wiretap channels with active eavesdroppers. Recently, a model of the

wiretap channel called the adversarial wiretap channel has been studied by Wang and

Safavi-Naini [26]. Rouayheb et al. [27] showed that the secure network coding problem

can be viewed as a network generalization of the wiretap channel II. A Wiretap network of

type II has been further studied by other authors (see a survey in [28] and its references).

Aggarwal et al. r12s considered two models for the wiretap channel II over a binary al-

phabet, where the eavesdropper can observe up to µ bits noiselessly from n transmitted

bits and erase/replace the bits he observes. For the first model, they designed a coding

scheme that achieves a secrecy rate of p1 ´ ε ´ hpεqq`, where ε “ µ{n is the portion of

the bits observed and erased by the eavesdropper and hpεq is the binary entropy. For the

second modification they showed that a secrecy rate Rs “ p1´ ε´ hp2εqq
` is achievable.

Deriving better achievable secrecy rates, as well as developing practical channel codes for

these models, is an open and seemingly difficult problem. In fact, the problem of designing

codes with the best perfect secrecy rates for both modification models is related to the

classical open problem of the best trade-off between rate and distance (see e.g. [29]).

Some Notes

Although the results in r12s show the existence of channel codes that achieve a positive

secrecy rate, developing practical channel codes for the models considered in r12s re-

mains an open problem. First, their approach for error correction in the main channel is

based on a random (Varshamov’s construction) coding argument. Second, to achieve the

equivocation rate of the eavesdropper, the latter code is partitioned into subcodes, where

the existence of a ”good partition” is shown again by a probabilistic argument (used in

Ozarow-Wyner r4s). We also note that deriving better bounds for the secrecy capacity of

the binary erasure wiretap channel with an active eavesdropper is an open problem. The

reason is that in the considered model, the channel is no i.i.d. and we need to consider a

worst case scenario.

It is worth mentioning that the problem discussed above becomes much easier in the

case where we allow the alphabet size q to grow with the code length n ď q ` 1. In this

case one can use MDS codes to achieve the maximum secrecy rate with perfect security

and zero error. However, the same can not be achieved for a fixed alphabet size and

growing n. This will be discussed in Section 4.4 in more detail.

All this motivates us to introduce and study another model of the wiretap channel II

with an active eavesdropper, where the abilities of the eavesdropper are more restricted.
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4.2. Burst-Erasure Correcting Codes

Outline

In Section 4.2, we introduce the notions burst of erasures and burst-erasure correcting

codes, needed for the study of our model, where the eavesdropper is able to cause only

bursts of erasures in the main channel. We also characterize the limitations for linear

burst-erasure correcting codes over finite fields. In Section 4.3, we introduce a model of

wiretap channel II with an active eavesdropper and discuss our main objectives. Further-

more, we specify the properties of the secure nested code pairs (C 1, C), which are necessary

to fulfill the desirable objectives and determine an upper bound of the maximum equivo-

cation. In Section 4.4, we state our main results. Section 4.6 gives constructions of binary

and non binary linear nested codes achieving maximum secrecy rate for all admissible

parameters n,B, µ. In Section 4.7 and 4.8, we present encoding and decoding procedures

for secure nested codes. Section 4.9 concludes with a discussion and open problems.

4.2. Burst-Erasure Correcting Codes

Burst-error correction is an important part of error control coding, as in many commu-

nication and storage systems errors tend to occur in clusters rather than independently

of each other. Two main types of bursts are typical in most communication systems:

bursts of erasures and bursts of errors (see [30]). Erasure bursts often occur in record-

ing, jammed, and some fading channels. For instance, in applications such as recording,

an important requirement is that the code used should be capable of correcting bursts

of erasures (in addition to random errors) caused by media defects such as scratches.

The correction of burst erasures also has application in wireless communication systems

limited by interference.

In the following, we will concentrate only on burst-erasure correcting codes. The notion

of a burst of erasure is defined in a natural way.

Definition 4.1. If the interval in a received sequence, formed by the first and the last

erased positions, is of length B, we say that a burst of erasure of length B or B-burst

erasure for short has been occurred. The pattern corresponding to this interval is called

a burst erasure pattern. If all cyclic shifts of bursts of length B are also considered as

burst patterns, we speak about wrap-around bursts of length B. In other words, all cyclic

shifts of bursts of length B are also considered as B-bursts.

A code capable of correcting all bursts of length B or less, is called a B-burst-erasure

correcting code. Correspondingly, we speak about a code capable of correcting B-burst

erasures including wrap-around bursts. The burst-erasure correction capabilities of linear

codes follow from a more general statement, for erasure correcting codes. The following

proposition follows from the proofs provided in [30].
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Proposition 4.1. Let C be a linear rn, ksq code and let EL be an erasure pattern with

coordinate positions L Ă I “ t1, . . . , nu. Then C can correct EL (with zero error)

iff the columns of a parity check matrix HC corresponding to indices in L are linearly

independent, or equivalently, iff the columns of a generator matrix GC corresponding to

indices in IzL have rank k.

Proof. Let yn be the received sequence when the codeword xn has been sent. Denote by

xnL the subsequence of xn with indices in L. Thus, in our case we have xnIzL “ ynIzL (the

unerased subsequence of xn). Clearly xnL can be uniquely recovered from xnIzL iff there

exists a unique codeword xn with xnIzL “ ynIzL, satisfying HCpx
nqT “ 0. It is easy to see

that the latter is possible iff the columns of HC with indices in L are linearly independent.

Also note that yn can be uniquely decoded to xn, iff all patterns x̌nIzL with x̌n P C are

distinct, that is |
!

x̌nIzL : x̌n P C
)

| “ qk. This clearly means that the columns of GC with

indices in IzL have rank k.

Corollary 4.2. A linear rn, ksq code C is capable of correcting up to |L| “ B erasures iff

any B columns of an HC are linearly independent, or equivalently, iff any n´B columns

of a GC have rank k.

Remark 4.3. Note that the corollary implies that B ď n ´ k, and in the case where

B “ n´ k, we have an MDS code.

Corollary 4.4. A linear rn, ksq code C is B-burst-erasure correcting iff every B consec-

utive columns of HC are linearly independent. Correspondingly, C can correct B-burst-

erasures, including wrap-around bursts, iff every B cyclically consecutive columns of HC

are linearly independent.

Corollary 4.5. If the rn, ksq code C is capable of correcting B-burst erasures, then we

have B ď n´ k and hence |C| ď qn´B.

Definition 4.2. An rn, ksq code C capable of correcting B-burst erasures is called an

optimal burst-erasure correcting code if B “ n ´ k. If C can correct all burst erasures

of length n´ k, including cyclic (wrap-around) bursts, then C is called cyclically-optimal

burst-erasure correcting, or c-optimal for short.

Remark 4.6. Later we will see that for our purposes we need to design coding schemes

with optimal (respectively c- optimal) burst-erasure correcting codes.

Note that Proposition 4.1 implies that the following holds.

Proposition 4.7. If an rn, ksq code C is a c-optimal burst-erasure correcting code, then

the dual code CK is a c-optimal burst-erasure correcting rn, n´ ksq code.
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Proof. C is capable of correcting any pn´kq-burst erasures including wrap-around bursts.

This with Proposition 4.1 implies that any k cyclically consecutive columns of a GC must

be linearly independent. Since GC is a parity check matrix for the dual code CK, the

statement follows.

Remark 4.8. We note that the statement does not extend to optimal codes, namely the

optimality of C does not imply the optimality of CK. The reason is that the linear inde-

pendence of all n´ k consecutive columns in HC does not imply that every k consecutive

columns of GC are also linearly independent.

4.3. The Channel Model

In our model the abilities of the eavesdropper are restricted, compared to the model of

Aggarwal et al. r12s, as follows. The eavesdropper can observe an interval of µ symbols

from n transmitted symbols. In addition, it can erase the symbols in any interval of length

B of the transmitted codeword over the main channel. The channel under consideration

is depicted in Fig. 4.1.

Encoder

Zn = X1, . . . , Xµ, ?, . . . , ?

ALICE BOB

EVE

Sk Xn

X1, . . . , Xi, ?, . . . , ?, Xi+B , . . . , Xn

Y n

Figure 4.1.: A wiretap channel II model with an active eavesdropper.

Alice has a uniformly distributed k-symbol random message Sk P Fkq that must be

conveyed to Bob by transmitting an n-symbol vector Xn P Fnq over the main channel. Eve

has noiseless access to the Alice - Bob communication channel with the ability to observe

any interval of µ symbols and to erase the symbols in any interval of B positions of her

choice. In other words, Eve can cause any burst of erasures of length B in the channel.

Thus, the output is Y n P pFq Y t?uqn. Alice does not know anything about the erasures

on the main channel or the symbols being tapped by Eve. The only thing she knows is

that at most B-burst erasure can occur in the channel. Her task is to choose an encoding

scheme which ensures that Bob can decode the message with zero error, while Eve must

have complete equivocation over the message in spite of knowing the encoding procedure

and the µ symbols observed by her own choice. We note that in our model Eve is able

to erase an arbitrary interval of positions up to length B, unlike the model considered in

Aggarwal et al. r12s, where Eve can erase only the symbols she observes.

Our objective is to design a coding scheme which fulfills the tasks of Alice stated above.

These are:
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HpSk|Y n
q “ 0, pperfect reliabilityq (4.1)

HpSk|Zn
q “ HpSkq, pperfect securityq (4.2)

where the entropy is computed using base-q logarithms. At the same time, we wish

to achieve the maximum secrecy rate Rs “ k{n by explicit construction of a code (i.e.

encoder and decoder), given parameters n, B, µ. In the following, we give a construction

of so called nested linear codes which carry out all the tasks.

4.3.1. Secure Linear Nested Codes

Informally, a linear code pair pC 1, Cq is called a nested code if C Ă C 1. The main code

C 1, also called the mother code, is partitioned into K cosets of C which is called a coarse

code, thus K “ |C 1|{|C|. Each coset corresponds to a secret message and the transmission

scheme is the same as for the Ozarow-Wyner coset coding described in Section 3.2.1. Of

course for the purposes of reliability and security both codes C and C 1 must satisfy certain

properties. Note also that the mother code serves for the reliability and the coarse code is

used for stochastic encoding to provide security. Thus, the nested code approach is just a

generalization of the Ozarow-Wyner coset coding method, where C 1 is the whole space. A

nested code pC 1, Cq is called secure if it satisfies the conditions (4.1), (4.2) and its secrecy

rate RS “ R1 ´ R, where R1 is the rate of C 1 and R is the rate of C. The nested code

approach has been used by many authors (see, for example, [6] and [31]), for the design

of secure coding schemes in different models of the wiretap channel. For our model of

wiretap channel II with an active eavesdropper, we also use the nested code approach. In

the following we will specify the properties of C 1 and C that must be satisfied in order to

achieve perfect security and reliability in our model of the wiretap channel.

4.3.2. Alice-Bob Communication

Let pC 1, Cq be a nested code which we need to fulfill our tasks (4.1) and (4.2). Let C 1

also be an rn,msq code. Suppose that a codeword xn P C 1 has been transmitted over the

channel and denote by Cpxnq the coset to which xn belongs. Then C 1 must be chosen in

such a way that for every received vector yn, Bob can determine the coset Cpxnq, and

hence the message sent. Clearly, for this goal it is sufficient to recover xn. In this case,

regardless of a B-burst erasure introduced by Eve (possibly based on her observation),

Bob should be able to decode yn to xn, that is C 1 must be an B-burst-erasure correcting

code. Moreover, it is desirable that C 1 has the maximum rate, that is m “ n´B. Thus,

we suppose that we can take an optimal B-burst-erasure correcting code as a mother
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code C 1. We will see later that this is really the case, and moreover, this is a necessary

condition to achieve our task.

4.3.3. Alice-Eve Communication

We are now interested in how large the equivocation HpSk|Znq can be and what the

tradeoffs between parameters µ, B, and n are. Let I “ t1, . . . , nu be the coordinate set

and let E Ă I be an interval of positions that Eve observes. Let IzM be an interval

chosen by Eve for erasures. Thus, Eve observes an interval denoted by Xn
E and Bob

observes the subsequence Xn
M (with the index set M) of the transmitted sequence Xn.

The number of symbols µ observed by Eve must be smaller than n ´ B, which is the

number of positions that Bob observes, for otherwise conditions (4.1) and (4.2) do not

hold. Indeed, if µ ě n ´ B, then Eve can choose B positions to erase, such that M Ă E

which in view of 4.1 implies that HpSk|Znq “ 0.

For µ ď n´B, suppose now that Eve chooses first the pattern XIzM to be erased and

then observes an interval XE such that E Ă M . Then we have Xn Ñ Xn
M Ñ Xn

E and

hence

HpSk|Zn
q “ HpSk|Xn

Eq ´HpS
k
|Xn

Mq

“ HpSk|Xn
Eq ´HpS

k
|Xn

E, X
n
MzEq

“ IpSk;Xn
MzE|XEq

ď HpXn
MzE|X

n
Eq

ď HpXn
MzEq

ď pn´Bq ´ µ.

This together with (4.2) implies that the number of symbols k that can be securely

transmitted is upper bounded by k ď n´B ´ µ. Thus, we have the following.

Theorem 4.9. For the wiretap channel II with an active eavesdropper that can observe

a fraction ε “ µ{n of consecutive positions and erase a fraction ϑ “ B{n of consecutive

positions from transmitted symbols, the secrecy rate Rs “
k
n

is upper bounded by Rs ď

p1´ ϑ´ εq`.

Remark 4.10. It is obvious that the same upper bound holds for the case where the

eavesdropper can respectively observe and erase arbitrary µ and B positions.

4.4. Performance Criteria and Main Result

We are going now to analyze security constraints for the codes with a nested structure.

We note that although Ozarow and Wyner [4] consider only the binary case, their results
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on coset coding directly extend to codes over any finite field Fq. In other words we want

to resolve how to choose C and C 1 to provide perfect security and maximum equivocation

with a nested code pC 1, Cq. Let us turn for a moment to the Ozarow-Wyner coset coding

scheme, that is consider the case of noiseless main channels, thus C 1 = Fnq .

The algebraic secrecy criterion in [4] applied to our model says that perfect security is

achieved iff a generator matrix GC for C satisfies the following property:

• Every µ consecutive columns of GC are linearly independent.

The fulfillment of this condition implies that for each Zn with µ consecutive unerased

positions, the following holds:

• Every coset of C has the same number of vectors which are consistent with Zn, that

is vectors from which Zn can be obtained by n´ µ erasures.

This means that we have perfect security, since every message is equally probable. Suppose

now we choose any qk (out of qn{|C|) cosets of C for a secure transmission over a noiseless

channel. Then every Zn is again secure (that is the condition above holds again for

every Zn) and we can transmit qk messages with perfect security. Thus, the security

depends only on C. On the other hand, it is clear that maximum equivocation can be

achieved with the noiseless main channel if there exists an rn, µs code C satisfying the

property above. Let C 1 be an rn,msq B-burst-erasure correcting code with C Ă C 1. Then

regardless of the choice of a B-burst pattern and µ (consecutive) positions, to be observed

by Eve, Bob is able to correctly reconstruct the codeword sent by Alice. This situation

is actually equivalent to a scenario when the main channel is noiseless and only qm{|C|

cosets are chosen for encoding. Thus to achieve maximum equivocation, we have to choose

a nested code pC 1, Cq where |C 1| is as large as possible and |C| is as small as possible.

In other words, if we can choose as C 1 an optimal B-burst-erasure correcting code, i.e.

an rn, n ´ Bsq code and an rn, µsq code C satisfying the property stated above, then we

achieve the upper bound for the equivocation k ď n ´ B ´ µ, fulfilling both tasks (4.1)

and (4.2).

Clearly, these conditions for C and C 1 are necessary and sufficient. Let k denote the

maximum equivocation, given parameters µ, B, and n. Our observation is summarized

in the following theorem.

Theorem 4.11. In a wiretap channel II, with an active eavesdropper that can observe

any interval of µ symbols, out of n transmitted symbols from Fq, and erase any interval

of B symbols, one can convey securely and with zero error, at most k “ pn ´ B ´ µq`

symbols.

To achieve the positive secrecy rate Rs “ k{n with a nested linear code pair pC 1, Cq, where
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C 1 is a mother code and C is a coarse code, the following three conditions are necessary

and sufficient:

• n´B ą µ.

• The mother code C 1 is an rn, n ´ Bsq optimal burst-erasure (i.e. B-burst erasure)

correcting code.

• The coarse code C Ă C 1 is an rn, µsq code such that its dual code CK is an rn, n ´

µsq optimal burst-erasure (i.e. µ-burst erasure) correcting code. The equivalent

condition is that every µ consecutive columns of a generator matrix of C are linearly

independent.

The next theorem shows the existence of secure nested codes pC 1, Cq satisfying the

conditions of Theorem 4.11. For ease of description, we denote m “ n´B.

Theorem 4.12. (i) For arbitrary admissible parameters n,m, µ, that is for 1 ď µ ă m ď

n, and a finite field Fq with the non-binary alphabet, there exist explicit constructions

of secure nested codes pC 1, Cq that achieve the maximum secrecy rate Rs, (i.e. codes

satisfying the conditions of Theorem 4.11).

(ii) Such binary codes pC 1, Cq exist for the following cases:

1) 1 ď µ ă m ď n{2,

2) n{2 ď µ ă m ă n,

3) 1 ď µ ă n{2 ă m ă n,

where n “ 2Bt if µ ď B, and n “ 2µt if µ ą B, with t P N.

This theorem will be proved in Section 4.6.

We note here that similar arguments, as for Theorem 4.11 (together with Theorem 4.9),

give us the following necessary and sufficient conditions for achieving Rs “ k{n, in the

case when the active eavesdropper is able to observe µ symbols and erase B symbols by

their own choice:

• C 1 and C are optimal respectively rn, n´Bsq and rn, µsq erasure correcting codes.

This means that both C 1 and C are MDS codes (see Remark 4.3). The condition above

can be achieved if n ď q` 1. In particular, for n ď q´ 1 we can use Reed-Solomon codes

[17] which are known to have a nested structure (see Section 2.2). However, there are no

known nontrivial MDS codes with n ą q` 2 (see [17]). Therefore, it is impractical to use

MDS codes for the purpose mentioned above, since in this case q must grow with n.

37



4. Block Codes for a Burst-Erasure Wiretap Channel

4.5. Preparations for Code Construction

In this subsection we study matrices over finite fields which have specified properties

required for construction of secure nested codes. We start with some new definitions.

Definition 4.3.

• An m ˆ n pm ď nq matrix G over a given finite field is called good if every m

consecutive columns in it are linearly independent.

• We call an mˆ n matrix G cyclically good (or c-good for short) if any m cyclically

consecutive columns of G are linearly independent.

The following observation is obvious.

Proposition 4.13. Let G be an mˆ n c-good matrix. Then:

• pG Gq is also a c-good matrix.

• If G “ pIm Aq, then pIm Im Aq is a c-good matrix.

Let pC 1, Cq be a secure nested code with given parameters n; m “ n ´ B and µ satis-

fying the properties in Theorem 4.11. Then we can rephrase these properties in terms of

the matrices defined above as follows:

• A parity check matrix HC1 of the mother code C 1 is an pn´mq ˆ n good matrix.

• A generator matrix GC of the coarse code C is a µˆ n good matrix.

Clearly (by Proposition 6.11), these properties are fulfilled if both GC1 and GC are c-good

matrices. In this case C 1 is also capable of correcting all wrap-around B-bursts. Moreover,

pC 1, Cq remains secure if Eve also observes all cyclically consecutive intervals of length µ.

In our construction of nested pC 1, Cq codes, we essentially use c-good matrices. Therefore

we are now interested in how to construct c-good matrices over finite fields. This problem

has been solved by Hollmann and Tolhuizen in [32]. They gave explicit constructions of

c-good k ˆ n matrices over Fq for all parameters k, n and q. The following result shows

that c-good matrices can be constructed recursively.

Theorem 4.14 ([32]). For every c-good mˆ n matrix, one can add a column such that

the resulting mˆ pn` 1q matrix is c-good.

Another construction in [32] is given by means of the 2r ˆ 2r binary matrix Mr defined

as follows. Let M1 be the matrix
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4.5. Preparations for Code Construction

M1 =

˜

1 0

1 1

¸

,

and for r ě 1, Mr`1 is defined as

˜

Mr 0

Mr Mr

¸

. In other words, Mr is the r-th Kronecker

power Mbr
1 of the matrix M1. Thus, for example

M2 =

¨

˚

˚

˚

˚

˝

1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1

˛

‹

‹

‹

‹

‚

.

Note that Mr is a lower triangular matrix and it is symmetric with respect to the second

diagonal. The following property of the matrix Mr allows to construct c-good k ˆ n

matrices for all k and n.

Theorem 4.15 ([32]). Let k and n ´ k be positive integers, and let r be the smallest

integer such that k, n ´ k ď 2r. Let Q be a k ˆ pn ´ kq matrix residing in the lower left

corner of Mr. Then pIk Qq is a k ˆ n c-good matrix.

Note that the matrix Q is not necessarily c-good, although it is a good matrix (in view

of Theorem 4.15). The following property of Mr is not mentioned in [32].

Proposition 4.16. Every k ˆ 2r submatrix formed by the last k rows of Mr is a c-good

matrix.

The proposition follows from a more general statement given below.

Definition 4.4. An m ˆ n pm ď nq matrix M is called a nested c-good (resp. good)

matrix if every k ˆ n pk ď m) submatrix formed by its last k rows is a c-good (resp.

good) matrix.

Proposition 4.17. Let M be an nˆ n nested c-good matrix. Then so is the matrix

˜

M 0

M M

¸

.

This proposition is a special case of the following theorem.

Lemma 4.18. Let A and D be respectively kˆ k and nˆn nested c-good matrices over

Fq. Then AbD is a knˆ kn nested c-good matrix, where ”b” is the Kronecker product.

39



4. Block Codes for a Burst-Erasure Wiretap Channel

Proof. Let A “ paijqi,j“1,...,k and D “ pdijqi,j“1,...,n, thus

AbD “

¨

˚

˚

˚

˚

˝

a11D a12D . . . a1kD

a21D a22D . . . a2kD
...

... . . .
...

ak1D ak2D . . . akkD

˛

‹

‹

‹

‹

‚

.

Let d1, . . . ,dn be the columns of D and denote Tr “ par1D ar2D . . . arkDq, where

r P t1, . . . , ku. Now suppose there exists a nonzero vector αkn “ pα1, . . . , αknq such that

Trpα
knqT “ 0. Since the columns of D are linearly independent, it follows that there exists

a column dj of D and a nonzero subsequence αj, αj`n, αj`2n, . . . , αj`pk´1qn of αkn, such

that

dj

k´1
ÿ

i“0

ar,i`1αj`in “ 0

and hence

k´1
ÿ

i“0

ar,i`1αj`in “ 0.

Let T be the submatrix of AbD formed by its last m rows. We have to show that T

is a c-good matrix. Note first that this is the case if m ď n. This clearly follows from

the fact that D and hence Tk is a nested c-good matrix. Now let m “ nr ` t, where

1 ď r ď k ´ 1 and 0 ď t ă n. Thus,

T “

¨

˚

˚

˚

˚

˝

T
1

k´r

Tk´r`1

...

Tk

˛

‹

‹

‹

‹

‚

,

where T
1

k´r consists of the last t rows of Tk´r.

Let Q be an m ˆ m submatrix of T formed by m cyclically consecutive columns of

T . Note first that the set Dn :“ tdn1, dn2, . . . , dnnu (the elements of the last row in D)

consists of nonzero elements, since D is a nested c-good matrix. Now suppose there exists

a nonzero vector βm “ pβ1, . . . , βmq such that QpβmqT “ 0. Then it is not hard to see

that our observation above implies the following. There exists a nonzero subsequence

βs, βs`n, . . . , βs`nr of βm, where 1 ď s ď n and an element dns P Dn, such that

dns

r
ÿ

i“0

aj,s`i ¨ βs`in “ 0, j “ k ´ r, . . . , k,

where the indices of β are taken modulo kn and the indices of a are taken modulo k. But
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this means that there are r ` 1 (if t ě 1) cyclically consecutive columns in the last r ` 1

rows of A which are linearly dependent, which is a contradiction. Similarly, for t = 0 we

have r linearly dependent columns in A. This completes the proof.

Lemma 4.19. Let M be an m ˆm nested c-good matrix which is also symmetric with

respect to the second diagonal. Then for any k ˆ pn ´ kq submatrix Q of M , residing in

the lower left corner, pIk Qq is a k ˆ n c-good matrix.

Proof. To prove the statement we have to show that both pIk Qq and pQ Ikq are good

matrices. This can be easily demonstrated with the help of the figure below.

pIk Qq =

pQ Ikq =

k

k

A

D

It

It

Figure 4.2.: Good matrices pIk Qq and pQ Ikq.

Consider the kˆk matrices M1 and M2 indicated in the Fig. 4.2 with bold line shapes.

It follows from the properties of M that both pk ´ tq ˆ pk ´ tq matrices A and D, where

max t2k ´ n, 1u ď t ď k ´ 1, are invertible. This clearly implies that both k ˆ k matrices

M1 and M2 are invertible as well, which completes the proof.

We note that Lemma 4.18 (together with Lemma 4.19) gives a proof for Theorem 4.15,

which differs from the one in [32]. Moreover, it gives a possibility to construct a wider class

of nested n ˆ n c-good matrices than that of Mr matrices (with n “ 2r). For example

consider the matrices A “

¨

˚

˝

1 0 0

1 2 0

1 1 1

˛

‹

‚

and M1 “

˜

1 0

1 1

¸

over F3. Clearly, both are

nested c-good. Then by Lemma 4.18, every matrix Abm bMbk
1 is nested c-good, where

m, k P N Y t0u. In general, it can be shown that for a given prime power q, there exist

c-good n ˆ n matrices over Fq for all 2 ď n ď q. This together with Theorem 4.18 gives

us a new class of c-good matrices over Fq. We will go into this in more detail in Section

5.3.

4.6. Proof of Theorem 4.12

We give now explicit constructions of secure nested codes pC 1, Cq that achieve the maxi-

mum secrecy rate. The nested codes are given by means of generator matrices for C 1 and
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4. Block Codes for a Burst-Erasure Wiretap Channel

C which have properties clarified in the previous subsection. We denote by m “ n ´ B

the dimension of the mother code C 1.

i) First we give a recursive construction of required codes, over every non binary finite

field aphabet, for all admissible parameters µ,B, n. We use Theorem 4.14 and adapt it

to our nested codes. Let G1 “

˜

G˚

G

¸

be an m ˆ n c-good matrix, where G is a µ ˆ n

good matrix. Such a matrix G1 clearly exists for n “ m and 1 ď µ ă m. Our goal is to

show that we can add a column x to G1 such that the resulting matrix pG1 xq gives us a

secure nested code with parameters n` 1,m, µ.

Let g1, . . . ,gn be the columns of G1. Consider then the submatrices S1, . . . , Sm of

G1, with Si “ pgn´m`i`1,gn´m`i`2, . . . ,gn`i´1q; i “ 1, . . . ,m, where the column indices

greater than n are taken modulo n. In other words, the index sets of the columns in Si

consist of the interval tn´m`2, . . . , nu and its m´1 right cyclic shifts. Note that pG1 xq

is a c-good matrix if all matrices pSi xq are invertible. Let now D be an mˆm matrix D

with rows td1, . . . ,dmu, such that di
TSi “ 0 with i “ 1, . . . ,m. It can be shown that the

matrix D is invertible (see Lemma 4.24) and hence the matrix DG1 is a c-good matrix.

By definition of D, in each submatrix DSi of DG1, the ith row consists of zeros. The

latter clearly implies that by adding any column vector v “ pv1, . . . , vmq
T with nonzero

entries to DG1 we get an mˆpn`1q c-good matrix. Thus, for each v with nonzero entries

there exists a unique column vector x such that Dx “ v. This in turn implies that for

every such a vector x, the matrix pG1 xq is c-good as well.

Let X denote the set of all such column vectors x. We now show that there exists

an x P X such that by adding it to G1 we get an m ˆ pn ` 1q matrix where the last µ

rows form a good matrix. Without loss of generality, we may assume that G “ pA Iµq.

Observe then that we are done, if there exists an x “ px1, . . . , xmq
T P X with xm´µ`1 ‰ 0.

Suppose for a contradiction that xm´µ`1 “ 0 for every x P X. Next, we note that the set

of all vectors v P Fmq with nonzero coordinates spans Fmq if q ‰ 2. This clearly implies

that X spans Fmq as well, which is a contradiction, in view of our assumption on X. Thus,

there exists an x P X with xm´µ`1 ‰ 0. To find such an x we proceed as follows. Let

d “ pd1,m´µ`1, . . . , dm,m´µ`1q
T be the pm´ µ` 1qth column of D. Let u “ pu1, . . . , umq

T

be a column vector with the nonzero coordinates, such that ui ‰ ´di,m´µ`1; i “ 1, . . . ,m.

Furthermore, let x1 “ px11, . . . , x
1
mq

T be such that Dx1 “ u. Now if x1m´µ`1 ‰ 0, then

x “ x1. Otherwise, we take x “ px1, . . . , xmq
T , where xm´µ`1 “ 1 and xi “ x1i elsewhere.

Then we have Dx “ v, where v “ u ` d has nonzero coordinates. This completes the

proof.

Remark 4.20. We note that the code C 1 generated by G1 also tolerates wrap-around B-

burst erasures, that is reliable and secure transmission is provided when the eavesdropper

is able to cause any B-burst erasure including wrap-around bursts.

ii) We turn now to the binary case. We start with a special case n “ 2r where we can
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4.6. Proof of Theorem 4.12

directly apply Proposition 4.16. In this case, for any given parameters m and µ, we just

take the last m rows of Mr for the generator matrix G1 of C 1. This matrix is c-good, that is

C 1 is a c-optimal burst-erasure correcting rn,ms code. The matrix G1 in turn contains the

c-good µˆn submatrix G formed by the last µ rows. This clearly gives us a secure nested

code pC 1, Cq, where C is the rn, µs (c-optimal) code, satisfying the properties of Theorem

4.11. Note that the same construction works with any n ˆ n nested c-good matrix. In

fact, this is the simplest way to construct a secure nested code pC 1, Cq. However, nested

c-good n ˆ n matrices do not exist for every n P N. For example, in the binary case, it

can be easily shown that such matrices do not exist when n is odd.

1) Case 1 ď µ ă m ď n{2: For the construction of a secure nested code pC 1, Cq we

need two auxiliary results.

Lemma 4.21. Let C be an rn, ksq code with a generator matrix GC and a parity check

matrix HC . Let J Ă I be a subset of the index set I “ t1, . . . , nu with |J | “ k. If the

columns of GC with indices in J are linearly independent, then the columns of HC with

indices in IzJ are linearly independent.

Proof. This is a direct consequence of Proposition 4.1.

Lemma 4.22. Let G1 “ pA Dq be a k ˆ n good matrix over Fq with 1 ď k ď n{2, where

A is a kˆk matrix and D is a kˆpn´kq matrix. Then the code C with generator matrix

G “ pD Aq is an optimal burst-erasure correcting code.

Proof. Let I 1 “ t1, . . . , nu be the (ordered) set of column indices in G1 and let C 1 be the

code generated by G1. Let also L be the set of all intervals of length k in I 1. Since for

every L P L the columns of G1 with indices in L are linearly independent, Lemma 4.21

implies that the columns of HC1 with indices in I 1zL are linearly independent. Then,

by Proposition 4.1, for every L P L the code C 1 generated by G1 can correct the burst

of erasures in positions I 1zL. Note now that in the new ordering of the columns I “

tk ` 1, . . . , n, 1, . . . , ku the set of subsets tI 1zL : L P Lu contains all intervals of length

n´k in I. This means that C can correct all bursts of erasures of length n´k, and hence

C is optimal.

Given positive integers r, n,m with n ´ µ ď 2r, let Mr be the matrix defined in the

previous subsection. Let

˜

A1

A2

¸

be the mˆpn´µq submatrix of Mr, residing in the lower

left corner, where A1 is an pm ´ µq ˆ pn ´ µq matrix and A2 is an µ ˆ pn ´ µq matrix.

Define the mˆ n matrix Ḡ as

Ḡ=

˜

0 A1

Iµ A2

¸

.

In view of Theorem 4.15, pIµ A2q is an µ ˆ n c-good matrix and Ḡ is an m ˆ n good

matrix. Let now g1, . . . ,gn be the columns of Ḡ and denote by G1 the matrix defined as
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G1 “ pgm`1 . . .gn g1 . . .gmq “

˜

G˚

G

¸

,

where G˚ and G are the resulting submatrices obtained from p0 A1q and pIµ A2q after

the corresponding permutation of columns. In fact, G1 is obtained by m cyclic shifts of

the columns of Ḡ. By Lemma 4.22, the code C 1 generated by G1 is an (optimal) B-burst-

erasure correcting code. Denote by C the code generated by G. Since pIµ A2q is a c-good

matrix, any cyclic shift of its columns also gives a c-good matrix. Thus, pC 1, Cq is a secure

nested code with maximum secrecy rate.

2) Case n{2 ď µ ă m ă n: This case is the ”dual” to the previous case and follows

from the proposition below.

Proposition 4.23. If pC 1, Cq is a secure nested code satisfying the properties of Theorem

4.11, then so is the nested code pCK, C 1Kq.

Proof. Let pC 1, Cq be a secure nested code where C 1 is an rn,ms code and C is an rn, µs

code. Thus, C 1 is an optimal burst-erasure correcting code, and CK is an optimal rn, n´µs

burst-erasure correcting code. Furthermore, C 1K Ă C 1 is an rn, n ´ ms code, such that

its generator matrix is an pn´mq ˆ n good matrix. Thus, we have a secure nested code

pCK, C 1Kq with new parameters m1 “ n ´ µ, µ1 “ n ´ m, B1 “ µ, where n{2 ď µ1 ă

m1 ă n.

3) Case 1 ď µ ă n{2 ă m ă n: In this case our construction extends only to specified

parameters. We distinguish between two subcases.

(i) µ ď B.

Let n “ 2Bt, with t P N. Consider the following c-good B ˆ n matrix H “ pIl Il . . . Il
loooomoooon

2t

q.

Let C 1 be the rn, n ´ Bs code with the parity check matrix H. By Proposition 4.7, a

generator matrix of C 1 is also c-good and C 1 is a c-optimal B-burst-erasure correcting

code. Note now that HHT “ 0, that is the dual code C 1K is self orthogonal, i.e. C 1K Ă C 1.

Since for every 1 ď µ ď B there exists a c-good µ ˆ B matrix A, the row space of H

contains a µˆ n submatrix G “ pA A . . . Aq, which is also c-good in view of Proposition

4.13. This implies that there exists a m ˆ n generator matrix G1 of C 1, such that it

contains a c-good µˆ n submatrix. Thus we have a secure nested code pC 1, Cq, where C

is the rn, µs code generated by G.

(ii) µ ą B.

In this case we take n “ 2µt, with t P N and proceed similarly. We consider a c-good

matrix G “ pIµ Iµ . . . Iµ
looooomooooon

2t

q and note that GGT “ 0. Clearly, G can be transformed to a

matrix Ĝ (by linear operations on rows) such that Ĝ contains a B ˆ n c-good submatrix

H. We now consider the rn, n´Bs code C 1 with parity check matrix H. Note that C 1 is

a c-optimal burst-erasure correcting code since H is a c-good matrix. Thus

C 1 “
 

xn P Fnq : HpxnqT “ 0
(

.
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Since GGT “ 0 implies in particular that HGT “ 0, we conclude that the row space

of G is a subspace of C 1. Therefore, the code C 1 contains the rows of a c-good µ ˆ n

submatrix G. Hence, there exists a generator matrix G1 of C 1, which contains G, taken

as a generator matrix for the coarse code C. Thus, we get a secure nested code pC 1, Cq

satisfying conditions of Theorem 4.11.

4.7. Encoding and Decoding Schemes

In this section we present an encoding and decoding procedure for the secure nested codes

described in the previous section. By encoding we mean here the channel encoding and

each message as before is identified with a k-vector over a fixed finite field. The decoding

consists of two steps: (1) channel decoding, i.e. codeword recovering, and (2) message

decoding. Let pC 1, Cq be a linear nested code pair achieving maximum secrecy rate with

zero-error probability. Let C 1 (the mother code) be an rn,m “ n´ Bsq code and C (the

coarse code) be an rn, µsq code. Recall that C 1 is a B-burst-erasure correcting code and

C Ă C 1 has the property that any µ consecutive columns of its generator matrix are

linearly independent. The maximum number of symbols that can be securely transmitted

equals k “ m ´ µ “ n ´ B ´ µ. Let us represent C 1 as C 1 “ C˚ ` C, where C˚ is an

rn,m´ µsq subcode of C 1 such that C˚ X C = 0.

Furthermore, let G1 =

˜

G˚

G

¸

be a generator matrix of C 1, where G˚ and G are generator

matrices of C˚ and C respectively. Observe now that we can choose the generator matrices

G˚ and G having the form shown in Fig. 4.3, where 0 is a k ˆ pm ´ kq all-zero matrix

and A is an pm´ kq ˆ k matrix.

G˚ =

G =

Ik

A

0

Im´k

B

k

Figure 4.3.: Generator matrix G1.

This is clear because every m´k “ µ and m consecutive columns of generator matrices

of C and C 1 are linearly independent, respectively, and hence any generator matrix of C 1

can be transformed to G and G˚ by elementary row operations.

Let us denote G1 “ pA Im´kq and H1 “ pIk ´ A
T q. Thus, H1 is a parity check matrix

of the code generated by G1. We are prepared now to describe the encoding and decoding

of a message tent through the main channel.
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Encoding

A message ps1, . . . , skq, is encoded to the codeword

px1, . . . , xnq “ ps1, . . . , sk, e1, . . . , em´kq

˜

G˚

G

¸

,

where pe1, . . . , em´kq P Fm´kq is chosen uniformly at random.

Suppose yn “ py1, . . . , ynq is a vector received by Bob when the codeword xn “

px1, . . . , xnq has been sent. Let ti, i` 1, . . . , i` t´ 1u be the coordinate positions where

a burst of erasures of length t ď B have occurred.

Channel Decoding

Let H be a B ˆ n parity check matrix of the code C 1 with the columns denoted by

h1, . . . ,hn. Recall that any B consecutive columns of H are linearly independent. Con-

sidering the erased symbols pyi, . . . , yi`t´1q as unknowns and taking into account that

HpxnqT “ 0, we have

i`t´1
ÿ

r“i

yrhr “ ´
ÿ

jPT

xjhj.

This system of linear equations with at most B unknowns pyi, . . . , yi`t´1q has a unique

solution, since the columns hi, . . . ,hi`t´1 are linearly independent.

Message Decoding

If the submitted codeword px1, . . . , xmq is successfully recovered, then we claim that

ps1, . . . , skq “ px1, . . . , xmqH
T
1 .

To show that the equality holds, we note that

px1, . . . , xmq “ ps1, . . . , sk, 0, . . . , 0
loomoon

m´k

q ` pe1, . . . , em´kqG1.

Then

px1, . . . , xmqH
T
1 “ ps1, . . . , sk, 0, . . . , 0qH

T
1 ` pe1, . . . , em´kqG1H

T
1 .

Since G1H
T
1 = 0, we have

px1, . . . , xmqH
T
1 “ ps1, . . . , sk, 0, . . . , 0qH

T
1 “ ps1, . . . , skq.

46



4.8. Low Complexity Channel Decoding

4.8. Low Complexity Channel Decoding

We note that the channel decoding approach described above is a standard decoding

technique, which is a kind of syndrome decoding and can be applied to any erasure

correcting linear code capable of correcting a given number of erasures. This technique

however, is not in general efficient. A suitable approach for erasure correction is the

iterative decoding, which is a powerful technique, especially, when applied to low density

parity check (LDPC) codes [33]. The basic idea of iterative decoding is to correct erasures

one-by-one. In each step a parity check equation is used, which involves precisely one

erasure position, thus allowing this erasure to be corrected. More specifically, let C be a

binary rn, ks code capable of correcting B erasures. Let H be a matrix whose rows span

the dual code CK. Thus H is a parity check matrix of C, possibly with some redundant

vectors from CK. Let also hj “ phj,1, . . . , hj,nq, with j “ 1, . . . , r (r ě n ´ k) being the

rows of H. Thus, for any submitted codeword xn “ px1, . . . , xnq, we have

n
ÿ

i“1

xihj,i “ 0, j “ 1, . . . , r.

Now let yn “ py1, . . . , ynq be the received vector with B erased positions, when xn has

been sent. Without loss of generality we may assume that yn “ p?, . . . , ?, xB`1, . . . , xnq.

Suppose now there exists an hj P H such that hj contains precisely one 1 in the erased

positions, for example hj “ p1, 0, . . . , 0, hj,B`1, . . . , hj,nq. Then clearly we can correct the

first erasure in yn since we have

1 ¨ y1 `

n
ÿ

i“B`1

xihj,i “ 0,

and hence y1 “ a, where a “
řn
i“B`1 xihj,i is known. This procedure is repeated until

all erasures in yn are corrected, or the procedure stops if no parity check hj, with the

above property, can be found for the set of current erasures. Therefore, we can correct

all erasure patterns if for each such pattern there exists a parity check hj which contains

a single 1 in the corresponding positions. Thus, for this decoding method, the choice

of a parity check matrix H (defined in a more general way) plays a crucial role. Recall

that for the standard decoding mentioned above, the choice of H does not play any role.

Notice now that for burst-erasure correcting codes, a weaker condition is required for the

successful use of an iterative decoding approach. Namely, given a parity check matrix H,

one can correct all B-burst erasures if for every burst erasure pattern of length B or less,

there exists a parity check hj P H which contains a single 1 in an erased position. In [34],

Fossorier showed that using iterative decoding approach to any binary B-burst-erasure

correcting rn, ks code, the decoder complexity is Opn2q. In other words it is possible to

choose a parity check matrix H such that at most Opn2q binary operations are needed for
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successful decoding of any burst of length B or less.

We now show that in a special cases of our constructions of pC 1, Cq nested codes where

C 1 is an rn,ms optimal code, we can achieve decoding complexity not exceeding n.

Let n “ 2Bt, t P N (i.e. n “ mt
2t´1

), µ ď B.

The construction of a secure nested code pC 1, Cq for this case is described in subsection

4.12. C 1 is a c-optimal rn,ms code given by the B ˆ 2Bt parity check matrix H “

pIB IB . . . IBq. Obviously H satisfies the required property for correction of all burst

erasures of length B or less. Moreover we need at most 2tB binary operations for the

correction of any B-burst erasure.

4.9. Conclusion

A model of a wiretap channel II with an active eavesdropper has been introduced and

studied. We have shown that with a coset coding approach, one can convey securely

and with zero-error decoding at most k “ pn ´ B ´ µq` symbols and consider necessary

and sufficient conditions for achieving the maximum secrecy rate Rs “ k{n. Linear

nested codes achieving maximum secrecy rate have been constructed for all admissible

parameters. The constructed nested codes provide also perfect security and zero error at

the receiver. The nested code consists of a so-called mother code C 1 and a coarse code

C Ă C 1. Zero-error decoding and perfect security can be achieved for given parameters n,

B and µ, if and only if C 1 is an optimal rn, n´Bsq burst-erasure correcting code and the

dual code CK of C is an optimal rn, n´ µsq burst-erasure correcting code, respectively.

Further, we showed that an iterative decoding approach can be effectively applied for

our constructions of nested codes.

We find it interesting to study other models of the wiretap channel II with an active

eavesdropper. An initial problem in this direction could be the study of a model where

the eavesdropper can observe any µ consecutive symbols and is able to cause any burst of

errors of length B in the main channel. Furthermore, it would be interesting to consider

the models in the streaming setup where the legitimate receiver is subject to a delay

constraint.

4.10. Appendix

Lemma 4.24. Let S “ ps1, s2, . . . , sm´1, sm, sm`1, . . . , s2m´2q be an m ˆm matrix with

values in Fq and with its columns si, i “ 1, . . . , 2m´ 2 of length m. Let

Si “ psi, si`1, si`2, . . . , si`m´1q , i “ 1, 2, . . . ,m ,
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be the mˆm submatrices obtained by m consecutive columns of S and let

Qi “ psi`1, si`2, . . . , si`m´1q , i “ 1, 2, . . . ,m ,

be the m ˆ m ´ 1 submatrices obtained by deleting the first column in each Si, i.e.

Si “ psi,Qiq. Assume S has the property that

rankpSiq “ m and rankpQiq “ m´ 1 , for all i “ 1, 2, . . . ,m .

Then there exists an invertible mˆm matrix D with columns dTi , i “ 1, . . . ,m so that

dTi Qi “ 0 , for all i “ 1, 2, . . . ,m . (4.3)

Proof. Each Qi has rank m´ 1. Therefore it possess a non-trivial one-dimensional (left)

null space N pQiq and so we choose di P N pQT
i q for each i “ 1, . . . ,m. By this choice, it

is clear that (4.3) it satisfied and so we only need to show that D is invertible.

To this end, let A “ DS1 be the m ˆm matrix whose entry ak,i in row k and column

i is given by the scalar product of dk and si, i.e.

ak,i “ dTk si , k, i P t1, 2, . . . ,mu .

It follows from (4.3) that A is a lower triangular matrix, i.e. ak,i “ 0 whenever i ą k.

Moreover, all diagonal entries of A are nonzero, i.e. ak,k ‰ 0 for all k “ 1, 2, . . . ,m. In-

deed, ak,k “ dTk sk “ 0 would imply, in connection with (4.3), that dTkSk “ 0 contradicting

the assumption that Sk has rank m. So since all diagonal entries of the lower triangular

matrix A are nonzero, it follows that detpAq “ detpDq detpS1q ‰ 0. Since rankpS1q “ m,

we have detpS1q ‰ 0 and so it follows that detpDq ‰ 0, i.e. D is invertible.
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Burst-Erasure Wiretap Channel

5.1. Introduction

We consider transmission of secure messages over a burst-erasure wiretap channel under

decoding delay constraint. In many emerging communication systems such as interactive

voice and video communication, internet of things, etc., low-delay is an important task

along with reconstruction of corrupted or lost data. Such systems are highly susceptible

to sporadic burst packet losses. The transmitter must encode a source stream of packets

sequentially, and the receiver must recover each source packet within a fixed playback

deadline. This naturally motivates the study of codes that achieve fast recovery from burst

losses. Moreover, communication systems that convey secret data, e.g. electronic payment

systems, must be protected against eavesdropping. Classical encryption methods only

offer security against eavesdropping if the encryption algorithms are sufficiently complex

and the eavesdropper’s computing power is limited. Since these security mechanisms can

only be implemented at higher protocol layers, this leads to noticeable delays. To avoid

these problems, security must be embedded in the physical layer.

Related Work

Martinian et al. [35],[7],[8] were the first to study low-delay burst-erasure correcting codes.

Their bounds and constructions provided the basis for several follow-up works, which con-

sidered different scenarios of low-delay communication such as low-delay multiple bursts

[36], multicasting [37], [38], average delay scenario [39], etc. Additional works devoted

to low-delay coding can be found in [9], [10], [40], [41], [42],[43],[44],[45]. Martinian and

Trott [8] presented a construction of delay optimal streaming codes for a burst-erasure

channel. A stream of source packets ts risuiě0 arrives sequentially at the encoder and is

mapped to a stream of channel packets tx risuiě0. Each source packet s ris, respectively

each encoded packet x ris, is a vector of k symbols, resp. n symbols, from the same finite

field. The rate of the code is defined as R “ k{n. The channel can introduce a burst

of erasures of length B, starting at any time i. The decoder is required to reconstruct

each source packet with delay of at most T , i.e. after receiving T subsequent packets.

The construction in [8] consists of two steps: first constructing a delay optimal rT `B, T s
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binary systematic block code followed by diagonal interleaving applied to that code. The

resulting code is a rate-T {pT `Bq convolutional code that achieves the delay-burst bound

in [8]: T {B ě max
“

1, R
1´R

‰

. A code that meets the bound is called a delay-optimal code.

Contribution

We propose delay-optimal block codes as well as streaming codes for secure transmission

over a burst-erasure wiretap channel. The block codes are intended for a model of a

B-burst-erasure channel where the eavesdropper can noiselessly observe any interval of at

most µ symbols from n symbols transmitted to the legitimate receiver. This model can

be viewed as a special case of the wiretap channel II introduced by Ozarow and Wyner

[4], with an additional requirement of low delay. We give explicit constructions of block

codes that achieve maximum secrecy rate, provide perfect security (i.e. the eavesdropper

can obtain no information about the secret message) and provide zero-error decoding with

minimum decoding delay. For the streaming setup, our model of a burst-erasure wiretap

channel is as follows. In any sliding window of size W the eavesdropper is able to observe

an interval of at most µ packets by his choice. We present constructions of delay optimal

streaming codes that provide perfect security.

Outline

In Section 5.2, we introduce a model of a burst-erasure wiretap channel for a stream of

encoded packets. Section 5.3 includes definitions and the construction of special matrices

required for the construction of delay-optimal secure burst-erasure correcting (DO-SBE)

block codes. In Section 5.4 we present explicit constructions of two classes of DO-SBE

block codes over any finite field of order of at least three. The first is for systematic and

non-systematic block codes where B|T and µ ď T ´ B, and the second is for systematic

block codes for arbitrary T ě 2B with µ “ T ´ B. In Section 5.5, we use our DO-SBE

block codes to obtain delay-optimal burst-erasure convolutional codes by applying proper

diagonal interleaving. The resulting codes are shown to have perfect security. We derive

an upper bound for the secrecy rate of a delay-optimal streaming code and show that

this bound is achieved for a certain class of code parameters. Section VI concludes with

a discussion and problems for future research.

5.2. The Channel Model in the streaming setup

We consider the burst-erasure wiretap channel illustrated in Fig. 5.1, where each time

i ě 0 the randomized encoder observes a source packet s ris and transmits a channel

packet x ris. The source packet consists of k symbols, while the channel packet consists

of n symbols over a common finite field Fq. For each i P Z`, the randomized encoding

52



5.2. The Channel Model in the streaming setup

. . .

T +B

T + µ

. . .

. . .. . .

Encoder

{s [i]}i≥0 {x [i]}i≥0
{y [i]}i≥0

{z [i]}i≥0

Decoder

delay T

Eavesdropper
W

Figure 5.1.: The channel model with erased packets indicated by crossed squares and
noiseless received packets by white squares.

function ξi : Fk¨pi`1q
q ˆ Fµ¨pi`1q

q Ñ Fnq of the pn, k, µ, T qq streaming code maps causally1

a sequence of source packets tsrisuiě0 and a sequence of encoder packets terisuiě0 into a

channel packet xris. ξi is used by the source at time i to encode sris according to

xris “ ξipps r0s , s r1s . . . , s risq, pe r0s , e r1s . . . , e risqq. (5.1)

The main channel causes erasures, i.e., the received channel packet y ris is either erased

(denoted by ?) or passed to the legitimate receiver noiselessly, thus y ris P Fnq Y t?u. The

erasures occur in bursts of length B. Moreover, the eavesdropper is able to observe an

interval of at most µ packets in any sliding window of size W , which implies that any

two intervals of µ packets observed by the eavesdropper are separated by at least W ´ 1

(undisclosed) packets. We assume that the packets sr0s, sr1s, . . . and er0s, er1s, . . . are

realizations of i.i.d. sequences S0, S1, . . . and E0, E1, . . . of random variables which are

uniformly distributed over Fkq and Fµq , respectively. The eavesdropper’s channel output

induced by S0, . . . , Si and E0, . . . , Ei is Z0, . . . , Zi, with realization zris P Fnq Y t?u where

i “ 0, 1, . . . .

If a B-burst-erasure occurs, we require that an pn, k, µ, T qq streaming code can re-

construct any source packet s ris with delay T , that is there exists a set of decoding

functions ϕi such that s ris “ ϕipy r0s , . . . , y ri` T sq. In other words, using notation

Ai0 “ A0, . . . , Ai, we have HpSi0|Y
i`T

0 q “ 0, with i “ 0, 1, . . ., where Yi is the random

variable that describes the receiver’s input. Furthermore, we require perfect security, that

is HpSi0|Z
i`T
0 q “ HpSi0q. Informally, the eavesdropper must have complete equivocation

over the source packets (messages) in spite of knowing the encoding procedure and the

observed packets. In this case we say that a streaming code has secrecy rate Rs “
k
n
.

Note that in advance (in the initialization phase), i.e. for i ă 0, a constant number of

random packets eris must be securely transmitted to ensure perfect reliability and perfect

security in the first T transmitted packets. Since in the initialization phase the number

of pre-transmitted packets is constant, the resulting rate loss quickly converges to 0 as

1The code is causal if in the encoding function the current channel packet is a function of the current
and previous source/encoder symbols of the source/encoder packets.

53



5. Delay-Optimal Codes for a Burst-Erasure Wiretap Channel

the number of packet transmissions grows.

Definition 5.1. We denote an pn, k, µ, T qq streaming code as a pT,B, µ;W qq streaming

code if the code can reconstruct any source packet within delay T if any erasure burst of

length B occurs, and if the code provides perfect security even if the eavesdropper is able

to observe an interval of at most µ packets in any sliding window of size W .

5.3. Preparation for the Code Constructions

In this section we provide matrices over finite fields, which have specific properties required

for the construction of block codes that we convert into streaming codes for the channel

model introduced in Section 5.2.

First we refer to the Definitions 4.2, 4.3 and 4.4.

Lemma 5.1. For a prime power q and any integer 1 ď n ď q there exists an nˆn nested

c-good matrix over Fq.

Proof. Let Vn denote an nˆ n Vandermonde matrix over Fq, where 1 ď n ď q ´ 1, with

the rows written in reverse order, i.e. vij “ an´ij , and a1, . . . , an are nonzero elements in

Fq. Note that Vn is a nested c-good matrix. For n “ q we take the q ˆ q nested c-good

matrix

¨

˚

˚

˚

˚

˝

1 0 ¨ ¨ ¨ 0
...

Vq´1 0

1

˛

‹

‹

‹

‹

‚

,

where Vq´1 is a pq ´ 1q ˆ pq ´ 1q Vandermonde matrix.

Lemma 4.18 and 5.1 imply the following theorem.

Theorem 5.2. For a prime power q, let p1, p2, . . . , pπpqq be all primes less than or equal

to q. Let Npqq :“
!

pk11 p
k2
2 ¨ ¨ ¨ p

kπpqq
πpqq : ki P NY t0u

)

. Then for any n P Npqq there exists an

nˆ n nested c-good matrix over Fq.

Remark 5.3. Note that any n ˆ n nested c-good matrix can be brought to a nested

c-good lower triangular matrix. Recall that the Kronecker product of any two lower

triangular matrices again gives a lower triangular matrix.

Lemma 5.4. Let pIT´B Aq be a pT ´Bq ˆ T c-good matrix. Then the matrix G is also

c-good.

G “

˜

IB 0BˆpT´Bq IB

0pT´BqˆB IT´B A

¸

(5.2)
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The proof is provided in the Appendix.

Matrix G has been used in [8] for the construction of delay-optimal burst-erasure cor-

recting codes.

Theorem 5.5 ([8]). A rT `B, T sq block code with a systematic generator matrix of the

form (5.2) recovers a burst erasure of length B with delay T .

5.4. DO-SBE Block Codes

We define block codes over Fq, for small q, of dimension T and blocklength T ` B that

we can apply in Section 5.5 to construct convolutional codes for the model introduced in

Section 5.2.

DO-SBE block codes can be used for delay-optimal transmissions of secret messages

over a burst-erasure wiretap channel, where the channel or the eavesdropper (in the case

of an active eavesdropper) causes an erasure burst of length B and the eavesdropper

observes an interval of at most µ symbols noiselessly from n “ T ` B symbols. For the

construction of DO-SBE block codes we use linear secure nested codes (see Section 4.3.1).

Definition 5.2. We say that a rT ` B, T sq code C 1 “ pencoder ξ, decoder ζq is a delay-

optimal secure burst-erasure correcting (DO-SBE) block code and call it a µ´rT `B, T sq

DO-SBE code if

(i) C 1 is an optimal burst-erasure correcting code.

(ii) The transmitter can convey k “ T ´µ symbols with perfect security and the secrecy

rate of the code is Rs “
T´µ
T`B

, which in fact is maximum possible (see Chapter 4).

(iii) Every source symbol can be reconstructed with delay of at most T (i.e. for a set

of decoding functions ζi we have si “ ζipy1, . . . , yi`T q with i “ 1, . . . , k), that is the

code is delay-optimal. In other words, for any B-burst erasure, all source symbols

si must be recovered up to receiving yi`T .

Codes satisfying conditions (i) and (ii) (without a delay constraint) are studied in

Chapter 4 where the construction of such codes for all admissible parameters T,B, µ, q

has been presented. For the construction, a nested code approach has been used. Recall

that a nested linear code is a pair pC 1, Cq of linear codes, C Ă C 1, in Fnq , where C 1 is an

outer code and C is called a coarse code. The outer code C 1 is partitioned into cosets of

C and each of |C 1|{|C| cosets is put into correspondence with a secret message to be sent,

by a fixed bijective map. The inner code serves for reliability and the coarse code is used

for stochastic encoding, to provide security. The code is given by a matrix G1 “

˜

G˚

G

¸

,

where G1, respectively, G, is a generator matrix for the outer code, respectively, for the

coarse code.
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Remark 5.6. We emphasize that the codes constructed in Chapter 4 are not appropriate

for the given purposes. The codes in Chapter 4 do not guarantee low delay.

Definition 5.3. We call a generator matrix G1 “

˜

G˚

G

¸

for a DO-SBE code C 1 sys-

tematic, if both G˚ and G have a systematic form. Equivalently, we say that C 1 is a

systematic DO-SBE code, or C 1 has a systematic encoder.

Lemma 5.7. For a prime power q ą 2, let T P Npqq and α P Fqz t0, 1u. Then for any

integer 1 ď B ď T there exists a T ˆ pT `Bq c-good matrix

G1 “

˜

IB 0BˆpT´Bq IB

A C αA

¸

, (5.3)

where G :“ pA C αAq is a pT ´ Bq ˆ pT ` Bq nested good matrix and pC αAq is a

pT ´Bq ˆ T c-good matrix.

Proof. Let Q “

˜

M 0BˆpT´Bq

A C

¸

be a T ˆ T lower triangular nested c-good matrix over

Fq with q ą 2. Such a matrix exists for any T P Npqq in view of Theorem 5.2 (and Remark

5.3). Note then that G is a nested good matrix and pC αAq is a pT ´ Bq ˆ T c-good

matrix. Furthermore, G2 :“

˜

M 0BˆpT´Bq M

A C αA

¸

, and hence G1 in (5.3) are c-good

matrices, since G2 can be brought to G1 and to a matrix of the form (5.2) by elementary

row operations.

In the sequel we will show that there exist delay-optimal block codes that have the

same maximum secrecy rate as the codes without delay constraint.

Lemma 5.8 ([46]). Let G1 “

˜

G˚

G

¸

be a T ˆ pT ` Bq generator matrix for a linear

block code C 1, where G is a µˆ pT `Bq submatrix of G1. Then C 1 satisfies requirements

(i) and (ii) in Definition 5.2, if the following three conditions are fulfilled:

(a) T ą µ

(b) G1 is a c-good matrix. (Recall that in this case C 1 is also capable of correcting all

wrap-around B-burst erasures.)

(c) G is a good matrix.

Remark 5.9. 1. In fact, we can replace condition (b) by the following weaker condition:

(b1) a generator matrix for the dual code C 1K is good.

In this case paq, pb1q and pcq are also necessary conditions.

2. It is also worth mentioning that if G is a c-good matrix, then requirement (ii) (in

Definition 5.2) is satisfied even if the eavesdropper is able to observe any cyclic interval

(of codeword positions) of length µ.
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Remark 5.10. When we consider the delay constraints we define the first B source

symbols as the urgent symbols and the remaining T ´B source symbols as non-urgent.

Next, we give constructions of µ ´ rT ` B, T sq DO-SBE block codes satisfying the

conditions in Lemma 5.8 and the delay constraint.

We first analyze the tradeoff between parameters T,B, µ for systematic and non-

systematic µ´ rT `B, T sq DO-SBE block codes, conditioned by construction.

Proposition 5.11. (i) For a µ ´ rT ` B, T sq DO-SBE code C 1 we have µ ď T ´ B, or

equivalently B ď k.

(ii) For a systematic µ´rT `B, T sq DO-SBE code with µ ą 0 we have B ď µ ď T ´B,

or equivalently B ď k ď T ´B. In particular, we have T ě 2B.

Proof. Let G1 “

˜

G˚

G

¸

be a generator matrix for a µ´rT `B, T sq DO-SBE code. Let M

be the submatrix of G1 formed by its first T ` 1 columns and M1 be the submatrix of M

formed by the deletion of the last B columns and the first row denoted by m. Furthermore,

for an output yT`B let the erased set of positions EpyT`Bq “ tT ´B ` 2, . . . , T ` 1u.

Observe then that the first source symbol s1 can be recovered with delay T , only if the

columns of M1 are linearly dependent.

(i) Suppose that µ ě T ´B` 1. First note that m contains a nonzero entry in position

i P t1, . . . , T u, since the first T columns of M are linearly independent. Clearly, if the

nonzero positions of m are in EpyT`Bq, then s1 cannot be uniquely recovered. Thus, there

exists a nonzero position of m in t1, . . . , T ´B ` 1u. Note then that M1 has full rank in

view of the property of submatrix G, which is a contradiction.

(ii) Now suppose there exists a systematic µ´ rT `B, T sq DO-SBE code with µ ă B.

Observe then that again matrix M1 has full rank, which completes the proof.

Next we present a construction of systematic and non-systematic DO-SBE block codes

for any µ ď T ´B, in the case when B|T .

Theorem 5.12. Let T P Npqq and T “ tB, where q ą 2, t P N.

(i) For 0 ď µ ď T ´B there exists an explicit construction of a µ´rT `B, T sq DO-SBE

code.

(ii) For t ě 2 and µ “ iB; i P t1, . . . , t´ 1u, we have a µ ´ rT ` B, T sq DO-SBE code

with a systematic encoder.

Proof. (i) Consider the following T ˆ pT `Bq generator matrix

G1 “

¨

˚

˚

˚

˚

˝

a11IB 0 0 ¨ ¨ ¨ a11IB

a21M a22M 0 ¨ ¨ ¨ αa21M
...

... ¨ ¨ ¨
...

...

at1M at2M ¨ ¨ ¨ attM αat1M

˛

‹

‹

‹

‹

‚
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for a B-burst-erasure correcting code C 1, where

A “

¨

˚

˚

˚

˚

˝

a11 0 0 . . . a11

a21 a22 0 . . . αa21

...
... . . .

...

at1 at2 . . . att αat1

˛

‹

‹

‹

‹

‚

is a tˆpt` 1q c-good matrix over Fq, such that its first t columns form a lower triangular

nested c-good matrix. Note that such a matrix exists for any T P Npqq, in view of

Theorem 4.18. Furthermore, let M be a B ˆ B nested c-good lower triangular matrix

over Fq and α P Fqzt0, 1u.
Clearly, without loss of generality, we may assume that a11 “ 1. Note that G1 is a

matrix of the same form as (5.3). Hence, by Lemma 5.7, G1 is a tB ˆ pt ` 1qB c-good

matrix and its µˆ pt` 1qB submatrix, formed by the last µ rows with 0 ď µ ď pt´ 1qB,

is a good matrix. Thus, in view of Lemma 5.8, requirements (i) and (ii) in Definition 5.2

are satisfied.

Now we prove the delay constraint of the code. Suppose yT`B “ py1, . . . , ypt`1qBq is

an output of the channel. Then in each subvector yt`1
i “ pyi, yi`B, . . . , yi`tBq, where

i P t1, . . . , Bu, there is at most one erased symbol. Also note also that yt`1
i is a codeword

of the code CA with generator matrix A, and yt`1
i “ psi, βi1 , . . . , βit´1qA, where si with

i “ 1, . . . , B is the i-th source symbol in a codeword of C 1. Since CA is a single erasure

correcting code with delay t, source symbol si can be reconstructed with delay of at most

tB “ T . In case µ ă T ´B, the symbols sB`1, . . . , sT´µ are non urgent, that is they can

be reconstructed with delay smaller than T . Notice that generator matrix G1 is universal

in the sense that it can be used for a DO-SBE block code for any µ ď T ´ B, however

it is not systematic and thus can not be mapped to convolutional codes for the channel

model given in Section 5.2 with the required properties.

(ii) Let A “

˜

A1

A2

¸

be a t ˆ pt ` 1q c-good matrix of the form as (5.3), where A1 “

pIr 0rˆpt´rq a
r) with ar “ pa1, . . . , arq

J, 1 ď r ď t´1, and A2 is a pt´rqˆpt`1q systematic

good matrix. Clearly we can assume that a1 “ 1. Then we take G1 “ AbIB and obtain a

tBˆpt` 1qB c-good systematic matrix G1 “

˜

G˚

G

¸

, where G˚ is a rBˆpt` 1qB matrix

and G is a pt ´ rqB ˆ pt ` 1qB good matrix. We now have T “ tB and µ “ pt ´ rqB.

Clearly, the delay for recovering each si is at most T (as in case (i)).

Example 5.13. (i) We construct a 3´r8, 6s3 DO-SBE code, where B “ 2 and T “ tB “

6. We choose the 3ˆ 4 matrix A “

¨

˚

˝

1 0 0 1

2 2 0 1

2 1 1 1

˛

‹

‚
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and matrix M “

˜

1 0

1 1

¸

. We take AbM and convert by elementary row operations the

first B rows in order to obtain

G1 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0 0 1 0

0 1 0 0 0 0 0 1

2 0 2 0 0 0 1 0

2 2 2 2 0 0 1 1

2 0 1 0 1 0 1 0

2 2 1 1 1 1 1 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Note that the submatrix of G1 consisting of the last T ´ B rows is nested good. We

can convey securely k “ T ´ µ “ 3 source symbols, that is, the channel input vector is

ps1, s2, s3, e1, e2, e3q.

Suppose the burst erasure affects either of the positions B ` 1, . . . , T . For example,

x5 and x6 are erased. For simplicity of description consider the channel output y8 “

px1, . . . x4, ?, ?, x7, x8q. Clearly the unerased received symbols correspond to the codeword

symbols. The decoder has to reconstruct the urgent source symbols s1 and s2 with delay

T “ 6, that is, upon receiving y7 and y8, respectively. For i “ 1, the codeword y4
1 “

px1, x3, x5, x7q of CA has an erasure on position 3 that can be reconstructed upon receiving

x7, since CA is a single erasure correcting code and thus s1 can be recovered by solving

the following linear system of equations

x1 “ s1 ` γ

x7 “ s1 ` αγ,

where γ “ a21β11 ` a31β12 “ a21ps3m11 ` e1m21q ` a31pe2m11 ` e3m21q.

Similarly, we can recover s2 upon receiving y8.

Next, suppose an erasure burst occurs in the first or the last B positions. Observe that

we can reconstruct s3, e1, e2, e3 by x3, . . . , x6 and the 4 ˆ 4 nonsingular submatrix of G1

residing at the bottom in the middle. Obviously, we can reconstruct s1 and s2 with delay

less than T , respectively.

(ii) For T “ 6 and B “ 2 we choose µ “ 2. We take the same tˆt`1 matrix A “

˜

A1

A2

¸

=

¨

˚

˝

1 0 0 1

2 2 0 1

2 1 1 1

˛

‹

‚

as above, and bring the 2 ˆ 4 matrix A1 and the 1 ˆ 4 matrix A2 to a

systematic form, such that

A “

¨

˚

˝

1 0 0 1

0 1 0 1

1 2 1 2

˛

‹

‚

. Note that A2 is still a good matrix. Now we take G1 “ A b IB to
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obtain

G1 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0 0 1 0

0 1 0 0 0 0 0 1

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

1 0 2 0 1 0 2 0

0 1 0 2 0 1 0 2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

with T “ tB “ 3 ¨ 2 and k “ T ´ µ “ 4. Note that for any burst erasure of length 2 si

with i “ 1, 2 can be reconstruct with delay of at most T “ 6 as in case (i) of the example.

Our next construction of DO-SBE codes with a systematic encoder is suitable for every

admissible T and B.

First we define a matrix G1 “

˜

G˚

G

¸

and show that G1 satisfies the conditions in Lemma

5.8.

Lemma 5.14. For q ą 2, integers B ě 1 and T ě 2B, let
´

IT´2B A
¯

be a pT ´ 2Bq ˆ

pT ´Bq c-good matrix. Then the matrix

G1 “

¨

˚

˝

IB 0BˆpT´2Bq 0B IB

IB 0BˆpT´2Bq IB αIB

0pT´2BqˆB IT´2B A 0pT´2BqˆB

˛

‹

‚

(5.4)

is a c-good matrix and its submatrix G consisting of the last T ´B rows is a good matrix,

where α P Fqzt0, 1u.

Proof. Recall that a kˆn c-good matrix exists for every k, n P N over any finite field (see

4.12). Thus, we have a pIT´2B Aq c-good matrix for any B and T ě 2B. Note then that

(by Lemma 5.4) submatrix G1 of matrix G

G1 “

˜

IB 0BˆpT´2Bq IB

0pT´2BqˆB IT´2B A

¸

(5.5)

is c-good, since
´

IT´2B A
¯

is c-good. The latter implies (by Lemma 5.4) that G is a

good matrix.

Now observe that by elementary row operations, matrix G1 can be brought to the

following systematic matrix

˜

IB 0BˆpT´Bq IB

0pT´BqˆB IpT´Bq A
1

¸

, (5.6)

where A
1

“

˜

´A

IB

¸

. Note that
´

IpT´Bq A
1

¯

is c-good. Hence, by Lemma 5.4, G1 is
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c-good.

Theorem 5.15. For positive integers T,B, µ, where T ě 2B and µ “ T ´B, we have an

explicit construction of a µ´ rT `B, T sq systematic DO-SBE code for any q ě 3.

Proof. Lemma 5.14 together with Lemma 5.8 implies that the rT `B, T sq (q ą 2) code C 1

with generator matrix G1 in (5.4) corrects any B-burst erasures, including wrap around

bursts. Moreover, code C 1 provides perfect security and achieves maximum secrecy rate

Rs “
T´µ
T`B

. Thus, it remains to be shown that the code can reconstruct arbitrary source

symbol si, i “ 1, . . . , B, with delay of at most T . We refer to Example 5.16.

Let EpyT`Bq Ă t1, . . . , T `Bu be the interval of bursty positions in yT`B. We have to

show that for each EpyT`Bq with
ˇ

ˇEpyT`Bq
ˇ

ˇ “ B we can reconstruct every source symbol

si, i P t1, . . . , Bu , with delay at most T . We refer only to the urgent symbols. Let

i P t1, . . . , Bu.

Case 1: Suppose that EpyT`Bq Ă tB ` 1, . . . , T u. Then si can be reconstructed using

i-th and pi` T q-th unerased positions in yT`B and corresponding columns in G1.

Case 2: EpyT`Bq Ă t1, . . . , 2B ´ 1u and EpyT`Bq “ ti, . . . , i`B ´ 1u. If i “ 1, we

can determine sB`1, . . . , sT , using the corresponding known symbols yB`1, . . . , yT in yT`B.

Observe that si “ yi`T ´ αsB`i. If i ą 1, we first determine s1, . . . , si´1 as in Case 1.

Consequently, we get sB`1, . . . , sB`i´1. Now the source symbols in the erased positions

EpyT`Bq can be determined thanks to G1 in (5.5).

Case 3: EpyT`Bq Ă tT ´B ` 2, . . . , T `Bu and

EpyT`Bq “ tT ´B ` 1` i, . . . , T ` iu. Using yB`1, . . . , yT´B`i we can determine the

erased symbols yT´B`1`i, . . . , yT . Hence, we can reconstruct s1, . . . , sB from y1, . . . , yT

with delay at most T .

Here we note that unlike low-delay codes (e.g. codes in [8]), in a secure code, optimal

decoding of source symbol si (i.e. ith secret symbol) is not guaranteed even if the corre-

sponding code symbol xi is not erased.

Example 5.16. As an example of a code construction in Theorem 5.15, consider the

following matrix

G1 “

˜

G˚

G

¸

“

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0 1 0

0 1 0 0 0 0 1

1 0 0 1 0 2 0

0 1 0 0 1 0 2

0 0 1 1 1 0 0

˛

‹

‹

‹

‹

‹

‹

‚

. (5.7)

In view of the theorem (and Lemma 5.14), the code with generator matrix G1 is a

3´ r7, 5s3 systematic DO-SBE code.
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Figure 5.2.: A convolutional code structure based on diagonal interleaving. Di denotes a
delay of i packets.

Figure 5.3.: A secrecy rate-2{7 code constructed by diagonally interleaving the 3´ r7, 5s3
DO-SBE block code.

5.5. The Secure Streaming Codes

In the following, we consider codes for the model introduced in Section 5.2. We analyze the

correction capability under delay constraint and the security condition of the convolutional

code obtained by a proper diagonal interleaving applied to a systematic DO-SBE block

code. The mapping from a nested block code pC,C 1q to a convolutional code is shown

in Fig. 5.2. We note that the channel input packet at time i is xris “ r ris ` p ris,

where r ris “ fips r0s , s r1s , . . . , s risq and p ris “ hipe r0s , e r1s , . . . , e risq. Furthermore, if

G1 “

˜

G˚

G

¸

is a generator matrix for C 1, then rris is the packet obtained by diagonal

interleaving applied to the block code generated by G˚. Correspondingly, pris is the

resulting packet obtained by diagonal interleaving applied to the coarse code C.

Fig. 5.3 shows the convolutional code obtained by diagonal interleaving applied to the

3´r7, 5s3 DO-SBE code in Example 5.16. The ith line in the semi-infinite array represents

channel packet xris. The codewords of the block code appear along the diagonals, as

illustrated by the underlined symbols.

62



5.5. The Secure Streaming Codes

5.5.1. The Achievability

Our systematic DO-SBE block codes differ from the systematic block codes in [35], [10].

In contrast to the design of codes that serve only for reliable transmission, the source

symbols of sris are not immediately obtained from the channel symbols of xris. In our

construction of a convolutional code, the channel packet is produced causally from the

source stream and the randomly chosen stream.

In the following, we analyze the correction capability under the delay constraint and

the security conditions of the convolutional code obtained by diagonally interleaving the

systematic DO-SBE block code.

First, we give two definitions of convolutional codes.

Definition 5.4. An pn, k, µ,$, T qq convolutional code with encoder memory $ and de-

coding delay T is an pn, k, µ, T qq streaming code, constructed as follows: Let G1 “

˜

G˚

G

¸

.

For any i ě 0, we obtain the packet

xris “
$
ÿ

l“0

ps ri´ lsG˚convl ` e ri´ lsGconv
l q, (5.8)

where G˚convl is a k ˆ n matrix so that

G˚ “
$
ÿ

l“0

G˚convl (5.9)

and Gconv
l is a µˆ n matrix so that

G “
$
ÿ

l“0

Gconv
l . (5.10)

By convention we choose s r´1s , . . . , s r´$s “ 01ˆk and e r´1s , . . . , e r´$s, which corre-

spond to i.i.d. sequences of random variables which are uniformly distributed over Fµq .

Definition 5.5. The mapping from source sequence to code sequence can be defined

by a multiplication with the generator matrix G1conv “

˜

G˚conv

Gconv

¸

of the pn, k, µ,$, T qq

convolutional code:

G˚conv “

¨

˚

˚

˚

˚

˝

G˚conv0 G˚conv1 ¨ ¨ ¨ G˚conv$

0kˆn G˚conv0 ¨ ¨ ¨ G˚conv$´1
...

...
. . .

...

0kˆn 0kˆn ¨ ¨ ¨ G˚conv0

˛

‹

‹

‹

‹

‚

(5.11)
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Gconv
“

¨

˚

˚

˚

˚

˝

Gconv
0 Gconv

1 ¨ ¨ ¨ Gconv
$

0kˆn Gconv
0 ¨ ¨ ¨ Gconv

$´1
...

...
. . .

...

0kˆn 0kˆn ¨ ¨ ¨ Gconv
0 ,

˛

‹

‹

‹

‹

‚

(5.12)

where G˚convl and Gconv
l are respectively k ˆ n and µ ˆ n matrices, l P r0, $s. Note that

(5.11) and (5.12) are truncated matrices.

We review the standard argument of interleaving a blockcode into a convolutional code

[47],[7], where we first address only the correctability of the convolutional code with delay

constraint. A similar lemma was shown by Fong et al. [10].

Lemma 5.17. Given an µ ´ rT `B, T sq DO-SBE block code, we can construct an

pn, k, µ, T, T qq convolutional code that is able to reconstruct any B-burst erasure and

recover source symbols with delay T . More specifically, let G1 “

˜

G˚

G

¸

be the gener-

ator matrix of the µ ´ rT `B, T sq DO-SBE block code. Let g˚i,j with 0 ď i ď k ´ 1,

0 ď j ď n ´ 1 and gi,j with 0 ď i ď µ ´ 1, 0 ď j ď n ´ 1 be the entries situated in row

i and column j of generator matrices G˚ and G, respectively. Then we can construct the

n´ 1 generator matrices of the pn, k, µ, n´ 1, T qq convolutional code as follows

G˚convl “

$

’

’

’

&

’

’

’

%

´

0kˆl diagpg0,l, ¨ ¨ ¨ , gk´1,l`k´1q 0kˆpn´k´lq

¯

if 0 ď l ď n´ k
¨

˝

0kˆl diagpg0,l, g1,l`1 ¨ ¨ ¨ , gn´1´l,n´1q

0pk´n`lqˆpn´lq

˛

‚ if n´ k ă l ď n´ 1

(5.13)

Gconv
l “

$

’

’

’

&

’

’

’

%

´

0µˆl diagpg0,l, ¨ ¨ ¨ , gµ´1,l`µ´1q 0µˆpn´µ´lq

¯

if 0 ď l ď n´ µ
¨

˝

0µˆl diagpg0,l, g1,l`1 ¨ ¨ ¨ , gn´1´l,n´1q

0pµ´n`lqˆpn´lq

˛

‚ if n´ µ ă l ď n´ 1.

(5.14)

Proof. See Appendix 5.7.

Intuitively, the codewords of the block code appear along the diagonals of the convolu-

tional code. In other words, the parity check symbols are computed along diagonals of

the convolutional code. Thus if a B-burst erasure occurs, each affected codeword has an

erasure burst of length B or less in the diagonals. Since the codewords are elements of a

delay-optimal B-burst-erasure correcting code, the source symbols can be reconstructed

with delay of at most T , which is optimal.

Next we analyze the security constraint. In Theorem 5.18 we state that for W ě T ` 1

in any time interval of length i ě 0, 1, . . ., the eavesdropper has full equivocation. Note
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that the size W of the sliding window is chosen such that the intervals of at most µ

packets, observed by the eavesdropper, are separated by T or more erased packets.

Theorem 5.18. Consider a burst erasure wiretap channel where the eavesdropper can

observe an interval of at most µ packets in a sliding window of size T`1. The (n, k, µ, T, T qq

convolutional code, obtained by diagonally interleaving a µ´rT `B, T sq systematic DO-

SBE block code, attains perfect security.

Proof. Recall that each diagonal in the resulting streaming code is a codeword of the

µ´rT`B, T sq DO-SBE block code. Thus, the diagonals are independent random variables

taking values from FT`Bq . Suppose the eavesdropper observes packets xris, . . . , xri ` µ ´

1s, which in fact is a µ ˆ pT ` Bq matrix (as illustrated in Fig. 5.3), and consider

all diagonals containing entries of this matrix. Let Sk and ZT`B (with some abuse of

notation) respectively, be the random variables corresponding to the source symbols and

the eavesdropper’s channel output of the block code which appears along one of the

diagonals. By construction of the block code, we have that HpSk|ZT`Bq “ k, and this

holds for every diagonal. It follows (from the structure of corresponding block codes)

that the µ packets observed by the eavesdropper do not reveal any information about the

source symbols in those packets, as well as in any other interval of µ previously observed

packets, since they are separated by an interval of length at least T . Since k “ T ´ µ, we

get the result.

We summarize our observations in the following theorem.

Theorem 5.19. We obtain by diagonally interleaving a µ´ rT `B, T sq systematic DO-

SBE block code a pT,B, µ;T ` 1qq streaming code with k “ T ´ µ, n “ T ` B, which

achieves the secrecy rate Rs “ k{n “ T´µ
T`B

.

5.5.2. An Upper Bound for the Secrecy Rate

We consider a periodic erasure channel in the presence of an eavesdropper who can noise-

lessly observe an interval of µ packets in any sliding window of size T ` 1 (see Fig.

5.4(a)). Every two successive B-bursts (respectively µ-intervals observed by an eaves-

dropper), starting from the first interval of length T `B, are separated by T packets. In

fact, the packet length of the period is ` “ lcmpT `B, T ` µq.

Let Lj be the index set for the packets in the jth period, j “ 1, 2, . . .. Let Mj Ă Lj

and Ej Ă Lj be the index sets of the packets revealed respectively to the legitimate

receiver and to the eavesdropper in the jth period. Correspondingly, YMj
and YEj are

the observations at the receiver and the eavesdropper (see Fig. 5.4(a)). Furthermore, Sj
is a random variable representing the sequence of messages produced by the source in the

jth period, thus Sj P Fk`q . For an integer h ě 1, we use Yh
M1

to denote YM1 , . . . ,YMh
and

Sh1 for S1, . . . ,Sh. Let UM˚
h`1

and UE˚h`1
respectively be observations of the receiver and
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the eavesdropper in the interval of T successive outgoing packets after h periods in the

stream.

Clearly, to provide optimal delay and perfect security, the following must hold @h ě 1:

HpSh1 |Yh
M1
, UM˚

h`1
q “ 0, (5.15)

HpSh1 |Yh
E1
,UE˚h`1

q “ HpSh1 q. (5.16)

Note that HpSh1 q “ k`h, using the fact that all source packets have the same entropy.

Denote WMphq “ Yh
M1
,UM˚

h`1
and WEphq “ Yh

E1
,UE˚h`1

, where Mphq :“ Yhi“1Mi YM˚
h`1,

Ephq :“ Yhi“1Ei Y E
˚
h`1. Then (5.15) and (5.16) imply that

h`k “ HpSh1 |WEphqq ď HpSh1 ,WMphq|WEphqq

“ HpWMphqzEphq|WEphqq `HpS
h
1 |WMphq,WEphqq

ď HpWMphqzEphqq “ HpYh
M1zE1

,UM˚
h`1zE

˚
h`1
q

ď hHpYM1zE1q ` npT ´ µq.

Denote a “ |M1zE1| (recall that |M1zE1| “ |M2zE2| “ . . . ). Then, HpYMizEiq ď na. The

latter implies that

Rs “
k

n
ď
ha` T ´ µ

`h
hÑ8
Ñ

a

`
. (5.17)

In the case B “ µ and thus ` “ T ` B, we get HpYM1zE1q ď npT ´ µq, and hence

Rs ď
T´µ
T`B

, which matches the secrecy rate in Theorem 5.19.

Next we present a general upper bound. As an example see Fig. 5.4(b).

For positive integers T,B, µ with B`µ ď T , let d “ gcdpT `B, T `µq. Thus, we have

B ” µ mod d, that is B “ t1d` r, µ “ t2d` r, for suitable nonnegative integers t1, t2, r,

with r ă d.

Theorem 5.20. The secrecy rate Rs of a delay-optimal burst-erasure correcting

pT,B, µ;T ` 1q streaming code is upper bounded by

Rs ď
T 2 ´ ρpdq2

pT `BqpT ` µq
, (5.18)

where ρpdq “ r, if d ě 2r and ρpdq “ 2r ´ d otherwise.

Proof. Denote Jpsq “ ts, s` 1, . . . , s`B ´ 1u, Epmq “ tm,m` 1, . . . ,m` µ´ 1u, where

0 ď s ď T and 0 ď m ď T ` B ´ µ. Let L :“ L1 “ t0, 1, . . . , ` ´ 1u, Bpsq “ ti P L : i

mod pT `Bq P Jpsqu, and Epmq “ tj P L : j mod pT ` µq P Epmqu.

Thus, Bpsq, respectively, Epmq, is the set of erased packets, respectively, the set of

packets observed by the eavesdropper, in a time slot corresponding to one period, that is
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(a) The periodic erasure channel with periodic length P “ T ` B
and B “ µ.

. . .

T +B

T

T + µ

T

...

(b) The periodic erasure channel with periodic length P “ lcmpT `
µ, T `Bq.

Figure 5.4.: The periodic erasure channel used in proving the upper bound, with indication
of which symbols are observed by the eavesdropper YE,j (gray squares) and
by the legitimate receiver YM,j (white squares). Crossed squares are erasures
of length B.

within transmission of ` packets over the channel. Clearly

|L| “ ` “
pT `BqpT ` µq

d
, |Bpsq| “ pT ` µqB

d
, and |Epmq| “ pT `Bqµ

d
.

Let pa :“ min
s,m

|LzpBpsq Y Epmqq|. Then, in view of (8), the secrecy rate Rs ď
pa

`
.

Furthermore, observe that

pa “ |L| ´ |Bpsq| ´ |Epmq| `min
s,m

|Bpsq X Epmq|.

Hence we get pa “
T 2 ´Bµ

d
`min

s,m
|Bpsq X Epmq|.

Our goal now is to determine fpT,B, µ, s,mq :“ min
s,m

|Bpsq X Epmq| (later we use short

notation f instead), given admissible parameters T,B, µ.

Note that Bpsq X Epmq “ tx P L : x ” i mod pT ` Bq, x ” j mod pT ` µq, pi, jq P

Jpsq ˆ Epmqu.

Also it is not hard to see that

f “ min
m
|Bp0q X Epmq| “ min

s
|Bpsq X Ep0q|. (5.19)

The well-known Chinese Remainder Theorem, extended for non coprime moduli, tells

us that a system of congruences x ” i mod pT ` Bq, x ” j mod pT ` µq has a solution

iff i ” j mod d, and such a solution is unique modulo `. Hence,

Bpsq X Epmq “ tpi, jq P Jpsq ˆ Epmq : i ” j mod du. (5.20)
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Obviously we have the following partitions into d classes:

Jp0q “
d´1
ď

s“0

Jsp0q, Epmq “
m`d´1
ď

k“m

Ekpmq,

where Jsp0q “ ti P Jp0q : i ” s mod du and Ekpmq “ tj P Epmq : j ” k mod du.

Note then that in turn (5.20) implies that

|Bp0q X Epmq| “
d´1
ÿ

s“0

|Jsp0q||Eσpsqpmq|, (5.21)

where σpsq P tm, . . . ,m` d´ 1u with σpsq ” s mod d.

Next we claim that

f “ |Bp0q X Eprq|. (5.22)

To show this, recall that

B “ rpt1 ` 1q ` pd´ rqt1 and µ “ rpt2 ` 1q ` pd´ rqt2.

Observe then that the latter implies that for 1 ď r ď d´ 1 we have

|J0p0q| “ |J1p0q| “ . . . “ |Jr´1p0q| “ t1 ` 1,

|Jrp0q| “ |Jr`1p0q| “ . . . “ |Jd´1p0q| “ t1, and for any m

|Empmq| “ |Em`1pmq| “ . . . “ |Em`r´1pmq| “ t2 ` 1,

|Em`rpmq| “ |Em`r`1pmq| “ . . . “ |Em`d´1pmq “ t2; in particular this holds for m “ r

(that is for the case we need). In the case where r “ 0 we have |Jip0q| “ t1 and |Eipmq| “ t2

for i “ 0, 1, . . . , d´ 1 (and for any m).

Now (5.22) follows in view of (5.21) and the fact that for real numbers a1, . . . , an and

b1, . . . , bn the minimum of quantity
řn
i“1 aribsi , taken over all rearrangments of these

sequences, is attained when ar1 ě . . . ě arn and bs1 ď . . . ď bsn .

Furthermore, (5.22) and (5.21) imply that in the case d ě 2r we have the following:

f “ rpt1 ` 1qt2 ` pd ´ 2rqt1t2 ` rpt2 ` 1qt1 “ rpt1 ` t2q ` dt1t2

“ (via simple calculations)
Bµ´ r2

d
.

Similarly, in the case d ă 2r we have

f “ pd´rqpt1`1qt2`p2r´dqpt1`1qpt2`1q`pd´rqpt2`1qt1 “ rpt1`t2`2q`dpt1t2´1q “
Bµ´ pd´ rq2

d
, which implies that for integers T,B, µ ě 1, with B ` µ ď T , we have

f “
Bµ´ ρpdq2

d
. (5.23)

Note that for B “ µ, we have f “ 0, and for d “ 1 the equality simplifies to f “ Bµ.

Thus, we have

pa “
T 2 ´Bµ

d
`
Bµ´ ρpdq2

d
“
T 2 ´ ρpdq2

d

and hence
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Rs ď
pa

`
“

T 2 ´ ρpdq2

pT `BqpT ` µq
.

Remark 4. It is easy to see that in the case µ ď d{2 we have ρpdq “ r “ µ, which implies

that Rs ď
T ´ µ

T `B
. Note that the latter holds in a special case when µ “ B.

5.6. Conclusion and Discussion

We have provided two constructions of delay-optimal B-burst-erasure correcting stream-

ing codes (or DO-SBE code for short) for a burst-erasure wiretap channel, where the

eavesdropper observes an interval of at most µ packets in a sliding window of size T ` 1.

The first construction is suitable for parameters T “ tB and µ “ iB, where t P Nz t0, 1u
and i P t1, . . . t´ 1u, and the second is suitable for µ “ T ´ B and any T ě 2B. While

our DO-SBE block codes that we require for the construction of DO-SBE convolutional

codes achieve the maximum secrecy rate Rs, our DO-SBE convolutional codes achieve the

maximum secrecy rate for a special case, that is if B “ µ.

Clearly, if we vary the size W of the sliding window of the eavesdropper the maximum

secrecy rate also changes. For example, in the case µ ď B, if we put W “ T `B ´ µ` 1,

then Rs achieves the upper bound T´µ
T`B

since in this case in each period of size T ` B

the set of erased packets and observations of the eavesdropper do not overlap. Similarly,

we require in case µ ą B to choose W “ 2T ` 2B ´ µ ` 1 to obtain no intersections

of the set of erased packets and observations of the eavesdropper in each period of size

2pT `Bq. The question arises whether better secrecy rates can be achieved by converting

DO-SBE block codes into DO-SBE streaming codes for fix W . For future work it would

be interesting to construct DO-SBE streaming codes with a secrecy rate that matches

the upper bound for any B, µ ď T . Moreover it would be interesting to consider the

same problem for a multi-link scenario, or for a model where the channel injects isolated

erasures.

5.7. Appendix

5.7.1. Proof of Lemma 5.4

Since
´

IT´B A
¯

is c-good,
´

´AJ IB

¯

is also c-good. We can observe that the parity

check matrix H “

´

´AJ IB IB

¯

of the code with generator matrix G is c-good and

thus G as well.
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5.7.2. Proof of Lemma 5.17

Suppose we are given a µ´rT `B, T sq systematic DO-SBE block code with the generator

matrix G1 “

˜

G˚

G

¸

. We can construct an pn, k, µ, n´1, T qq convolutional code as follows:

For each i P Z` we can construct

x1 ris , x2 ri` 1s , . . . , xn ri` n´ 1s

“ ps1 ris , s2 ri` 1s , . . . , sk ri` k ´ 1sqG˚ ` pe1 ris , e2 ri` 1s , . . . , eµ ri` µ´ 1sqG

(5.24)

for each i. Here we are coding the source symbols diagonally, as illustrated in Fig. 5.3.

From (5.24) to the encoded packet xris “ x1 ris , x2 ris , . . . , xn ris at time i, we get as

follows:

xris “
n´1
ÿ

l“0

ps1 ri´ ls , s2 ri` 1´ ls , . . . , sk ri` k ´ 1´ lsq

¨

˚

˚

˝

g˚1,l`1

0kˆl
... 0kˆn´l´1

g˚k,l`1

˛

‹

‹

‚

(5.25)

`

n´1
ÿ

l“0

pe1 ri´ ls , e2 ri` 1´ ls , . . . , eµ ri` µ´ 1´ lsq

¨

˚

˚

˝

g1,l`1

0µˆl
... 0µˆn´l´1

gµ,l`1

˛

‹

‹

‚

“

n´1
ÿ

l“0

s ri´ lsG˚convl `

n´1
ÿ

l“0

e ri´ lsGconv
l , (5.26)

where

G˚ “ pIk P q with G˚ “
n´1
ÿ

l“0

G˚convl (5.27)

and

G “ pIµ P q with G “
n´1
ÿ

l“0

Gconv
l . (5.28)

Since the block code is causal, symbols from future packages can be considered as zero

symbols.

Now, we want to show that the pn, k, µ, n ´ 1, T qq convolutional code whose encoding

function at time i is specified by (5.26), is able to decode packet sris with delay of at

most T . For any burst erasure of length B, the µ´rT `B, T sq systematic DO-SBE block

code is able to reconstruct symbol st, t “ 1, . . . , k with delay T . According to (5.24),

the source symbols are coded along diagonals as illustrated with underlined symbols in

Fig. 6.2. This implies that the destination can reconstruct packet s ris up to time i ` T

based on py r0s , y r1s , . . . , y ri` T sq, since each source symbol in B-erased consecutive

packets can be reconstructed separately, using the corresponding diagonals. We can see
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that due to the form of the generator matrix G1 it follows from (5.13) and (5.14) that

G˚convl “ 0kˆn, Gconv
l “ 0µˆn for any l ě T ` 1, thus $ “ T . We obtain an pn, k, µ, T, T qq

convolutional code.
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6. Delay-Optimal Codes for Parallel

Burst-Erasure Channels with an

Eavesdropper

6.1. Introduction

For streaming applications, we consider parallel burst-erasure channels in the presence of

an eavesdropper. Peer-to-peer networks are subjected to different performance constraints

such as high throughput, low latency and high reliability. However, during transmission

different types of errors can occur, such as clustered and bursty packet losses, which

lead to low-quality video and high delay [48], [49]. The requirements on time-critical

communication systems are challenging, particularly when private or sensitive data must

be transmitted, which needs to be protected against eavesdropping attacks and active

attacks (e.g. payment transmission in a smart shop or machine-to-machine communication

in a smart factory).

Contribution

We consider block codes and streaming codes. We introduce a new channel model for

the transmission of block codes, which we refer to as the block channel model. The block

channel model consists of a sender, a legitimate receiver, M parallel channels and an

eavesdropper. Z links can experience a burst of erasures of length B, while the remaining

links are noiseless. The eavesdropper is able to observe a noiseless copy of any link of his

choice. He is able to switch between the links at any time. His restriction may be due to

the fact that he has access only to certain frequencies in a wireless system or to individual

nodes in a distributed storage system, e.g. because of his location, or on purpose to

remain undetected. For T ě B and Z “M ´ 1, we give explicit constructions of M -link

codes over a small finite field Fq that provide perfect security (i.e. the eavesdropper can

obtain no information about the message) and provide zero-error decoding with minimum

possible delay. More precisely, we distinguish two cases in the construction: 1) M is odd

and the code is binary and 2) M is even, where q ą 2.

Our block codes can be mapped to M -link convolutional codes for the streaming channel

model, where we assume that in each of the Z links a burst erasure of at most B packets
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can occur in any sliding window of a fixed size, and where the eavesdropper can observe

one link of his choice noiselessly. The M -link convolutional codes provide perfect security

and provide zero-error decoding with minimum possible delay. Our codes achieve the

maximum secrecy rate for the channel models.

Moreover, in Section 6.5 we consider two similar models as in Section 6.2, with the

difference that the erasures in the main channel are caused by an active eavesdropper and

not by the noise. Furthermore, in the first model the eavesdropper is able to cause a burst

erasure of a fixed length in any single link. In the second model he can erase the complete

link. In addition, in the first model the eavesdropper is able to observe any interval of

length at most µ in any link and in the second model he is able to observe any complete

link. For some admissible code parameters, again we first construct delay-optimal block

codes that provide perfect security, and then covert them to delay-optimal convolutional

codes that again provide perfect security in the respective setting. For both models we

construct codes that achieve the maximum secrecy rate for the channel models.

The mapping of a delay-optimal block code for a single link scenario (i.e. for a burst-

erasure wiretap channel) is shown in Section 5.5 and can be extended in a straightforward

manner to a multi-link scenario. For a single link without an eavesdropper, the authors

in [10] describe the mapping of delay-optimal erasure block codes to convolutional delay-

optimal erasure codes in detail. As in the previous works, we use causal codes. This

enables us to recover source symbols with a minimum possible delay (see [36]).

Related Work

In [35], Martinian considered an adversarial multi-link model where bursts of erasures are

injected in a single link. In [44], delay-optimal burst-erasure codes for parallel links were

designed for two types of errors - erasure burst and link outage. Additional works devoted

to low-delay coding can be found in [41], [42], [43]. We refer to Section 5.1 where more

works related to low-delay communication systems can be found.

Outline

In Section 6.2, we describe the channel model in the streaming setup. In Section 6.3, we

describe the block code channel model and construct codes for that channel. The section

is divided into the achievability part and the converse part. In the achievability part, we

present explicit constructions of M -link codes for T ě B and Z “M ´ 1 over small finite

fields for the channel model. The converse part is proved by using the entropy argument.

In Section 6.4, we discuss the mapping from M -link block codes to M -link streaming

codes for the channel model given in Section 6.2. Section 6.4 is also divided into the

achievability and converse part. In Section 6.5, we consider two similar but simplified

models as in Section 6.2.
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6.2. The Channel Model

6.2. The Channel Model

We consider an M -link channel consisting of a source and a sink to convey secure messages

to the legitimate receiver in parallel. At time i ě 0, the randomized encoder observes a

source packet s ris, and transmits each channel packet x ri, js on the corresponding link,

where j “ 1, . . . ,M . The source packet consists of k symbols, while each channel packet

x ri, js assigned to link j consists of n symbols over a common finite field Fq. In the

streaming setup, we assume that in each of Z links a burst of erasures of length no longer

than B packets can occur in any sliding window of size W 1, and where the eavesdropper

can observe one link of his choice noiselessly. The sliding window model is considered in

many previous works (e.g. [42], [10], etc.).

An pn, k, µ, T qq M -link streaming code for an M -link channel model with an eaves-

dropper as given above consists of a set of M encoding functions tξi,ju
M
j“1 and a decoding

function φi, where i is a time unit.

Encoding: The random encoding function ξi,j : Fk¨pi`1q
q ˆ Fµ¨pi`1q

q Ñ Fnq takes in

a source packet sequence tsrisuiě0 together with an encoder packet sequence terisuiě0

and maps them causally2 into a packet xri, js, consisting of n symbols over the same

finite field Fq. In other words, xri, js “ ξi,jps r0s , s r1s . . . , s ris , e r0s , e r1s . . . , e risq “

f˚i,jps r0s , s r1s . . . , s risq` f
1
i,jpe r0s , e r1s . . . , e risq. Each source packet and encoder packet

consists of k symbols s ris “ ps1 ris , s2 ris , . . . , sk risq P Fkq and µ symbols

e ris “ pe1 ris , e2 ris , . . . , eµ risq P Fµq , respectively.

Decoding: At the legitimate receiver, the decoding function φi`T : pFnq Y t?uqM ¨pi`1`T q

Ñ Fkq is defined as a packet decoder operating with delay T , that is,

s ris “ φi`T ptyr0, js, ..., yri` T ´ 1, js, yri` T, jsuMj“1q. The secrecy rate of the code is

defined as: Rs “ k{n symbols per time unit. Note that in the initialization phase, i.e.

for i ă 0, where Eve is not able to observe the whole link noiselessly (i.e. µ ă T ` B) a

constant number of random packets eris must be securely transmitted to ensure perfect

reliability in the first T transmitted packets. Since in the initialization phase the number

of pre-transmitted packets is constant, the resulting rate loss quickly converges to 0 as

the number of packet transmissions grows.

Definition 6.1. We denote an pn, k, µ, T qq M -link streaming code as a

pT,B, µ, Z;W qq M -link streaming code if the code can recover source packets with de-

lay T , even if in each of the Z links any burst of at most B erasures has occurred in a

sliding window of size W “ T ` 1, and if the code provides perfect security, even if the

eavesdropper is able to observe a complete link, that is, µ “ n.

1 In an M -link channel the windows can be seen as an M ˆW matrix with packets as its entries. If any
of the Z bursts affect source symbols that are coded at time i in the corresponding links, the decoding
deadline for all source symbols that are coded at time i is i` T , i.e., Wi “ ti, i` 1, . . . , i` T u.

2The code is causal if in the encoding function the current channel packet is a function of the current
and previous source/encoder symbols.
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Figure 6.1.: The channel model described in Section 6.3 with M “ 3, Z “ 2, T “ 4,
B “ 3 and n “ µ “ 7. Crossed squares illustrate erasures. The eavesdropper
observes any link j P t1, . . . ,Mu.

6.3. The Secure B-Burst-Erasure correcting M-Link

Block Codes

We define M -link block codes over Fq for small q that we can apply to construct convo-

lutional codes for the model introduced in Section 6.2.

We consider channel symbol blocks of length n for each link j, j “ 1, . . . ,M . Z “M´r

links experience erasures while r links remain noiseless. We assume that the erasures occur

as bursts of length B. Let Z Ă t1, . . . ,Mu be the set of links where the erasure bursts

have occurred, and Bj Ď t1, . . . , nu the set of B consecutive positions where the erasures

have occurred on link j P Z . Then the erasure pattern B̃ “ tpj,BjqujPZ , where |Z | “ Z

and |B̃| “ ZB. The transmitted symbols xrj, is P Fq, generated at time i, can either be

erased or passed to the receiver noiselessly, so that the receiver observes either yrj, is “?

or yrj, is “ xrj, is, where i “ 1, . . . , n. Moreover, the eavesdropper is able to observe µ

out of Mn symbols noiselessly. We consider an eavesdropper who observes a noiseless

copy of any link of his choice, i.e. µ “ n. He can switch from xrj, is to xrj1, i` 1s, where

j, j1 P t1, . . . ,Mu. Fig. 6.1 illustrates the channel model with three links.

It is assumed that a uniform source produces k symbols over the finite field Fq. The

code operates as follows.

Encoding: Consider a set of M random encoding functions tEju
M
j“1. The random

encoding function Ej : Fk`µq Ñ Fnq takes in a source vector sk P Fkq and maps it together

with a random encoder vector eµ P Fµq into xnj P Fnq , where k ` µ “: m and j “ 1, . . . ,M .

The secrecy rate of the code is defined as: Rs :“ k{n.

Let sris “ psr1, is, . . . , srFi, isq and eris “ per1, is, . . . , erLi, isq be the sub-vectors of sk

and eµ respectively, where Fi and Li are the numbers of source symbols and encoder

symbols respectively, injected at time i, i “ 1, . . . , n. At time i, the random encoding

function Ej,i generates the output xrj, is “ Ej,ipsris, erisq, where Ej “ tEj,iu
n
i“1, k “

řn
i“1 Fi and µ “

řn
i“1 Li.

In the case where the code is causal, xrj, is “ Ej,ipsr1s, . . . , sris, er1s, . . . , erisq, with

j “ 1, . . . ,M .
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Decoding: At the legitimate receiver, the decoding function D : pFq Y t?uqnˆM Ñ Fkq
maps the M channel outputs ynj “ pyrj, 1s, yrj, 2s, . . . , yrj, nsq, j “ 1, . . . ,M into the

reconstructed source symbol vector ŝk P Fkq .
We define a decoder operating with delay T as Di`T : pFq Yt?uqpi`T qˆM Ñ FFiq , that is,

ŝ ris “ Di`T ptyrj, 1s, yrj, 2s, ..., yrj, i` T su
M
j“1q, i “ 1, . . . , k.

We require codes that recover source symbols with delay T and perform zero-error

decoding, i.e. ŝk “ sk. In formal terms, HpSk|Y n
1 , . . . , Y

n
Mq “ 0. Moreover we require

perfect security, that is HpSk|Znq “ HpSkq, where Zn P Fnq is the observation at the

eavesdropper.

Definition 6.2. An rMn, ksq M -link code C (that is we spread the vector of length Mn

into M equal sized sub-vectors to transmit them over M links), capable of correcting any

set of Z erasure bursts of length B such that Mn´k “ ZB, which in fact is the maximum

possible, is called an optimal ZB-burst-erasure correcting M -link code.

For our purposes, we reformulate Proposition 4.1 to specify the necessary condition for

a burst-erasure correcting M -link block code.

Proposition 6.1. Let C be a linear rMn, ksq code and let B Ă I “ t1, . . . ,Mnu be

an erasure pattern that is the set of positions where erasures occur. Let EB be the

erased symbols. Then C can recover EB iff the columns of a parity check matrix HC

corresponding to indices in B are linearly independent, or equivalently, iff the columns of

a generator matrix GC corresponding to indices in I zB have rank k.

Next we provide causal M -link block codes for the channel model given in Section III,

where Z “M ´ 1.

Theorem 6.2. For the admissible parameters T ě B, µ,M,Z “ M ´ 1, and a suitable

finite field Fq, there exist causal delay-optimal M -link codes that are able to recover

source symbols with optimal delay even if ZB-burst erasures occur, where each B-burst

erasure occurs on a separate link, and perfect security is provided even if the eavesdropper

observes any link noiselessly, with maximum secrecy rate

Rs “
k

n
“
m´ µ

n
“M ´

ZB

T `B
´ 1 “

pM ´ 1qT

T `B
. (6.1)

Proof. We divide the proof into the achievability part and the converse part.

Remark 6.3. In (6.1), for the two last equations we use µ “ n. m´µ
n

is the more general

expression, where m “Mn´ ZB.

Remark 6.4. We can also use the block codes for a delay-optimal M -link channel model,

where the eavesdropper causes the erasure bursts of length B in any Z links and observes

a copy of any link.
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For µ “ 0, Rs degrades to the rate in [44, Theorem 1, for L “ 0], which is the maximum

possible for the multi-link scenario (without security constraint).

6.3.1. The Achievability

We deal with secure nested block codes described in 4.3.1. The block code for the M -link

channel has M samples for a given ”time unit”, thus we write the encoder output for

link j with j “ 1, . . . ,M as xnj “ pxrj, 1s, xrj, 2s, . . . , xrj, nsq. The pair pj, iq indexes the

position of a symbol within the M -link coding block. Let GM´link “ pG1 || ¨ ¨ ¨ || GMq with

Gj “

˜

G˚j

G1j

¸

for j “ 1, . . . ,M , or GM´link “

˜

G˚

G1

¸

for short. We represent the encoding

operation as pxn1 || ¨ ¨ ¨ || x
n
Mq “ ps

k, eµq ¨ pG1 || ¨ ¨ ¨ || GMq, where Gj is an mˆ n generator

matrix for link j “ 1, . . . ,M . GM´link is an mˆMn generator matrix for the outer code

C and G1 “ pG11 || . . . || G
1
Mq is the µˆMn generator matrix for the coarse code C 1, thus

C 1 Ă C. GM´link consists of equal sized submatrices Gj “

˜

G˚j

G1j

¸

.

In the following, a slight modification of Theorem 4.11 yields the conditions for an

optimal burst-erasure correcting nested M -link block code C that provides perfect security

(without delay constraint).

Lemma 6.5. Let GM´link “

˜

G˚

G1

¸

be an mˆMn generator matrix for a linear M -link

block code C, where G1 is a µˆMn submatrix of GM´link. Then C is an optimal |B̃|-burst-

erasure correcting M -link code that can convey k “ m´ µ symbols with perfect security

and achieves the maximum secrecy rate Rs “
m´µ
n

if the following three conditions are

fulfilled:

(a) m ą µ,

(b) the columns of GM´link for code C are linearly independent on positions I zB̃,

where I “ t1, . . . ,Mnu and |B̃| “Mn´m (see Proposition 6.1),

(c) the columns of G1 on position ti1, . . . , iµu, the non-erased positions at the eaves-

dropper, are linearly independent.

In the sequel, we show that constructions for delay-optimal M -link codes satisfying (a),

(b), (c) have the same maximum secrecy rate as the corresponding constructions for codes

satisfying (a), (b), (c) without delay constraint.

We provide codes for T ě B and n “ µ “ T `B.

Next we show the tradeoff between r, T, B,M, k.

Proposition 6.6. Let k “ tT , where t P N, and let r be a positive integer such that

|B̃| “ pM ´ rqB. Then M -link block codes for our channel model, which provide perfect
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security and recover source symbols with delay T , must satisfy:

r “

$

’

’

’

&

’

’

’

%

i t “M ` pi´ 2q and T “ B

1 t “M ´ 1 and T ą B

T
B
` 1 t “M and T ą B.

Proof. According to Lemma 6.5, we have pM ´rqB “MpT `Bq´pk`µq “ pM ´1qpT `

Bq ´ k, with µ “ T ` B. We choose k “ tT to ensure that for any burst pattern the

source symbols injected at time i, that is sris, can be recovered with delay T using G T

(see (5.2)) in each link. Thus, r “ T
B
pt´Mq ` T

B
` 1.

Note that Fi “ t for i “ 1, . . . , T . Also note that in Proposition 6.6 we do not make a

statement about the existence of a code for our channel model.

Corollary 6.7. For T ą B, a code as described in Proposition 6.6 is able to recover at

most pM ´ 1qB-burst erasures.

We use the result of Proposition 6.6 for the case where r “ 1 in the following theorem.

Theorem 6.8. For Z “M ´1, k “ tT with t “M ´1 and for a suitable, small field size

q, there exist M -link codes for the channel model described in Section 6.3 that satisfy the

properties in Theorem 6.2.

Proof. In the following, the source symbols injected at time i “ 1, . . . , T are specified as

sris “ psi, si`T , . . . , si`pt´1qT q and the encoder symbols injected at time i “ 1, . . . , T ` B

as eris “ ei.

For a code that is able to recover M´1 bursts of length B (each occurring on a separate

link) within delay T , and that provides perfect security if an eavesdropper is observing

noiselessly a link of his choice, we first select a proper field size q “ pm, where m ě 1 is an

integer. For odd M ą 2, we choose p “ 2 and for even M ą 2, we choose any prime p ą 2,

with integer m ě 1, so that a rT ` B, T sq linear code with systematic generator matrix

G T (as in (5.2)) can be constructed. For odd M , define a “ 1. For even M we choose

any a P Fqz t0u. We require pM ´ 1q mod p ‰ 1 and pM ´ 2q mod p ‰ 0. The former

is required to ensure the linear independence of the columns at non-erased positions in

GM´link. We will deal with the case M “ 2 later. For any q “ pm, we can always choose

G T for a code over Fp while maintaining its properties (i.e. G T is still a generator matrix

for a delay-optimal B-burst-erasure correcting code).

Encoding: The encoding matrix of code C is

GM´link
“

˜

G˚

G1

¸

“

˜

U bG T

Lb Iµ

¸

, (6.2)

where U “ pIpM´1q a
M´1q is an pM ´ 1q ˆM matrix, aM´1 is a column vector of length

M´1 and L is an M -length row vector with ones as its entries, except the last one, which
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is a (see Example 6.9). Note that the constructed code is causal by observing the source

symbols sris and the encoder symbols eris injected at time i and the corresponding matrix

Gj “

˜

G˚j

G1j

¸

, j “ 1 . . . ,M .

For the case where M “ 2, constructions for a delay-optimal code that meets the

conditions in Lemma 6.5 exist for T “ B. The generator matrix for the code over Fq with

q ě 2 is

G2´link
“

˜

G B 0Bˆ2B

I2B I2B

¸

.

Decoding: Now we want to show that for M ą 2 and any admissible erasure pattern

B̃ we can recover any source symbols s ris with a decoding delay not exceeding T . For

simplicity of description we divide the source vector sk into equal sized sub-vectors sTj , j “

1, . . . ,M ´ 1. Define Z Ă M “ t1, . . . ,Mu as the set of links where the erasure bursts

have occurred. With a slight abuse of notation, denote the noiseless link as M zZ . Let

BM Ă t1, . . . , T `Bu be the erasure pattern in the last link. In the case where M zZ ‰

tMu, we first subtract the correctly received vector yT`BM zZ “ xT`BM zZ (after multiplying it

by a) from the vector transmitted on the last link. Then erasures on BM in the resulting

vector cT`BM :“ yT`BM ´ axT`BM zZ can be reconstructed by aG T (within delay T ). Note that

the sum of M´2 codewords encoded by aG T results again in a codeword of the linear code

with generator matrix aG T . Thus we can determine xT`BM “ cT`BM ` axT`BM zZ . Hereafter,

ayT`Bj with j P Z z tMu can be subtracted sequentially from the last link to obtain xT`Bj .

Finally, when M is odd, we only need to reconstruct eT`B “ xT`BM ´pxT`B1 ` . . .` xT`BM´1q

to get sTj “ xT`Bj ´ eT`B. When M is even, we obtain T ` B (of which we only need

T ) linear systems of equations with M ´ 1 equations and M ´ 1 unknowns, each. If we

convert the M ´ 1 equations to matrix form then we get the following pM ´ 1q ˆ pM ´ 1q

matrix A “

¨

˚

˚

˚

˚

˝

0 a ¨ ¨ ¨ ¨ ¨ ¨ a

a 0 a ¨ ¨ ¨ a
... a

. . . . . .
...

a a ¨ ¨ ¨ ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‚

, where the entries mij “ 0 if i “ j and a otherwise.

To show the full rank of the matrix we can calculate the determinate of the matrix using

the Leibniz formula. We see that
śM´1

i“1 miσpiq “ 0 if there is a permutation with a fixed

point, where σpiq is the function value of the permutation σ at the point i and the set of

all such permutations, the so-called symmetric group, is denoted by SM´1. Thus we get

detpAq “ aM´1
p| tσ P SM´1: fixpointfree, sgnpσq “ 1u |

´ | tσ P SM´1: fixpointfree, sgnpσq “ ´1u |q.

According to [50], for even M (the number of even derangements - the number of odd

derangements) “ M ´ 2 so that detpAq ‰ 0 if p - pM ´ 2q. Thus we obtain unique

solutions due to the condition pM ´ 2q mod p ‰ 0. In the case where M zZ “ tMu we
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can immediately start by determining xT`Bj , with j P Z . If M ´ 1 mod p “ 0, we can

recover the source symbols as is the case for odd M .

Note that each sris can be recovered within delay T , since G T is the generator matrix of

a B-burst-erasure correcting code with decoding delay T . Also note that Gj is cyclically

good, that is every T cyclically consecutive columns of the matrix are linearly independent,

j “ 1, . . . ,M .

The decoding process for the case where M “ 2 is obvious.

Security: Note that each matrix G1j is cyclically good. According to Lemma 6.5pcq, the

code provides perfect security in the case where the eavesdropper observes any link of

his choice, that is µ “ T ` B. Moreover, perfect security holds, even if he switches from

xrj, is to xrj1, i` 1s, where j1 P t0, . . . ,Mu ztju.

In summary, we obtain an rMpT ` Bq,MT ` Bsq code that satisfies Lemma 6.5 and

additionally, can reconstruct the source symbols within delay T , despite bursts occurring

that are arbitrarily positioned in the arbitrary M ´ 1 links.

Observe that for T ă B and Z “ M ´ 1 we get m “ µ, so that Lemma 6.5(a) is not

fulfilled and therefore no code exists for the channel model described in Section III with

a positive secrecy rate.

We give an example for T ą B and r “ 1.

Example 6.9. For T “ 3, B “ 2, M “ 4 and Z “ 3 we select q “ 3 and a “ 2. Then we

have

G4´link
“

¨

˚

˚

˚

˚

˝

G 3 03ˆ5 03ˆ5 2G 3

03ˆ5 G 3 03ˆ5 2G 3

03ˆ5 03ˆ5 G 3 2G 3

I5 I5 I5 2I5

˛

‹

‹

‹

‹

‚

, (6.3)

where G 3 “

¨

˚

˝

1 0 0 1 0

0 1 0 0 1

0 0 1 1 1

˛

‹

‚

, U “

¨

˚

˝

1 0 0 2

0 1 0 2

0 0 1 2

˛

‹

‚

and L “
´

1 1 1 2
¯

. Suppose that

the bursts of erasures have occurred on links 1,2,3 and suppose that on link 3 the first 2

positions are erased, such that y5
3 “ p?, ?, c3, c4, c5q. Let c5

j,ĵ
:“ s3

j2G 3`s
3
ĵ
2G 3 “ x5

4´2x5
l ,

where l P t1, . . . , 3u z
!

ĵ, j
)

and j, ĵ P t1, . . . , 3u with j ‰ ĵ. First we determine c5
1,2 “

s3
12G 3` s

3
22G 3 by c5

1,2 “ x5
4´ 2x5

3. Since the output transmitted over the last link passes

the channel noiselessly (that is y5
4 “ x5

4) and the output on link 3 has erasures in the first

two positions, we obtain p?, ?, c3, c4, c5q “ x5
4 ´ 2y5

3. Now, according to Theorem 5.5 we

can recover the erasures in p?, ?, c3, c4, c5q to obtain c5
1,2 (and thus x5

3) by the code with

generator matrix 2G 3 within T “ 3. Similarly, we determine c5
1,3 “ s3

12G 3 ` s3
32G 3 and

c5
2,3 “ s3

22G 3 ` s3
32G 3 by calculating x5

4 ´ 2y5
2 and x5

4 ´ 2y5
1, respectively, and by the

code with generator matrix 2G 3. Then we can recover the source symbols as described

for the odd case, since 3 mod 3 “ 0, that is by calculating sTj “ xT`Bj ´ eT`B. Thus
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the source symbols injected at time i can be recovered within delay 3. Observe that

sr1s “ ps1, s4, s7q, sr2s “ ps2, s5, s8q and er1s “ e1, with Fi “ 3 up to i “ T and Li “ 1 up

to i “ n.

6.3.2. The Converse

We provide the converse result of Theorem 6.2. We proceed as in [44] where we prove the

upper bound on the secrecy rate by contradiction.

In the following, random variable XnzYi, . . . , Yj with 1 ď i ď j ď n corresponds to

realization px1, . . . , xi´1, xj`1, . . . , xnq. xra, . . . , bs is denoted by xra : bs. We assume that

the source symbols are i.i.d. uniform distributed over Fq and thus HpSq “ logq |Fq|. We

start with a useful lemma.

Lemma 6.10 ([44]). LetXn “ pX1, . . . , Xnq, with n ě 2. IfHpSq ą 0 andHpS|XnzXiq “

0, i “ 1, . . . , n, then HpXnq ă
řn
i“1HpXiq.

Next we derive the upper bound for k, that is the number of source symbols that we

can securely convey over the M -link channel model described in Section 6.3. Let XMn be

the random variable of the realization pxn1 || ¨ ¨ ¨ || x
n
Mq.

Proposition 6.11. In an M -link channel model, where on any of the Z links, respec-

tively, any B-burst erasure can occur and where an eavesdropper can choose µ symbols

to observe, from Fq, one can convey securely and with zero-error decoding, at most

k “Mn´ ZB ´ µ (6.4)

symbols, on the condition that Mn´ ZB ě µ.

Proof. For ease of description, let X Mn “ FMn
q and Z µ “ Fµq . (6.4) follows from the

following two conditions:

HpSk|XMn
zXB̃q “ 0, (perfect reliability) (6.5)

HpSk|Zµ
q “ k, (perfect security) (6.6)

where XMnzXB̃ P X MnzB̃ and Z µ Ă X Mn are the random variables of the revealed

symbols at the legitimate receiver and at the eavesdropper, respectively.

Let I “ t1, . . . ,Mnu. If µ ě Mn ´ ZB, and the set of positions L “ I zB̃ of the

revealed symbols at the legitimate receiver and the set of positions of the revealed symbols

E Ă I at the eavesdropper are chosen so that L Ă E , we have HpSk|XMnzXB̃q ě

HpSk|Zµq. Hence, conditions (6.5) and (6.6) do not hold for this case. Suppose now

µ ď Mn ´ ZB and E ,L are chosen such that E Ă L . Then we have the following

necessary condition for achieving (6.5) and (6.6): k “ HpSk|Zµq ´ HpSk|XMnzXB̃q ď

pMn´ ZBq ´ µ, which is Proposition 6.11.
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1 2 3 4 5

Link 1
Link 2
Link 3
Link 4

Time1 2 3 4 5

Link 1
Link 2
Link 3
Link 4

Time

Figure 6.2.: On the left, the table illustrates B̃1 “ tItu
3
t“1 and on the right B̃0 “

tItu
2
t“1

Ť

pp4, 4q : p4, 5qq for T “ 3, B “ 2, n “ µ “ 5, M “ 4 and Z “ 3.
Crossed squares illustrate erasures.

For the case T ě B, we want to show that,

T ě n´B. (6.7)

Suppose for a contradiction that T “ n´B´1. Then sr1smust be reconstructed from time

n´B at the latest. Let S1 be the random variable of sr1s. We divide each xnj , j “ 1, . . . ,M

into distinct segments of length B, except the last positions, to obtain xr1 : M, 1 : pn´Bqs.

Let XMˆpn´Bq be the random variable of realization x r1 : M, 1 : pn´Bqs. Furthermore,

letNB :“ rn´B
B

s be the number of segments in each xnj . Let Ij,1 “ tpj, 1q, . . . , pj, Bqu , Ij,2 “

tpj, B ` 1q, . . . , pj, 2Bqu , . . . , Ij,NB “ tpj,NBB ´B ` 1q, . . . , pj, n´Bqu, j “ 1, . . . ,M be

the index sets of the segments. Overall there are MNB segments and we index them as

I1 “ I1,1, I2 “ I2,1,. . ., IM`1 “ I1,2,. . ., IMNB “ IM,NB .

We consider the following erasure patterns B̃i “ tItu
Z´1
t“1

Ť

IZ´1`i , i “ 1, . . . ,MNB ´

Z ` 1. We refer to Fig. 6.2 for an example. We assume that S1 can be reconstructed at

n ´ B, which implies that HpS1|XMˆpn´BqzXB̃i
q “ 0. According to Lemma 6.10, where

S “ S1 and Xi “ XIZ´1`i
, i “ 1, . . . ,MNB ´ Z ` 1, we have

HpXMˆpn´BqzXtItuZ´1
t“1
q ă

ÿMNB´Z`1

i“1
HpXIZ´1`i

q

“ k ` µ´ pM ´ 1qB, (6.8)

where (6.8) follows from (6.4).

Now suppose the bursts of erasures occur on position

B̃0 “ tItu
Z´1
t“1

Ť

tpM,n´B ` 1q, . . . , pM,nqu, as illustrated on the right side of Fig. 6.2.

Let XpM´1qˆB be the random variable of x r1 : pM ´ 1q, pn´B ` 1q : ns. Furthermore, let

us denote XMˆpn´BqzXtItuZ´1
t“1

as the random variable of realization x rZ : M, 1 : pn´Bqs

together with x r1 : pZ ´ 1q, pB ` 1q : pn´Bqs. For µ “ µ1`µ2, let Zµ1 and Zµ2 be the ran-

dom variables of zµ1 and zµ2 , where zµ1 “ x rM ´ 1, 1 : pn´Bqs and

zµ2 “ x rM ´ 1, pn´B ` 1q : ns. Let XMˆpn´BqzpXtItuZ´1
t“1

, Zµ1q and XpM´1qˆBzZµ2 be

the random variables of symbols revealed to the legitimate receiver, except the sym-

bols observed by the eavesdropper. The source symbols Sk must be reconstructed from

XMˆpn´BqzXtItuZ´1
t“1

and XpM´1qˆB, hence,
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HpSk|XMˆpn´BqzXtItuZ´1
t“1

, XpM´1qˆBq “ 0. But

0 “ HpSk|XMˆpn´BqzXtItuZ´1
t“1

, XpM´1qˆBq

ě HpSkq `HpXMˆpn´BqzXtItuZ´1
t“1

, XpM´1qˆB|S
k
q

´HpXMˆpn´BqzpXtItuZ´1
t“1

, Zµ1qq ´HpXpM´1qˆBzZµ2q

´HpZµq
a)

ě HpSkq ´HpXMˆpn´BqzpXtItuZ´1
t“1

, Zµ1qq

´HpXpM´1qˆBzZµ2q

b)
ą k ´ pk ` µ´ pM ´ 1qB ´ µ1q ´ ppM ´ 1qB ´ µ2q “ 0, (6.9)

where a) follows from (6.4), where

HpXMˆpn´BqzXtItuZ´1
t“1

, XpM´1qˆB|S
k
q

ě HpXMˆpn´BqzXtItuZ´1
t“1

, XpM´1qˆBq ´HpS
k
q

“ pMn´ ZBq ´ k “ µ

and HpXMˆpn´BqzXtItuZ´1
t“1

, XpM´1qˆB|S
kq ´ HpZµq ě 0. b) follows from (6.8) and

HpXMˆpn´BqzpXtItuZ´1
t“1

, Zµ1qq “ HpXMˆpn´BqzXtItuZ´1
t“1
q ´ HpZµ1q, HpXpM´1qˆBzZµ2q “

HpXpM´1qˆBq ´HpZµ2q. As a consequence, we obtain by (6.4) and (6.7),

Rs “
k

n
ďM ´

ZB ` µ

T `B
, (6.10)

which matches the secrecy rate in Theorem 6.2 for µ “ T `B and Z “M ´ 1.

6.4. The Secure Streaming Codes for the M-Link

Channel

In this section we briefly discuss the mapping fromM -link block codes toM -link streaming

codes for the channel model given in Section 6.2. We use diagonal interleaving to obtain

M -link streaming codes from M -link block codes described in Theorem 6.2. A detailed

description of the mapping for the case where M “ 1 is given in Subsection 5.5.1. The

extension to the case M ą 1 is straightforward.

We define the mapping of an M -link convolutional code that has encoder memory $,

from a causal and nested M -link block code with generator matrix GM´link “

˜

G˚

G1

¸

.

Definition 6.3. An pn, k, µ,$, T qq M -link convolutional code with encoder memory $

is an pn, k, µ, T qq streaming code for an M -link channel with an eavesdropper, constructed

as follows: For any i ě 0 and j “ 1, . . . ,M , we obtain the packet

xri, js “
$
ÿ

l“0

ps ri´ lsG˚convj,l ` e ri´ lsG
1conv
j,l q, (6.11)
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where G˚convj,l is a k ˆ n matrix so that

G˚j “
n´1
ÿ

l“0

G˚convj,l with G˚ “ pG˚1 || ¨ ¨ ¨ || G
˚
Mq (6.12)

and G
1conv
j,l is a µˆ n matrix so that

G
1

j “

n´1
ÿ

l“0

G
1conv
j,l with G

1

“ pG
1

1 || ¨ ¨ ¨ || G
1

Mq. (6.13)

By convention, we choose s r´1s , . . . , s r´$s “ 01ˆk and e r´1s , . . . , e r´$s, which corre-

spond to i.i.d random variables over Fµq .

Here G
1conv
j,0 “ G

1

j, and G˚convj,l corresponds to the l-th diagonal (starting from column l)

of G T in the corresponding link j, and zeros elsewhere.

6.4.1. Achievability

We provide (n, k, µ, T qq streaming codes for an M -link channel, where Z “ M ´ 1 burst

erasures of length B ď T can occur, each on a separate link, and where the eavesdropper

can observe any link noiselessly.

Theorem 6.12. For the admissible parameters T,B, µ,M , k, q, there exists a pT,B, µ,M´

1;T ` 1qq M -link streaming code as given in Definition 6.1, with secrecy rate

Rs “
k

n
“
pM ´ 1qT

T `B
, (6.14)

obtained by diagonal interleaving causal M -link block codes described in Theorem 6.2.

Proof. In each link, each diagonal in the resulting M -link streaming code is an output

xT`Bj of the M -link block code, where j “ 1, . . . ,M . Thus, all M -tuples of diagonals are

independent random variables taking values from FMpT`Bqq . In Fig. 6.4, an M -tuple of

diagonals is underlined. The obtained M -link code allows us to reconstruct the source

packets induced at time i with delay of at most T . This follows from the property of the

corresponding M -link block code, since each source symbol in pM ´ 1qB erased packets

can be recovered with delay T , using the corresponding tuple of M diagonals.

Moreover, in Theorem 6.2 we see that due to the form of the generator matrix GM´link it

follows that G˚convj,l “ 0TˆpT`Bq, G
1conv
j,l “ 0pT`BqˆpT`Bq for any l ě T ` 1, thus W “ T ` 1,

and we can recover any burst of B erasures in link j as long as they are separated by at

least T packets.

It remains to be shown that the code also provides perfect security. Let Sk,

XT`B
1 , . . . , XT`B

M and Zµ respectively, be the random variables corresponding to the

source symbols, the output of the M -link block code with realization
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︷ ︸︸ ︷
YE,0

︷ ︸︸ ︷
YE,1

. . .

TB

Link 1

Link 2 . . .

.

.

.

. . .Link M

Figure 6.3.: The M -link channel used in proving the upper bound for T ě B, with indi-
cation of which packets are observed by the eavesdropper YE,i (gray squares).
YpLzEq,i is indicated by white squares. Crossed squares are erasures of length
B.

pxT`B1 || ¨ ¨ ¨ || xT`BM q and the observation at the eavesdropper, where Zµ P Fµq . Re-

call that the eavesdropper can observe any link j, that is µ “ T ` B. According to

Lemma 6.5 (c) (see also [4]), related to our model, perfect security is achieved iff the

matrix G1j for each j “ 1, . . . ,M is a pT `BqˆpT `Bq c-good matrix. The latter implies

that each coset of C 1 has the same number of vectors from which ZT`B can be obtained

by pM ´ 1qpT `Bq erasures. This means, by construction of the M -link block code that

we have perfect security, that is HpSk|ZT`Bq “ k. Now suppose the eavesdropper ob-

serves any link j. Consider every M -tuples of diagonals of length T ` B separately. Let

Sk be the random variable that corresponds to the source symbols of the M -link block

code which appears along the M -tuple diagonals, and ZT`B be the random variable that

corresponds to the eavesdropper’s channel output of the M -link block code which appears

along one of the M -tuple diagonals. By construction of the M -link block code, we have

that HpSk|ZT`Bq “ k. Thus, the mutual information IpSk;ZT`Bq “ 0 and this holds

for every M -tuple of diagonals. Furthermore, note that for any time unit i, the symbols

in packets xri, 1s, . . . , xri,M s are equiprobable and any T `B consecutive packets in any

link are mutually independent. This follows as the codewords are i.i.d. vectors.

Thus any T ` B consecutive packets observed by the eavesdropper in any link j do

not reveal any information about the source symbols in those packets, as well as in the

remaining pM ´ 1q ˆ pT ` Bq packets, and in previously observed packets. This is also

true when the eavesdropper changes the link it is observing.

Since k “MpT `Bq ´ pM ´ 1qB ´ pT `Bq, we get the result.

6.4.2. Converse

Let Ij “ t1, . . . , P u and I “ tIju
M
j“1, j “ 1, . . . ,M respectively, be the index set for the

packets in one period of length P “ T ` B in link j and in link 1, . . . ,M . Let L Ă I

and E “ Ij, j “ 1, . . . ,M respectively, be the index sets of the revealed packets at

the legitimate receiver and at the eavesdropper. In the i-th period, YE,i and YL,i are,

respectively, the observations at the eavesdropper and the legitimate receiver. Fig. 6.3

shows the time slots and the size of YE for the case when T “ 3 and B “ 2. We assume
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that W “ T ` 1, that is, in each of the M ´ 1 links the erasure bursts of length B are

separated by T non-erased packets.

For any integer h ě 1, we use Y h´1
L,0 to denote YL,0, YL,1, . . . , YL,h´1. We require a coding

scheme that provides perfect reliability with delay T and perfect security for each h ě 1,

that is,

HpSh´1
0 |Y h´1

L,0 , UL,hq “ 0, (perfect reliability) (6.15)

HpSh´1
0 |Y h´1

E,0 , UE,hq “ HpSh´1
0 q, (perfect security) (6.16)

where UL,h and UE,h are, respectively, observations of the receiver and the eavesdropper

in the interval of MT and T successive outcome packets within the h-th period, that

is |UL,h| “ MT and |UE,h| “ T . Furthermore, Si is a random variable representing

the sequence of messages produced by the source in the i-th period, thus Si P FP ¨kq and

HpSiq “ P ¨ k. We assume that all source packets have the same entropy. Denote

WL,h “ Y h´1
L,0 , UL,h and WE,h “ Y h´1

E,0 , UE,h. Hence, for achieving (6.15) and (6.16) we

have the following necessary condition:

h ¨ P ¨ k “ HpSh´1
0 |WE,hq ď HpSh´1

0 ,WL,h|WE,hq

“ HpWpLzEq,h|WE,hq `HpS
h´1
0 |WL,h,WE,hq

ď HpWpLzEq,hq “ HpY h´1
pLzEq,0, UpLzEq,hq

ď hHpYpLzEq,0q ` npMT ´ T q.

The latter implies that

Rs “
k

n
ď
ha`MT ´ T

Ph
hÑ8
Ñ

a

P
, (6.17)

where a “ |pLzEq, 0|, that is HpYpLzEq,0q ď na.

For the case T ě B, we have |L| “ MpT ` Bq ´ pM ´ 1qB and |E| “ T ` B in each

period. We obtain the following theorem.

Theorem 6.13. For T ě B, P “ T ` B, we obtain HpYpLzEq,0q

ď rMpT `Bq ´ pM ´ 1qB ´ pT `Bqs¨n, and hence Rs ďM´
pM´1qB
T`B

´1, which matches

the secrecy rate in Theorem 6.12.

6.5. Delay-Optimal Parallel Link Channel with an Active

Eavesdropper and Z “ 1

Here, we consider two similar models as in Section 6.2. In the first model Z “ 1, that

is, (in any sliding window) a burst erasure of length B can occur in any single link. In
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x [i+ 1, 1] =

x [i, 1] =

x [i+ 2, 1] =

x [i+ 3, 1] =

x [i+ 4, 1] =

Link 1

s2 [i− 3] + s3 [i− 2] + e5 [i]

s2 [i− 2] + s3 [i− 1] + e5 [i+ 1]

s2 [i− 1] + s3 [i] + e5 [i+ 2]

s2 [i] + s3 [i+ 1] + e5 [i+ 3]

s2 [i+ 1] + s3 [i+ 2] + e5 [i+ 4]
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x [i, 2] =
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Link 2

s5 [i− 3] + s6 [i− 2] + e5 [i]

s5 [i− 2] + s6 [i− 1] + e5 [i+ 1]

s5 [i− 1] + s6 [i] + e5 [i+ 2]

s5 [i] + s6 [i+ 1] + e5 [i+ 3]

s5 [i+ 1] + s6 [i+ 2] + e5 [i+ 4]

.

.

.

+s7 [i] + e1 [i]) +s8 [i] + e2 [i])

+s9 [i+ 1] + e3 [i+ 1])

+e4 [i+ 2])

+s3 [i+ 1] + s6 [i+ 1] + s9 [i+ 1]

+s3 [i+ 1] + s6 [i+ 1] + s9 [i+ 1]

+e5 [i+ 3])

+s7 [i+ 1] + e1 [i+ 1])

+s7 [i+ 2] + e1 [i+ 2])

+s7 [i+ 3] + e1 [i+ 3])

+s7 [i+ 4] + e1 [i+ 4])

+s8 [i+ 1] + e2 [i+ 1])

+s8 [i+ 2] + e2 [i+ 2])

+s8 [i+ 3] + e2 [i+ 3])

+s8 [i+ 4] + e2 [i+ 4]

+s9 [i+ 2] + e3 [i+ 2])

+s9 [i+ 3] + e3 [i+ 3])

+s9 [i+ 4] + e3 [i+ 4])

+s9 [i] + e3 [i])

+s3 [i+ 2] + s6 [i+ 2] + s9 [i+ 2]

+e4 [i+ 3])

+s3 [i+ 3] + s6 [i+ 3] + s9 [i+ 3]

+e4 [i+ 4])

+s3 [i] + s6 [i] + s9 [i]

+e4 [i+ 1])

+s3 [i− 1] + s6 [i− 1] + s9 [i− 1]

+e4 [i])

+s3 [i+ 2] + s6 [i+ 2] + s9 [i+ 2]

+e5 [i+ 4])

+s3 [i] + s6 [i] + s9 [i]

+e5 [i+ 2])

+s3 [i− 1] + s6 [i− 1] + s9 [i− 1]

+e5 [i+ 1])

+s3 [i− 2] + s6 [i− 2] + s9 [i− 2]

+e5 [i])

Link 4

Figure 6.4.: A p5, 9, 5, 3, 3q3 4-link convolutional code constructed by diagonally interleav-
ing the 4-link block code with generator matrix G4´link given in Example 6.9,
where Z “ 3, T “ 3, B “ 2.

addition, the eavesdropper is able to observe any interval of length µ in any link of his

choice. In the second model, a complete link may fail and the eavesdropper is able to

observe any complete link. We assume that the eavesdropper causes the erasures in any

link of the legitimate receiver. Furthermore, we consider the case where the eavesdropper

is able to change the link in which it causes erasures.

Again first we construct multi-link block codes and diagonally interleave them to multi-

link streaming codes. The multi-link block codes can be used for a wiretap channel II

model with delay constraint where the eavesdropper can choose any link and observe

noiselessly any interval of µ symbols (also end-around) from n symbols transmitted to

the legitimate receiver. Additionally, the eavesdropper can cause any burst of erasures

of length B on any chosen link, that is Z “ 1. We give explicit constructions of optimal

multi-link block codes that achieve maximum secrecy rate, provide perfect security (i.e.
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the eavesdropper can obtain no information about the secret message) and provide zero-

error decoding with minimum possible delay. Moreover, we consider a multi-link wiretap

channel II model with an active eavesdropper for streams of encoded packets. For T ě B,

we propose constructions of multi-link streaming codes for the case where the eavesdropper

can cause in any link and in any sliding window of size W1 an interval of erasures of at

most B packets and observe any interval of at most µ packets in any sliding window

of size W2 in the same link or in any other. The multi-link streaming codes provide

perfect security, zero-error decoding with delay T and have the maximum secrecy rate.

In Subsection 6.5.2, we discuss the case where the eavesdropper is able to switch between

the links, but it costs him δ time units.

When the channel packet x ri, j˚s at time i is transmitted over link j˚ then the legitimate

receiver observes either y ri, j˚s “ ? if the channel packet at time i on link j˚ is erased

(caused by the eavesdropper) or y ri, j˚s “ x ri, j˚s if the channel packet is passed to the

receiver noiselessly. Correspondingly, the channel packets observed by the eavesdropper

on link j1 are either passed noiselessly, i.e. z ri, j1s “ x ri, j1s or are erased, i.e, z ri, j1s “ ?.

The encoding and decoding procedure is the same as in Section 6.2. However, for T ě B,

we introduce an additional parameter V , which determines the length of an interval

of erased packets separating the observed packets of the eavesdropper. In Subsection

6.5.2, we specify V , δ and the window size W2, which are fully characterized by the

parameters n, k, µ, T . When T ě B, we call a code that fulfills the above requirements a

pT,B, µ, Z “ 1;W1,W2q2 M -link streaming code.

For the case where T ă B, we construct binary codes for a slightly different model,

where the eavesdropper can erase and observe a complete link of its choice. In this case,

V , W1, W2, δ “ 0. The code for the channel model where the eavesdropper can erase and

observe a complete link of its choice and that provides zero-error decoding within delay

T and provides perfect security, we denote as a pT,B, µ, Z “ 1q2 M -link streaming code

6.5.1. Construction of the Multi-Link Block Codes

We define a secure delay-optimal B-burst-erasure correcting M-link block code that can

be converted to an M -link convolutional code for the channel model introduced in Section

6.5.

Definition 6.4. We call an M -link binary block code C with generator matrix GM´link “
˜

G˚

G1

¸

secure delay-optimal B-burst-erasure correcting, or µ ´ pMn,mq secure delay-

optimal B-burst-erasure correcting if

1) C is an optimal burst-erasure correcting code, that is m “Mn´B.

2) The transmitter can convey k “ m ´ µ symbols with perfect security and the code
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has maximum secrecy rate

Rs “
k

n
“
m´ µ

n
“

$

&

%

M ´
B`µ
T`B

T ě B

M ´ 1´ µ
B

T ă B,
(6.18)

where n “ T `B for the case where T ě B.

3) Every source symbol can be reconstructed with delay of at most T

Definition 6.5. We call GM´link “

˜

G˚

G1

¸

a systematic matrix if G˚ and G1j, the sub-

matrix of G1, are of a systematic form, respectively, with j “ 1, . . . ,M .

The next Lemma follows from Lemma 4.18.

Lemma 6.14. Let A be an r ˆ n c-good matrix. Then A b Im is an rm ˆ nm c-good

matrix, where ”b ” is the Kronecker product.

In the following we present systematic binary secure delay-optimal B-burst-erasure

correcting M -link block codes for the M -link channel model described above.

Theorem 6.15. There exist explicit constructions of systematic µ ´ pMn,mq secure

delay-optimal B-burst-erasure correcting M -link block codes that achieve the maximum

secrecy rate Rs given in (6.18) for the following cases:

1. For B ă µ “ T where T “ tB, n “ T `B and integer t ě 2.

2. For B “ µ ď T where T “ tB, n “ T `B, with integer t ě 1, and M ¨ T`B
B

is even.

3. For B ă µ ă T where, T “ tB, n “ T `B and µ “ n{2, with t “ 3.

4. For B “ n “ µ with T “ 0 and even M .

Proof. We divide the proof into two parts. The achievability we prove by the construction

given in the sequel and the converse is given below.

The Achievability

In the first three cases, the main idea is to construct for admissible integers t, M an pMpt`

1q´1qˆMpt`1q systematic binary generator matrix Ǵ “

˜

Ǵ˚

Ǵ1

¸

=

˜

Ǵ˚1 ¨ ¨ ¨ Ǵ˚M
Ǵ11 ¨ ¨ ¨ Ǵ1M

¸

,

j “ 1, . . . ,M for a secure single erasure correcting M -link code. This, in fact, is the case

when Ǵ is c-good and the µ1ˆ pt` 1q submatrices Ǵ1j of Ǵ for each j are c-good. (In this

case the eavesdropper is able to observe µ1 consecutive symbols from t`1, including cyclic

intervals of length µ1 in any link.) Then we apply the Kronecker product to Ǵ and IB.
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The resulting pMpt` 1q ´ 1qB ˆMpt` 1qB matrix GM´link “ pG1 || ¨ ¨ ¨ || GMq is c-good

according to Lemma 6.14. Correspondingly, the µˆ pt` 1qB submatrices G1j of GM´link

are c-good, where µ “ µ1B. According to Lemma 6.5 we have an optimal B-burst-erasure

correcting M -link block code C that provides perfect security even if the eavesdropper is

able to observe cyclic intervals of length µ in the chosen link and that achieves the secrecy

rate given in (6.18). Then it remains to be shown that the code can reconstruct arbitrary

source symbols with delay of at most T in each link.

1. For any integer t ě 2, we construct an Mpt ` 1q ´ 1 ˆ Mpt ` 1q matrix Ǵ “

pǴ1 || ¨ ¨ ¨ || ǴMq, with

Ǵj “

¨

˚

˚

˚

˚

˝

0pj´1qpt`1qˆpt`1q

It`1

0pM´1´jqpt`1qˆpt`1q

It 1
t

˛

‹

‹

‹

‹

‚

, ǴM “

˜

0pM´1qpt`1qˆt 1
pM´1qpt`1q

It 1
t

¸

,

where j “ 1, . . . ,M ´ 1 and 1
r “ p1, 1, . . . , 1qJ of length r. Note that Ǵ is c-good,

which contains c-good tˆ pt` 1q submatrices Ǵ1j, j “ 1, . . . ,M .

Now we take Ǵ b IB to obtain the binary systematic MpT ` Bq ´ B ˆ MpT ` Bq

generator matrix

GM´link
“ pG1 || G2 || ¨ ¨ ¨ || GMq, (6.19)

with

Gj “

¨

˚

˚

˚

˚

˝

0pj´1qpT`BqˆpT`Bq

IT`B

0pM´1´jqpT`BqˆpT`Bq

IT A

˛

‹

‹

‹

‹

‚

, GM “

˜

0pM´1qpT`BqˆT A
1

IT A

¸

for a secure B-burst-erasure correcting M -link block code, where j “ 1, . . . ,M ´ 1.

Observe that A “ 1
t b IB, A1 “ 1

pM´1qpt`1q b IB and that G1j “ pIT Aq, j “ 1, . . ., M , is

a T ˆ pT `Bq c-good matrix as well as G1.

To show that the M -link code can recover source symbols within delay T if a B-burst

erasure occurs, consider the output px
pt`1qB
1 || ¨ ¨ ¨ ||x

pt`1qB
M q, where tB “ T and pt` 1qB “

T `B.

Note that the urgent source symbols are the first B symbols in xT`Bj , j “ 1, . . . ,M

since they must be reconstructed with delay of at most T . W.l.o.g, suppose a B-

burst erasure occurs on the last link, that is, the burst erasure affects x
pt`1qB
M , then

px
pt`1qB
1 || ¨ ¨ ¨ ||x

pt`1qB
M´1 q are received correctly. Let pxt`1

1,i || ¨ ¨ ¨ ||x
t`1
M,iq be, respectively, the

subvectors of px
pt`1qB
1 || ¨ ¨ ¨ ||x

pt`1qB
M q, where xt`1

j,i “ pxpj, iq, xpj, i ` Bq, . . . , xpj, i ` tBqq,

with i “ 1, . . . , B and j “ 1, . . . ,M . Note that pxt`1
1,i || ¨ ¨ ¨ ||x

t`1
M,iq, where i “ 1, . . . , B is

the output of the t-delay single erasure correcting M -link code with generator matrix Ǵ.

In subvector xt`1
M,i “ pxpM, iq, xpM, i ` Bq, . . . , xpM, i ` tBqq of x

pt`1qB
M , there is at most

one erased symbol. Thus the source symbols can be reconstructed with delay of at most

tB “ T .

2. For any integer t, consider the Mpt`1q´1ˆMpt`1q matrix Ǵ “ pǴ1 || ¨ ¨ ¨ || ǴMq
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of the form

Ǵj “

¨

˚

˚

˚

˚

˝

0pj´1qpt`1qˆpt`1q

It`1

0pM´1´jqpt`1q`t´1ˆpt`1q

1t`1

˛

‹

‹

‹

‹

‚

, ǴM “

¨

˚

˝

0pM´1qpt`1qˆt 1
pM´1qpt`1q

It´1 0pt´1qˆ1 1
t´1

1t`1

˛

‹

‚

,

where j “ 1, . . . ,M´1 and 1r “ p1, 1, . . . , 1q of length r. Observe that for even Mpt`1q,

Ǵ is a c-good matrix which contains c-good 1ˆpt`1q submatrices Ǵ1j, j “ 1, . . . ,M . Then

the Kronecker product of Ǵ and IB yields a c-good systematic matrix GM´link, which is

the generator matrix for an optimal B-burst-erasure correcting M -link code with delay

T “ tB. This we can show by arguing in the same way as in case 1. For even Mpt`1q we

obtain that M ¨ T`B
B

is even since Mpt ` 1qB “ MpT ` Bq. Moreover, GM´link contains

a µ ˆ pT ` BqM matrix G1 “ pG11 || . . . || G
1
Mq “ pIB ¨ ¨ ¨ IB

looomooon

pt`1q times

|| . . . || IB ¨ ¨ ¨ IBq, which is

c-good as well as G1j, j “ 1, . . . ,M .

3. For t “ 3, consider the c-good 4M ´ 1 ˆ 4M matrix Ǵ “ pǴ1 || ¨ ¨ ¨ || ǴMq of the

form

Ǵj “

¨

˚

˚

˚

˚

˝

0pj´1q4ˆ4

I4

0pM´1´jq4`1ˆ4

I2 I2

˛

‹

‹

‹

‹

‚

, ǴM “

¨

˚

˝

0pM´1q4ˆt 1
pM´1q4

1 04ˆ1 1

I2 I2

˛

‹

‚

,

where j “ 1, . . . ,M´1. The Kronecker product of Ǵ and IB yields a c-good systematic

4MB ´ B ˆ 4MB matrix GM´link, which contains M c-good µ ˆ B4 submatrices with

µ “ Bp4{2q. Obviously, we can recover each source symbol with delay of at most T “ 3B,

as in cases 1 and 2.

Thus we obtain a generator matrix for an optimal B-burst-erasure correcting M -link

code.

4. For any n “ µ ě 1 and even M ą 2, let GM´link “ pG1 || ¨ ¨ ¨ || GMq with

Gj “

˜

G˚j

G1j

¸

“

¨

˚

˚

˚

˚

˝

0pj´1qnˆn

In

0pM´2´jqpnqˆn

In

˛

‹

‹

‹

‹

‚

, GM´1 “

˜

0pM´2qpnqˆn

In

¸

, GM “

¨

˚

˚

˝

I
p1q
n

...

I
pM´1q
n

˛

‹

‹

‚

being an pM ´ 1qn ˆMn systematic binary c-good matrix that contains an n ˆMn

c-good submatrix G1 “ pIn || ¨ ¨ ¨ || Inq
looooooomooooooon

M times

, where G1j “ In, j “ 1, . . . ,M . Note that if a

link outage occurs on link j˚, that is all the symbols transmitted over link j˚ are erased,

the source symbols si`pj´1qn, i “ 1, . . . , n and j “ 1, . . . ,M ´ 2 can be reconstructed

immediately from symbols xrĵ, is, ĵ P Jzj˚, where J “ t1, . . . ,Mu. Thus delay T “ 0.

Note that the code also can correct n erasures which can be distributed over several links

but must not occur at the same time, e.g. one deletion in the first link at time i “ 1 and

n´ 1 deletions in the second link at time i “ 2, ..., n.

According to Lemma 6.5 and since T “ 0, we have a secure delay-optimal n-burst-
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erasure correcting M -link code, which is secured against an eavesdropper who is able to

observe a complete link of his choice and which achieves the secrecy rate as given in (6.18).

Note also that for odd M , GM´link is not c-good and the condition M ą 2 is necessary

according to Lemma 6.5 (a). The latter applies since in the case where M “ 2, the

generator matrix GM´link for an n-burst-erasure correcting code is of dimension n ˆ 2n,

which implies that µ “ n “ m.

Example 6.16. As an example of a code construction in Theorem 6.15 for case 1 where

M “ 2, T “ µ “ 4 and B “ 2, consider the following systematic generator matrix

Ǵ “ pǴ1 || Ǵ2q “

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0 1

0 1 0 0 0 1

0 0 1 0 0 1

1 0 1 1 0 1

0 1 1 0 1 1

˛

‹

‹

‹

‹

‹

‹

‚

for a binary secure single erasure correcting

2-link block code, where t “ 2. Then take Ǵb IB to obtain the generator matrix

G2´link “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 1

1 0 0 0 1 0 1 0 0 0 1 0

0 1 0 0 0 1 0 1 0 0 0 1

0 0 1 0 1 0 0 0 1 0 1 0

0 0 0 1 0 1 0 0 0 1 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

for a 4-p12, 10q secure delay-optimal 2-burst-erasure correcting 2-link block code with

secrecy rate Rs “ 1.

Converse

For T ě B, the converse can be proven as in Subsection 6.3.2 for the case Z “ 1.

For the case T ă B, similar to [44], we want to show that

n ď B. (6.20)

Suppose for a contradiction that n “ B ` 1.

Consider the erasure pattern B0 “ tp1, 1q, . . . , p1, Bqu. Let XpM´1qˆpT`1q be the random

variable corresponding to x r2 : M, 1 : T ` 1s, where T ` 1 ď B. Since S1 (all source

symbols injected at time 1) is recovered at T ` 1, we have HpS1, E1|XpM´1qˆpT`1qq “ 0.

We assume that the encoder symbols E1, . . . , Eµ are i.i.d. uniform distributed over Fq.
Next, we consider the erasure pattern B1 “ tp1, 2q, . . . , p1, nqu. The source symbols

Sk must be reconstructed from XMˆ1, which corresponds to realization xr1 : M, 1s and
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6. Delay-Optimal Codes for Parallel Burst-Erasure Channels with an Eavesdropper

XpM´1qˆpn´1q, which corresponds to realization xr2 : M, 2 : ns. Hence,

HpSk|XMˆ1, XpM´1qˆpn´1qq “ 0.

But

0 “ HpSk|XMˆ1, XpM´1qˆpn´1qq

“ HpSk, XMˆ1, XpM´1qˆpn´1qq ´HpXMˆ1, XpM´1qˆpn´1qq

a)

ě HpSk, XMˆ1, XpM´1qˆpn´1qq ´HpS1, E1, XpM´1qˆnq

b)
“ HpSk, XMˆ1, XpM´1qˆpn´1qq ´HpfpXpM´1qˆpT`1qq, XpM´1qˆnq

c)

ě HpSk, XMˆ1, XpM´1qˆpn´1qq ´HpXpM´1qˆn, XpM´1qˆnq

ě HpSkq `HpXMˆ1, XpM´1qˆpn´1q|S
k
q ´HpXpM´1qˆnzZµq ´HpZµq

ě HpSkq ´HpXpM´1qˆnzZµq

d)
“ k ´ ppM ´ 1qn´ µq “ 1,

where aq follows the causality of the code, thus X1 must be a function of S1 and E1, bq

follows S1, E1 “ fpXpM´1qˆpT`1qq, cq follows that T ` 1 ă n, d) follows from (6.4), where

HpXMˆ1, XpM´1qˆpn´1q|S
kq ě HpXMˆ1, XpM´1qˆpn´1qq ´HpS

kq “ pMn´B ´ kq “ µ and

HpXMˆ1, XpM´1qˆpn´1q|S
kq ´HpZµq ě 0. Thus, (6.20) together with (6.4) imply

Rs “
k

n
ďM ´ 1´

µ

B
, (6.21)

which matches the secrecy rate in Definition 6.4 and in Theorem 6.15.

6.5.2. The Multi-Link Streaming Codes

We use diagonal interleaving to obtain M -link streaming codes from M -link block codes

given in Theorem 6.15. For the case where M “ 1, a detailed description of the mapping

is given in Subsection 5.5.1, and the extension of the case where M ą 1 is straightforward.

We obtain the following result.

Theorem 6.17. For the admissible parameters T,B, µ,M , there exist for T ě B,

pT,B, µ, 1;T ` 1,W2q2 M -link streaming codes, and for T ă B, pT,B, µ, 1q2 M -link

streaming codes with secrecy rate

Rs “
k

n
“
m´ µ

n
“

$

&

%

M ´
B`µ
T`B

T ě B

M ´ 1´ µ
B

T ă B,
(6.22)

obtained by diagonal interleaving systematic binary µ ´ pMn,mq secure delay-optimal

B-burst-erasure correcting M -link block codes described in Theorem 6.15. W2 is case

dependent so that
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s1 [i] + e1 [i] s3 [i] + e3 [i]s2 [i] + e2 [i] s4 [i] + e4 [i] s6 [i] + e2 [i− 4] + e4 [i− 2]

e1 [i] e2 [i]
s2 [i− 4] + s4 [i− 2] + s6 [i]

e2 [i− 4] + e4 [i− 2]

s1 [i+ 1] + e1 [i+ 1] s2 [i+ 1] + e2 [i+ 1] s3 [i+ 1] + e3 [i+ 1] s4 [i+ 1] + e4 [i+ 1] s6 [i+ 1] + e2 [i− 3] + e4 [i− 1]

e1 [i+ 1] e2 [i+ 1]
s2 [i− 3] + s4 [i− 1] + s6 [i+ 1]

e2 [i− 3] + e4 [i− 1]

s1 [i+ 2] + e1 [i+ 2] s2 [i+ 2] + e2 [i+ 2] s3 [i+ 2] + e3 [i+ 2] s4 [i+ 2] + e4 [i+ 2] s6 [i+ 2] + e2 [i− 2] + e4 [i]

e1 [i+ 2] e2 [i+ 2]
s2 [i− 2] + s4 [i] + s6 [i+ 2]

e2 [i− 2] + e4 [i]

s1 [i+ 3] + e1 [i+ 3] s2 [i+ 3] + e2 [i+ 3] s3 [i+ 3] + e3 [i+ 3] s4 [i+ 3] + e4 [i+ 3] s6 [i+ 3] + e2 [i− 1] + e4 [i+ 1]

e1 [i+ 3] e2 [i+ 3]
s2 [i− 1] + s4 [i+ 1] + s6 [i+ 3]

e2 [i− 1] + e4 [i+ 1]

s1 [i+ 4] + e1 [i+ 4] s2 [i+ 4] + e2 [i+ 4] s3 [i+ 4] + e3 [i+ 4] s4 [i+ 4] + e4 [i+ 4] s6 [i+ 4] + e2 [i] + e4 [i+ 2]

e1 [i+ 4] e2 [i+ 4]
s2 [i] + s4 [i+ 2] + s6 [i+ 4]

e2 [i] + e4 [i+ 2]

x [i+ 1, 1] =

x [i, 1] =

x [i+ 2, 1] =

x [i+ 3, 1] =

x [i+ 4, 1] =

Link 1

Link 2

x [i, 2] =

x [i+ 1, 2] =

x [i+ 2, 2] =

x [i+ 3, 2] =

x [i+ 4, 2] =

x [i+ 5, 2] =

s1 [i+ 5] + e1 [i+ 5] s2 [i+ 5] + e2 [i+ 5] s3 [i+ 5] + e3 [i+ 5] s4 [i+ 5] + e4 [i+ 5]

s5 [i] + e1 [i− 4] + e3 [i− 2]

s5 [i+ 1] + e1 [i− 3] + e3 [i− 1]

s5 [i+ 2] + e1 [i− 2] + e3 [i]

s5 [i+ 3] + e1 [i− 1] + e3 [i+ 1]

s5 [i+ 4] + e1 [i] + e3 [i+ 2]

s5 [i+ 5] + e1 [i+ 1] + e3 [i+ 3] s6 [i+ 5] + e2 [i+ 1] + e4 [i+ 3]x [i+ 5, 1] =

e1 [i+ 5] e1 [i+ 5]

e3 [i]

e3 [i+ 1]

e3 [i+ 2]

e3 [i+ 3]

e3 [i+ 4]

e3 [i+ 5]

e4 [i]

e4 [i+ 1]

e4 [i+ 2]

e4 [i+ 3]

e4 [i+ 4]

e4 [i+ 5]

s1 [i− 4] + s3 [i− 2] + s5 [i]

e1 [i− 4] + e3 [i− 2]

s1 [i− 3] + s3 [i− 1] + s5 [i+ 1]

s1 [i− 2] + s3 [i] + s5 [i+ 2]

s1 [i− 1] + s3 [i+ 1] + s5 [i+ 3]

s1 [i] + s3 [i+ 2] + s5 [i+ 4]

s1 [i+ 1] + s3 [i+ 3] + s5 [i+ 5]

e1 [i− 3] + e3 [i− 1]

e1 [i− 2] + e3 [i]

e1 [i− 1] + e3 [i+ 1]

e1 [i] + e3 [i+ 2]

e1 [i+ 1] + e3 [i+ 3]

s2 [i+ 1] + s4 [i+ 3] + s6 [i+ 5]

e2 [i+ 1] + e4 [i+ 3]

Figure 6.5.: A secrecy rate-1 code constructed by diagonally interleaving the 4´ p12, 10q
delay-optimal secure two-link block code (see Example 6.16).

W2 “

$

&

%

T ` 1 if V “ T

µ` 1 if V ă T
. (6.23)

In the latter case, the eavesdropper can observe either an interval of length of at most µ

or at most W2 ´ V packets separated by V erased packets in any sliding window W2.

Proof. For both the case where T ě B and T ă B, Lemma 5.17 can be extenden for the

M -link case in a straightforward way. Thus, the streaming codes obtained by diagonal in-

terleaving systematic binary µ´pMn,mq secure delay-optimal B-burst-erasure correcting

M -link block codes as described in Theorem 6.15 are able to recover source packets with

delay T when a B-burst-erasure occurs. Due to the form of the generator matrix GM´link

for the µ ´ pMn,mq secure delay-optimal B-burst-erasure correcting M -link block code,

it follows that for µ ď T and for each j “ 1, . . . ,M , we have that G˚convj,l and G
1conv
j,l are

zero-matrices for any l ě T ` 1, thus $ “ T .

It remains to be shown that the M -link streaming code obtained by applying diagonal

interleaving to the M -link nested block code provides perfect security when the eaves-

dropper observes in any link j either µ consecutive packets in any sliding window of size

W2 or the complete link, that is µ “ n.

Let Sk, Xn
1 , . . . , X

n
M and ZMn, respectively, be the random variables corresponding to

the source symbols, the output of the block code pxn1 || ¨ ¨ ¨ || x
n
Mq and the observation at
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6. Delay-Optimal Codes for Parallel Burst-Erasure Channels with an Eavesdropper

the eavesdropper on any link j “ 1, . . . ,M , where ZMn P pFq Y t?uqMn. In the interest of

simplification, we consider ZMn instead of Zµ P pFq Y t?uqµ and complete the remaining

random variables of ZMn with ”?”. Recall that for T ě B, we consider an eavesdropper

who is also able to observe any cyclic interval of length µ in xnj . In the case where T ă B,

all n symbols of the chosen link j can be observed, that is µ “ n. According to Lemma

6.5 (c), related to our model, perfect security is achieved iff the submatrix G1j of G for

each j “ 1, . . . ,M is a µˆ n c-good matrix. The latter implies that each coset of C 1 has

the same number of vectors from which ZMn can be obtained by Mn´ µ erasures. This

means, by construction of the secure nested M -link block code, we have perfect security,

that is, HpSk|ZMnq “ k. Note that for T ě B, the eavesdropper may observe any µ

consecutive codeword symbols (also wrap-around) noiselessly from xnj , which implies that

n ´ µ symbols of xnj are erased. Now suppose the eavesdropper observes packets in link

j, e.g., xri, js, . . . , xri ` µ ´ 1, js, which is a µ ˆ n matrix (see Fig. 6.5). Consider every

M -tuples of diagonals of length n containing entries of this matrix. In Fig. 6.5, an M -

tuple of diagonals is underlined. Let Sk and ZMn, respectively, be the random variables

that correspond to the source symbols and the eavesdropper’s channel output of the block

code which appears along the M -tuple diagonals. By construction of the block code we

have that HpSk|ZMnq “ k, and this holds for every M -tuple of diagonals. Furthermore,

note that for any time slot i and link j the symbols in packet xri, js are equiprobable and

any µ consecutive packets are mutually independent. This follows as the codewords are

i.i.d. vectors.

For i ă 0, by convention we choose s r´1s , . . . , s r´T s “ 01ˆk and e r´1s , . . . , e r´T s,

that correspond to i.i.d random variables over Fµq . The latter is necessary to provide

perfect reliability and perfect security even if the eavesdropper observes any link j at

time i.

W.l.o.g, we consider link j. For T ě B with µ ă T ` B ď k, the subvector

(xµ`1r0, js, . . . , xnr0, js) of xr0, js consists of the linear combination of the source sym-

bols (sµ`1r0, js, . . . , sgr0, js) with g ď k and the symbols of e r´1s , . . . , e r´T s. Suppose,

the eavesdropper was observing a burst erasure of length V ě T before observing xr0, js,

then the encoder packets e r´1s , . . . , e r´V s are unknown to him. By construction of the

block codes described in Theorem 6.15, the source symbols (sµ`1r0, js, . . . , sgr0, js) are

secured by e r´1s , . . . , e r´T s. For the case where V ă T , by construction of the block

codes, the source symbols (sµ`1r0, js, . . . , sgr0, js) are secured by e r´1s , . . . , e r´V s. Oth-

erwise, the last µ´ pn´ T q rows at column-positions tµ` 1, . . . , nu of G
1

j would be zero,

which would imply that the systematic matrix G
1

j is not c-good.

Thus any µ consecutive packets observed by the eavesdropper in any link j do not reveal

any information about the source symbols in those packets as well as in other observed

packets, as long as they are separated by an interval of at least V “ n´µ erased packets.
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6.5. Delay-Optimal Parallel Link Channel with an Active Eavesdropper and Z “ 1

The latter implies that for T ě B,

W2 “

$

&

%

T ` 1 if V “ T

µ` 1 if V ă T
. (6.24)

For T ă B with µ “ n, each xri, js is a linear combination of source packet sris and

encoder packet eris. Thus for i ă 0, we can set any packet eris “ 0 without violating the

security condition.

Discussion 1. Suppose the eavesdropper decides to change the link he observes. We

assume that this operation costs the eavesdropper δ time units. To provide perfect security

we have to choose δ “ V , since the eavesdropper could noiselessly observe the last µ

packets before he jumps to the next link. When we allow the eavesdropper to switch

between the links where he causes bursts of erasures, we have to assume that the lost

time by changing the link is at least T , since we have to assume that the last packet has

been erased before he jumps to another link. Thus we have to choose δ “ max tT, V u to

be able to communicate with perfect reliability and perfect security; however there is loss

in terms of the maximum secrecy rate Rs. For T “ µ we have δ “ V “ T , which implies

that we can communicate with the maximum secrecy rate. Also note, that for the case

B “ µ we have W1 “ W2. Note that for the case where T ă B, due to the block code

construction 4 in the achievability part, δ “ 0.

6.5.3. Converse for the secrecy rate for streaming codes

︷ ︸︸ ︷YE,0

︷ ︸︸ ︷YE,1

. . .

TB

Link 1

Link 2 . . .

.

.

.

. . .Link M

Figure 6.6.: The M -link channel used in proving the upper bound for T ě B, with indi-
cation of which packets are observed by the eavesdropper YE,i (gray squares).
YpLzEq,i is indicated by white squares. Crossed squares are erasures of length
B.

In this section we provide the converse of Theorem 6.17. For T ě B, we consider a

periodic erasure channel in link 1 in the presence of an eavesdropper who can noiselessly

observe µ packets in any sliding window of size

W2 “

$

&

%

T ` 1 if V “ T

µ` 1 if V ă T
, (6.25)
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6. Delay-Optimal Codes for Parallel Burst-Erasure Channels with an Eavesdropper

where V “ n´ µ, with n “ T `B.

Let I “ t1, . . . , P uMj“1 and Ij “ t1, . . . , P u, j “ 1, . . . ,M , respectively, be the index

set for the packets in one period of length P “ lcmpV ` µ, T ` Bq and the index set for

the packets in one period of length P in link j. Let L Ă I and E Ă Ij, j “ 1, . . . ,M

be the index sets of the revealed packets in the M -link channel and the eavesdropper’s

link, respectively. In the i-th, period YE,i and YL,i are, respectively, the observations at

the eavesdropper and the legitimate receiver. Fig. 6.6 shows the time slots and the size

of YE for the case when V ă T and T “ µ. Each erasure burst of length B is separated

by T non-erased packets and the eavesdropper’s observation of µ consecutive packets is

separated by V erased packets.

For any integer h ě 1 we use Y h´1
L,0 to denote YL,0, YL,1, . . . , YL,h´1. We require a coding

scheme that provides perfect reliability with delay T and perfect security for each h ě 1,

that is,

HpSh´1
0 |Y h´1

L,0 , UL,hq “ 0, (perfect reliability) (6.26)

HpSh´1
0 |Y h´1

E,0 , UE,hq “HpSh´1
0 q, (perfect security) (6.27)

where UL,h and UE,h are, respectively, observations of the receiver and the eavesdropper

in the interval of MT and T successive outcome packets within the h-th period, that is

|UL,h| “ MT and |UE,h| “ T . Si P FP ¨kq and HpSq “ P ¨ k. We assume that all source

packets have the same entropy. Denote WL,h “ Y h´1
L,0 , UL,h and WE,h “ Y h´1

E,0 , UE,h. Hence,

for achieving (6.26) and (6.27), we have the following necessary condition:

h ¨ P ¨ k “ HpSh´1
0 |WE,hq ´HpS

h´1
0 |WL,hq

ď HpSh´1
0 ,WL,h|WE,hq ´HpS

h´1
0 |WL,hq

“ HpWpLzEq,h|WE,hq `HpWE,h|WE,h,WpLzEq,hq

`HpSh´1
0 |WL,h,WE,hq ´HpS

h´1
0 |WL,hq ď HpWpLzEq,hq

“ HpY h´1
pLzEq,0, UpLzEq,hq ď hHpYpLzEq,0q ` npMT ´ µq.

The latter implies that

Rs “
k

n
ď
ha`MT ´ µ

Ph
hÑ8
Ñ

a

P
, (6.28)

where a “ |pLzEq, 0|, that is HpYpLzEq,0q ď na.

For the case T ě B, we have |L| “ pM ´ 1qP ` T and |E| “ µ in one period.

Theorem 6.18. For T ě B, V “ T`B´µ such that P “ T`B, we obtain HpYpLzEq,0q ď

rMpT `Bq ´B ´ µs ¨ n, and hence Rs ď M ´
B`µ
T`B

, which matches the secrecy rate in

Theorem 6.17.
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For the case T ă B, according to [35], if a code can decode all bursts of length B with

delay T ă B, then it can decode when any link is completely erased. Thus, when we

choose P “ B “ n we obtain |L| “ pM ´ 1qB and |E| “ µ, where µ ď n.

Theorem 6.19. For T ă B, V “ B ´ µ such that P “ B, we obtain HpYpLzEq,0q ď

rpM ´ 1qB ´ µs ¨n, and hence Rs ďM´
B`µ
B

, which matches the secrecy rate in Theorem

6.17.

6.6. Conclusion

For admissible parameters T , B, µ, M , Z, we constructed M -link codes over a small finite

field Fq that can perfectly recover Z erasure bursts of length B in any sliding window of

size T ` 1, each occurring on a separate link with minimum possible delay. In addition,

the codes provide perfect security while the eavesdropper is observing an interval of at

most µ packets in any sliding window of size W2 (W2 is case-dependent) or a copy of any

link, i.e. µ “ T `B. The codes achieve the maximum secrecy rate for the channel models.

For Z ą 1, it is worth mentioning that code constructions exist for a wider class of

code parameters for the channel model if the positions of the bursts are the same in the

corresponding Z links.

For future work it would be interesting to construct codes for the channel model where

Z “ M and Z ă M ´ 1 (perhaps using other methods of code construction). It would

also be interesting to consider parallel burst-erasure wiretap channels, where on each link

an eavesdropper is able to observe parts of the communication noiselessly.
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Part III.

Modular Codes for the Wiretap Channel

in the Finite Blocklength Regime





7. The Seeded Modular Code

7.1. Introduction

We consider a seeded modular code for the additive white Gaussian noise (AWGN) wire-

tap channel consisting of a security layer, an error-correction layer and a modulation layer.

For reliable transmission, we use any forward error-correction (FEC) code and modulation

method. In the security layer, a universal hash function (UHF) is used, which depends

on a randomly chosen seed s. We consider three communication scenarios in which the

advantage (the security measure) at the eavesdropper is measured in different ways. In

the first two scenarios, the message distribution may be arbitrary, so these setups would

be variants of “semantic security” in common terminology. In the third scenario, the

advantage is measured under the assumption of a uniformly distributed message. This

is usually referred to as “strong security”. The eavesdropper uses the maximum likeli-

hood (ML) test as an attack strategy. To assess the security performance, we derive the

operational meaning of the advantages in terms of the error probability.

Contribution

We consider three communication scenarios in which the advantage at the eavesdropper

is measured in different ways. Among them we consider the advantage at Eve under dis-

tinguishing security 1 [13]. The difference between semantic security and distinguishing

security is that distinguishing security considers only the subclass of message distribu-

tions, whose support is a set of two equally probable messages. In [13] it is shown that

distinguishing security is equivalent to semantic security asymptotically, but distinguish-

ing security is easier to handle. That is, Eve observes a random vector Zc for any message

pair from the message set M, and tries to identify to which message Zc belongs. We an-

alyze Eve’s optimal attack strategy which is the maximum likelihood (ML) test. In the

first two scenarios we interpret Eve as active in the sense that she can choose the message

pair to be transmitted.

In preparation for the simulations, we consider different security metrics in each com-

munication scenario and show some relevant relationships between the advantages of the

three scenarios. Among them we extend the proof of Bellare et al. [20], which shows

that strong security implies semantic security, to the AWGN case with BPSK or QPSK

1An early instance of distinguishability is used in [51].
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input. Furthermore, we discuss the operational meanings of the distinguishing security

and the strong security. They amount to Eve performing an optimal ML test for every

message pair. For this purpose, we introduce a new strong security metric to compare

with the distinguishing security. Furthermore, we have made a working hypothesis; in-

creasing the average Hamming distance of a coset pair improves Eve’s performance and

thus increases her advantage. In Chapter 8 the simulations indicate that our hypothesis

might be correct.

Related Work

In information theory, UHF’s were first studied by Bennett et al. [52]. Hayashi [53]

proposed using the UHF as a technique for wiretap coding. In [54] and in [13], it is

shown that with a modular UHF scheme a variant of semantic security - where Eve can

choose the message distribution after getting to know the seed - can be achieved if the

wiretap channel is discrete, degraded and symmetric. Furthermore, it is shown that the

modular UHF scheme achieves secrecy capacity under semantic security in this case. In

the case of an additive white Gaussian noise (AWGN) channel, it is shown in [55] that

strong secrecy capacity can be achieved. In [56], a special UHF is used as the security

component, by which a variant of semantic security is achievable - where the message

distribution is arbitrary but independent of the seed - for arbitrary discrete memoryless

wiretap channels. Similar to [56], it can be shown that the modular UHF scheme is

semantically secure for the Gaussian channel. The seed it requires is longer than that

needed by, e.g., the function in [55] and in [13]. In [57], a novel type of functions called

biregular irreducible (BRI) functions is introduced and applied as security components

(instead of, e.g., universal hash functions) in seeded modular wiretap coding schemes.

In [57] it is shown that semantic security can be achieved for a discrete and Gaussian

wiretap channel by using BRI functions. During the preparation of this work, efficiently

computable BRI functions were constructed [58].

Previous works have already implemented and analyzed codes for the wiretap channel,

such as in [59], [60]. In [59], the performance of LDPC codes for the Gaussian wiretap

channel under strong security was analyzed. In [60], additional inner coding layers were

created that generate a discrete memoryless channel (DMC) for Eve and Bob so that the

outer wiretap code already available in [61], [46] can be used. However, Eve is required

to process the channel output before security is evaluated. Moreover, strong security is

shown heuristically for the three layer coding scheme, and the migration effort in existing

systems is high compared to the proposed seeded modular coding scheme. In [61] and in

[62], alternative concepts to the modular scheme are presented.
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M V
f´1
s

XnΨ
X 1c

χ
Y 1c

T c

Y n
ϕ

V̂
Φ

M̂
fs

ZcEc

Seed s

Figure 7.1.: A seeded modular code for the wiretap channel pT c, Ecq, where n is the code-
wordlength of the FEC code and c is the blocklength.

Outline

Section 7.2 introduces notation and provides the preliminary background about the AWGN

wiretap channel, as well as the AWGN wiretap code. Furthermore, we define the security

metrics if an unseeded modular scheme is used. In Section 7.3, we describe the seeded

modular UHF coding scheme for the AWGN wiretap channel and the explicit construction

of the code. We introduce three communication scenarios and define the corresponding se-

curity metrics. Then, we consider the relationships between the security metrics. Section

7.4 gives the operational meaning of the advantage at Eve under distinguishing secu-

rity and under strong security. Then we discuss how to maximize Eve’s performance to

simulate a worst case scenario. Section 7.5 concludes with discussion and open problems.

7.2. Preliminary

7.2.1. Notations

Throughout the paper, we write X „ unifpX q to denote that X is a uniform ran-

dom variable over some discrete set X . The logarithm log and the exponential func-

tion exp will always be taken to base 2. We denote by 0k a zero vector of length

k. The operation r¨sk selects the k most significant bits and p¨||¨q denotes the con-

catenation of two vectors. The statistical difference between X1 and X2 is defined by

}PX1 ´ PX2} “
1
2

ş

X |pX1pxq ´ pX2pxq| dx.

7.2.2. The AWGN Wiretap Channel

The goal of Alice is to communicate a message M PM of length log |M| to Bob (w.l.o.g.

we assume that M is a binary sequence), which is distributed according to PM . Alice

performs this task by encoding M to a vector X 1c P X 1c of length c and transmitting X 1c.

For the case where the channels are AWGN, we have

Y 1 “ X 1
`NT , Z “ X 1

`NE, (7.1)

where X 1 P X 1 Ă C and NT and NE are Gaussian noises of Bob’s channel T and Eve’s

channel E, respectively. We assume that NT and NE are circularly symmetric accord-
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ing to CN p0, 2σ2
T q and CN p0, 2σ2

Eq, respectively. Since the channel is memoryless, we

respectively obtain after c channel uses Y 1c “ X 1c ` N c
T and Zc “ X 1c ` N c

E, where N c
T

and N c
E are white Gaussian noises, respectively. Alice is subject to a transmission power

restriction P . The encoding of a message M by Alice should be such that Bob is able to

decode M reliably, and using the appropriate security metric, Zc should give Eve as little

advantage as possible about M .

7.2.3. The AWGN Wiretap Code and the Security Metrics

Definition 7.1. An pξ, ζq-Code Cc for the AWGN wiretap channel pT c, Ecq consists of a

stochastic encoder at the transmitter

ξ : MÑ X 1c, (7.2)

and a decoder at the legitimate receiver

ζ : Y 1c ÑM. (7.3)

The maximum probability that the decoding fails is

P̂epCcq “ max
mPM

Pr ppζ ˝ T c ˝ ξqpmq ‰ mq , (7.4)

where ζ ˝ T c ˝ ξ denotes the concatenation of ζ, the channels T c and ξ.

We wish P̂epCcq to be small, then the transmission of messages through T c applying the

wiretap code Cc is close to noiseless.

At the same time, Eve observing the output of Ec should learn as little as possible about

the message M , that is, we require the advantage to be close to zero. Let EcpξpMqq

be the channel output at Eve when message M was sent and encoded with ξ, so that

ZcpMq “ EcpξpMqq.

We adopt the definitions (7.5) - (7.8) from [13]. The advantage at the eavesdropper

under semantic security (SS) is defined as follows:

Let h be a function defined on the message set M, so that hpMq is the image, then

AdvSSpξ;Ec
q “ max

h,M

`

max
A

PrpApZc
pMqq “ hpMqq ´max

G
PrpGpkq “ hpMqq

˘

, (7.5)

where A is the attack strategy of the eavesdropper, G is any simulator that has knowledge

of the length of the message k and the implicit knowledge of h and M .

The advantage at the eavesdropper under distinguishing security (DS) is defined as
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follows:

AdvDSpξ;Ec
q “ max

A,m1,m2

2PrpApm1,m2, Z
c
pmBqq “ Bq ´ 1

“ max
m1,m2

1

2

ż

Zc
|ppzc|m1q ´ ppz

c
|m2q| dz

c, (7.6)

where B is uniformly distributed over t1, 2u and the maximum is over all messages m1,

m2 and all t1, 2u-valued eavesdropper strategies A.

Furthermore, we consider the advantage under the mutual information security (MIS):

AdvMIS
pξ;Ec

q “ max
M

IpM ;Zc
pMqq, (7.7)

where the maximum is over all random variables M P M and M is assumed to be

distributed arbitrarily.

In information theory the more common security metric is mutual information security

for random messages (MIS ´R) also known as strong security:

AdvMIS´R
pξ;Ec

q “ IpM ;Zc
pMqq, (7.8)

where M „ uniftMu.

In addition, we define the advantage under average distinguishing security (DS ´R):

AdvDS´Rpξ;Ec
q “

1

|M|2

ÿ

m1,m2PM

1

2

ż

Zc
|ppzc|m1q ´ ppz

c
|m2q|dz

c. (7.9)

A common interpretation of Advxs is that the channel of Eve has dxs bits of xs-security

if Advxs ď 2´dxs . We call dxs the security level.

Let C “
 

Ccpgq
(

gPN be a sequence of AWGN wiretap codes for Bob’s channel with

blocklength cpgq, where c is a monotonically increasing function of g. We assume that the

channel input fulfills the average power constraint, that is, 1
cpgq

řcpgq
i“1 |x

1
i|

2 ď P . Note that

we consider the case where the modulation alphabet can change with the blocklength.

We call C an AWGN wiretap coding scheme, and xs-secure if the scheme fulfills the

properties of the following definition.

Definition 7.2 (Achievable Asymptotic Secrecy Rate). A non-negative real num-

ber Rsec is called an achievable asymptotic secrecy rate under xs-security if there exists a

strictly increasing sequence tcpgqugě1 and a sequence
 

Ccpgq
(

gPN “ p
 

ξcpgq
(

gPN ,
 

ζcpgq
(

gPNq

107



7. The Seeded Modular Code

of wiretap codes, where Ccpgq complies with the average transmit power P , such that

lim
gÑ8

1

cpgq
log

ˇ

ˇMcpgq

ˇ

ˇ ě Rsec,

lim
gÑ8

Advxspξcpgq;E
cpgq
q “ 0,

lim
gÑ8

PepCcpgqq “ 0.

The supremum of all achievable asymptotic secrecy rates under xs-security is called the

xs secrecy capacity of the AWGN wiretap channel. The xs secrecy capacity is given as

follows.

Proposition 7.1. The xs secrecy capacity of the AWGN wiretap channel is for all

xs P tSS,DS,MIS,DS ´R,MIS ´Ru

Cspσ
2
T , σ

2
E, P q “

$

&

%

CT pσ
2
T , P q ´ CEpσ

2
E, P q σ2

T ď σ2
E

0 otherwise,
(7.10)

where CT pσ
2
T , P q “ logp1` P

2σ2
T
q and CEpσ

2
E, P q “ logp1` P

2σ2
E
q.

This was shown in [63] for the case of strong security, i.e., for the case where xs P tMIS´

R,DS ´Ru. In [64], it is shown that the secrecy capacity is given by Cspσ
2
T , σ

2
E, P q if the

message may have an arbitrary distribution, i.e., for the case where xs P tMIS, SS,DSu.

Remark 7.2. According to Definition 7.2, it is possible that the sequence of codes C is

defined for a subsequence of the set of blocklengths, and analysis of the converse proofs

shows that the achievable secrecy rate is not increased compared with the secrecy rates

of the common definition, where the sequence of codes attains all blocklengths.

Next, we consider the equivalences1 of the security metrics given above.

The following relationship between SS-security and DS-security for the discrete wiretap

channel setup is given in [13, Theorem 4.1], and can be extended to the Gaussian setup.

AdvSSpξ;Ec
q ď AdvDSpξ;Ec

q ď 2AdvSSpξ;Ec
q. (7.11)

Thus, distinguishing security is equivalent to semantic security asymptotically.

Furthermore, according to [62, Proposition 1] we have

AdvMIS
pξ;Ec

q ď 2AdvDSpξ;Ec
q log

|M|

2AdvDSpξ;Ecq
,

AdvDSpξ;Ec
q ď 2

a

2AdvMISpξ;Ecq. (7.12)

1We call two security measures equivalent if one security measure approaches 0 if and only if the other
approaches 0.
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If AdvDSpξ;Ecq decreases exponentially with c, then DS-security implies MIS-security.

The relationship between strong security and average distinguishing security is given

in the following proposition.

Proposition 7.3.

AdvMIS´R
pξ;Ec

q ď 2AdvDS´Rpξ;Ec
q log

|M|

2AdvDS´Rpξ;Ecq
. (7.13)

Proof. We use the upper bound by [62, Appendix I], so that

AdvMIS´R
pξ;Ec

q ď 2

ż

zcPZc
γ log |M|dµ´

`

2

ż

zcPZc
γdµ

˘

log
`

2

ż

zcPZc
γdµ

˘

,

where γ “ 1
2

ř

mPM

ˇ

ˇPMpmq ´ PM |zcpmq
ˇ

ˇ and dµ “ ppzcqdzc is the probability measure

associated to Zc. Observe that,

}PZc,M ´ PZcPM} “

ż

zcPZc
γdµ, (7.14)

where

}PZc,M ´ PZcPM}

“
ÿ

mPM
PMpmq

1

2

ż

Zc
|ppzc|mq ´ ppzcq|dzc

“
1

|M|

ÿ

m1PM

1

2

ż

Zc
|ppzc|m1q ´

1

|M|

ÿ

m2PM
ppzc|m2q|dz

c

“
1

|M|

ÿ

m1PM

1

2

ż

Zc
|

1

|M|

ÿ

m2PM

`

ppzc|m1q ´ ppz
c
|m2q

˘

|dzc

ď
1

|M|2

ÿ

m1PM

ÿ

m2PM

1

2

ż

Zc
|ppzc|m1q ´ ppz

c
|m2q|dz

c

“ AdvDS´Rpξ;Ec
q. (7.15)

7.3. The Seeded Modular UHF Code

Fig. 7.1 shows a seeded modular wiretap code for the wiretap channel. We suppose, that

both, the channel of Bob and the channel of Eve are AWGN. We assume that Eve’s SNR

is smaller than Bob’s SNR and that all participants have seed s, e.g., because of access to

sufficient common randomness. A possible scenario is when Alice transmits the seed and

the message in succession. Furthermore, the seed is chosen according to a random variable

S which is uniformly distributed over a finite set S. We consider the seeded modular UHF

code pξ, ζq for the AWGN wiretap channel pT c, Ecq that consists of a stochastic seeded

encoder at Alice ξ : S ˆM Ñ X 1c, and a seeded decoder at Bob ζ : S ˆ Y 1c ÑM. The
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code consists of the following three layers; the modulation layer pχ, ϕq, the error-correction

layer pΨ,Φq and the security layer (f´1
s , fs), so that ξ : χ˝Ψ˝f´1

s and ζ “ fs˝Φ˝ϕ, where

χ, ϕ are the modulation and demodulation functions, respectively, and Ψ,Φ the encoding

and decoding functions of the linear FEC code, respectively. Functions fs and f´1
s are

defined below. Bob’s goal is to decode the message m correctly. First, he demodulates

the noisy version y1c “ x1c `N c
T of the modulated codeword x1c by ϕ : y1c ÞÑ yn and then

decodes v̂ “ Φpynq. Finally, Bob decodes the message m̂ as m̂ “ fspv̂q.

In the following, we consider binary FEC codes, but the code is not limited to a binary

alphabet. Denote by F2l the finite field with 2l elements, F˚
2l
“ F2lz t0u

l, and let ˚ and ‘

denote multiplication and addition in F2l , respectively.

Security Layer : For two sets of V “ t0, 1ul and M “ t0, 1uk, we use a family of UHF’s

F “

!

fs : t0, 1ul Ñ t0, 1uk |s P S
)

, so by definition

|ts P S|fspv1q “ fspv2qu| ď
|S|
2k

(7.16)

for every v1 ‰ v2 P t0, 1u
l. Alice encodes the message m P t0, 1uk by using the randomized

inverse f´1
s pmq, which uniformly at random picks an element v of the set tv1 : fspv

1q “ mu.

We consider the following two families of UHF’s:

1)

F1 “

!

fa,t : t0, 1ul Ñ t0, 1uk |a P F˚2l , t P F2l

)

, (7.17)

where fa,tpvq “ rpa ˚ vq ‘ tsk and s “ pa, tq P S.

Accordingly, for some random vector R „ unifpt0, 1ul´kq, the randomized inverse is

f´1
s pmq “ a´1

˚ ppm||Rq ‘ tq, (7.18)

where ppm||Rq ‘ tq P t0, 1ul.

Next, we show that F1 is a family of UHF’s, and thus that for every v1 ‰ v2 P t0, 1u
l,

(7.16) is fulfilled. Wegman and Carter [65] proved Proposition 7.4 for the case of finite

fields Fp with p prime.

Proposition 7.4. F1 defined in (7.17) is a family of UHF’s.

Proof. For any given v1 ‰ v2 P t0, 1u
l we have to count how many seeds satisfy fspv1q “

fspv2q and thus satisfy rpa ˚ v1q ` tsk “ rpa ˚ v2q ` tsk. We can reformulate the equation

to rpa ˚ v1qsk ` rtsk “ rpa ˚ v2qsk ` rtsk, so that it remains to count how many a satisfy

0k “ ra ˚ v1sk ` ra ˚ v2sk “ ra ˚ v
1sk “ ra ˚ pm||rqsk, where v1 “ v1 ` v2 “ pm||rq. Since

a ‰ 0l, there is a unique value a ˚ v1. If we fix m, then there are 2l´k ´ 1 choices of a to

obtain 0k “ ra ˚ pm||rqsk, and we have 2l choices for t. We obtain 2´k2lp2l ´ 2kq choices

for pa, tq, where 2´k2lp2l ´ 2kq ď |S|
2k

.
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2)

F2 “

!

fs : t0, 1ul Ñ t0, 1uk |s P F˚2l
)

, (7.19)

where fspvq “ rs ˚ vsk, and the randomized inverse is

f´1
s pmq “ s´1

˚ pm||Rq. (7.20)

Remark 7.5. Proposition 7.4 is also valid for (7.19). Furthermore, for a restricted mes-

sage set, the functions are BRI functions [57].

Error-Correction Layer : In the error-correction layer, Alice encodes v using some FEC

code pΨ,Φq of rate RFEC “ l{n, so that

Ψpvq “ xn “ vG, (7.21)

where G is the l ˆ n generator matrix of the FEC code.

Modulation Layer : We consider BPSK and QAM. We denote the corresponding symbol

alphabet by X 1 Ă C. It has size 2Rmod , where Rmod denotes the number of bits per symbol.

In the modulation layer, Alice modulates xn to x1c using a modulation scheme pχ, ϕq, where

c “ n{Rmod. In order to satisfy the transmit power constraint, we choose it in such a way

that

Pav “
1

2Rmod

ÿ

x1PX 1
|x1|2. (7.22)

The product of RFEC and Rmod gives the effective rate

Reff “ l{c, (7.23)

which is the rate of Bob’s channel. The secrecy rate Rsec is defined as

k

c
“
k

l
Reff . (7.24)

Note that the blocklength is c.

7.3.1. Communication Scenarios

In the following, we introduce three communication scenarios where in analogy to Sec-

tion 7.2.3, we define the decoding error probability of Bob and the corresponding seeded

advantages at Eve under xs-security, where S is taken as additional knowledge of Eve.

For a better overview, we provide the security metrics with a number that indicates the

communication scenario.
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The achievable asymptotic secrecy rates Rsec under xs-security of the seeded modular

UHF coding scheme for the AWGN wiretap channels can be defined analogous to Section

7.2.3 and are given in (7.10). For the case with seed, no converse is known.

Communication scenario 1: This is a communication scenario as considered by Bellare

and Tessaro in [66], where Eve can actively affect the selection of messages. In this

scenario, xs P tDS1,MIS1u. If xs “ DS1, first a randomly chosen seed S P S is given,

and then Eve chooses a message pair pm1,m2q, where m1,m2 P t0, 1u
k, so that the choice

of pm1,m2q depends on the choice of the seed. If xs “ MIS1, the process is the same

except that Eve chooses the conditional message distribution PM |S.

The error probability of the seeded modular code pξ, ζq is then defined as

Pepξ, T
c, ζq “ ES max

m
Pr pζpY 1cpS,mqqq ‰ mq . (7.25)

Since fspf
´1
s pmqq “ m, the error depends only on the FEC code, the modulation mapping

and the channel.

We choose the FEC code and the modulation scheme so that Pepξ, T
c, ζq is sufficiently

small (e.g. Pepξ, T
c, ζq ă 10´4 ). For the following scenarios, the error probabilities are

adjusted to Bob analogously to the advantages.

The seeded advantage at Eve under DS1-security is defined in [66] as follows:

AdvDS1pξ;Ec;Sq “ 1

|S|
ÿ

sPS
max

A,m1,m2

2PrpAps,m1,m2, Z
c
pmB, sqq “ Bq ´ 1

“
1

|S|
ÿ

sPS
max
m1,m2

1

2

ż

Zc
|ppzc|m1, sq ´ ppz

c
|m2, sq| dz

c

“
1

|S|
ÿ

sPS
max
m1,m2

||PZc|M“m1,S“s ´ PZc|M“m2,S“s||, (7.26)

where B is uniformly distributed over t1, 2u and the maximum is over all t1, 2u-valued

eavesdropper strategies A and k-bit messages m1,m2. Note, if the advantage is small,

then the probability of a seed appearing that is favorable for Eve is also small.

The seeded advantage at Eve under MIS1-security:

AdvMIS1pξ;Ec;Sq “ max
PM |S

IpM ;Zc
pM,Sq|Sq. (7.27)

Since Eve knows PM |S and thus IpM ;Sq, the advantage depends on the right term of

(7.27) only.

Communication scenario 1a: A possible similar scenario that we consider in Section 8.2

is the case where for a fixed channel and given code parameters, we choose a specific seed

from the seed set S. This corresponds to the case of unseeded encryption. The advantage
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under DS1aq-security given a specific seed s is

AdvDS1aqpξ;Ec; sq “ max
A,m1,m2

2PrpAps,m1,m2, Z
c
pmB, sqq “ Bq ´ 1

“ max
m1,m2

1

2

ż

Zc
|ppzc|m1, sq ´ ppz

c
|m2, sq| dz

c

“ max
m1,m2

||PZc|M“m1,S“s ´ PZc|M“m2,S“s||. (7.28)

We are interested in seeds that are unfavorable for Eve. In Section 8.2 we are looking for

such seeds. This scenario would drastically reduce the complexity of the modular UHF

scheme because then the seed must only be made public once.

Remark 7.6. The security measures (7.5) - (7.9) and the equivalences from 7.2.3 for the

case without seed immediately apply to scenario 1a).

Communication Scenario 2: Depending on whether DS2 or MIS2 is considered, Eve

first chooses a message pair (m1,m2) or PM that is beneficial for her, and only then is

S P S randomly chosen, so that the message and the seed are independent.

The seeded advantage at Eve under DS2-security:

AdvDS2pξ;Ec;Sq “ max
A,m1,m2

2PrpApS,m1,m2, Z
c
pmB, Sqq “ Bq ´ 1

“ max
m1,m2

1

2

ż

Zc

1

|S|
ÿ

sPS
|ppzc|m1, sq ´ ppz

c
|m2, sq| dz

c

“ max
m1,m2

1

|S| ||PZc|M“m1,S“s ´ PZc|M“m2,S“s||, (7.29)

where B, m1, m2 and A are as in (7.26).

The seeded advantage at Eve under MIS2-security:

AdvMIS2pξ;Ec;Sq “ max
PM

IpM ;Zc
pM,Sq, Sq. (7.30)

Next, we will see that when the message is chosen independently of the seed, and using

(7.17), proposed by Hayashi [56], as the security component in the seeded modular scheme,

MIS2-security can be achieved with positive secrecy rate, i.e. AdvMIS2pξ;Ec;Sq tends

to 0. See also the next subsection. The following upper bound of the advantage at Eve

under MIS2-security has been first proven in a more general context in [56], in terms of

the conditional Renyi entropy. In [57] the result was extended, and is given in terms of

the smooth Renyi divergence.

Proposition 7.7. Given the family of UHF’s tfs : s P Su as proposed in (7.17), [56,

Lemma 21] implies

AdvMIS2pξ;Ec;Sq ď 1

ln 2
2´cpReff´Rsec´pCEpσ

2
E ,P q`δqq ` εpδ, cqcRsec, (7.31)
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where εpδ, cqcÑ 0 for δ Ñ 0 and cÑ 8, and Rsec and Reff are given in (7.24) and (7.23),

respectively.

Proof. This follows immediately from [56, Lemma 21] and the discussion in [57].

As a consequence of (7.31) we obtain the following corollary. Let p¨q` “ maxp¨, 0q.

Corollary 7.8. Using an FEC code and a modulation scheme, and using the family of

UHF’s given in (7.17), the seeded modular UHF wiretap scheme C can achieve all secrecy

rates Rsec satisfying

Rsec ă pReff ´ pCEpσ
2
E, P q ` δqq

` (7.32)

with MIS2-security.

Proof. For cÑ 8 the right hand side of (7.31) should tend to zero. Therefore, we require

limcÑ8pReff ´ Rsec ´ pCEpσ
2
E, P q ` δqq ą 0. Furthermore, for any δ, one can choose

εpδ, cq such that εpδ, cqc Ñ 0 as c Ñ 8, then limcÑ8 εpδ, cqcRsec “ 0. Since δ can be

chosen arbitrarily small (but constant), one achieves any rate smaller than the right side

of (7.32).

This implies that if Reff can be arbitrarily close to the channel capacity CT pσ
2
T , P q,

the seeded modular UHF wiretap scheme can achieve the secrecy capacity under MIS2-

security. Here we refer to Proposition 7.1.

The inequality (7.31) says that AdvMIS2pξ;Ec;Sq ď 2´dMIS2 if

Rsec « Reff ´ log

ˆ

1`
P

2σ2
E

˙

´
dMIS2

c
. (7.33)

To achieve a certain security level dMIS2 at a given Rsec, Reff and P “ 2σ2
TSNRB, the

following approximately applies

dMIS2 ě l ´ k ´ c log

ˆ

1`
P

2σ2
E

˙

. (7.34)

Under the same conditions as in Proposition 7.7, we can derive a bound for DS2-security.

Proposition 7.9. Given the family of UHF’s tfs : s P Su as proposed in (7.17), the

upper bound of AdvDS2pξ;Ec;Sq is

AdvDS2pξ;Ec;Sq ď 4
a

2´cpReff´Rsec´pCEpσ
2
E ,P q`δqq ` 2εpδ, cq, (7.35)

where εpδ, cq Ñ 0 for δ Ñ 0 and cÑ 8.

Corollary 7.8 for DS2-security also applies here.
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The inequality (7.35) says that AdvDS2pξ;Ec;Sq ď 2´dDS2 if

RsecpdDS2q « Reff ´ CEpσ
2
E, P q ´

2dDS2 ` 4

c
. (7.36)

To achieve a certain security level dDS2 at a given R1sec, Reff and P “ 2σ2
TSNRB, we

approximately obtain

dDS2 ě
1

2

´

l ´ k ´ c log

ˆ

1`
P

2σ2
E

˙

¯

´ 2. (7.37)

Remark 7.10. Since in scenario 2 Eve has to choose the message pair to be independent

of the seed AdvDS2pξ;Ec;Sq ď AdvDS1pξ;Ec;Sq, and thus we can upper bound dDS1 by

dDS2 . In Section 8.2, we use the right-hand side of (7.37) to determine the amount of

encoding randomness.

Remark 7.11. The estimations in Proposition 7.7 and 7.9 are valid for sufficiently large

c but we use it because of its simple form. Furthermore, the actual security parameters

are found by simulations anyway.

Communication scenario 3: We consider a communication scenario where the seed S P S
and the message M „ unifpt0, 1ukq are randomly chosen independently.

We introduce the seeded advantage at Eve under DS3-security:

AdvDS3pξ;Ec;Sq “ 1

|S| 22k

ÿ

sPS

ÿ

m1,m2

Pt0,1uk

1

2

ż

Zc
|ppzc|m1, sq ´ ppz

c
|m2, sq|dz

c

“
1

|S| 22k

ÿ

sPS

ÿ

m1,m2

Pt0,1uk

||PZc|M“m1,S“s ´ PZc|M“m2,S“s||

“
2

|S| 22k

ÿ

sPS

ÿ

m1,m2

Pt0,1uk

max
A

PrpAps,m1,m2, Z
c
pmB, sqq “ Bq ´ 1, (7.38)

where B and A are as in (7.26). The uniform distribution of the message in this scenario

is reflected in the averaging over message pairs in (7.38). AdvDS3 is a measure of strong

security that we consider in Section 8.2. A similar form already appears in [18].

The seeded advantage at Eve under MIS3-security is given as follows:

AdvMIS3pξ;Ec;Sq “ IpM ;Zc
pM,Sq, Sq. (7.39)

Since the communication scenario 2 is difficult to simulate (because the first thing to

do is to find a message pair that maximizes the advantage), Section 8.2 considers mainly

the communication scenarios 1, 1a) and 3, namely the DS1-security, DS1aq-security and

the DS3-security.

115



7. The Seeded Modular Code

7.3.2. Relations between the Security Metrics

MIS3-Security Implies MIS2-Security

To determine AdvDS2pξ;Ec;Sq and AdvDS1pξ;Ec;Sq it is necessary to maximize over a

message pair, which raises problems. We therefore also consider AdvMIS3pξ;Ec;Sq and

extend the proof of Bellare et al. [20] to the AWGN case. This shows that when the

channel is a binary input AWGN channel, the FEC code is linear and when f´1
s pmq is

given as in (7.20) then AdvMIS2pξ;Ec;Sq decreases if AdvMIS3pξ;Ec;Sq decreases. We

want to mention that for the unseeded case, an alternative proof exists in [67] that shows

the relationship when the channel is symmetric and the universal hash function is linear.

Consider an AWGN channel with zero mean and variance σ2
E. Suppose we use BPSK

with X 1 “ t´a, au and a uniform quantizer that maps Z to the nearest value in the set

Ẑ “
 

´L` 1
2L
,´L` 2

2L
, . . . , L´ 2

2L
, L´ 1

2L

(

, so that Ẑ P Ẑ. Furthermore, L can become

arbitrarily large, so that the Gaussian density function can be arbitrarily approximated

due to its smoothness, and thus the advantage as well. Note that we can partition the

AWGN channel outputs Ẑ in such a way that for each subset, the matrix of transition

probabilities has the property that each row is a permutation of each other row and each

column is a permutation of each other column. Thus, the channel is symmetric according

to [68]. More precisely, the set of outputs of the X 1´to´Ẑ channel can be partitioned into

subsets, so that in terms of transition probability matrices of the subsets (using inputs as

rows and outputs of the subset as columns), with Ẑ “
ŤrL{2s

i“1 Ẑi, we have for all ẑ, ẑ˚ P Ẑi

that the list of probabilities of W ra, ¨s and W r´a, ¨s and of W r¨, ẑs and W r¨, ẑ˚i s is the

same, respectively. Furthermore, the same applies to the AWGN channel if we use QPSK,

because this corresponds to two BPSK.

Consider the group pX 1,‘q, where a is the identity and where 0 ÞÑ a and 1 ÞÑ ´a.

Furthermore, let ξ : S ˆ t0, 1uk Ñ X 1c be a random function which can be realized by a

deterministic function ξ : S ˆ t0, 1ul´k ˆ t0, 1uk Ñ X 1c, that has an additional uniformly

at random input vector.

According to [13][Theorem 4.12], if a random function ξ : Sˆt0, 1uk Ñ X 1c is separable

and message-linear and the channel E 1 : X 1 Ñ Ẑ is symmetric, then

AdvMIS2pξ;Ec;Sq ď AdvMIS3pξ;Ec;Sq, (7.40)

where ξ is separable if

ξps, r,mq “ ξps, r, 0kq ‘ ξps, 0l´k,mq (7.41)

for all s P S, r P t0, 1ul´k and m P t0, 1uk, and message linear if

ξps, 0l´k,m`m1
q “ ξps, 0l´k,mq ‘ ξps, 0l´k,m1

q (7.42)
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for all s P S, m,m1 P t0, 1uk. Obviously, for the case where f´1
s is given as in (7.20),

ξ “ BPSK ˝Ψ ˝ f´1
s is separable and message-linear.

Since we can approximate the Gaussian density function arbitrarily close with the

appropriate partition of Ẑ, (7.40) also holds for the continuous channel.

We summarize the result as follows.

Theorem 7.12. Let f´1
s pmq be as in (7.20) and let the randomized function ξ “ BPSK˝

Ψ ˝ f´1
s : S ˆ t0, 1uk Ñ X 1c be a separable and message-linear encryption function, and

E : X 1 Ñ Z a symmetric AWGN channel, then (7.40) is true.

DS3-Security Implies DS1-Security

First, we review [66, Lemma 5.8].

Lemma 7.13. For the case where the channel E : X 1 Ñ Z is symmetric and ξ : S ˆ
t0, 1uk Ñ X 1c is a separable and message-linear function, ||PZc|m,s ´ PZc|s|| is the same

regardless of the choice of the input m P t0, 1uk.

Theorem 7.14. Let f´1
s pmq be as in (7.20). For the symmetric AWGN channel E :

X 1 Ñ Z, if ξ “ BPSK ˝ Ψ ˝ f´1
s : S ˆ t0, 1uk Ñ X 1c is a separable and message-linear

randomized function, then

AdvDS1pξ;Ec;Sq ď 2AdvDS3pξ;Ec;Sq. (7.43)

Proof. Let M „ unifpt0, 1ukq.

AdvDS3pξ;Ec;Sq “ 1

|S| 22k

ÿ

sPS

ÿ

m1,m2

Pt0,1uk

1

2

ż

Zc
|ppẑc|m1, sq ´ ppẑ

c
|m2, sq|dz

c

ě
1

|S|
ÿ

sPS

1

2k

ÿ

m
Pt0,1uk

1

2

ż

Zc
|ppẑc|m, sq ´ ppẑc|sq|dzc

“
1

|S|
ÿ

sPS

1

2

ż

Zc
|ppẑc|m, sq ´ ppẑc|sq|dzc,

where the inequality follows from the triangle inequality and the last equality from Lemma

7.13. Moreover,

AdvDS1pξ;Ec;Sq “ 1

|S|
ÿ

sPS
max
m1,m2

1

2

ż

Zc
|ppẑc|m1, sq ´ ppẑ

c
|m2, sq| dz

c

ď
1

|S|
ÿ

sPS
max
m1,m2

”1

2

ż

Zc
|ppẑc|m1, sq ´ ppẑ

c
|sq|dzc

`
1

2

ż

Zc
|ppẑc|sq ´ ppẑc|m2, sq|dz

c
ı

“ 2
1

|S|
ÿ

sPS

1

2

ż

Zc
|ppẑc|m, sq ´ ppẑc|sq|dzc, (7.44)
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where the inequality follows from the triangle inequality and the last equality follows from

Lemma 7.13.

Note that a similar security measure to AdvDS3pξ;Ec;Sq is defined in [66]:

AdvRDSpξ;Ec;Sq “ 1

|S|
ÿ

sPS

1

2k

ÿ

m
Pt0,1uk

1

2

ż

Zc
|ppẑc|m, sq ´ ppẑc|sq|dzc. (7.45)

They have the following relationship:

AdvDS3pξ;Ec;Sq ď 2AdvRDSpξ;Ec;Sq ď 2AdvDS3pξ;Ec;Sq. (7.46)

DS3-Security and MIS3-Security

The empirical study of mutual information is difficult and therefore we can only approach

the analysis of MIS3-security theoretically.

Proposition 7.15. Let ξ : Sˆt0, 1uk Ñ X 1c be a stochastic encoder and Ec the channel

of Eve. Then,

AdvMIS3pξ;Ec;Sq ď 2AdvDS3pξ;Ec;Sq log
2k

2AdvDS3pξ;Ec;Sq . (7.47)

Proof. For the AWGN channel (and the DMC channel) we can use the upper bound

proposed by [62, Appendix I]:

AdvMIS3pξ;Ec;Sq ď 2
›

›PZc,M |S“s ´ PZc|S“sPM
›

› log
2k

2
›

›PZc,M |S“s ´ PZc|S“sPM
›

›

. (7.48)

Observe that,

AdvMIS3pξ;Ec;Sq

aq

ď
1

|S|
ÿ

sPS
2
›

›PZc,M |S“s ´ PZc|S“sPM
›

› log
2k

2
›

›PZc,M |S“s ´ PZc|S“sPM
›

›

bq

ď
1

|S|
ÿ

sPS
2
›

›PZc,M |S“s ´ PZc|S“sPM
›

› log
2k

1
|S|

ř

sPS 2
›

›PZc,M |S“s ´ PZc|S“sPM
›

›

,

where a) follows from (7.48), and b) as ´x log x is concave.

Furthermore,
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1

|S|
ÿ

sPS

›

›PZc,M |S“s ´ PZc|S“sPM
›

›

“
1

|S|
ÿ

sPS

ÿ

mPt0,1uk

PMpmq
1

2

ż

Zc
|ppzc|m, sq ´ ppzc|sq|dzc

“
1

|S|
ÿ

sPS

1

2k

ÿ

m1Pt0,1u
k

1

2

ż

Zc
|ppzc|m1, sq ´

1

2k

ÿ

m2Pt0,1u
k

ppzc|m2, sq|dz
c

“
1

|S|
ÿ

sPS

1

2k

ÿ

m1Pt0,1u
k

1

2

ż

Zc
|

1

2k

ÿ

m2Pt0,1u
k

`

ppzc|m1, sq ´ ppz
c
|m2, sq

˘

|dzc

ď 1
|S|22k

ÿ

sPS

ÿ

m1,m2

Pt0,1uk

1

2

ż

Zc
|ppzc|m1, sq ´ ppz

c
|m2, sq|dz

c

“ AdvDS3pξ;Ec;Sq. (7.49)

If AdvDS3pξ;Ec;Sq decreases exponentially with c, then DS3-security implies MIS3-

security.

DS3-Security and MIS2-Security

From (7.40) and (7.47) follows:

Proposition 7.16. Let ξ : Sˆt0, 1uk Ñ X 1c be a separable and message-linear stochastic

encoder and Ec a symmetric AWGN channel of Eve. Then,

AdvMIS2pξ;Ec;Sq ď 2AdvDS3pξ;Ec;Sq log
2k

2AdvDS3pξ;Ec;Sq . (7.50)

This is also true for f´1
s pmq given in (7.20). If AdvDS3pξ;Ec;Sq decreases exponentially

with c, then DS3-security implies MIS2-security.

7.4. Measurement of security by simulation

7.4.1. Operational Meaning

We consider the operational meaning of the DS1-security and DS3-security to be able to

evaluate the simulation results in Section 8. For simulations when considering distinguish-

ing security and strong security, we can use the ML decoder at Eve which is an optimal

attack strategy, because only message distributions with equally probable message pairs

are considered.
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Distinguishing Security of Scenarios 1 and 1a)

We can reformulate the first equation of (7.26) to obtain

AdvDS1pξ;Ec;Sq

“
1

|S|
ÿ

sPS
max

A,m1,m2

PrpAps,m1,m2, Z
c
pm1, sqq “ 1q ´ PrpAps,m1,m2, Z

c
pm2, sqq “ 1q

“
1

|S|
ÿ

sPS
max

A,m1,m2

1´ PrpAps,m1,m2, Z
c
pm1, sqq “ 2q

´ PrpAps,m1,m2, Z
c
pm2, sqq “ 1q, (7.51)

where PrpAps,m1,m2, Z
cpm1, sqq “ 2q is the probability of error of the first kind,

and PrpAps,m1,m2, Z
cpm2, sqq “ 1q the probability of error of the second kind.

Every t1, 2u-valued eavesdropper strategy zc ÞÑ Aps,m1,m2, z
cq is a hypothesis test

for distinguishing m1 and m2. Thus for fixed s,m1,m2, the maximum over A in (7.51)

is attained by an ML test with threshold η, as given in Subsection 7.4.2. Then (7.51)

becomes

AdvDS1pξ;Ec;Sq “ 1

|S|
ÿ

sPS
max
η,m1,m2

p1´ λ1ps,m1,m2, ηq ´ λ2ps,m1,m2, ηqq, (7.52)

where λ1ps,m1,m2, ηq and λ2ps,m1,m2, ηq are the probability of error of the first kind

and the second kind, respectively.

If we define the distinguishing error rate at Eve:

DERE1pξ;E
c;Sq “ 1

|S|
ÿ

sPS
min

η,m1,m2

pλ1ps,m1,m2, ηq ` λ2ps,m1,m2, ηqq

2
, (7.53)

then we can see that AdvDS1pξ;Ec;Sq and DERE1pξ;E
c;Sq are two different representa-

tions of Eve’s performance and therefore can be translated into each other by

AdvDS1pξ;Ec;Sq “ 1´ 2 ¨DERE1pξ;E
c;Sq.

In all communication scenarios, we can use DERE as a benchmark value for the advan-

tage, where DERE close to 1/2 means “high security”.

Accordingly, (7.28) can be reformulated so that

AdvDS1aqpξ;Ec; sq “ max
η,m1,m2

p1´ λ1ps,m1,m2, ηq ´ λ2ps,m1,m2, ηqq. (7.54)

The distinguishing error rate at Eve for given η, m1, m2 and s is then,

DERE1aq
ps,m1,m2, ηq “

λ1ps,m1,m2, ηq ` λ2ps,m1,m2, ηq

2
.
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We define DERE1aq
ps,m1,m2, ηq for each message pair because we apply them in the

simulation.

The maximization over the message pair is discussed in Section 7.4.3.

Distinguishing Security of Scenario 3

Here, we obtain AdvDS3pξ;Ec;Sq in terms of the probability of error of the first and the

second kind.

Proposition 7.17. Let ξ : Sˆt0, 1uk Ñ X 1c be a stochastic encoder and Ec the channel

of Eve. Then,

AdvDS3pξ;Ec;Sq “ 1´ λ̄pξ;Ec;Sq, (7.55)

where λ̄pξ;Ec;Sq “ 1
22k|S|

ř

sPS
ř

m1,m2Pt0,1u
k minηpλ1ps,m1,m2, ηq ` λ2ps,m1,m2, ηqq.

Proof. As in (7.52) and (7.54), we can replace the arbitrary distinguishing strategies A
by ML tests. Thus

AdvDS3pξ;Ec;Sq “ 1

22k |S|
ÿ

sPS

ÿ

m1,m2Pt0,1u
k

max
η
p1´ λ1ps,m1,m2, ηq ´ λ2ps,m1,m2, ηqq

“
1

22k|S|
ÿ

sPS

ÿ

m1,m2Pt0,1u
k

p1´min
η
pλ1ps,m1,m2, ηq ` λ2ps,m1,m2, ηqqq

“ 1´ λ̄pξ;Ec;Sq, (7.56)

with λ̄pξ;Ec;Sq as defined in the statement.

The corresponding distinguishing error rate at Eve is defined as

DERE3pξ;E
c;Sq “

λ̄pξ;Ec;Sq
2

. (7.57)

7.4.2. Attack strategy of the eavesdropper

Eve applies the ML test. Consider the log likelihood ratio with threshold η,

LLRpzc|s,m1,m2q “ log

˜

ppzc|s,m1q

ppzc|s,m2q

¸

ěM̂“m1

ăM̂“m2

logpηq,

where Eve decides for m1 if LLRpzc|s,m1,m2q is greater than or equal to log η and for

m2 otherwise.
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For the case where the channel is AWGN, we use the following conditional probability

densities when message mb with b P t1, 2u was sent,

ppzc|s,mbq “
1

2l´k

ÿ

v:fspvq“mb

c
ź

i“1

wpzipmb, sq|χpΨpvqqiq, (7.58)

where χpΨpvqqi denotes the i-th symbol in the length-c channel input χpΨpvqq P Cc, and,

for any channel input x1 P C and output z P C,

wpz|x1q “
SNRE

π
expp´|z ´ x1|2SNREq. (7.59)

7.4.3. Determining the Best Performance of Eve under DS1- Security

Now we focus on how to maximize (7.52) over the pair of messages out of the message

set t0, 1uk. We consider the problem from the coding point of view and analyze the code

structure.

We want to analyze the relationship between the advantage at Eve under distinguishing

security and the Hamming distance of the chosen codeword pairs of the associated message

pair (m1,m2). If a message pair pm1,m2q is chosen for which the codeword pairs have the

maximum Hamming distance, intuitively this should be close to optimal for Eve.

Recall that the randomized inverse of the UHF of (7.17) provides a stochastic mapping

from messages to the FEC inputs, so that as the message m is chosen, the encoder

chooses uniformly at random a vector v from the set tv1 : fspv
1q “ mu, and encodes it to

a codeword xn via the FEC code with generator matrix G. Therefore we do not search

for a single codeword pair but for a coset pair of codewords that have the maximum

average Hamming distance. Let us denote the set C 1pm, sq :“ tv1 : fspv
1q “ muG that

corresponds to a certain message m as coset, where C 1pm, sq is a subset of the codeword

set of the seeded modular UHF wiretap code Cn Ă t0, 1un, with |C 1pm, sq| “ 2l´k and

|Cn| “ 2l. C 1pm, sq is in fact a coset since the UHF is affine-linear and t0, 1ul corresponds

to the elements of GF p2lq. Furthermore, 9
Ť

h“1,...,2kC
1pmh, sq “ Cn.

Thus, we consider the following working hypothesis. If a message pair is chosen for

which the cosets C 1pm1, sq and C 1pm2, sq have the maximum average Hamming distance

among all pairs of such sets, this should intuitively be close to optimal for Eve. For any

linear FEC code with l ˆ n generator matrix G, we first look for two cosets C 1pm1, sq “

tv1 : fspv
1q “ m1uG, C 1pm2, sq “ tv

2 : fspv
2q “ m2uG, whose codewords have in average

the maximum Hamming distance to each other, where m1 ‰ m2 P t0, 1u
k. The maximum

average Hamming distance of a coset pair pC 1pm1, sq, C
1pm2, sqq is defined as follows:

dmaxpsq “ max
m1,m2

dHpC
1
pm1, sq, C

1
pm2, sqq,
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7.4. Measurement of security by simulation

where

dHpC
1
pm1, sq, C

1
pm2, sqq :“

1

2pl´kq2

ÿ

xn1 PC
1pm1,sq

ÿ

xn2 PC
1pm2,sq

dHpx
n
1 , x

n
2 q

is the average Hamming distance between C 1pm1, sq and C 1pm2, sq. We also define the

minimum such distance,

dminpsq “ min
m1,m2

dHpC
1
pm1, sq, C

1
pm2, sqq.

Remark 7.18. If we arrange the Hamming distances of all codeword pairs from the

coset pair in a matrix - whose columns number the codewords from coset 1 and whose

rows number the codewords from coset 2 - we see that the matrix is bisymmetric and

additionally that the diagonal and prediagonal each have uniform values. This insight

saves computational power.

To find a message pair or the corresponding coset pair of maximum average Hamming

distance, we analyze the code as follows. W.l.o.g. we can set t “ 0, because both for t “ 0

and t ‰ 0, the average Hamming distance between two cosets remains unchanged. Let

xnpm, rq P C 1pm, sq, where m and r specifies the codeword. Since pm||rq “ pm||0l´kq `

p0k||rq and the distributive law holds, we can write (7.18) as follows.

s´1
˚ pm||rq “ s´1

˚
“

pm||0l´kq ` p0k||rq
‰

“ s´1
˚ pm||0l´kq ` s´1

˚ p0k||rq.

Then (7.21) becomes

xnpm, rq “ ps´1
˚ pm||0l´kqqG` ps´1

˚ p0k||rqqG. (7.60)

The set of n-bit vectors
 

s´1 ˚ p0k||rq
(

@rPt0,1ul´k
G forms the coset C 1p0k, sq, and the cosets

C 1pmi, sq are given by bi`C
1 with bi “ ps

´1˚pmi||0
l´kqqG, which correspond to messagemi,

with i P
 

1, . . . , 2k
(

. If vectors bi and bj, i ‰ j P
 

1, . . . , 2k
(

have the maximum Hamming

distance then for any given r the corresponding codewords xnpmi, rq P C 1pmi, sq and

xnpmj, rq P C
1pmj, sq have the maximum Hamming distance, too. However, this gives no

information about the coset pairs which have the maximum average Hamming distance.

Since the codeword pairs are randomly selected from the coset pairs, their Hamming

distances are not known in advance. Furthermore, we could not theoretically show a

correlation between AdvDS1 and the Hamming distance of the codeword pairs. This is

where the simulations come into action, provided in Section 8.2. We gain helpful insights

into the interaction of seed and Eve’s advantage or the other code parameters, e.g., l,k.

Note that for higher order modulation, i.e. for j ě 4, the performance of Eve depends

not only on the code but also on the modulation. Here it would be interesting for future

work to investigate how the interaction of code and modulation affects the performance
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of Eve by additionally analyzing the Euclidean distance for the modulated words. Our

assumption is that the impact of the modulation decreases as the length of the random

vector r increases.

It is also interesting to see how the mean over the seed set affects the choice of message

pair. Let’s take a closer look at equation (7.52).

AdvDS1pξ;Ec;Sq

“
1

|S|
ÿ

sPS
max
η

max
m1,m2

«

1´ Pr

˜

ř

v:fspvq“m1

śc
i“1wpzipm1, sq|χpΨpvqqiq

ř

v:fspvq“m2

śc
i“1wpzipm1, sq|χpΨpvqqiq

ă η

¸

´ Pr

˜

ř

v:fspvq“m1

śc
i“1wpzipm2, sq|χpΨpvqqiq

ř

v:fspvq“m2

śc
i“1wpzipm2, sq|χpΨpvqqiq

ě η

¸ff

, (7.61)

where wpz|x1q follows (7.59).

The probability ratio contains in both the denominator and the numerator Gaussian

mixture densities, which makes the analysis difficult. Since in the case of DS1-security,

Eve selects the message pair that maximizes the advantage after the selection of the

seed, the selection of the message pair plays an important role. However, according to

Proposition 7.19 in the case where the message pair and the seed are chosen independently,

if our working hypothesis is correct, AdvDS2pξ;Ec;Sq is independent of the choice of the

message pairs.

Proposition 7.19. The averaged Hamming distance of any coset pair, averaged over all

seeds s “ pa, tq with a P F˚
2l

, t P F2l , is independent of the choice of the message pair.

Proof. Let w be the Hamming weight, r P t0, 1ul´k the random vector vprq P f´1
s pm, rq

and p “ pa´1 ˚tqG. Consider for any message pair m1,m2, and m “ m1`m2 the following

ÿ

r1,r2,s

dHppa
´1
˚ pm1||r1qqG` p, pa

´1
˚ pm2||r2qqG` pq

“
ÿ

r1,r2,a

wppa´1
˚ pm1 `m2||r1 ` r2qqGq

“
ÿ

a

2l´k
ÿ

r

wpa´1
˚ pm||rqGq

“
ÿ

vPt0,1ulzt0ul

2l´k
ÿ

r

wpvprqGq,

where the sum is over all a P F˚
2l

, all r1, r2 P t0, 1u
l´k. Moreover, the last equation holds

since for given m, r with pm||rq ‰ 0l we have

 

pa´1
˚ pm||rqqG : a´1

P F˚2l
(

“ tvG : v P F˚2lu .

If our working hypothesis is true, then AdvDS3pξ;Ec;Sq « AdvDS2pξ;Ec;Sq.
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7.5. Conclusion

We considered a seeded modular UHF code for the AWGN wiretap channel. Furthermore,

we introduced three communication scenarios, each reflecting the operational meaning of

different security measures and different assumptions about Eve’s strengths. We showed

some relevant relationships between the advantages of the three scenarios. We introduced

a new strong security metric to compare with the distinguishing security. We derived

the operational meanings of the distinguishing security and the strong security in the

three communication scenarios. We have made a working hypothesis that increasing the

average Hamming distance of a coset pair improves Eve’s performance and thus increases

her advantage. But we could not prove the correlation. Also, we could not find the coset

pairs with maximum average Hamming distance by analyzing the code structure. The

reason the Hamming distances of the codeword pairs are not known in advance is that

they are randomly selected from the coset pairs.

In a finite blocklength regime, security is more quantitative, given by a certain number

of secure bits. It is difficult to classify systems as secure or insecure, and they can be

application specific. Therefore, we derived a security level d in terms of code parameters,

which specifies how many bits are secure. We can use d to estimate the necessary amount

of encoding randomness at given code parameters and channel parameters.For future

work, it would be interesting to extend the modular coding scheme to the fading and

Multiple Input Multiple Output (MIMO) case.
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8. Simulations and Results on the

Seeded Modular Code

8.1. Introduction

We experimentally verify the information-theoretic security of a seeded modular code for

the Additive White Gaussian noise (AWGN) wiretap channel consisting of a security layer,

an error-correction layer and a modulation layer. Depending upon the communication

scenario and the operating SNR of the eavesdropper’s channel (SNRE), we determine

the advantage at Eve under distinguishing security. We use the advantage in terms of the

error probability derived in Section 7.4 to be able to assess the security performance. We

gain helpful insights from the simulation results, e.g., the impact of code parameters and

seed choice on security. For BPSK and QAM, we find that for small blocklengths, the

advantage under the required security metric is close to 0 for suitable code parameters.

We also verify that our simulation results support the theoretical results. In addition,

we compare the achievable secrecy rates with the simulated secrecy rates in terms of the

advantage under a given security metric. Finally, we compare the decoding performance

of the attack strategy proposed in Section 7.4.2 with other attack strategies with lower

computational effort.

8.1.1. Contribution

To the best of our knowledge, we are the first to verify the distinguishing security [13]

of a seeded modular code for the AWGN wiretap channel by simulations. We use the

FEC codes and the modulation schemes proposed by the 3GPP standards [69] and [70],

respectively, which fulfill a desired decoding probability (ă 10´4) at a certain signal-to-

noise ratio SNRB of Bob’s channel. As the security component, we use the UHF proposed

in [56]. Our simulation results show that for given SNRE and a suitable, positive d-secure

rate (see Section 8.2), Eve’s advantage under distinguishing security is close to zero, even

for small blocklengths. The security level d specifies the sufficient amount of randomness.

We analyze the advantage at Eve in terms of the security level with different modulation

alphabets. In order to see how the seed choice affects the advantage, we analyze the

correlation between the average Hamming distance of the codeword sets corresponding

to distinct message pairs, and the advantage at Eve under distinguishing security. We
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observe a positive correlation. We observe that the seed set can be divided into two

subsets. In the one subset, all seeds ensure a consistent advantage at Eve. The other

subset consists of dispersing seeds that can affect the code in such a way, so that the

advantage at Eve under distinguishing security can be increased. This means that we

want the probability of occurrence of dispersing seeds to be as small as possible. We find

that the cardinality of the subset of dispersing seeds decreases exponentially with the

length of the random vector.

8.1.2. Related Work

We refer to the related work in Section 7.1.

8.1.3. Outline

Section 8.2 contains the simulations, the simulation results and the insights we gain

through the simulations. Section 8.3 we present other attack strategies and compare

them with the ML test from Section 7.4.2. Section 8.4 concludes the chapter.

8.2. Simulations and Results

In our simulations we vary either k or SNRE, while SNRB and all other code parameters

are fixed so that Pepξ, T
c, ζq ă 10´4. The average transmit power Pav is set to 1 in our

simulations, so that only the noise of the respective channel changes with the SNR. Note

that Pav is different from P used in the asymptotic analysis in Section 7.2.3 for QAM

modulations with Rmod ą 2. It is possible that individual codewords occur which require

P ą 1. In addition, we can improve the bound in (7.37) by replacing the capacity of

the Gaussian channel CEpσ
2
E, P q with CunifEpPav ´αq. According to [71], CunifipPav ´αq

with i P tT,Eu is the capacity for the AWGN channel of 2Rmod-QAM in the limit of

asymptotically large code blocklength, where α ą 0 is a small constant power margin. In

the case of BPSK and QPSK α “ 0, otherwise α “ 0.05. CunifipPavq is given in [72] as

CunifipPavq :“ Rmod ´
1

2Rmod

2Rmod
ÿ

k“1

ENirlogp
2Rmod
ÿ

l“1

e
|Ni|

2´|X1k`Ni´X
1
l|
2

2σ2
i qs, (8.1)

where X 1
k denotes the k-th modulation symbol uniformly distributed over 2Rmod modula-

tion symbols with k P t1, 2, ..., 2Rmodu, and Ni with i P tT,Eu denotes the Gaussian noise

of channel i.

From now on we use (7.37) to choose the code parameter, where we replace CEpσ
2
E, P q

by CunifEpPav ´ αq:

d :“
1

2

´

l ´ k ´ cCunifEpPav ´ αq
¯

´ 2. (8.2)
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In the following we will see that not only dDS2 but even dDS1 can be larger than d (see

Remark 7.10). Furthermore, we define the d-secure rate

Rsecpdq :“
k

c
“
k

l
Reff , (8.3)

with

AdvDS2pξ;Ec;Sq ď 2´d. (8.4)

For a given SNRE, the code parameters l, k and c determine d. We use d to ap-

proximate dDS3 and dDS1aq
psq for specific seed s. In Subsections 8.2.1 and 8.2.2, respec-

tively, we will see why the approximations are admissible. Later we empirically determine

Adv
DS1aq

pξ;Ec; sq by substituting the error probabilities which we obtain from the sim-

ulation for the corresponding parameters l, k, c and SNRE into (7.54). Then we get

the empirical d̂DS1aq
psq :“ ´ logpAdv

DS1aq
pξ;Ec; sqq and compare it with the theoretical

security level d. Similarly, we estimate Adv
DS3
pξ;Ec;Sq using (7.55), and d̂DS3 .

For our simulations, we use the Matlab 5G Toolbox. Furthermore, we use the seed and

the UHF given in (7.17) as security component. The implementation of the UHF and its

inverse was done by using cyclotomic polynomials for a faster computation. This restricts

the choice of l in our simulations because l ` 1 has to be a prime number.

For the error-correction and the modulation layer we use polar codes in the uplink

scenario as proposed in the 5G new radio standard. Authors in [73] give a report to the

channel coding 5G new radio and show complete coding chains for the NR polar codes.

The core components of the FEC encoder are the cyclic-redundancy-check (CRC) of length

ncrc “ 6 or 11 bits, the polar encoding kernel, and the rate matcher. In addition, in the

uplink scenario a segmentation is performed before the CRC encoder. Furthermore, a

parity check encoder is applied before the polar encoding kernel. The rate matcher,

which contains a subblock interleaver is followed by a channel interleaver. All functions

of the coding chain are linear and therefore we let G be the concatenation of the linear

functions. Note that ncrc is not included in the value l and therefore has no influence on

Reff . At Bob, the soft-demodulated channel outputs are transformed into log likelihood

ratios (LLR), which are rate recovered and then decoded with a CRC-aided successive

cancellation list decoder of list size Lpolar “ 8. In the modulation layer, the following

modulation schemes are supported: BPSK, π/2-BPSK, QPSK, 16QAM, 64QAM and

256QAM. The modulation scheme follows a Gray coding.

Eve’s attack strategy is implemented as shown in Section 7.4.2, where we have chosen

η “ 1 to optimize Eve’s performance. That is, by η “ 1 we maximize (7.52), (7.54),

(7.55). Recall that Eve knows the selected message pair and its distribution, the seed,

the coding scheme, and the channel. The drawback of Eve’s attack strategy is that the

computational cost grows exponentially with l ´ k, since the cosets grow exponentially

with l ´ k. For example, if we use nodes with 28 cores that have a nominal frequency of
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2.6 GHz and a DDR4 memory of 64 GB per node, the simulations for a single SNR value

require 22 hours for l´k “ 22 and about 91 hours for l´k “ 24. To obtain d ą 0, we can

see in (8.2) that for small values of l ´ k, the SNRE has to be chosen small or negative.

8.2.1. Distinguishing Security - Scenario 1, 1a)

Correlation Between the Average Hamming Distance and Eve’s Seeded Advantage

For comparison we consider Eve’s distinguishing performance as a function of SNRE for

a seed s and message pairs that provide all average Hamming distances between dmaxpsq

and dminpsq. In the simulations, first the seed s “ pa, tq is chosen, then the source needs

to select between two uniformly probable messages m1,m2 to be transmitted that provide

dmaxpsq, dminpsq or any distance in between. Eve receives zc P Cc and has to choose

between m1 and m2. The message pair and the seed are fixed for 103 iterations. In each

iteration, the source uniformly chooses one of the two messages to be transmitted.

Fig. 8.1 shows the distinguishing error rate of Eve DERE1aq
ps,m1,m2q and Fig. 8.2

shows λ1ps,m1,m2q and λ2ps,m1,m2q. Both figures illustrate two curves of DERE1aq
,

λ1ps,m1,m2q or λ2ps,m1,m2q for each modulation alphabet. The solid curves belong

to a message pair with dmaxpsq “ 19 and the dashed curves belong to a message pair

with dminpsq “ 14. The solid curves are always strictly smaller than the dashed curves

for the same modulation scheme. For BPSK and QPSK, DERE1aq
ps,m1,m2q decreases

monotonously in dHpC
1pm1, sq, C

1pm2, sqq. For higher order modulations,

if dHpC
1pm1, sq, C

1pm2, sqq is not much larger than dHpC
1pm3, sq, C

1pm4, sqq, the reverse

behavior is possible, i.e., DERE1aq
ps,m1,m2q ą DERE1aq

ps,m3,m4q. For example, we

have observed that for the 16QAM case the DERE1aq
ps,m1,m2q with a specific coset pair

having dHpC
1pm1, sq, C

1pm2, sqq “ 14 in Fig. 8.1 is higher than the DERE1aq
ps,m1,m2q

with a specific coset pair having dHpC
1pm3, sq, C

1pm4, sqq “ 15. However, this phenomenon

gets less frequent as l ´ k increases, i.e., with increasing coset size. We suspect that this

smoothes out the influence of higher order modulation due to the increasing number of

codewords in the coset pair. Consequently, we can assume that Eve’s advantage, with few

exceptions, correlates positively with the average Hamming distance.

In Fig. 8.2, we can observe that λ1ps,m1,m2q and λ2ps,m1,m2q are very similar to

each other which implies an optimal choice of η, since we have a binary hypothesis test

with two uniformly distributed messages and a symmetric channel.

Dispersing vs. Non-Dispersing Seeds

Since we are interested in seeds that maximize the advantage at Eve, we analyze how the

seeds affect the partitioning of the code Cn and the average Hamming distance. For our

analyses of the average Hamming distance, we set t “ 0l in (7.17), because t does not affect

the average Hamming distance. For given code parameters l, k, n, and for all s P S, we de-
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Figure 8.1.: Eve’s distinguishing performance for n “ 32, l “ 12, k “ 6, ncrc “ 6 and for
a fixed seed. For BPSK we choose SNRB = 2.5dB, for QPSK SNRB= 5dB
and for 16QAM SNRB = 10.5dB. The solid curves show the distinguishing
performance at Eve for a coset pair with dmaxpsq “ 19 and the dashed curves
show the performance for a coset pair with dminpsq “ 14.
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Figure 8.2.: λ1ps,m1,m2, 1q and λ2ps,m1,m2, 1q for the same parameters as in Fig. 8.1

termine the average Hamming distance of all coset pairs tpC 1pmi, sq, C
1pmj, sqqui‰jPt1,...,2ku.

We observed that the seed set can be divided into two subsets. One subset consists of

”non-dispersing” seeds, or snd P Snd Ă S for short. Non-dispersing seeds provide coset

pairs that have all the same average Hamming distance. In the case where snd P Snd is

used, the choice of the message pair and the non-dispersing seed does not affect Eve’s

performance. The other subset consists of ”dispersing” seeds, or sd P Sd Ă S for short,

which partition the code Cn in such a way that some coset pairs have a larger average

Hamming distance than that of a non-dispersing seed, thus improving Eve’s performance.

For any fixed seed snd, the mean value of the average Hamming distances of all possible

coset pairs is n
2
, whereas for a given sd the mean value may differ slightly from n

2
. Note

that the seed chosen for the analyses in Section 8.2.1 necessarily has to be a dispersing

seed, since dminpsdq ă dmaxpsdq. The density distribution of the number of message pairs

as a function of dHpC
1pm1, sq, C

1pm2, sqq for any s “ snd P Snd is shown in Fig. 8.3 in the
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left image and for a certain s “ sd P Sd with dmaxpsdq “ 19 and dminpsdq “ 14 in the right

image.
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Figure 8.3.: Density distribution of the number of message pairs as a function of the
average Hamming distance for a non-dispersing seed on the left and for a
dispersing seed on the right for n “ 32, l “ 12, k “ 6 and ncrc “ 6.

We want to know the occurrence probability of the dispersing seeds. For this purpose,

we analyze the average Hamming distance of all possible coset pairs for n “ 32, l “ 12,

ncrc “ 6 and k “ t2, 3, 4, 5, 6u for all possible seeds. For each seed we consider a coset pair

with dmaxpsq. For different values of k, the number of seeds that belongs to the respective

average maximum Hamming distance dmaxpsdq is listed in Table 8.1 on the left and the

number of seeds that belongs to the average minimum Hamming distance dminpsdq is listed

in Table 8.1 on the right. We observed that for k “ 6, 36.73% of all seeds are dispersing.

If we increase l´ k so that, k “ 3, the number of all dispersing seeds decreases to 4.93%.

Altogether, we observed that |Sd| diminishes with Op2´pl´kqq.

Table 8.1.: The average Hamming distance of all possible coset pairs for n “ 32, l “ 12,
ncrc “ 6 and k “ t2, 3, 4, 5, 6u for all possible dispersing seeds.

dmaxpsdq k “ 2 k “ 3 k “ 4 k “ 5 k “ 6
16.5 82 182 370 675 1114
17 7 18 43 122 296
17.5 0 2 8 19 73
18 0 0 0 4 16
18.5 0 0 0 0 3
19 0 0 0 0 2
ř

89 202 421 820 1504

dminpsdq k “ 2 k “ 3 k “ 4 k “ 5 k “ 6
15.5 82 184 370 675 1114
15 0 18 43 122 296
14.5 0 0 8 19 73
14 0 0 0 4 18
13.5 0 0 0 0 3
14 0 0 0 0 0
ř

82 202 421 820 1504

It is also interesting to consider the variance of the density distribution of the number

of message pairs as a function of the average Hamming distance for dispersing seeds. For

this we have varied k for fixed l and observed that the variance decreases as l´k increases.

The Effect of Seed Choice on the Advantage

Next, we compare AdvDS1pξ;Ec;Sq from (7.52) with AdvDS1aqpξ;Ec; sq from (7.54), where

s is either dispersing or non-dispersing.

Since dHpC
1pm1, sndq, C

1pm2, sndqq does not change with m1,m2 as long as m1 ‰ m2,

we assume by our working hypothesis that the choice of message pair does not influence
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Eve’s advantage and that this advantage is the same for all non-dispersing seeds. In other

words,

AdvDS1aqpξ;Ec; sndq “ maxA2PrpApsnd,m1,m2, Z
c
pmB, sndqq “ Bq ´ 1.

In contrast, if sd P Sd is chosen, then dmaxpsdq ą dmaxpsndq “
n
2
, where snd is arbitrary.

Table 8.2 summarizes the performance comparison and Adv
DS1aq

pξ;Ec; sndq for different

modulation schemes and security levels d for any non-dispersing seed. In addition, for

different modulation schemes and values of d, Table 8.3 shows Adv
DS1aq

pξ;Ec; sdq where

all coset pairs have dHpC
1pm1, sdq, C

1pm2, sdqq “ 17.5, which was the largest Hamming

distance we have found for the parameters. Again by our working hypothesis,

AdvDS1aqpξ;Ec; sdq ě AdvDS1aqpξ;Ec; sndq (8.5)

for any sd P Sd and snd P Snd, which is also supported by the comparison of Tables 8.2

and 8.3. Since

AdvDS1pξ;Ec;Sq “ 1

|S|
”

ÿ

sndPSnd

AdvDS1aqpξ;Ec; sndq `
ÿ

sdPSd

AdvDS1aqpξ;Ec; sdq
ı

,

together with (8.5) we can infer that there exists an sd P Sd such that for all snd P Snd,

AdvDS1aqpξ;Ec; sdq ě AdvDS1pξ;Ec;Sq ě AdvDS1aqpξ;Ec; sndq,

which is supported by Fig. 8.4. Additionally, recall that we observed that |Sd| be-

comes very small with increasing l ´ k, by which the gap between AdvDS1pξ;Ec;Sq and

AdvDS1aqpξ;Ec; sndq decreases. Note that since AdvDS1aqpξ;Ec; sndq ď AdvDS1pξ;Ec;Sq,
we can assume that d̂DS1aq

psndq ě d̂DS1 . Furthermore, we can observe in Table 8.2 that the

empirical security level is higher than the theoretical security level, that is, d̂DS1aq
psndq ą d.

However, this does not apply to d̂DS1aq
psdq.

For completeness, we plotted Adv
DS2
pξ;Ec;Sq in Fig. 8.4 and we see that as expected,

Adv
DS1
pξ;Ec;Sq ě Adv

DS2
pξ;Ec;Sq (see Remark 7.10). According to Fig. 8.4, we can

assume that d̂DS1aq
psndq « d̂DS1 « d̂DS2 ě d. Since the communication scenarios 1

and 2 are difficult to simulate, especially for bigger parameters for l and k, we consider

communication scenarios 1a) and 3 in the remaining part.

For QPSK, Fig. 8.5 shows Adv
DS1aq

pξ;Ec; sdq and Adv
DS1aq

pξ;Ec; sndq as a function of

SNRE. Fig. 8.6 shows the performance comparison for different values of l ´ k, for the

same parameters, and the same snd and sd as in Table 8.2 and 8.3.
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Figure 8.4.: Adv
DS1aq

pξ;Ec; sdq, Adv
DS1
pξ;Ec;Sq, Adv

DS1aq
pξ;Ec; sndq and

Adv
DS2
pξ;Ec;Sq for QPSK, n “ 32, l “ 12, k “ 6 and ncrc “ 6. In

the simulation, dHpC
1pm1, sdq, C

1pm2, sdqq “ 19, which is the worst case.

Table 8.2.: The performance comparison with n “ 32, l “ 18, ncrc “ 6, SNRE “ ´5dB
for any non-dispersing seed. For BPSK we choose SNRB “ 5dB, for QPSK
SNRB “ 7.5dB and for 16QAM SNRB “ 13dB.

Modulation d Rsecpdq l ´ k d̂DS1aq
psndq Adv

DS1aq
pξ;Ec; sndq DERE1aq

psnd,m1,m2q λ1psnd,m1,m2q λ2psnd,m1,m2q

BPSK 0.4080 0.0625 16 1.9467 0.2594 0.3702 0.3753 0.3654
QPSK 0.8360 0.3750 12 2.8059 0.1430 0.4285 0.4485 0.4086
QPSK 2.8360 0.1250 16 4.3688 0.0484 0.4758 0.4753 0.4764

16QAM 0.5524 1.2500 8 2.7583 0.1478 0.4265 0.4111 0.4411
16QAM 2.5524 0.7500 12 6.3688 0.0121 0.4940 0.4951 0.4928

Rate Comparison

In Table 8.4, for non-dispersing seeds and SNRE “ ´5dB we compare Rsecpdq given

in (8.3) with secrecy capacity Cspσ
2
T , σ

2
E, Pavq given in (7.10) and two theoretical secrecy

rates R˚secpPav ´ αq, R˚˚secpPav ´ αq with limited modulation alphabet whose secure levels

are for asymptotically perfect security.

The secrecy rates are defined as follows.

R˚secpPav ´ αq :“ Reff ´ CunifEpPav ´ αq (8.6)

and

R˚˚secpPav ´ αq :“ R˚eff pc, Pepξ, T
c, ζqq ´ CunifEpPav ´ αq, (8.7)

where Reff is given in (7.23) and R˚eff pc, Pepξ, T
c, ζqq is the maximum achievable coding

rate for the AWGN channel with 2Rmod-QAM input and average power constraint Pav with

block error probability Pepξ, T
c, ζq and blocklength c. More precisely, R˚eff pc, Pepξ, T

c, ζqq
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Figure 8.5.: Adv
DS1aq

pξ;Ec; sdq and Adv
DS1aq

pξ;Ec; sndq for QPSK and the same pa-
rameters as in Tables 8.2 and 8.3. When sd is used, the largest
dHpC

1pm1, sdq, C
1pm2, sdqq we could find is 17.5 for l ´ k “ t8, 12, 14u and

16.5 for l ´ k “ 16.

Table 8.3.: The performance comparison for n “ 32, l “ 18, ncrc “ 6, SNRE “ ´5dB and
for a certain dispersing seed. The message pairs correspond to the coset pairs
with dmaxpsdq “ 17.5. For the case where l ´ k “ 16, dmaxpsdq “ 16.5. For
BPSK we choose SNRB “ 5dB, for QPSK SNRB “ 7.5dB and for 16QAM
SNRB “ 13dB.

Modulation d Rsecpdq l ´ k d̂DS1aq
psdq Adv

DS1aq
pξ;Ec; sdq DERE1aq

psd,m1,m2q λ1psd,m1,m2q λ2psd,m1,m2q

BPSK 0.4080 0.0625 16 0.7456 0.5964 0.2018 0.2019 0.2018
QPSK 0.8360 0.3750 12 0.5230 0.6959 0.1520 0.1489 0.1551
QPSK 2.8360 0.1250 16 1.2351 0.4248 0.2876 0.2915 0.2837

16QAM 0.5524 1.2500 8 0.7520 0.5938 0.2030 0.2066 0.1996
16QAM 2.5524 0.7500 12 0.8267 0.5638 0.2185 0.2475 0.1886

is given in [71] by

R˚eff pc, Pepξ, T
c, ζqq :“ CunifT pPav ´ αq ´

c

Uunif pPav ´ αq

c
Q´1

pPepξ, T
c, ζqq `Op1

c
q,

(8.8)

where Qp.q denotes the Gaussian complementary CDF and Uunif pPavq is defined as

Uunif pPavq :“
1

2Rmod

2Rmod
ÿ

k“1

VarNirlogp
2Rmod
ÿ

l“1

e
||Ni||

2
2´||X

1
k`Ni´X

1
l||

2
2

2σ2
i qs

` VarX 1rENirlogp
2Rmod
ÿ

l“1

e
||Ni||

2
2´||X

1`Ni´X
1
l||

2
2

2σ2
i q|X 1

ss.

(8.9)

Note, that the comparison between R˚secpPav ´αq and R˚˚secpPav ´αq reveals the difference

between Reff and R˚eff pc, Pepξ, T
c, ζqq. By simulations we measure Rsecpdq with different
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Figure 8.6.: Eve’s distinguishing performance in scenario 1a) with sd where dmaxpsdq “
17.5 on the left and with any snd on the right for n “ 32, l “ 18, k “
t4, 6, 10u, ncrc “ 6. For BPSK we choose SNRB = 5dB, for QPSK SNRB=
7.5dB and for 16QAM SNRB = 13dB.

modulation schemes and can observe that as expectedRsecpdq ă R˚secpPav´αq ă R˚˚secpPav´

αq ă Cspσ
2
T , σ

2
E, Pavq. For BPSK and QPSK, Reff is much smaller than R˚eff and Reff

approaches R˚eff as blocklength increases. We observe that the determination of Rsecpdq

for a chosen security level d by (8.2) is suboptimal. Note that our focus is primarily on

the security aspect and not on the maximum achievable secrecy rates. The DERE1aq
that

belong to Table 8.4 can be found in Table 8.2.

Table 8.4.: Rate comparison under distinguishing security in communication scenario 1aq
for s “ snd. Rsecpdq is specified by l “ 18, n “ 32, ncrc “ 6 and SNRE “

´5dB. Pav “ 1, and for BPSK and QPSK α “ 0 and for 16QAM α “ 0.95.

BPSK QPSK 16QAM
SNRB 5dB 7.5dB 13dB
Cs 1.661 2.331 3.993
R˚˚secpPav ´ αq 0.454 1.117 2.146
R˚secpPav ´ αq 0.213 0.730 1.888
l ´ k “ 16
Rsecpdq 0.063 0.125 0.250
l ´ k “ 14
Rsecpdq 0.250 0.500
l ´ k “ 12
Rsecpdq 0.375 0.750
l ´ k “ 8
Rsecpdq 1.250

8.2.2. Comparison of Scenarios 1a) and 3

We evaluate the seeded advantage at the eavesdropper under DS3 security. Since we

average over message pairs in contrast to the maximization of scenarios 1 and 1a), we
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obtain

AdvDS3pξ;Ec;Sq ď AdvDS1pξ;Ec;Sq,

so that dDS3 ě dDS1 . Since we do not have to maximize the seeded advantage at Eve over

the message pair, we save the computational complexity of determining the coset pairs

with maximum average Hamming distance. Moreover, we can choose l and k larger with

the constraint that l ´ k ă 22, due to computation time issues as mentioned above.

In the following, the simulations for DS3-security were performed in such a way that

a random seed S and a random message pair (M1,M2) were chosen independently and

fixed for 103 iterations. The simulations were repeated for 103 randomly selected message

pairs and randomly selected seeds. To perform the DERE3pξ;E
c;Sq calculation for DS3

security, we averaged λ1ps,m1,m2q and λ2ps,m1,m2q over the number of message pairs

transmitted and the seeds selected, so that we get λ̄pξ;Ec;Sq. We can insert λ̄pξ;Ec;Sq
into (7.55) to obtain Adv

DS3
pξ;Ec;Sq.

For a randomly chosen snd and a certain dispersing seed sd, we compareDERE3pξ;E
c;Sq

with DERE1aq
ps,m1,m2q in Fig. 8.7 on the left and Adv

DS1aq
pξ;Ec; sndq with

Adv
DS1aq

pξ;Ec; sdq and Adv
DS3
pξ;Ec;Sq in Fig. 8.7 on the right, for QPSK, 16QAM and

64QAM. In Fig. 8.7 we can see in the SNR range from´20 to 5 dB thatAdv
DS1aq

pξ;Ec; sdq

is larger than Adv
DS3
pξ;Ec;Sq, whereas

Adv
DS3
pξ;Ec;Sq « Adv

DS1aq
pξ;Ec; sndq, and therefore d̂DS3 « d̂DS1aqpsndq ą d. For ex-

ample for 16QAM and SNRE “ ´5dB we get

Adv
DS1aq

pξ;Ec; sndq “ 0.0079,

Adv
DS1aq

pξ;Ec; sdq “ 0.4229

and

Adv
DS3
pξ;Ec;Sq “ 0.0065.

It is not surprising that Adv
DS3
pξ;Ec;Sq and Adv

DS1aq
pξ;Ec; sndq are similar, since the

mean of the average Hamming distance of all coset pairs for each seed is approximately
n
2
. Thus if an element of Snd can be identified, communication scenario 1a) should be

chosen. The advantage of this scenario is that the seed can remain fixed once it has

been identified and thus the complexity of the seeded modular UHF code ca be reduced.

Moreover, AdvDS1aqpξ;Ec; sndq « AdvDS3pξ;Ec;Sq means that the performance is close to

that of the DS3 security. Unfortunately, if we have a fading wiretap channel instead of an

AWGN channel, then the set Snd for Eve will in general depend on the channel state. Note

that because of AdvDS1aqpξ;Ec; sndq « AdvDS3pξ;Ec;Sq, respectively the advantages and

d-secure rates listed in Table 8.2 and 8.4 are similar to Adv
DS3
pξ;Ec;Sq. Furthermore,
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Figure 8.7.: Eve’s distinguishing performance in scenarios 1a) and 3 for n “ 48, l “
36, k “ 17 and ncrc “ 11. For QPSK we choose SNRB “ 10dB, for 16
QAM SNRB “ 16dB and for 64 QAM SNRB “ 22dB. When s “ sd,
dHpC

1pm1, sdq, C
1pm2, sdqq “ 25.5, which is the largest average Hamming dis-

tance we could find.

according to Fig. 8.4 and Fig. 8.7 we can assume that d̂DS3 « d̂DS1aq
psndq « d̂DS1 «

d̂DS2 ě d.

8.3. Comparison of Different Attack Strategies of the

Eavesdropper
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Figure 8.8.: The distinguishing error rate for different attack strategies for n “ 64, l “ 36,
k “ 12. We used a non-dispersing seed.

Since the attack strategy proposed in Section 7.4.2 has a high level of complexity,

for code parameters n “ 64, l “ 36, k “ 12 we compare different attack strategies by

simulation, where some of them approximate the maximum likelihood test for linear block

codes and for suitable code parameters. The modulation we choose is QPSK, so that after
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8.3. Comparison of Different Attack Strategies of the Eavesdropper

modulation the channel input consists of c symbols. Fig.8.8 illustrates the distinguishing

performance of the decoding strategies described below. We consider the Soft Guessing

Random Additive Noise Decoder (SGRAND) [74] and the Ordered Statistics Decoder of

order 4 (OSD-4) [75] modified for our purposes. The SGRAND is an ML decoder for

arbitrary additive memoryless channels and tries to identify the noise/error vector that

has corrupted the codeword. The algorithm queries error vectors in a specific order and

iterates until a condition is met, whereas in the OSD-u algorithm all error vectors starting

with Hamming weight 0 up to u are queried. Only then is a condition checked. Several

works exist that focus particularly on reducing the complexity of the OSD [76], [77], [78].

It was shown in [75] that for binary transmission over an AWGN channel, reprocessing

order equal to rdpCq{4´ 1s achieves practically optimum ML decoding performance for

a block code C of minimum Hamming distance dpCq.

Modified SGRAND: The pseudocode for the modified SGRAND is given in Algorithm 1.

The modified SGRAND differs in that after the possible estimated codeword xn has been

checked to see if it is an element of the codebook, i.e. HpxnqT “ 0, where xn “ Θpzcq´ en

and Θ is the demodulator, it is additionally checked for another criterion in lines 10-13

and that is whether fspfpx
nqq “ mb, with b “ 1, 2. Function f extracts l information bits

from xn to obtain the output vector of the security layer vl at Alice. If vl does not belong

to any of the message pair then the next error vector is queried until the criteria are met or

the maximum number of queries b has been reached. If no admissible xn could be found in

b queries then the decoder randomly chooses one of the two messages m1,m2. No erasures

are declared in the modified SGRAND as is the case in SGRANDAB [74]. We denote

the distinguishing error rate of the modified SGRAND by DERSGRANDps,m1,m2q. The

worst case complexity of the modified SGRAND is Opbn2q.

Modified OSD: We have used the code for the OSD from [30] and modified it as given in

Algorithm 2. The decoder is adapted for the polar code as proposed for 3GPP standard.

The procedure from line 1 to 12 is the same as in [75], with the exception that h is a

concatenation of two functions. The first function soft demodulates the channel output

observed by Eve zc P Cc and the second recovers the rate as proposed in the 3GPP

standard. We obtain a vector of reliabilities yn P Rn. In line 13 the OSD-u searches for

the error vector e that affects the positions of the hard-demodulated codeword unHD, such

that the absolute values of the log-likelihood ratios of rn at the respective positions are

small in sum (called min value in the algorithm), and searches for the error vector that

yields the smallest min value.

Once we have found the error vector, the OSD-u determines the estimated codeword

by permuting unnew using the inverse permutations λ´1
1 λ´1

2 , i.e. xn “ λ´1
1 pλ

´1
2 pu

n
newqq. The

modified algorithm checks in line 16 whether xn belongs to one of the messages. Therefore,
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in line 14 we determine the output vector of the security layer vl at Alice, where

F “

˜

1 0

1 1

¸

(8.10)

and A is known as the bit-reversal matrix. Note that the pl` ncrc ` npcq ˆ n matrix G

is a submatrix of the nˆ n matrix B, where ncrc is the bit-length of the CRC and npc is

the bit-length of additional parity check bits which are appended to the information bits

for certain parameters. We obtain G after omitting the rows on the frozen bit-positions

from B. We denote the distinguishing error rate by DEROSD´4ps,m1,m2q. The decoding

complexity of an order-4 OSD can be as high as Oppl ` ncrc ` npcq4q.
Neural Network Decoder: The third attack strategy we consider is a neural network

(NN) decoder that we implemented with the help of the deep learning Matlab toolbox.

The theory of deep learning is described in [79]. An NN consists of many connected neu-

rons. In such a neuron, all of its weighted inputs are added up, a bias is optionally added,

and the result is propagated through a nonlinear activation function, e.g., a rectified linear

unit (ReLU) as in our case, which is defined as

gReLupzq “ max t0, zu . (8.11)

The NN decoder consists of an input layer, an output layer and so-called hidden layers.

Each layer consists of neurons which are connected to neurons of other layers without

feedback connections. Each layer i with ci inputs and ki outputs performs the mapping

fpiq : Rci Ñ Rki with the weights and biases of the neurons as parameters. When yc is

the input of the NN and the output is denoted as mk, then the mapping is defined as

mk
“ fpyc; Θq “ f pL´1q

pf pL´2q
p. . . pf p0qpycqqqq, (8.12)

where Θ denotes the weights of the NN and L the number of layers. The weights of the NN

which minimize the loss function over the training set can be found by the use of gradient

descent optimization methods and the backpropagation algorithm. When training the

network we use ”Adam”, which is a method of stochastic gradient descent optimization

[80]. We design an NN decoder that consists of four hidden fully connected layers of

respectively 64, 128, 128, 64 neurons. Since the task of our network is to distinguish two

messages from each other the input and output layers consist of 2c “ 64 and two neurons,

respectively. Note that since the input vector is complex valued, we have split the vector

into an imaginary part and a real part, so that each variable corresponds to one feature.

We obtain a total vector length of 2c.

Since the output layer represents which message was sent, that is m1 or m2, a softmax

function forces the output neurons to be between zero and one. Thus, the output of

the softmax function can be used to represent a probability distribution over 2 different
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Algorithm 1 High-level description of modified SGRAND

INPUT: b, H, zc, s, t, m1, m2

OUTPUT: m̂out P tm1,m2u

1: g “ 0 {g counts queries performed}
2: S “ t0nu {S contains candidate error vectors en}
3: i “ pi1, ..., inq = ordered error indices vector {Based on zn}
4: while g ď b do
5: en “ arg max

vnPS
ppzc|Θpzcq ´ vnq

6: S “ Sztenu
7: g “ g ` 1
8: if HpΘpzcq ´ enq “ 0n´k then
9: xn “ Θpzcq ´ en

10: v̂l “ fpxnq {f extracts l information bits}
11: m̂ “ rps ˚ v̂lq ‘ tsk
12: if m̂ P tm1,m2u then
13: m̂out “ m̂
14: return
15: end if
16: else
17: if en “ 0n then
18: j˚ “ 0
19: else
20: j˚ “ maxtj : eij ‰ 0u
21: end if
22: if j˚ ă n then
23: eij˚`1

“ 1
24: S “ S Y tenu
25: if j˚ ą 0 then
26: eij˚ “ 0
27: S “ S Y tenu
28: end if
29: end if
30: end if
31: end while
32: m̂out “ randpm1,m2q {randomly choose m̂out}
33: return
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Algorithm 2 High-level description of modified OSD-u for polar decoding

INPUT: u, G, B “ AFb
logpnq

, zc, s, t, m1, m2

OUTPUT: m̂out P tm1,m2u

1: yn “ hpzcq
2: ŷn “ λ1py

nq with |ŷ1| ě |ŷ2| ě ¨ ¨ ¨ ě |ŷn|
3: G1 “ λ1pGq
4: G2 “ λ2pG

1q “ λ2pλ1pGqq
5: rn “ λ2pŷ

nq with |r1| ě |r2| ě ¨ ¨ ¨ ě |rl`ncrc`npc |
and |rl`ncrc`npc`1| ě |rl`ncrc`npc`2| ě ¨ ¨ ¨ ě |rn|

6: Gsys
p.q
Ð pG2q {. = rowoperation}

7: unHD “HardDecisionprnq
8: min value “ 8
9: for 1 ď i ď u do

10: for 0 ď k ď |Ei| do

11: unnew “ pu
pl`ncrc`npcq
HD ‘ e

pl`ncrc`npcq
k q ¨Gsys {upl`ncrc`npcqHD “

uHD1 , . . . , uHDpl`ncrc`npcq , e
pl`ncrc`npcq
k P Ei, where epl`ncrc`npcq is the error vector

of length pl ` ncrc ` npcq with wtpe
pl`ncrc`npcq
k q “ i and |Ei| “

`

l`ncrc`npc
i

˘

}
12: value “

ř

j:unnewj‰u
n
HDj

|rj|

13: if value ă min value then
14: v̂l “ wpλ´1

1 pλ
´1
2 pu

n
newqqB

´1q {w extracts l information bits}
15: m̂ “ rps ˚ v̂lq ‘ tsk
16: if m̂ P tm1,m2u then
17: m̂out “ m̂
18: min value “ value
19: end if
20: end if
21: end for
22: end for
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possible events. If the probability suggests the label, the loss (e.g., the mean squared

error) should be increased only slightly, while large errors should result in a very large

loss.

We have collected 700,000 labeled codewords (data) for training the NN and 150,000

independent labeled data, each for validation and testing. The data were trained at an

SNR of 10dB, which turned out to be a good SNR. Smaller SNRs led to overfitting.

We trained the NN in epochs, where in each epoch the gradient of the loss function is

calculated over the training set. The mini batch size is a term that refers to the number

of training examples utilized in one iteration. The mini batch size is smaller than the

training set and specifies how many iterations complete one epoch.

Since our seeded modular UHF wiretap code consists of a randomized encoder during

training the NN is more difficult to generalize to codewords that it has never seen than

in the case of structured codes [81]. Generalization means that after training an NN, it

is able to find the correct outputs that correspond to new inputs. We have made similar

insights as the authors in the paper [81]. The larger we made the randomness, i.e. the

larger l ´ k became, the more examples were necessary to train the NN, or they had

to be trained over more epochs. This is due to the fact that the code looses structure

with increasing l ´ k. It should be noted that the NN decodes without knowledge of the

SNR. In addition, it learns the channel distribution itself with the help of the labeled

data in comparison to the ML decoder, where the knowledge of the channel distribution

is assumed. Another advantage is that, after training the NN decoder for fixed code

parameters, the decoding effort is small compared to the ML decoder. The distinguishing

error rate of an NN decoder is

DERNNps,m1,m2q “ 1´ paccuracy{100q, (8.13)

where accuracy :“ (number of correct predicted messages/total number of messages to

be predicted). The total number of messages to be predicted is equivalent to the dataset

size.

Modified Polar Decoder: Furthermore, we compare the above attack strategies with

the modified CRC-aided successive cancellation list (SCL) decoder. We use the CRC-

aided SCL decoder as proposed by the 3GPP standard. Since Eve has to decide between

a message pair (m1,m2), we have modified the decoder to additionally calculate the

Hamming distance between the decoded message m (which can be any message from the

message space M) and message m1 and m2, respectively, and output the message that

has a smaller Hamming distance to the original decoded message. If both pairs have the

same Hamming distance, that is dHpm,m1q “ dHpm,m2q, then the decoder randomly

chooses m1 or m2. We denote the distinguishing error rate by DER3GPP ps,m1,m2q and

report the results with list sizes L “ 32 and L “ 8192 (see Fig. 8.8).

To evaluate the distinguishing performance of the considered attack strategies for l´k ą
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Table 8.5.: Key parameters of Adam

Parameter

miniBatchSize 500
InitialLearnRate 0.002
MaxEpochs 1000
GradientDecayFactor 0.9

24 we have determined an upper bound for the ML test numerically. Given the channel

output zc, the standard polar decoder (SCL decoder) generates a list set L with L “ |L|
most probable codewords. We reduce the list set to the codewords from coset C 1pm1q and

C 1pm2q and obtain the list set L1b “ LŞ

C 1pmbq, b “ 1, 2. For the case where the channel

is AWGN, instead of (7.58) we obtain the following conditional probability densities when

message mb with b P t1, 2u was sent

papproxpz
c
|s,mbq “

1

|L1b|
ÿ

v:L1b

c
ź

i“1

wpzipmb, sq|χpΨpvqqiq, (8.14)

where χpΨpvqqi denotes the i-th symbol in the length-c channel input χpΨpvqq P Cc.

Since the list set L11 Y L12 is smaller than L, a higher decoding error probability is

expected and as soon as L Ñ 2l, DERuML approaches the DERML of the ML test

from Section 7.4.2. Therefore, we use this decoder to determine the upper bound of the

DERML. In addition, an error is declared if L11 “ L12 “ H. We observed that as the list

size L increases, the upper bound approaches the ML test. It is worth noting that here

the coset pairs are not generated, instead the messages corresponding to the codewords

from the list L are computed and then the codewords are partitioned into L11 and L12.

We determine the list size L using a lower bound on the DERML. The calculation of the

lower bound DERloML differs from the calculation of the upper bound in that the set

L is extended by the transmitted codeword xn if it does not already appear in the list.

Thus the decoder makes an error as soon as it finds a codeword that corresponds to the

wrong coset, which leads to a greater probability of the channel output conditioned on

this codeword than conditioned on the actually sent xn. With increasing L, the DERloML

converges to the DERML from below. The complexity of the calculation of the lower and

upper bound is OpLn log nq, while the complexity of the calculation of the ML test is

Opn2pl´kqq. In Fig. 8.9 for n “ 32, l “ 18, k “ 2 and for L “ 512, L “ 1024, L “ 2048,

DERloML, DERuML and DERML are illustrated. In the SNRE range of interest to Alice

(that is where DER « 0.5) we observe that the larger L is, the closer DERuML and

DERloML to DERML are and the more accurately we can estimate DERML. In Fig. 8.8,

L “ 8192 was used to determine the upper and lower bound for DERML.

Using the lower bound, for given n, k, SNRE, we determined the list size L for any

security level d given in (8.2) and the admissible l ´ k that provide DERloML « 0.5.
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We started with d “ 3. If the lower bound does not converge to DER “ 0.5 with

increasing list size up to a certain value, l is increased up to the greatest prime ă n,

where l “ prime ´ 1 and thus d as well. Then L is again increased for the new code

parameters. The process is repeated until a list size with code parameters is chosen so

that the lower bound converges to DER “ 0.5, or until l reaches the closest value prime´1

to n. If no l could be found with DERloML « 0.5, then the security criteria is not satisfied

for the given n. For complexity reasons we have limited the list size to L “ 32768. Some

list sizes and the corresponding code parameters are listed in Table 8.6.

For small blocklengths, we can observe that Reff must be high to transmit at a positive

d-secure rate Rsecpdq. For fixed SNRE, and with increasing blocklength and fixed rate

Reff , Rsecpdq increases.

Furthermore, we have observed that for given n, SNRE, and modulation, the decoding

performance of Eve depends only on l´ k and not on how large k and l are in detail, i.e.

with l “ 100 and k “ 20 Eve decodes with the same error as with l “ 82 and k “ 2.
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Figure 8.9.: DERuML, DERloML and DERML for QPSK, n “ 32, l “ 18, k “ 2 and
L “ 512, 1024, 2048.

In Fig. 8.8 we can observe that the modified SGRAND and the modified OSD-4 per-

form equally. From 1dB, the modified SGRAND performs worse than the modified polar

decoder with L “ 32. The NN decoder performs better below 1.5dB than the modi-

fied SGRAND and Polar decoder with L “ 32. Above 1.5dB, however, the NN decoder

performs worse. Unfortunately, compared to our ML test, the modified SGRAND with

b “ 107 and the modified OSD-4 perform much worse. In Fig. 8.8, we observe that the

performance of the modified SGRAND and the modified OSD-4 depends on l´ k, where

l “ 36 and k vary. Everywhere where k “ 2 is selected is labeled in the legend. It is

evident that for an increasing random vector at the encoder, i.e. with increasing l ´ k

where l is fixed and k decreases, the DERML approaches the DER of the alternative
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Table 8.6.: Code parameters that provide DEREve « 0.5

SNRE [dB] n l ´ k L d

1 150 110 8192 10.79
2 150 124 8192 11.84
2 512 376 32768 21.60
3 150 136 16384 11.94
3 512 418 32768 22.49

decoders. This is because the distinguishing performance of the modified polar decoder

and the modified SGRAND or the modified OSD-4 depends on RFEC “ l{n and, respec-

tively, is hardly and little affected by the size k, while the performance of the ML test

with varying k changes drastically as shown in Fig. 8.8. The DER3GPP approaches the

DERML as the list size increases. Our main observation is that the best attack strategy

for Eve is to decode as we do, to obtain the upper bound on the DERML.

8.4. Conclusion

The main objective of this work was to calculate the seeded advantage at the eavesdrop-

per Eve under distinguishing security and strong security for small blocklengths, using

a seeded modular UHF code for an AWGN channel. We measured the seeded advan-

tage as a function of security level d. We used d to estimate the necessary amount of

encoding randomness at given code parameters and channel parameters. We then have

simulated Eve’s advantage in two communication scenarios, each reflecting the operational

meaning of different security measures and different assumptions about Eve’s capability.

With the help of the simulations we have gained important insights. For admissible code

parameters, we have observed that the advantage at Eve is close to zero even for small

blocklengths. We went even deeper by analyzing the impact of seeds on Eve’s distinguish-

ing performance. We observed that for given code parameters, some seeds increase Eve’s

advantage under distinguishing security. We made the important observation that the

selection probability of such seeds decreases exponentially with the length of the random

vector l´k. This means that a selection criterion can be met by the seed set at the trans-

mitter for a given code to avoid a worst case scenario. There are several reasons why it is

desirable to identify and fix a non-dispersing seed for application in the security layer. We

already mentioned reducing the complexity of the coding scheme. Another advantage of

having a fixed seed is that if the seed were to be chosen anew for every transmission, this

seed would have to be made known to Alice and Bob before every message transmission.

This would cause a dramatic rate loss and should be avoided. Furthermore, for BPSK

and QPSK we could observe in simulations that the average Hamming distance of a coset

pair, corresponding to a certain message pair correlates positively with Eve’s seeded ad-
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vantage when the sample size is large enough. This simulatively confirms our working

hypothesis that increasing the average Hamming distance of a coset pair improves Eve’s

performance and thus increases her advantage. A further problem is the computational

complexity, so that we only were able to simulate the performance of Eve for l ´ k ă 22,

so that we had to choose small and negative SNRE to achieve acceptable results (e.g.

advantage at Eve « 0). For future work, the search for a universal attack strategy for Eve

with similar performance as the ML test but lower complexity is important for further

analysis. Simulations with other FEC codes are of interest as well. We have observed

that the security, e.g., measured in bits, is higher than theoretically estimated. This may

be due to the loose upper bound, so that in future work other upper bounds could be

used.
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9. Experimental Evaluation of a

Modular UHF Code

9.1. Introduction

Physical layer security (PLS) can provide provable information-theoretic security, in con-

trast to public key encryption that relies on the unproven assumption that certain math-

ematical operations, e.g., factorization of large prime numbers, are computationally hard

to invert. Additionally, PLS systems do not require a secret key exchange. Therefore,

we consider a modular UHF scheme, which is given in Chapter 7, for PLS consisting

of three layers; a modulation layer, an error-correction layer and a security layer. Un-

der this approach, an existing forward error-correction (FEC) code is used, preceded by

a pre-processing step responsible for the security. This scheme has the advantage that

well-researched FEC’s can still be used, easing PLS integration in deployed systems.

Contribution

We experimentally evaluate the modular universal hash function (UHF) code that is given

in Chapter 7, where software defined radios (SDR’s) represent Alice, Bob, and Eve. In

order to avoid external radio conditions from affecting our experiments, the SDR’s are

connected via coaxial cables. The wiretap setup is implemented using splitters and com-

biners: Alice’s transmit signal is split in two channels, where two independent Gaussian

noise sources are connected using combiners. Two noise generators with different power

levels are used for this purpose. This realizes the different channel statistics required by

our model. Before the corresponding signals are fed to Bob and Eve, they are attenuated

30 dB to keep a link budget below the saturation level of the analog-to-digital converters

(ADC’s) at the receiving Universal Software Radio Peripherals (USRP), thus avoiding sig-

nal clipping. We use a distinguishing security metric that can be evaluated experimentally

(to asses Eve’s performance) and is independent of the message distribution. In real signal

transmission, we measured the performance of Eve and compared it with the simulation

results. We observed that the experimental results are close to the simulation results.

This means that the synchronization and signal processing algorithms implemented for

our experimental setup do not contribute to the degradation of the communication at the

bit level. To the best of our knowledge, this is the first time that PLS in wiretap channels
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using a modular scheme is evaluated experimentally.

Related Work

In the literature, novel codes that achieve PLS and provide both reliability and security

simultaneously have been investigated. For instance in [59], the secrecy performance

of LDPC codes is studied for a uniform message distribution. Despite their practical

approach, the integration of such codes into existing systems would demand major design

changes. A different approach is presented in [82], where three-layer wiretap codes for the

AWGN wiretap channel are evaluated using a restricted security analysis based on mutual

information that does not allow the eavesdropper to perform arbitrary operations on the

received data. Furthermore, neither [59] nor [82] has been experimentally validated yet.

Outline

In the next section, we briefly reproduce the modular UHF code. In Section 9.3, we give

the security measure and its operational meaning in terms of the error probability to

evaluate the performance of Eve. In Section 9.4, we present the experimental setup of

the communication system at the signal processing level and set the key parameters. In

Section 9.5, we compare the experimental results with the simulation results provided by

Matlab and conclude the paper with Section 9.6.

9.2. The Seeded Modular Code for the Wiretap Channel

We briefly reproduce the seeded modular code from Chapter 7 and sum up some useful

information needed for the experimental setup.

9.2.1. Security Layer

Recall that we use a UHF that was proposed by Hayashi and Matsumoto [56]. We assume

that all participants have knowledge of a seed s “ pa, tq. The two components of the seed,

a and t, are bit strings of length l, and randomly chosen from t0, 1ulzt0ul and t0, 1ul,

respectively. Messages come from the set M “ t0, 1uk. For a message m and a bit string

r P t0, 1ul´k, k ă l, we define the mapping f´1
s : t0, 1uk ˆ t0, 1ul´k Ñ t0, 1ul according to

f´1
s pm, rq “ a´1

˚ ppm||rq ‘ tq, (9.1)

where m||r denotes the concatenation of the bit strings m and r, a´1 is the inverse, ˚ the

multiplication, and ‘ the addition in the corresponding field F2l . At the security layer on

Alice’s side, for a given message m PM, we randomly choose a bit string r and compute

v “ f´1
s pm, rq. The bit string v is then further processed by the error-correction layer.
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At the security layer on Bob’s side we have to reverse the action of f´1
s . To this end,

we use the mapping fs : t0, 1ul Ñ t0, 1uk, defined by

fspv̂q “ rpa ˚ v̂q ‘ tsk , (9.2)

where rxsk denotes the operation of selecting the first k bits of x. fs is applied on the

output v̂ of the coding layer, which results in m̂ “ fspv̂q. If the transmission over the

channel T has been error free, i.e. if v̂ “ v, then we have m̂ “ m because fspf
´1
s pm, rqq “

m for all s, m, and r.

Although the function f´1
s , which was given in (9.1), is a function of two arguments -

the message m and a randomly chosen bit string r - it will be convenient to interpret it

as mapping with only one argument m. Recall that the randomized inverse of the UHF

of f´1
s pmq provides a stochastic mapping from messages to the FEC inputs, so that as

the message m is chosen, the encoder chooses uniformly at random a vector v from the

set tv1 : fspv
1q “ mu, and encodes it to a codeword xn via the FEC code.

9.2.2. System Integration of the Security Layer

In this section, we describe how the security layer integrates into the communication

system. The used mappings and variables are displayed in Fig. 9.1.

m v
f´1
s

xn
Ψ

x1c
χ

y1c
T

yn
ϕ

v̂
Φ

m̂
fs

ξs ζs

Figure 9.1.: Modular coding scheme from Alice to Bob.

Error-Correction Layer : Alice encodes the output of the security layer v, using some

forward error-correction (FEC) code with encoder-decoder pair pΨ,Φq of rate RFEC “ l{n.

Hence, we have xn “ Ψpvq P t0, 1un. For this layer, we use polar codes, which are also

used in the 5G New Radio standard [73]. The core components of the FEC encoder are

the cyclic-redundancy-check (CRC) encoder with CRC lengths of 6 and 11 bits, the polar

encoding kernel, and the rate matcher. At Bob, the soft-demodulated channel outputs are

transformed into log likelihood ratios (LLR), which are rate recovered and then decoded

with a CRC-aided successive cancellation list decoder of list size L “ 8. We use the

implementation of the polar encoder and decoder in the 5G Toolbox in Matlab.

Modulation Layer : For modulation, we consider quadrature phase shift keying (QPSK).

We denote the corresponding symbol alphabet by X 1 Ă C. It has size 2Rmod , where

Rmod “ 2 denotes the number of bits per symbol. By χ we denote the constellation mapper

and by ϕ the constellation demapper. Alice modulates x according to x1c “ χpxnq P X 1c,

where c “ n{Rmod. The modulation scheme follows a Gray encoding. The product of

RFEC and Rmod gives the effective rate Reff “ l{c.
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We assume that the channel to Bob and the channel to Eve are both complex additive

white Gaussian noise (AWGN) channels. Since the channel is memoryless, we obtain after

c channel uses y1c “ x1c`wT and zc “ x1c`wE, where x1 P X 1c is the channel input, while

y1c P Cc and zc P Cc are the channel outputs at Bob and Eve, respectively. wT and wE

are complex circularly-symmetric Gaussian random vectors.

Combining the security layer and the traditional coding layer, we obtain the total

encoding function ξs “ χ ˝ Ψ ˝ f´1
s and the total decoding function ζs “ fs ˝ Φ ˝ ϕ.

The mapping ξs : M Ñ X is the stochastic seeded encoder and ζs : Y Ñ M the seeded

decoder. We call pξ, ζq “ ptξsusPS , tζsusPSq a seeded modular code. Its secrecy rate is

Rsec “
k
l
Reff “ k{c.

9.2.3. Decoding at Bob

Bob receives a noisy version y1c “ T px1cq of the channel input x1c “ ξspmq, and his goal is

to decode the message m correctly. To this end, Bob computes m̂ “ ζspy
1cq. Since we use

a polar code for the traditional coding layer, we use, in fact, a soft demodulation at Bob.

The error probability of the seeded modular code pξ, ζq and channel T is given by

Pepξ, ζ, T q “ max
sPS

max
mPM

rPr pζspT pξspmqqq ‰ mqs . (9.3)

Note that the error probability as defined in (9.3) is a worst case error probability, where

we maximize over all possible messages m PM and seeds s P S. The error depends only

on the FEC code, the modulation mapping and the channel.

9.2.4. Information-Theoretic Security

Eve should learn as little as possible about the message m when observing the output

of the channel E. Traditionally, information-theoretic security is measured in terms of

entropy or mutual information. Since we are interested in experimentally measuring Eve’s

“advantage” of learning the message, we need a metric with an immediate operational

meaning. Thus, we employ the distinguishing security (DS) metric

AdvDS1aqpξ,S, Eq (9.4)

“
1

|S|
ÿ

sPS
max

A,m1,m2

2 PrrAps,m1,m2, EpξspmBqqq“Bs ´ 1,

which has been introduced in Chapter 7. B is a uniformly distributed random variable

over t1, 2u and can be seen as a random challenge bit. In (9.4) we maximize all messages

m1, m2 and all adversary strategies A.

The closer AdvDS1aq is to zero, the more secure a security system is. For further infor-

mation about security metrics, see Chapter 7 and [13].
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9.3. Performance Evaluation

We take non-dispersing seeds, for which Eve’s performance does not depend on the mes-

sage pair selected for transmission. Non-dispersing seeds provide a stronger level of secu-

rity than the others. We use such seeds in our experiments and denote them by s “ pa, tq

in the following.

When evaluating (9.4) for a fixed seed s, we obtain

max
A

2 PrrAps,m1,m2, EpξspmΘqqq“Bs ´ 1. (9.5)

The maximum over m1,m2 can be omitted due to the choice of the seed, and thus m1,m2

can be fixed arbitrarily. Alice randomly chooses B P t1, 2u and transmits the message

mB. Eve receives EpξspmBqq, and, based on that information, has to decide whether m1

or m2 was sent. The attack strategy of Eve in the experiments is to use a maximum

likelihood (ML) decoder, which is given in Section 7.4.2.

The distinguishing error probability DERE, i.e., the probability that Eve decides incor-

rectly, is given by

DERE “ Prrm̂Eve ‰ mBs. (9.6)

Then (9.5) is equal to 1´ 2DERE, and DERE close to 1{2 means “high security”.

Note that Eve has to decide which one out of two given messages was sent. In contrast,

Bob decodes ordinarily without this additional information and tries to determine which

message out of the set of all possible messages M was sent. Hence, the decoding task of

Bob in our setting is more intricate than the decoding task of Eve. Bob’s block error rate

is given by

BLERB “ Pr pζspT pξspmqqq ‰ mBq .

Performing the maximum likelihood decoding as in (7.58) requires the computation of

all words in the set tv1 : fspv
1q “ mBu. The size of this set, and consequently the time

needed to evaluate (7.58) grows exponentially in l ´ k. Thus, the ML decoding at Eve is

computationally feasible only up to l ´ k ă 22.

The pseudo code given in Algorithm 3 summarizes how BLERB and DERE are deter-

mined.

9.4. Experimental Setup

9.4.1. Hardware Setup

The experimental setup consists of three NI USRP-2954R software defined radios (SDRs)

representing Alice, Bob, and Eve. In order to have reproducible conditions, the SDRs are

connected via coaxial cables, as indicated in Fig. 9.2. Alice’s transmit signal is split, and

white Gaussian noise is added from an R&S SMW200A signal generator, which includes
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Algorithm 3 High-level description of the performance evaluation of the seeded modular
coding scheme

INPUT: SNRB, SNRE, c, l, k, num codewords, s,m1,m2

OUTPUT: BLERB,DERE

1: codeword errors Bob :“ 0;
2: codeword errors Eve :“ 0;
3: for j “ 1 to num codewords do
4: choose m P tm1,m2u randomly
5: choose v randomly from f´1

s pmq
6: x1c “ χpΨpvqq
7: Decoder of Bob:
8: y1c “ T px1cq
9: m̂ “ ζspy

1cq

10: if m̂ ‰ m then
11: codeword errors Bob :“ codeword errors Bob` 1;
12: end if
13: Decoder of Eve:
14: zc “ Epx1cq

15: LLRpzc|s,m1,m2q
ěm̂Eve“m1

ăm̂Eve“m2

logp1q

16: if m̂Eve ‰ m then
17: codeword errors Eve :“ codeword errors Eve` 1;
18: end if
19: end for
20: BLERB “ codeword errors Bob{num codewords
21: DERE “ codeword errors Eve{num codewords

USRP
Alice

splitter combiner

combiner

SMW

A
-30dB

attenuator

USRP
Bob

A
-30dB

USRP
Eve

attenuator10 MHz REF

Clock & PPS

Figure 9.2.: Hardware setup for the experiments.
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two separate SMW-K62 noise generators. The resulting signals are attenuated by 30 dB

and fed into Bob and Eve.

The USRP gains and SMW noise power have been selected after a careful budget link

planning in order to avoid signal clipping and to minimize quantization errors at the

receivers.

All USRPs are synchronized using a clock distribution system CDA-2990. Both clock

and pulse-per-second (PPS) signals are generated by a GPS disciplined clock with an

accuracy of 5 parts per billion.

9.4.2. Communication Scheme

We have deployed a single-carrier transmission communication protocol. Alice sends mes-

sages to Bob in the form of periodic bursts, e.g., 32.768 ms for n “ 28, with sampling

rate fr and using the frame structure shown in Fig. 9.3. Since we are concerned with

experimentally demonstrating information-theoretic security, the frame structure and dig-

ital signal-processing (DSP) algorithms have been chosen to minimize DSP-related errors.

For frame synchronization we employ a Barker sequence of length Nsync, which is repeated

twice [83]. For phase ambiguity resolution we employ a Gold sequence of length Npilot

[84]. Both of these sequences are used for phase offset estimation. The padding sequence

of length Npadding separates the noise-free signal on its left from the noisy signal on its

right, as discussed in Section 9.4.4. The SNR is estimated using the second Gold sequence

after countering the channel effects on it. The entire preamble is modulated using BPSK.

Sync

2 ¨Nsync

Pilot #1

Npilot

Padding

Npadding

Pilot #2

Npilot

Payload

Ndata

Figure 9.3.: Frame structure of the transmission scheme.

The transmitted payload is Ndata “ N
1

data{ log2pMdataq symbols long, where N
1

data is the

length of the bit sequence and Mdata “ 2Rmod is the modulation order used for the payload.

9.4.3. Signal Processing Implementation

The DSP steps performed after encoding the message using the modular scheme are

illustrated in Fig. 9.4. The generated codewords are encapsulated into protocol data units

(PDU) by either segmenting the bitstream in chunks of N
1

data bits or adding padding bits,

in case the codeword is smaller than the PDU. In our experiments, the PDU length has

been chosen in order to send one frame per transmission only. The PDU is then converted

into I/Q symbols using a Gray-encoded constellation mapper. Next, the preamble is

appended, which contains the synchronization, padding, and pilot symbols. Finally, this

stream of I/Q symbols is pulse-shaped, using a square-root-raised-cosine finite impulse
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response (FIR) filter and upsampled, using a factor F before being transferred to USRP-

Alice. The SDR transforms the digital baseband signal to the analog domain using a

16-bit digital-to-analog converter (DAC) with a sampling rate of fr, before its RF front-

end upconverts it using carrier frequency fc, amplifies it with gain Gtx and sends it over

the channel.

Source Encoding
Payload

Encapsulation
Symbol

Mapping

Append
Preamble

Pulse
Shaping

DAC
RF

Front-End

Figure 9.4.: Transmit signal processing.

At the receiver end, the analog bandpass signal is filtered, amplified using the receiver

gain Grx, and downconverted to baseband at the RF-frontend before being digitized by a

14-bit analog-to-digital converter (ADC). The carrier phase offset is compensated using

a phase-locked loop (PLL) synchronizer [85, p. 333] before matched filtering (MF) takes

place. The SNR maximization feature of MF is exploited to perform timing recovery via

the output power maximization algorithm [86, p. 261] followed by downsampling. The

start of the frame is then identified using a cross-correlation algorithm, which exploits

the good autocorrelation property of the Barker sequences. Phase ambiguity is finally

resolved by using the known pilots [85, p. 366]. These steps are depicted in Fig. 9.5.

RF
Front-End

ADC
Phase Offset
Correction

Matched
Filtering

Timing
Sync

Frame
Sync

Phase Ambiguity
Resolution

SNR
Estimation

Decoding Sink

Figure 9.5.: Receive signal processing.

Real-time operation is realized through time-based synchronization via PPS signals,

a common reference clock, and parallel modular processes with dedicated CPU affini-

ties and hierarchical priorities. Data exchange among threads is managed via signaling

notifications and queuing buffers.

Table 9.1 summarizes key implementation parameters.

9.4.4. Guaranteeing Correct Low SNR Measurements

In order to achieve the SNRs required at Eve while ensuring correct signal processing, the

SMW delays the initiation of the AWGN noise generation until the time interval assigned

for padding symbols is reached. This is selected long enough to account for a 1–2 ms jitter
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Table 9.1.: Key Parameters of the Experimental Setup

Parameter Variable Value

Barker sequence length Nsync 13 symbols
Pilot sequence length Npilot 128 symbols
Padding sequence length Npadding 256 symbols
PDU length N

1

data 512 , 2048 bits
Up- / downsampling factor F 16
Modulation (preamble) Mpreamble BPSK
Modulation (payload) Mdata QPSK
Carrier frequency fc 2.437 GHz
USRP bandwidth B 50 kHz
I/Q sampling rate fr 390 625 Sps
USRP transmit, receive gain Gtx, Grx 28 dB, 18 dB
SMW noise bandwidth Bnoise 100 kHz

Table 9.2.: Key parameters of the experiments

Parameter Exp. 1 Exp. 2 Exp. 3 Exp. 4

n 28 28 128 28
l 18 18 72,78,88,96 18
k 4 4 16 4,10,18
CRC length 6 6 11 6

in the SMW’s response time. Such process is repeated periodically for each transmitted

frame, i.e. disabling the SMW shortly after a frame has been received.

9.5. Results

In our first experiment, we use the two messages m1 “ p0, 0, 0, 0q
T and m2 “ p0, 0, 0, 1q

T,

as well as the seed s “ pa, tq with a “ p0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1qT and t

identically zero. This seed has the properties discussed in Section 9.3. Further system

parameters are listed in Table 9.2. During the experiment, the noise power in the channel

to Bob is fixed, and the one in the channel to Eve is changed in 0.25 dB steps. For each

setting, we repeat the measurement at least 484 times, corresponding to at least 13,568

codewords. The SNRs at Bob SNRB and Eve SNRE are estimated based on the noisy

pilot signal using a data-aided ML estimator [87].

We measured SNRB “ 8.1 dB. Having a fixed SNRB, we virtually obtain the same

error rate BLERB “ 0.00086 for all measurements from one batch. For Eve, we determine

the distinguishing error rate DERE as well as the BLERE, the block error rate when Eve

applies the same decoder as Bob. Note that the BLERE is not considered to be a security

metric in the strict sense. The values of DERE and BLERE for different SNRE values are

shown in Fig. 9.6. The lower the SNRE, the better the security level of the scheme is,
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Figure 9.6.: DERE and BLERE as a function of SNRE (n=28; l=18; k=4).

´2 0 2 4 6 8
10´4

10´3

10´2

10´1

100

SNRE in dB

DERE Exp s1 BLERE Exp s1

DERE Exp s2 BLERE Exp s2

DERE Exp s3 BLERE Exp s3

DERE Sim s1 BLERE Sim s1

DERE Sim s2 BLERE Sim s2

DERE Sim s3 BLERE Sim s3

Figure 9.7.: Comparison of 3 different seeds (n=28; l=18; k=4).

as measured by the distinguishing error rate DERE. At an SNRE of ´1.9 dB we have a

DERE of 0.36. For comparison, at this SNRE, the BLERE is 0.91. If we compare this

SNRE to the SNRB, we observe that there is quite a large difference of 10 dB. In our

next experiments we will see that this SNR margin depends on the blocklength and the

difference l ´ k. In addition, the simulated values generated with 5, 000 codewords are

plotted for comparison. We see that the experimental results (solid curves) are close to

the simulation results (dashed curves).

In our second experiment, we use the same messages m1 and m2, and compare three

different seeds s1, s2, s3, each with the properties discussed in Section 9.3. As before, t is

chosen to be identically zero for all three seeds, and a is given by

a1 “ p0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1q
T,

a2 “ p0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0q
T,

a3 “ p1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0q
T.

In Fig. 9.7 we see that the distinguishing error rate DERE, and hence the security level,

158



9.5. Results

´2 0 2 4 6 8
10´4

10´3

10´2

10´1

100

SNRE in dB

DERE Exp l-k=14

DERE Sim l-k=14

DERE Exp l-k=8

DERE Sim l-k=8

Figure 9.8.: Effect of the difference l´k on the DERE error rate (n=28; l=18; k=4,10,18).
For k “ 18, i.e., l ´ k “ 0, we have a measured DERE of zero, which cannot
be displayed.
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Figure 9.9.: BLERE for larger blocklengths (n=128; l=78, 88, 96; k=16).

has almost the same behavior for all seeds. Simulations have shown that the set of good

seeds that provide a high security level is rather large. This property is important for

practical implementations.

In our third experiment, we use longer, more realistic blocklengths. In Fig. 9.9 we see

the BLERE for n “ 128, k “ 16 and l “ 72, 78, 88, 96. Due to the large difference l´ k, it

is computationally infeasible to determine the DERE in this scenario. As expected from

the asymptotic theory of channel capacity, the transition from the SNRE region with

high BLERE to the region where BLERE decreases is sharper than in Fig. 9.7, where the

blocklength is smaller. Moreover, the decrease is faster in Fig. 9.9.

In our fourth experiment, whose results are displayed in Fig. 9.8, we vary the difference

l ´ k by holding l “ 18 fixed and choosing k “ 4, 10, 18. For k “ 18 we have l ´ k “ 0,

which gives a DERE of zero for all SNRE. It can be clearly seen that increasing l ´ k for
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a fixed SNRE leads to a larger DERE, i.e., a higher security level. To put it differently, a

fixed security level can be sustained even for higher SNRE if l´k is increased. This effect

can also be observed in Fig. 9.9.

In addition, we have taken screenshots of signal measurements for the testbed setup.

The configurations of the individual communication participants as well as the network

configurations can be seen in Fig. 9.10 and 9.11. For n “ 32, l “ 18 and k “ 4 the

distinguishing performance of Eve and BLERB of Bob were recorded when the security

layer is switched on. In the lower right of the figures, DERE is plotted as a function of

time for three different attack strategies, and BLERB is plotted to the left. The SNR

values at the given time are shown to the left of the BLERB curve. In the legend, the

NN decoder is labeled ”deep learning” and the modified polar decoder with list size L “ 8

is labeled ”Polar SCL” (see Section 8.3). The ML test was introduced in Section 7.4.2.

Bob decodes according to the 3GPP standard. In Fig. 9.11 we consider the same scenario

when the security layer is disabled, i.e. the random vector has length l ´ k “ 0. We can

see that in the second image, when the security layer is disabled, Eve can decode messages

over the entire SNR range with DERE « 0. Thus, without the security layer and thus

without the randomized encoding, no security can be provided (in our case distinguishing

security), with the exception of the modified polar decoder. We can see that the security

layer has no influence on the modified polar decoder. Therefore, the modified decoder

continues to decode with errors after deactivating the security layer. Thus Eve would not

choose the modified polar decoder as her attack strategy.

Figure 9.10.: Communication scheme with activated security layer for n “ 32, l “ 18 and
k “ 4.
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Figure 9.11.: Communication scheme with deactivated security layer for n “ 32, l “ 18
and k “ 4.

9.6. Conclusion

We experimentally evaluated a seeded modular physical layer security scheme using soft-

ware defined radios. To the best of our knowledge, this is the first time such a demonstra-

tion has been done using real signal transmission. The used blocklengths are rather short,

given that the computational load of Eve’s ML decoder needed to assess the security level

via the DS metric would otherwise be too big. We observed that the experimental results

are close to the simulation results. A relevant future research direction is to find other

security metrics with an operational meaning that do not require this costly operation.
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