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Background: Navigated repetitive transcranial magnetic stimulation (nrTMS) is effective therapy for
stroke patients. Neurorehabilitation could be supported by low-frequency stimulation of the non-
damaged hemisphere to reduce transcallosal inhibition.
Objective: The present study examines the effect of postoperative nrTMS therapy of the unaffected
hemisphere in glioma patients suffering from acute surgery-related paresis of the upper extremity (UE)
due to subcortical ischemia.
Methods: We performed a randomized, sham-controlled, double-blinded trial on patients suffering from
acute surgery-related paresis of the UE after glioma resection. Patients were randomly assigned to
receive either low frequency nrTMS (1 Hz, 15 min) or sham stimulation directly before physical therapy
for 7 consecutive days. We performed primary and secondary outcome measures on day 1, on day 7, and
at a 3-month follow-up (FU). The primary endpoint was the change in Fugl-Meyer Assessment (FMA) at
FU compared to day 1 after surgery.
Results: Compared to the sham stimulation, nrTMS significantly improved outcomes between day 1 and
FU based on the FMA (mean [95% CI] þ31.9 [22.6, 41.3] vs. þ4.2 [-4.1, 12.5]; P ¼ .001) and the National
Institutes of Health Stroke Scale (NIHSS) (�5.6 [-7.5, �3.6] vs. �2.4 [-3.6, �1.2]; P ¼ .02). To achieve a
minimal clinically important difference of 10 points on the FMA scale, the number needed to treat is 2.19.
Conclusion: The present results show that patients suffering from acute surgery-related paresis of the UE
due to subcortical ischemia after glioma resection significantly benefit from low-frequency nrTMS
stimulation therapy of the unaffected hemisphere.
Clinical trial registration: Local institutional registration: 12/15; ClinicalTrials.gov number: NCT03982329
© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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Introduction

Achieving maximum extent of resection (EOR) while preserving
functionality is a crucial step for the optimal oncological treatment
of patients suffering from brain glioma [1,2]. In particular, micro-
surgical glioma resection within or adjacent to eloquent brain re-
gions might lead to new surgery-related functional deficits.
Previous studies showed that most surgery-related deficits origi-
nate from subcortical ischemia rather than eloquent brain tissue
resection [3]. Postoperative motor function loss greatly impairs
patients' quality of life (QOL). Moreover, patients’ overall survival
and potential recovery is limited due to glioma recurrence and
transformation. Hence, reducing time spent on neurorehabilitation
to address new functional deficits has tremendous potential to
enhance QOL in this group of patients.

From stroke patients we know various ipsilesional mechanisms
supporting motor recovery from such damage and the subsequent
functional disability [4,5]. Moreover, we know from studies of
stroke patients that even the contralesional hemisphere is involved
in ipsilesional recovery by transcallosal inhibition (TCI) [6,7]. In the
healthy brain, upper extremity (UE) movement needs to be coor-
dinated via communication between the hemispheres. Both pri-
mary motor cortices interact with the one of the other hemisphere
to avoid mirrormovements but also to facilitate uni- and bi-manual
movement [8]. In the injured brain, however, TCI is altered which
might impair motor recovery and is very well researched in stroke
patients [9,10]. In case of ipsilesional hemisphere's damage TCI is
enhanced. Thereby, the unaffected hemisphere pathologically in-
hibits the affected hemisphere and as a consequence also its re-
covery from damage. Thus, approaches include non-invasively
down-regulating the contralesional motor cortex to reduce TCI [11].

Transcranial magnetic stimulation (TMS) is a safe, reliable, and
standardized non-invasive brain activity modulation technique
[12,13]. Repetitive TMS (rTMS) can be used to up-regulate or down-
regulate cortical excitability. In particular, low-frequency rTMS can
down-regulate the ipsilateral motor cortex and enhance the
cortical excitability of the contralateral hemisphere [14,15]. Mean-
while, low-frequency rTMS of the contralesional motor cortex has
been applied successfully and repeatedly and has proven beneficial
in patients suffering from strokes [16e19].

For the present randomized, double-blinded, sham-controlled
trial, we hypothesized that low-frequency navigated rTMS (nrTMS)
applied to the contralesional hemisphere and combined with
physical therapy (PT) in glioma patients suffering from acute
surgery-related paresis of the UE due to subcortical ischemia im-
proves UE motor outcomes as measured by the FMA upper ex-
tremity section more than does sham stimulation combined with
PT.

Methods

Ethics

The local ethics board reviewed and approved the trial plan
(registration number: 12/15; ClinicalTrials.gov number:
NCT03982329). We performed the trial in accordance with the
Declaration of Helsinki. All included patients provided written
informed consent prior to randomization.

Eligibility criteria

We enrolled patients 18 years and older who underwent
microsurgical glioma resection at our department and developed
an acute surgery-related paresis of the UE. The patients had British
Medical Research Council (BMRC) scale scores of 3 or below when
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compared to their preoperatively examinedmotor status and a new
subcortical infarct within the corticospinal tract (CST) as shown by
diffusion-weighted imaging (DWI) in postoperative MRI scan.
Exclusion criteria were general TMS exclusion criteria (pacemaker,
brain electrodes, and cochlear implants), as well as MRI exclusion
criteria [20]. We did not include patients who underwent biopsy
rather than microsurgical resection. Patients without preserved
motor evoked potential (MEP) responses as measured by post-
operative navigated TMS (nTMS) motormapping were not included
in the randomized trial. Eligibility criteria were assessed on day 1
(Fig. 1).

To perform a valid analysis of the effect of nrTMS, we calculated
the sample size before the start of the trial. Due to the lack of prior
studies on glioma patients, we based the sample size calculation on
comparable studies that examined the effect of nrTMS stimulation
in patients suffering from strokes. The calculation indicated an
optimal sample size of 39 patients (26 nrTMS group, 13 sham
group) [21].
Trial protocol

Patients who met the inclusion criteria received a new naviga-
tional cranial MRI scan, including a three-dimensional (3-D)
gradient echo sequence with intravenous contrast administration,
the day after surgery. After examining the participants’ initial motor
status and general neurological status, we performed postoperative
nTMS motor mapping of the ipsilesional and contralesional hemi-
sphere [22].

In case of preserved MEPs, patients were then randomly
assigned to the nrTMS group or the sham group. Patients assigned
to the nrTMS group received low-frequency nrTMS stimulation of
1 Hz for 15 min (900 pulses) at an intensity of 110% resting motor
threshold (rMT, defined as the lowest TMS intensity capable of
eliciting a 50 mV MEP amplitude). The rMT was measured at day 1
after surgery. This stimulation was applied to the contralesional
hemisphere's motor hot spot. For nrTMS stimulation, the stimula-
tion coil was handled perpendicular to the gyrus due to the
orientation of pyramidal cells in the central sulcus. Patients in the
sham group received sham stimulation at a stimulation intensity of
5% rMT with 1 Hz for 15 min. This was applied to the contralesional
hemisphere's motor hot spot with an angulation parallel to the
gyrus in order to additionally minimize the TMS effect. Within 1 h
after receiving nrTMS or sham stimulation, patients received
30 min of intensive task-oriented PT focused on the UE. This pro-
tocol was performed for seven consecutive days directly after sur-
gery (Fig. 1).
Outcome measures

We used the change in FMA at FU compared to day 1 after
surgery as primary outcome measure because its reliability and
validity is well-demonstrated [23,24]. Secondary outcome mea-
sures were the Nine Hole Peg Test (NHPT) and the Jebsen-Taylor
Hand Function Test (JTHFT) [25,26]. To examine the patients’ gen-
eral neurological status, we used the National Institutes of Health
Stroke Scale (NIHSS) [27]. Because we included only patients
suffering from glioma, we applied the Karnofsky Performance
Status (KPS) scale as a general oncological outcome scale to provide
information on eligibility for adjuvant therapy [28].

Primary and secondary outcome measures were performed
before day 1, directly after the last treatment on day 7, and at FU
(Fig. 1). Due to potential tumor progression and other therapy-
related confounders, the trial only assessed a 3-month period af-
ter surgery.

http://ClinicalTrials.gov


Fig. 1. Trial Time Course. nrTMS ¼ navigated repetitive transcranial magnetic stimulation for therapy; nTMS ¼ navigated transcranial magnetic stimulation for motor mapping;
PT ¼ physical therapy; rMT ¼ resting motor threshold.
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Randomization and blinding

After postoperative nTMS motor mapping in order to evaluate
preservation of MEP responses, included patients were randomly
assigned to receive either nrTMS stimulation combined with PT (¼
nrTMS group) or sham stimulation combined with PT (¼ sham
group) in a 2:1 ratio. Randomization was performed by the use of
standardized envelopes ensuring random treatment assignment as
defined by the trial protocol.

All randomized patients, their treating physicians, trial in-
vestigators, and outcome raters, as well as administrative staff,
including nurses, physiotherapists, and the patients’ relatives,
remained blinded to the randomization results and the following
treatment protocol throughout the entire trial. Only the nrTMS
system operator was informed of the randomization results and the
assigned treatment protocol.
Statistical analysis

An interim analysis after the inclusion of half of the optimal
sample group was predefined. To evaluate the trial's safety
comprehensively, we selected a deterioration of overall perfor-
mance to discuss stopping the trial.

We considered a p-value of less than 0.05 statistically signifi-
cant. No specific plan was outlined initially for the management of
missing data. No imputations were planned or performed. The plan
for analysis was to compare the two randomized groups regarding
changes of outcome measures between the time points of assess-
ments and total differences of outcomemeasures at the time points
of assessments. The plan for analysis included the following com-
parisons for all outcome measures:

� Change of outcome measures between day 1 and 3-months
follow up

� Change of outcome measures between day 1 and day 7
� Change of outcome measures between day 7 and 3-months
follow up

� Difference of outcome measures at day 7
� Difference of outcome measures at 3-months follow up

The baseline characteristics of the two groups were compared
using independent t-tests for continuous variables and Fisher's
exact or chi-square test for categorical variables. A p-value of less
than 0.05was considered significant. Initially, Gaussian distribution
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was tested for all measures. Due to the small cohort size, Gaussian
distribution was tested using the Shapiro-Wilk-Test. In case of
rejecting the null hypothesis based on a P-value <.05, further cal-
culations for the tested data were performed using the Mann-
Whitney Test. In case of no rejection of the null hypothesis based
on a P-value >.05, further calculations for the tested data were
performed using both parametric and non-parametric tests. In
these cases, the manuscript and tables show P-value results of the
T-test. Mean values including 95% confidence interval (95% CI) were
calculated for all outcome measures. An interim analysis was per-
formed after the inclusion of 50% of patients. No changes were
made in the statistical analysis plan after the study was stopped.

We based our number needed to treat (NNT) calculation on
publications defining the respective thresholds [29,30]. An
improvement of more than 10 points on the FMA was defined as a
minimal clinically important difference (MCID) [29]. The NNT for
NIHSS results was based on the stroke severity score, which is
scaled using NIHSS measures (0 ¼ no stroke symptoms,
1e4¼minor stroke, 5e15¼moderate stroke,16e20¼moderate to
severe stroke, 21e42¼ severe stroke). We defined a score of 0e4 as
a favorable outcome and a score of more than 4 as an unfavorable
outcome [31]. We defined a NIHSS motor arm score of 0e2 as a
favorable outcome. We defined a favorable oncological outcome as
a KPS of �70 [30]. All analyses were performed using R 3.4.3 (R
Foundation for Statistical Computing, Vienna, Austria).
Results

Baseline characteristics

Between June 2015 and May 2019, 39 patients met the ran-
domized trial's inclusion criteria. In accordance with the trial pro-
tocol, 14 patients did not undergo randomization due to missing
MEPs in the postoperative nTMS mapping. Three patients who met
the inclusion criteria declined to participate in the trial. One patient
assigned to receive nrTMS stimulation withdrew his consent to
participate in the trial during the stimulation period due to psycho-
oncological distress (Fig. 2). This patient left the hospital to recover
at home with his family. No patient suffered from adverse events
related to nrTMS or sham stimulation during or after the treatment
period. Especially no seizures occurred during or after nrTMS or
sham stimulation.

According to the trial randomization protocol, we assigned 16
patients (72.7%) to receive nrTMS stimulation therapy combined
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with PT and assigned six patients (27.3%) to receive sham stimu-
lation combined with PT. Apart from tumor hemisphere, baseline
patient characteristics were well balanced between the groups
(Table 1). In the nrTMS group and the sham group, one patient was
lost to follow-up due to general status (nrTMS group) or death
(sham group) (Fig. 2).
Outcome measures

Themean absolute values, including 95% CI, for FMA, NIHSS, KPS,
NHPT, and JTHFT on day 1, on day 7, and at FU are shown in
Supplementary Table 1.

Supplementary Table 2 shows the mean changes, including 95%
CI, for FMA, NIHSS, KPS, NHPT, and JTHFT.
3-Month follow-up
The primary outcome parameter as defined by the change in

FMA between day 1 and FU was statistically significant showing
mean improvement from 31.93 [95%CI 22.6, 41.25] points in the
rTMS group while it was 4.2 [95%CI -4.14, 12.54] points in the sham
group (Supplementary Table 2; P ¼ .001). To achieve the minimal
clinically important difference (MCID) of more than 10 points on
the FMA scale, the NNT is 2.19 (P < .01). Additionally, even themean
absolute values of the FMA were much better at FU in the rTMS
Fig. 2. Eligibility, Randomization, and Follow-Up. MEP ¼ motor evoked potential; nrTMS ¼
transcranial magnetic stimulation for motor mapping; PT ¼ physical therapy.
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group (42.14 [95%CI 31.74, 52.54]) compared to the sham group
(13.20 [95%CI 3.64, 22.76]) (Supplementary Table 1; P ¼ .002).

Figs. 3 and 4 as well as Supplementary Figures 1 to 5 show the
differences between the nrTMS and the sham group for all primary
and secondary outcome measures, as well the course of outcome
measures.
7-Day follow-up
Except for the sham group's KPS difference between day 1 and

day 7, all primary and secondary outcome measures improved for
patients of both groups according to mean values between day 1
and day 7. Neither the absolute mean values at day 7 nor the
changes of mean values between day 1 and day 7 for primary and
secondary outcome measures showed statistically significant dif-
ferences between the nrTMS group and the sham group.

For secondary outcomemeasures, the change in values between
day 7 and FU were statistically significant for the FMA and the
NIHSS. Likewise, the change in values between day 1 and FU was
statistically significant for the NIHSS, and the change in values
between day 1 and day 7 was statistically significant for KPS.

Further changes in values for secondary outcome measure did
not show statistical significance.

Although examinations show better mean values for all
outcome measures on day 7 for the nrTMS group as compared to
navigated repetitive transcranial magnetic stimulation for therapy; nTMS ¼ navigated



Table 1
Patients’ baseline characteristics.

1 Characteristic nrTMS Group (N ¼ 15) sham Group (N ¼ 6)

Age - yr 52.9 ± 15.2 61.4 ± 16.1
Gender male - no. (%) 7 (47) 5 (83)

female - no. (%) 8 (53) 1 (17)
Preoperative KPSa - % 87.3 ± 4.6 76.7 ± 12.1
Preoperative motor deficit yes - no. (%) 8 (53) 5 (83)

no - no. (%) 7 (47) 1 (17)
Hemisphere left - no. (%) 4 (27) 5 (83)

right - no. (%) 11 (73) 1 (17)
Lobe frontal - no. (%) 5 (33) 1 (17)

parietal - no. (%) 8 (53) 2 (33)
temporal - no. (%) 2 (13) 3 (50)

Surgery first - no. (%) 10 (67) 4 (67)
recurrence - no. (%) 5 (33) 2 (33)

AEDb yes - no. (%) 10 (67) 5 (83)
no - no. (%) 5 (33) 1 (17)

Corticosteroids yes - no. (%) 1 (7) 3 (50)
no - no. (%) 14 (93) 3 (50)

Subcortical ischemia size (cm3) 5.2 ± 2.7 5.5 ± 2.4
EORc GTR - no. (%) 10 (67) 5 (83)

STR - no. (%) 5 (33) 1 (17)
IDHd mutation yes - no. (%) 6 (40) 1 (17)

no - no. (%) 9 (60) 5 (83)
WHO�e II - no. (%) 1 (7) 0

III - no. (%) 5 (33) 1 (17)
IV - no. (%) 9 (60) 5 (83)

Recurrence/Progress at FUf yes - no. (%) 2 (14) 1 (20)
no - no. (%) 12 (86) 4 (80)

All group characteristics were not statistically significant except hemisphere distribution (P < .05).
a Karnofsky Performance Status (KPS) scale scores range from 0% to 100%. Higher scores indicate less disability and better quality of life in cancer patients.
b Anti-epileptic drugs (AED).
c Extent of resection (EOR) is subdivided into gross total resection (GTR), i.e. complete tumor resection, and subtotal resection (STR).
d Isocitrate dehydrogenase (IDH) mutation.
e The World Health Organization (WHO) grades tumors from I to IV, with higher grades indicating more malignant tumors.
f Status of tumor progress and/or tumor recurrence at 3-month follow-up (FU).
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the sham group, we found no statistically significant differences at
this time point. In contrast, at FU, mean values for the FMA and the
NIHSS showed statistically significant differences (Supplementary
Table 1).

Concerning the initial ischemic lesion, it did not resolve in
subsequent imaging during follow-up, but did reduce in size on T1
Fig. 3. Fugl-Meyer Assessment. Scores for the Fugl-Meyer Assessment (FMA) of the
upper extremity range from 0 to 66, with lower scores indicating more severe
disability. At all time points, the mean and 95% CI are shown. To achieve the minimal
clinically important difference (MCID) of more than 10 points on the FMA scale, the
NNT is 2.19 (ns ¼ not significant, ** ¼ P < .01, symbols refer to absolute values at
timepoint).
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compared to the initial DWI sequence at day 1 after surgery
(mean ± SD: 5.3 ± 2.5 vs. 2.2 ± 2.4 cm3; P¼ .002). There was also no
difference in the initial DWI sequence at day 1 for patients who
recovered (5.3 ± 2.4 cm3) and patients who did not recover
(5.3 ± 3.3 cm3) (P ¼ .996).
Fig. 4. National Institutes of Health Stroke Scale. National Institutes of Health Stroke
Scale (NIHSS) scores range from 0 to 42, with higher scores indicating more severe
disability. At all time points, the mean and 95% CI are shown. To achieve a favorable
outcome on the stroke severity score, the NNT was 1.75. The NIHSS motor arm score at
FU was 0e2 (favorable outcome) for 13 patients (92.9%) in the nrTMS group and two
patients (40.0%) in the sham group. In contrast, an unfavorable outcome for the motor
arm score was found in one patient (7.1%) in the nrTMS group and three patients
(60.0%) in the sham group (P ¼ .03) (Supplementary Fig. 4 and 5) (ns ¼ not significant,
** ¼ P < .01, symbols refer to absolute values at timepoint).
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Number needed to treat

An improvement of more than 10 points on the FMA was found
in 12 patients (85.7%) in the nrTMS group and in 2 patients (40%) in
the sham group (P ¼ .08). To achieve this MCID on the FMA scale,
the NNT is 2.19 [29].

The nrTMS group's stroke severity score based on NIHSS results
at FU was 0 for 2 patients (14.3%), 1e4 for 6 patients (42.9%), and
5e15 for 6 patients (42.9%). For the sham group, the stroke severity
score at FUwas 5e15 for all patients. In the nrTMS group, 8 patients
(57.1%) showed a favorable outcome at FU, and 6 patients (42.9%)
showed an unfavorable outcome. In contrast, all sham group pa-
tients showed an unfavorable outcome (P ¼ .05).

To achieve a favorable outcome on the stroke severity score, the
NNT was 1.75. With regard to the primary outcome parameter and
the present trial's focus on improving UE functionality, the NIHSS
motor arm score at FU was 0e2 (favorable outcome) for 13 patients
(92.9%) in the nrTMS group and two patients (40.0%) in the sham
group. In contrast, an unfavorable outcome for the motor arm score
was found in one patient (7.1%) in the nrTMS group and three pa-
tients (60.0%) in the sham group (P ¼ .04) (Supplementary Figure 4
and 5). To achieve a favorable outcome on the NIHSS motor arm
score the NNT was 1.89.

With respect to general oncological outcome as measured by
KPS, a favorable outcome of �70% was achieved in 8 patients
(57.1%) in the nrTMS group and no patients in the sham group
(P ¼ .05) [30]. The NNT for a favorable oncological outcome on KPS
was 1.75.

As a result of the present interim analysis of primary and sec-
ondary outcome parameters, as well as to the trial protocol's safety
criteria, we stopped the randomized trial.

Discussion

nrTMS therapy for patients with acute paresis after glioma resection

In this first, randomized, double-blinded, sham-controlled trial
of patients suffering from acute paresis of the UE due to subcortical
ischemia after glioma resection, the addition of low-frequency
nrTMS applied to the contralesional hemisphere combined with
PT was associated with significantly better UE motor outcome as
assessed using the FMA than sham stimulation combined with PT.
The NNT to achieve a MCID on the FMA scale is 2.19. Additionally,
secondary outcome measures for general oncological (KPS) and
comprehensive neurological (NIHSS) outcomes showed better
outcomes at FU in the nrTMS group than in the sham group. Further
secondary outcome measures for specific UE function as measured
by JTHFT and NHPT showed a positive improvement trend after
nrTMS therapy as compared to sham group but failed to be statis-
tically significant.

The trial's results, including the NNTs, show for the first time
that the down-regulation of the contralesional motor cortex and
the suspected reduction of TCI significantly benefits glioma pa-
tients' motor recovery in case of surgery-related subcortical
ischemia.

For the oncological treatment of patients suffering from high-
grade, low-grade, or recurrent glioma, microsurgical resection
plays a central role [32,33]. Similarly, the occurrence of surgery-
related paresis in patients who undergo microsurgical glioma
resection is rare [34]. The present study demonstrates nrTMS
therapy's potential to improve glioma patients' functional out-
comes with acute surgery-related paresis after resection. First, the
results show the beneficial effects and improvement of upper ex-
tremity motor impairment as measured by the FMA, which had
priority in this trial. In addition, general oncological and
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comprehensive neurological outcome parameters also showed
statistically significant improvement with nrTMS therapy.

Treatment protocol and comparison with trials on stroke patients

The enrolled patients represent a considerably homogenous
cohort due to the rigorous inclusion criteria. In order to exclude the
natural process of recovery or bias, patients with obvious resection
of the supplementary motor area and therefore expected recovery
were excluded as well. All enrolled patients required diffusion re-
striction in theMRI scan at the first day after surgery within the CST
plus a severe corresponding functional deficit and intraoperative
MEP decline or loss. Therefore, biopsy cases were also excluded.

The present trial's small cohort must be considered a limitation.
The interim analysis showed statistically significant differences,
particularly for the primary outcomemeasure of FMA change at FU.
The statistical significance at this early stage, even for this small
cohort, necessitated stopping the trial after the power analysis for
the primary endpoint was sufficient.

Obtaining statistically significant results for the primary
endpoint with such small group sizes can also be regarded as an
important strength of the study because these results represent
considerable effects due to effective treatment and the appropriate
choice of inclusion criteria. Nevertheless, larger multicenter trials
might still be reasonable not only to confirm the present results,
but to provide an extensive subgroup analysis of the enrolled pa-
tients, such as lower extremity deficits and a broader range of in-
clusion criteria. Since the functional motor status was the main
focus of this pilot study, no further QoL questionnaires were
currently assessed. We chose the upper extremity for this prag-
matic pilot study since it is easier tomeasure finer changes inmotor
function. Considering functional independence, the ability to walk
is maybe even more important for these patients and the lower
extremity should therefore be of additional interest in a future
larger trial.

Only hemispheric lateralization differed significantly between
the two groups in terms of their baseline characteristics. There was
no difference in the application of steroids, antiepileptic drugs, EOR
or molecular patterns. Mannitol was not applied at all (Table 1).
Prior studies including a large-scale analysis of high-quality data
showed that there is no difference in functional outcome and re-
covery between patients with right- or left-hemispheric strokes
[35]. Thus, based on the principle of functioning, hemispheric
lesion lateralization does not influence motor recovery due to
nrTMS stimulation therapy, especially not for the primary outcome
measure.

The therapeutic application of rTMS to enhance motor recovery
has been studied in patients suffering from stroke. Although meta-
analyses are somewhat controversial when applied to the results of
single trials, the use of rTMS therapy with stroke patients is widely
accepted, and further scientific investigation is advised [16e19].
Various approaches to using rTMS therapy with stroke patients
have been developed in the past, including down-regulating the
contralesional hemisphere using low-frequency rTMS to reduce
TCI, which we essentially used in the present trial [36]. Previous
trials compared ipsilesional high-frequency rTMS to contralesional
low-frequency rTMS, leading to partially controversial results.
These studies' outcomes showed more improvement using con-
tralesional low-frequency rTMS than ipsilesional high-frequency
rTMS [37,38], the opposite [39], and similar improvement when
using the two approaches [40]. A meta-analysis showed that con-
tralesional low-frequency rTMS is more effective than ipsilesional
high-frequency rTMS and that patients suffering from subcortical
strokes benefit more from rTMS therapy than do cortical stroke
patients [18]. Because we planned to exclusively enroll patients
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suffering from paresis after glioma resection due to subcortical
ischemia, the present trial's treatment protocol was low-frequency
nrTMS. Additionally, we applied this approach to prevent chron-
ification of an enhanced TCI in this cohort of patients with acute
paresis of the UE. This is one strength of our approach: the im-
mediate beginning of rTMS right after the event. Since we intended
to investigate a practically feasible approach, we limited rTMS to 7
days postoperatively. We are aware that most stroke trials applied
rTMS 3 weeks or longer. However, this is not realistic in an acute
care hospital and would have biased the results considerably due to
later rTMS onset or different treatment centers for one patient if
transferred to a rehabilitation unit.

Limitations

The present trial's treatment protocol was adapted from an
earlier pilot study on stroke patients using a similar approach [21].
However, the study's cohort was fairly heterogeneous, as is char-
acteristic for stroke patients. A subsequent randomized, sham-
controlled multicenter trial on stroke patients failed to show dif-
ferences between rTMS and sham stimulation [41]. Interestingly,
both trial arms, the nrTMS group and the sham group showed
significant improvement as measured by the FMA at a 6-month FU,
far superior to the improvement noted in the literature. In contrast,
the present trial's cohort only consists of patients with proven
subcortical ischemia of the CST as confirmed by postoperative MRI.
Therefore, our cohort is considerably more homogeneous and the
ischemic lesions were much more circumscribed thus allowing for
synaptic and functional reorganization. As already discussed by the
authors of the mentioned stroke trial, the application of a special
sham coil that induces a donut-shaped electric field of 10e30 V/m
might have been the most likely reason for the lack of difference in
both trial arms' improvement, as even low electric fields affect
neuronal circuits [42]. However, we used a sham protocol of only 5%
rMT stimulation intensity and an angulation parallel to the gyrus to
apply minimum electric field strength and minimum stimulator
output intensity; thus, active stimulation in our trial's sham group
can be ruled out by two reasons: the electric field does not reach
the brain through the skull and the induced current is perpendic-
ular to the axons of the pyramidal cell which makes an action po-
tential impossible per se.

Conclusion

This is the first study to examine the effect of nrTMS therapy in
patients suffering from acute functional deficits after glioma
resection. A strong treatment effect for contralesional nrTMS in the
acute phase was shown for patients suffering from acute surgery-
related paresis of the UE and subcortical ischemia if combined
with PT. Larger trials should be done to potentially extent the
indication.
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