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Exhaustive verification techniques do not scale with the complexity of today’s multi-tile Multi-processor

Systems-on-chip (MPSoCs). Hence, runtime verification (RV) has emerged as a complementary method,

which verifies the correct behavior of applications executed on the MPSoC during runtime.

In this article, we propose a decentralized monitoring architecture for large-scale multi-tile MPSoCs. In or-

der to minimize performance and power overhead for RV, we propose a lightweight and non-intrusive hard-

ware solution. It features a new specialized tracing interconnect that distributes and sorts detected events

according to their timestamps. Each tile monitor has a consistent view on a globally sorted trace of events

on which the behavior of the target application can be verified using logical and timing requirements. Fur-

thermore, we propose an integer linear programming-based algorithm for the assignment of requirements

to monitors to exploit the local resources best. The monitoring architecture is demonstrated for a four-tiled

MPSoC with 20 cores implemented on a Virtex-7 field-programmable gate array (FPGA).
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1 INTRODUCTION

Application fields such as robotics, telecommunication, and autonomous driving have an ever
increasing demand for more computing power. In order to meet this rising demand, tile-based
architectures are used to scale up the number of cores on a single chip, known as multi-tile
Multi-processor Systems-on-Chip (MPSoCs). Due to the complexity of these MPSoCs, traditional
verification methods comprising of theorem proving, model checking, and testing reach their lim-
its [14, 18, 25]. In order to address this problem, additional methods are deployed to monitor system
specifications at runtime. Those techniques are studied in the field of Runtime Verification (RV).
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RV is a lightweight verification technique in which the system under verification is instrumented

to extract its current status based on events. The trace of events is then analyzed by a runtime

monitor, which infers a positive verdict if the monitored requirement is fulfilled and a negative
verdict if not [10].

RV is used pre-deployment for verification, debugging, and testing, but it can also be used post-
deployment for fault detection, identification, and recovery (FDIR) [18]. For example, in the au-
tomotive industry, the development partnership AUTomotive Open System ARchitecture (AU-
TOSAR) [1] proposes safety mechanisms for embedded software including logical and timing su-
pervision of the target application. Logical supervision is used to verify the control flow of an
application in order to detect synchronization errors between software elements. In contrast, tim-

ing supervision verifies the timing between code sections or threads in order to detect deadlocks,
livelocks, and the incorrect allocation of execution times. These safety mechanisms are based on a
post-deployment use of runtime monitors and RV methods. Of course, the same runtime monitors
can also be used pre-deployment to detect common concurrency bugs and analyze the temporal be-
havior of an application. Hence, the runtime monitors, which implement both safety mechanisms,
form a powerful tool to improve the system. Yet, when applications are executed in a distributed
fashion on large-scale, multi-tile MPSoCs, additional challenges arise for using RV methods: firstly,
every processor generates a partial event trace of the application such that no global trace is avail-
able per se. Additionally, when monitors are distributed over the system, a second challenge is to
assign the runtime requirements to the local monitors. For this purpose, we propose a decentral-
ized monitoring architecture to address these challenges. It is—to the best of our knowledge—the
first hardware-based RV approach that is capable of verifying runtime requirements such as logical
and timing supervision for applications executed in a distributed fashion on large-scale, tile-based
MPSoCs.

The key concept behind the monitoring architecture is a Network-on-Chip (NoC) tracing inter-
connect, SortNoC, which is specifically designed to sort partial event traces based on timestamps
and to distribute them in the monitoring architecture. Thus, the distributed monitors have a con-
sistent view on a globally sorted trace of events, which enables them to verify requirements on
applications, running in a distributed fashion. Furthermore, we formulate the assignment of re-
quirements to monitors as an integer linear programming (ILP) problem. Using an ILP solver, it
is possible to maximize the number of simultaneously verifiable requirements by exploiting the
available resources best. The key contributions of our work can be summarized as follows:

—A decentralized monitoring architecture for the verification of runtime requirements for ap-
plications executed in a distributed fashion on large-scale, tile-based MPSoCs. The design is
hardware-based and, hence, non-intrusive as well as suitable for pre- and post-deployment
use.

—SortNoC, an NoC-based tracing interconnect for large-scale monitoring architectures. Com-
pared to a regular NoC, its specialized design improves area and latency, and offers broad-
casting capabilities.

—The ILP-based algorithm to assign requirements to monitors to efficiently use local moni-
toring resources.

We evaluate the monitoring architecture in a multi-tile MPSoC with four tiles, having five
Leon3 cores each, implemented on a Virtex-7 field-programmable gate array (FPGA). The fully-
configured monitoring architecture introduces an overhead of 10.8% in terms of lookup tables
(LUTs) and 30.6% in terms of flip-flops (FFs). This is significantly lower than the overhead of other
non-intrusive verification approaches like DiaSys [33]. Furthermore, we demonstrate that the pro-
posed tracing NoC scales better for large-scale systems compared to a naive approach using a
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regular NoC when considering the network latency and area. Finally, we present typical use cases
of the monitoring system and show the benefits of the ILP-based requirement assignment algo-
rithm compared to a greedy assignment policy.

The remainder of this article is structured as follows: First, we present the related work in Sec-
tion 2. Subsequently, Section 3 introduces our monitoring architecture. The implementation of the
monitoring system is discussed in Section 4, followed by a requirement assignment algorithm in
Section 5. Experimental results are discussed in Section 6, and Section 7 concludes the article.

2 RELATED WORK

The implementation of runtime verification methods can be conducted in software (SW) and hard-
ware (HW). SW-based verification approaches execute additional software for the instrumentation
and the verification of target applications. Although those approaches benefit from the expressive-
ness of programming languages, they typically introduce a significant performance overhead [22]
and change the temporal behavior of the application [9]. In contrast, HW-based approaches intro-
duce dedicated monitoring hardware, which is less expressive but minimizes or completely avoids
performance overheads. In the following, we focus on HW-based approaches because they are
better suited for embedded systems.

The first class of HW-based approaches synthesizes formal specifications into a hardware de-
scription language: Lu and Forin [20] introduce a property specification language (PSL) to Verilog
compiler, which translates assertions into loadable extensions for the extensible Microprocessor
without Interlocked Pipelined Stages (eMIPS) architecture. Similarly, Solet et al. [29] synthesize
past-time linear temporal logic (ptLTL) specifications on an FPGA fabric, which is integrated along-
side a micro-controller. Thus, all instrumented variables must be mapped to FPGA registers, which
significantly increases the access latency. They further evaluate this approach for the RV of a real-
time operating system (RTOS) kernel [30, 31]. Here, a performance overhead of 16.2–33% was
found. Additionally, there exist different tools such as LamaConv [16] and ltl2mon [5] that con-
vert specifications into three-valued LTL (LTL3) monitors, which can directly be implemented as
a finite-state machine (FSM). In general, the synthesized monitors are either implemented on an
FPGA, resulting in high–access latencies, or directly in HW, restricting the configurability of the
system.

The second class pre-processes monitoring data on-chip and forwards it to a host machine for
further post-processing: Hochberger and Weiss present a hidden in-circuit emulator (HidICE [15])
that replicates the internal states of the target system using the read data from peripheral com-
ponents. The replicated internal states of the emulator can be accessed by a host machine to gain
insights into the system behavior. Decker et al. [7] developed an online analysis platform, which
processes trace data of an MPSoC in real-time. After execution, the collected data is available
for further offline post-processing. Similarly, Wagner et al. [33] present a diagnosis system, Di-

aSys, for MPSoCs that executes a diagnosis application to process events at runtime according to
a dataflow application. The result is then sent to a host machine to enable insights in the program
execution to reveal concurrency bugs. While these approaches are especially useful for testing and
debugging pre-deployment, in-situ approaches are required to perform RV post-deployment.

The third class uses reconfigurable monitoring hardware: Seo and Lysecky [28] introduce
a non-intrusive runtime monitoring methodology (NIRM) for the verification of control flow
and timing requirements on single-core architectures. Mettler et al. [21] extend this approach
for inter- and intra-thread requirements on embedded MPSoCs using a hierarchical monitoring
architecture. The intra-thread requirements are verified on local monitors and all inter-thread
requirements are verified on a single global monitor limiting the scalability of the architecture.
In contrast, Nassar et al. [22] introduce a nonuniform verification architecture (NVUA) for the
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verification of a parameterized finite-state automaton. To achieve this goal, it uses a directed
acyclic graph (DAG) to organize a population of monitors. In order to apply events on the
distributed data structure, a directory-based coherence protocol is implemented. Although this
enables to maintain a coherent view on the checker population, to our understanding, there are
no measures taken to apply events in their order of detection. A generalized tracing methodology
is introduced by Seo and Kurdahi [27]. The methodology consists of a compatibility layer for
tracing interfaces of different single-core architectures, a filter layer for the detection of events,
and a verification layer that checks the requirements using Micron’s automata processor (AP) [8].
Alternatively, Reinbacher et al. [26] introduce an HW accelerator for the verification of ptLTL
specifications. The accelerator consists of a parallel monitoring architecture where each monitor
checks an item of the temporal specification using atomic checkers.

Besides the verification features of the RV architecture, its compatibility with the development
workflow of safety-critical systems is an important feature as well. Safety critical systems are de-
signed according to international standards, such as the functional safety standard 26262 of the
International Organization for Standardization (ISO). for the automotive industry. The standard
includes functional safety assessment and audit processes that lead to functional safety require-
ments. Heffernen et al. [13] use the ISO 26262 to define functional safety requirements as moni-
toring properties in LTL for an automotive gearbox control system. Using a runtime monitor, they
are able to verify the safety requirements throughout the lifetime of the system but provide no
implementation suitable for large-scale systems. As more and more electrical control units (ECUs)
are integrated into one single large-scale central system, monitoring architectures must scale ac-
cordingly to verify functional safety properties. While DiaSys and NUVA are the only scalable ap-
proaches, neither of them exploits the full potential of RV, suitable for pre- and post-deployment
use cases. DiaSys is especially designed for a pre-deployment use only. It moves the trace analysis
only partially on-chip, which makes a post-deployment use impossible. While NUVA can also be
used post-deployment, it supports the verification of a single parameterized finite-state automaton
only. Especially on larger-scale systems, this is not sufficient. Thus, we integrate multiple runtime
monitors in each tile in order to obtain a scalable architecture. Furthermore, the two approaches
support timing supervision neither for pre-deployment nor for post-deployment use cases. This
is a major shortcoming as RV is especially used in real-time systems where timing requirements
are essential. In a decentralized system, the events, which are detected on different locations, must
be sorted based on their detection order to reliably detect concurrency bugs. Hence, the RV archi-
tecture of a decentralized system must entail a sorting mechanism. Such a mechanism is neither
implemented in DiaSys nor in NUVA. We address this shortcoming by SortNoC, a scalable tracing
interconnect that inherently sorts detected events based on their timestamp.

3 DECENTRALIZED HARDWARE-BASED MONITORING ARCHITECTURE FOR

MULTI-TILE MPSOCS

In this section, we give an overview of the monitoring system that overcomes the scalability short-
comings of today’s hardware approaches. First, we present our RV methodology, followed by a
formal definition of the supported runtime requirements, and a discussion on the benefits and
limitations of this monitoring approach.

3.1 Architectural Design

As already stated, RV is a lightweight verification technique that verifies a particular system behav-
ior against a set of requirements. Compared to traditional verification approaches such as model
checking and testing, RV approaches carefully balance the coverage of the verification strategy
against the computational effort. This is possible by instrumenting the system under scrutiny by
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Fig. 1. The decentralized monitoring architecture integrated in a tiled MPSoC.

a set of probes that extract an event trace. The event trace is then forwarded to a runtime monitor
that checks formal requirements on the trace and returns a verdict.

In large-scale systems, the number of supported requirements and thereby the number of mon-
itors must scale with the size of the system. Francalanza et al. [11] survey different monitor orga-
nizations for decentralized systems. Here, the monitor organization is mostly determined by the
verification strategy of requirements that are global in nature. In this scenario, probes on different
tiles detect events that are required for the verification of the same requirement. As a result, either
the local event traces must be aggregated, or the monitors must communicate with each other.

For large-scale MPSoCs, requirements must be tested for applications running in a distributed
fashion across several tiles of multi-processor subsystems. Hence, we face the challenge to verify
requirements that are global in nature. With the development of the tracing interconnect SortNoC,
we decided to aggregate the local event traces, which is simpler to realize (i.e., expected to consume
fewer resources) and enables an arbitrary assignment of requirements to monitors. This results in
a decentralized monitoring setup, where a set of probes is attached to the processors in the system.
Each probe generates a local event trace. The event trace is then aggregated and distributed to all
monitors in the system. Our specific setup is illustrated in Figure 1. Here, we instrumented the
instruction trace of each central processing unit (CPU) by a probe. The probes of each tile send
the probe-local event traces to the respective tile monitors, where the probe-local event traces are
aggregated to tile-local event traces and injected into the SortNoC. Finally, the SortNoC aggregates
the tile-local event traces to a single totally ordered event trace, which is distributed to all monitors.
In the monitors, the specifications are then verified based on a globally sorted event trace.

3.2 Supported Runtime Requirements

Another key feature of the monitoring architecture is the expressiveness of its supported require-
ments. In HW, one needs to find a good tradeoff between the expressiveness and the HW overhead.
Inspired by AUTOSAR [1], we decided to support logical and timing requirements as well as range
checks and checks on power corridors. They are already expressive enough to formulate complex
functional safety requirements but come at the same time with a reasonable HW overhead to
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provide a sufficient number of monitors in the architecture. The runtime requirements are for-
mally defined together with the event trace in the following.

We define all runtime requirements on a set of events E, where each event e has an event ID
ie . Due to the limited hardware resources of the monitors, the bit width of an event ID WI is
restricted by the runtime monitors. To ensure that the number of supported events still scales with
the size of the system, this notation is extended by a cluster ID ic , which identifies the monitoring
cluster, in which an event is used. A monitoring cluster is a consolidation of tile monitors that
verify requirements based on the same set of events. Thus, it is possible to use the same event IDs
for different monitoring clusters, without any interference. As a result, the maximal number of
supported events in the system is given by Equation (1), where NT M corresponds to the number
of monitors in the system.

NE = NT M · 2WI (1)

In this case, each monitor forms its own cluster and is assigned to a unique cluster ID ic . If all
monitors are assigned to the same cluster, the number of supported events is limited by NE = 2WI .
Furthermore, each event is assigned to a timestamp t , which allows SortNoC to sort the events
by their detection order. Together, the event ID, the timestamp, and the cluster ID define a trace
element si ∈ S by a 3-tuple (ie , t , ic ). In the proposed monitoring architecture, we support logical,
temporal, as well as result range and power corridor requirements, which are discussed in the
following.

3.2.1 Logical Requirements. Logical requirements verify the control flow of applications based
on detected events and thus, reveal synchronization errors between software elements. We define
a logical requirement l ∈ L by a finite deterministic automaton using a 6-tuple (ϒl ,El ,δl ,υ0,υt ,υf ):

—ϒl is a finite set of states.
—El is a finite set of accepted events, with El ⊆ E.
—δl is a transition function δl : ϒl × El → Vl .
—υ0 is the initial state, with υ0 ∈ ϒl .
—υt is the acceptance state, with υt ∈ ϒl .
—υf is the failure state, with υf ∈ ϒl .

The automaton can either be constructed manually or synthesized from LTL requirements using
the open source tool LamaConv [16]. Furthermore, it follows the notation of a 3-valued semantic
and issues a verdict zF based on its current state υc .

zF =

⎧⎪⎪⎨
⎪⎪
⎩

� υc = υt

⊥ υc = υf

? else
(2)

An example of a logical requirement is given in Equation (3) as the LTL formula and in Figure 2
as an automaton synthesized out of the LTL formula.

eexit ∨
(
eopened → (¬eexit U eclosed )

)
(3)

Here, eopen always must be followed by eclosed till eexit was detected. As long as neither υt nor υf

is reached, neither a positive nor a negative verdict can be issued because, at this time, the monitor
does not know whether the requirement is going to be fulfilled or violated. Therefore, the monitor
issues ? until the requirement is accepted or violated. Such a requirement can be used to verify at
runtime that critical tasks close their resources after use.
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Fig. 2. An example of an automata-based requirement.

3.2.2 Timing Requirements. Timing requirements verify the real-time behavior of an applica-
tion based on the latency between two events and reveal deadline misses, insufficient task pro-
gression, deadlocks, as well as livelocks. A timing requirement f ∈ F is defined by a 4-tuple
(estar t , estop ,Tmin ,Tmax ), where estar t is the event that starts the timer, estop is the event that
stops the timer, and the interval [Tmin ,Tmax ] corresponds to the defined latency range. Similar to
the automata-based requirements, timing requirements follow a 3-valued semantic that issues a
verdict zF based on the measured latency tf .

zF =

⎧⎪⎪⎨
⎪⎪
⎩

� tf ∈ [Tmin ,Tmax ]
⊥ tf � [Tmin ,Tmax ]
? measurement not complete

(4)

A simple timing requirement used in small embedded systems is set via windowed watchdog
timers. The software has to regularly ”pat” the dog and reset the windowed watchdog timer within
a timing window, e.g., to check that a task is running within a fixed time period. For complex ap-
plications running on a tile-based MPSoC, a complex set of such requirements can be defined to
monitor the progress and deadlines of real-time-critical applications.

3.2.3 Result Range and Power Corridor Requirements. Traditionally, logical and timing require-
ments are defined based on events that are fired on specific checkpoints, i.e., program counter
addresses. We generalize this approach by further event conditions on which the logical and tim-
ing requirements can be defined, which are presented in the following.

A result range requirement defines a valid range for the results of arithmetic operations. For-
mally, this requirement is defined by 3-tuple (pc, dtype, [resultmin , resultmax ]), where pc corre-
sponds to the program counter address of the arithmetic operation, dtype to the dataype of the
result and [resultmin , resultmax ] to the valid result range. Whenever a result outside of this range
appears, an event is generated. Thus, it is possible to not only verify the control flow of an appli-
cation but also the application data.

A power corridor requirement defines a valid power corridor in which the power consumption
of a core must lay. Formally, this specification is defined by a power interval [Pmin , Pmax ]. Thus, it
is possible to detect spikes in the power consumption, which might disturb nearby analog circuits
within critical sections of the application.

3.3 Benefits and Limitations

In this section, we discuss the consequence of the design decisions we presented in Section 3.1 and
3.2, which lead to the benefits but also to some limitations of the monitoring architecture.
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Using a hardware-based implementation of the monitoring system comes with major benefits
in terms of non-intrusiveness and low fault detection latencies. There is no performance penalty
on the application performance except at the start, when the monitoring system is configured with
the application-specific requirements. Due to a pure hardware implementation, the number and
the type of the integrated monitors are already defined at the design time of the system and not
necessarily at the design time of the application. Hence, it must be carefully decided upon system
design time which probes have to be integrated into the system. The proposed architecture offers
here the benefit that also further event detectors, in addition to those we discuss in Section 4, can
easily be integrated into the probes.

Another clear benefit of the proposed architecture is its capability to generate a globally sorted
trace of events using SortNoC as the heart of the monitoring architecture. SortNoC enables that dis-
tributed monitors can check runtime requirements of applications running in a distributed fashion
on complex multi-tiled MPSoCs. SortNoC comes with a throughput limitation in the event trace
of one event per cycle per system (EPCPS). Considering a frequency of 1GHz, this corresponds to
1 billion events per second. On a large-scale MPSoC with 100 cores, on average every 100th cycle,
an event could be triggered. With an IPC = 0.7 (an optimistic value for a Leon3 core), every 70th
instruction could trigger an event. This is more than any software implementation could provide
under a reasonable performance overhead constraint.

Due to the non-intrusiveness of the design, the architecture is also applicable to perform pre-
deployment testing and debugging tasks as well as post-deployment supervision. Nevertheless, it
should be noted that the system does not provide all features of well-known tracing and debug
approaches such as ARM CoreSight [2]. The implementation of those features are out of the scope
of this article. Nevertheless, in practice the traditional tracing features could be integrated into
our monitoring methodology to form a single monitoring architecture for all runtime verification
tasks performed pre- and post-deployment.

4 COMPONENTS OF THE MONITORING ARCHITECTURE

This section presents the implementation details of the proposed monitoring system for tiled MP-
SoCs. The architecture is composed of three types of components, which are illustrated in blue in
Figure 1: a set of probes P , a set of tile monitors TM , and a set of tracing routers R. A probe is as-
signed to each core in a compute tile. It extracts events from the trace data provided by the CPU in
order to reduce the data volume. The events are then concatenated with their corresponding clus-
ter ID and the current timestamp to form event trace elements that are forwarded to the network
adapter of the tracing router via the tile monitor. Using a specialized router design, it is possible to
distribute the event trace elements to all tiles and sort them according to their timestamps. Using
the cluster IDs, the tile monitors filter the globally sorted event trace for trace elements on which
their monitors operate. If a monitor returns a negative verdict, an interrupt will be raised and the
operating system (OS) can address the detected violation. The following sections give a detailed
overview of the individual hardware components.

4.1 Probe

In this section, we present the implementation of a probe with a set of event detectors, which are
suitable to check a range of typical requirements for embedded applications. Nevertheless, some
applications might require additional detectors, which can be added similarly. The architecture of
our probe, illustrated in Figure 3, is composed of a timestamp generator, a set of event detectors,
an arbitration logic, and a configuration block. The timestamp generator, illustrated in purple, is
made up of a free-running counter that issues a timestamp t ∈ [0, 2Wt − 1] with a bit width Wt .
The bit width Wt is chosen large enough to identify the correct order of event trace elements,
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Fig. 3. The architecture of a probe component.

even in highly disordered traces. Furthermore, all timestamp generators need to be synchronized
as part of the boot sequence of the system to guarantee a correct ordering in the trace routers.
On an FPGA implementation the synchronization can be achieved by the global set reset (GSR)
signal, which is already pre-routed in FPGAs. However on an application-specific integrated circuit
(ASIC), the synchronization measure should be implemented differently: During the boot sequence
of the operation system, an event could be triggered that resets each of the timers. At this point
in time, no other event is present in the SortNoC, which is why the latency of the event to each of
the tile monitors is known. Given the latency, it is now possible to reset each timestamp counter
such that all counters are synchronized at the beginning.

The detectors, illustrated in green, analyze the incoming data traces from the CPU in order to
reduce the data volume to an amount, which is processable at runtime. Thus, each detector issues
an event ID ie and a corresponding cluster ID ic when it detects a configured pattern in its input
trace. The current design of our probe supports four different detector types, which are introduced
in the following:

EOP Detector. The end of period (EOP) detector issues an event ID iEOP when the timestamp
generator overflows. Thus, the timers in the tile monitor are able to compute the latency between
two events using the corresponding timestamps and the number of EOP events. As the EOP event
has an exceptional role, no tile monitor can filter it out. Therefore, it is sufficient to implement the
EOP detector only in one probe in the complete monitoring architecture.

Power Detector. The power detector analyzes the power trace of the assigned CPU and issues
an event ID when a power value lies outside of a predefined power corridor. This is especially
helpful in large-scale systems where strict thermal requirements need to be fulfilled. Furthermore,
it can be used to detect power spikes, which might disturb neighboring analog circuits. In a mixed-
signal ASIC with an analog front-end, the sensor data could be disturbed by a power spike. With
this detector, the disturbance can be detected and the system can repeat the measurement.

Checkpoint Detector. A set of checkpoint detectors is used to monitor the execution progress
of the application. Each detector issues an event ID when an instruction at a predefined program
counter (PC) address, which corresponds to the checkpoint at a specific program location, is de-
tected in the instruction trace. This enables the monitors to check timing and control-flow require-
ments of the target application.
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Fig. 4. A graphical representation of all timestamps in a binary number wheel for Wt = 4. Marked are the

timestamps of two trace elements si and sj whose detection order is to be determined. Here, the orange

arrow shows the timestamp pattern if si was issued first and the blue arrow shows the timestamp pattern if

sj was issued first. Given a large enoughWt , the shorter arrow will always correspond to the actual detection

order. As a result, an arbitration schema should prioritize si over sj .

Out-of-Range Detector. Each out-of-range detector analyzes the writeback trace and issues an
event ID in order to check whether the result of a predefined arithmetic operation lies within
a configured range. As a result, monitors are enabled to adjust their specifications for different
runtime scenarios or to perform sanity checks on arithmetic operations. Currently supported data
types are: float, double, signed integer, and unsigned integer.

The arbitration logic, illustrated in gray, buffers the generated trace elements s
(p )
i = (ie , t ,v ) of

probe p ∈ P from all detectors except from the EOP detector because EOP events occur so infre-
quently that a dedicated buffer is not required. Given the, by design unlikely, case that one of
the buffers is full, the pipeline of the CPU is halted in order to prevent a loss of trace elements.

After the buffer stage, the trace elements are then combined to a probe-local trace S (p ) using a
timestamp-based arbitration scheme. The arbitration scheme analyzes the differences between two
timestamps ti = Πt (si ) and tj = Πt (sj ) of two trace elements si and sj according to Figure 4. As
illustrated in the binary number wheel, there are two possible detection orders for the events,
which are illustrated by the orange arrow and by the blue arrow. Assuming a large enough Wt ,
the smaller arrow always corresponds to the correct detection order. Algorithm 1 computes the
length of the blue arrow by the difference d between the timestamps ti and tj . If the length of the
arrow is less than then timestamp boundTb , which equals the midpoint of the timestamp interval
[0, 2Wt − 1], it also must be smaller than the orange arrow. This is due the fact that the sum of the
arrow length is equal to the interval length 2Wt . As a result, si was issued before or simultaneously
to sj if d , i.e., the length of the blue arrow, is smaller than or equal toTb ; and si was issued after sj

if d is larger than Tb .
Furthermore, detection patterns and event IDs of the detectors are stored in a configuration unit,

illustrated in orange, which is configured by the tile monitor. Thus, it’s possible to reconfigure the
probes according to the needs of the target application.

4.2 Tile Monitor

The architecture of a tile monitor is illustrated in Figure 5. It consists of a configuration memory,
a network adapter, and a set of monitors (APs and timers). The configuration memory, illustrated
in orange, is a 36Kb SRAM, which stores different probe configurations. A request to load a con-
figuration can be issued via the Advanced Peripheral Bus (APB) interface. Thus, the OS needs
to access the system bus only once to reconfigure a complete probe if needed. In order to prevent
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Fig. 5. The architecture of a tile monitor.

ALGORITHM 1: Timestamp-based Arbitration

1: const. Tb = 2Wt−1 − 1
2: function get_first(si , sj )
3: d ← Πt (si ) − Πt (sj )
4: if d ≤ Tb then

5: return si

6: else

7: return sj

8: end if

9: end function

contentions between subsequent requests, each request is stored in a first-in, first-out (FIFO) buffer
till all prior requests are processed.

The probe-local event traces S (p ) of the connected probes are combined to a monitor-local event

trace S (m) of monitor m ∈ TM using the same arbitration logic as in Section 4.1. As a result, the

network adapter injects a locally sorted event trace S (m) into the tracing interconnect where the
traces of all tile monitors are combined to a single globally sorted event trace S . In the network
adapter, the cluster ID of each trace element is compared to the cluster ID of the monitor. Given
the case that both IDs are equal, the trace element is forwarded to the runtime monitors. Thus, it
is possible to create a cluster of monitors that operate on the same events by assigning them the
same cluster ID.

The monitors, consisting of APs and timers, operate on the filtered event trace to verify the
configured runtime requirements. A detailed description of their functionality is given in the
following:

Automata Processor (AP). Each AP, illustrated in green, is used to verify a logical requirement
l ∈ L. We implement each automaton in a small 18Kb on-chip SRAM block. Here, the memory is
addressed using the conjunction of the detected event ID ie and the ID of the current state υc ∈ ϒl

of the automaton. The accessed data corresponds then to the ID of the next state υn ∈ ϒl of the
automaton. If this state corresponds to a failure state, the AP will issue a negative verdict and raise
an interrupt. The required size of the memory block MAP can be computed using Equation (5),
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Fig. 6. A timing violation of Tmax illustrated on a timeline.

whereWiυ
corresponds to the bit width of a state ID andWie

to the bit width of an event ID.

MAP =Wυ · 2(Wiυ +Wie ) (5)

Timer. Each timer, illustrated in purple, verifies a timing requirement f ∈ F . After sstar t has
been detected in the event trace, a counter is incremented for every sEOP . The counter is stopped
as soon as sstop has been detected. Thus, the timers are able to compute the latency between two
trace elements using Equation (6), where NEOP corresponds to the number of detected EOP events
in the event trace.

T = Πt (sstop ) − Πt (sstar t ) + NEOP · 2Wt (6)

Given the case that sstop is not generated, a violation of the max timing requirement can unam-
biguously be detected as soon as Equation (7) is violated.

Tmax ≥ (NEOP − 1) · 2Wt (7)

In this condition, NEOP must be decremented by one as the latency between sstar t and the first
sEOP remains unknown. Considering the example in Figure 6, the first sEOP is already detected
after 0x02 cycles. As a result, the violation of Tmax = 0x155 can not be detected before the third
sEOP . This results in a maximal detection latency of 2Wt − 1 cycles for a missedTmax requirement.

4.3 SortNoC—A New Tracing Interconnect Architecture

The monitor interconnect is the core of the decentralized monitoring architecture. Here, the trace
elements of the individual tile monitors are distributed and sorted to provide a consistent view
on the event order. To minimize the hardware overhead of the interconnect, each packet in the
architecture consists of a single flit that stores a single trace element. As a result, the interconnect
architecture is free of deadlocks by design. Furthermore, the presented NoC architectures use a
lightweight router design with no virtual channels and a single stage pipeline to minimize the
network latency.

In this section, we discuss two approaches to design such an interconnect architecture: First,
a naive approach using a regular NoC architecture with attached sorting IPs is introduced. To
overcome the high hardware overhead and the missing broadcasting capabilities, a custom NoC
architecture, SortNoC, is introduced thereafter.

4.3.1 Regular NoC Architecture with Attached Sorting IPs. A naive approach to distribute and
sort trace elements is illustrated in Figure 7(a). It consists of a regular NoC architecture with sorting
IPs at the local output port of each router. Furthermore, Figure 7(a) shows two trace elements,
sд = (ieд

, 3, icд
), illustrated in green, and sy = (iey

, 2, icy
), illustrated in yellow, which have been

injected into the NoC architecture. Even though sy got injected before sд , sд will reach the shared
destination r2 before sy because of the lower hop distance. Thus, a sorting IP must be attached at the
local output port of each router to sort the trace elements correctly. The serial sorting IP, inspired
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Fig. 7. Two NoC architectures that sort event trace elements based on their timestamp.

by Lee and Tsai [17], and Perez-Andrade et al. [24], uses a shift register architecture (SRA), which
supports the operations shift left, shift right, load, and initialize on which the sorting operations
insert and read out are constructed. An insert operation is executed when a new trace element
arrives at the local output port of the router. In this process, the element is compared with all
other trace elements in the SRA using Algorithm 1 to determine its correct position in the SRA.
The time a trace element must remain in the NoC architecture to ensure a sorted trace is defined
by to . At that point, it is expected that all earlier injected trace elements have arrived at the sorting
IP. Thus, we compare the first trace element in the SRA to a reference trace element sr ef with a
reference timestamp tr ef = t − to using Algorithm 1, where t corresponds to the currently issued
time of the timestamp generator and to to a fixed offset between both. If the first trace element in
the SRA was found to be issued before or concurrently to the reference element, it is read out.

The sorting IP comes with two major design parameters, which are discussed in the following:

—Timestamp offset to :
The offset between the issued timestamps t of the timestamp generator and the reference
timestamp tr ef in the sorting IP must be chosen to the maximal latency lmax in the NoC
architecture to ensure that no trace element arrives at the sorting IP after a subsequently
generated trace element has already been read out. However, lmax depends strongly on the
traffic pattern and thus on the target application, which is unknown at the design time of
the chip. As a result, a conservative offset to must be chosen.

—SRA depth:
The depth of the SRA must be chosen according to Equation (8), where ok corresponds to
the trace element rate at the local output port of router rk and to to the timestamp offset.

Ndepth = ok · to (8)

Again, both parameters highly depend on the target application, which is unknown at the
design time of the monitoring architecture. Thus, also for NDEPT H , a conservative value
must be chosen.
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In summary, the NoC architecture has the drawback that both design parameters must be
chosen conservatively, which significantly increases the hardware overhead of the monitoring
architecture. Furthermore, it is not possible to broadcast trace elements over the complete NoC
architecture. Thus, all requirements defined on a shared event must be assigned to the same tile
monitor, limiting the configurability of the monitoring system. In order to address these draw-
backs, we propose SortNoC in the following.

4.3.2 SortNoC Architecture. SortNoC, illustrated in Figure 7(b), is a specialized NoC architec-
ture to distribute and sort event trace elements. The architecture sorts the trace elements along a
forward path and broadcasts them along a backward path. In the forward path, all trace elements
are sent to a predefined target router (here, r3). Even though any router could be chosen as target
router, for larger architectures, central routers are especially promising because of their short hop
distances to all other routers. To sort the trace elements along this path, an arbitration scheme
based on Algorithm 1 is implemented in the crossbars. This approach requires that concurrently
issued trace elements arrive simultaneously at a crossbar. Therefore, each router consists of a de-
lay stage at its local input port. The required delay for each router is given by Equation (9), where
Ndiam corresponds to the diameter of the NoC topology and Nh2t corresponds to the number of
hops to the target router.

Ndelay = Ndiam + 1 − Nh2t (9)

As a result, the monitor-local event traces S (0) of TM0 and S (1) of TM1 arrive simultaneously at
the crossbar of r1 where they are sorted to an intermediate event trace. The intermediate event
trace arrives then simultaneously with the remaining event traces S (2) ofTM2 and S3 ofTM3 at the
crossbar of r3 where they are interleaved to a globally sorted event trace S . Thus, the forward path
can be seen as a cascading of timestamp-based arbiters. In the backward path, the globally sorted
trace is broadcast to the local output ports of all routers. By design there are no possible contentions
along this path. Thus, it is possible to replace the input FIFOs along this path by simple registers.
The routing paths to the target router are assigned statically and the broadcast paths use the same
links in the opposite direction. Thus, large mesh typologies would consist of a significant number
of unused links. These links can be removed to reduce the hardware overhead to a minimum.

In Figure 7(b), two trace elements are injected into the NoC architecture: sy = (iey
, 1, icy

), illus-
trated in yellow, and sд = (ieд

, 3, icд
), illustrated in green. Even though sy got injected at the local

input port of r3, the corresponding delay stages ensure that sy arrives earlier at the crossbar of
r3 to ensure a correct ordering of the trace elements. In the backward path, both trace elements
are then broadcasted to all local output ports with the result that all tile monitors, configured
with the respective cluster IDs, get informed about the detected events. In summary, SortNoC is
a lightweight alternative to the naive approach. Compared to the sorting IP, the delay stages are
easy to implement, and their functionality does not depend on hard-to-choose design parameters.
Furthermore, this approach broadcasts the trace elements to all routers. This allows tile monitors
to verify requirements defined by common events at different tiles.

5 ILP-BASED ASSIGNMENT OF REQUIREMENTS TO MONITORS

The assignment of requirements to tile monitors has a considerable influence on the usable moni-
toring resources. While the number of events within a tile monitor is limited by 2Wie , the number of
available events in the monitoring system is defined by NT M · 2Wie . In order to exploit all available
events, each monitor must use a unique cluster ID to operate on its own subset of events. If two
monitors operate on the same cluster ID, they process the same events and thus reduce the num-
ber of usable events in the system by 2Wie . As a result, requirements defined on the same events
must be assigned to the same monitors to maximize the number of usable events in the system.
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Fig. 8. A set of requirements that must be assigned to the tile monitors.

An example for the assignment problem is illustrated in Figure 8. Here, three requirements r0, r1,
and r2 must be assigned to three monitors m0, m1, and m2. Equation (10) gives a naive assignment
for this task, where each requirement is assigned to a different tile monitor.

U1 = {(r0,m0), (r1,m1), (r2,m2)} (10)

In this example, r0 and r1 are defined on the same event eb . Therefore, m0 and m1 must share the
same cluster ID to build a cluster of monitors that processes the same events. Hence, only 2 · 2WI

out of 3 · 2WI events remain usable in the monitoring system. A better solution for the assignment
is given in Equation (11).

U2 = {(r0,m0), (r1,m0), (r2,m1)} (11)

In this solution, each event is used by a single monitor, respectively. Thus, each monitor can use
a unique cluster ID and process different events, which increases the number of usable events in
the system to 3 · 2WI .

However, it is not always possible to assign requirements, which are defined on a shared event,
to the same monitor. Considering an upper limit of one requirement per monitor in Figure 8, only
U1 out of the given mappings remains feasible. Therefore, it is necessary to find a feasible mapping
of requirements to tile monitors that maximizes the number of usable events in the monitoring
system. Even though this problem is similar to the multiple knapsack problem, there is a major
difference. In this problem, it is possible to combine monitors, i.e., knapsacks, to generate a cluster
of monitors that share the same verification ID. As a result, the cluster can be seen as an individual
tile monitor, which provides the sum of available monitoring resources. However, the number of
supported events in a monitoring cluster remains at 2Wie . Thus, the number of monitors included
in a cluster should be minimized. In the following, we formulate the assignment problem by a
dependency graph and propose an ILP-based assignment algorithm to solve it.

5.1 Problem Formulation

An intuitive approach to formalize the problem is an acyclic undirected graph G = (E,D) defined
by the set of events E and a relation D, describing the dependencies between the events. In
this context, two events are defined to have a dependency if both are part of the same runtime
requirement. As a result, the events in each component H = (EH ,DH ) of G, with EH ∈ E and
DH ∈ D, can be monitored independently. In order to assign the individual components to the
tile monitors, a notion for their corresponding cost is required. We define the cost CH of a
component H by a 3-tuple (NF ,H ,NL,H ,NE,H ), where NF ,H corresponds to the number of logical
requirements in which the events of H are used; NL,H corresponds to the number of timing
requirements in which the events of H are used; and NE,H corresponds to the number of events
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ALGORITHM 2: Construction of all component cost tuples in G

1: function get_comp_cost_tuples(L, F )
2: X ← ∅
3: for f ∈ F do

4: Ef ← {Πest ar t
( f ),Πestop

( f )}
5: H ← complete_graph(Ef )
6: XH ← (H , (0, 1, 0))
7: X ← add_tuple(X,XH )
8: end for

9: for l ∈ L do

10: El ← ΠE (l )
11: H ← complete_graph(El )
12: XH ← (H , (1, 0, 0))
13: X ← add_tuple(X,XH )
14: end for

15: for XH ∈ X do

16: CH ← ΠC (XH )
17: CH ← (ΠF (CH ),ΠL (CH ), |H |)
18: XH ← (H ,CH )
19: end for

20: return X
21: end function

22:

23: function add_tuple(X,XH )
24: Xn ← ∅
25: for XH ′ ∈ X do

26: if share_events(H ,H ′) then

27: H ← compose(H ,H ′)
28: CH ← CH +CH ′

29: XH ← (H ,CH )
30: else

31: Xn ← Xn ∪ {XH ′ }
32: end if

33: end for

34: return Xn ∪ {XH }
35: end function

in H . This mapping between a component and its cost is defined by a tuple XH = (H ,CH ) with
XH ∈ X, which is used by the ILP-based requirement assignment.

Algorithm 2 constructs the set of all tuples X using the logical requirements L and the timing
requirements F . In a first step, the algorithm iterates over all timing requirements and generates a
complete graph H out of the start and stop events of each requirement. The graph is then mapped
to a cost tuple that indicates a resource usage of one timer. At this step, the cost of events NE,H

is neglected as otherwise the computation of the composed cost of an existing component and a
new clique could not be performed by an addition since shared events would be counted twice.
Thus, the cost of events is calculated at the end of the algorithm. Afterward, the component cost
tuple XH is inserted in the existing set of component cost tuples X calling add_tuple(X,Xr ). This
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function iterates over all existing component cost tuples and checks whether the corresponding
graphs share an event withXH . In this case, it updates the component graphH by the composition
of both graphs and the cost tuple CH by the addition of both cost tuples. Component cost tuples
that do not share an event with XH are unified with a new set of component cost tuplesXnew . The
union of Xnew and XH corresponds then to the new set of all component cost tuples X.

After the timing requirements, the logical requirements are processed similarly. A complete
graph is generated out of the accepted events of the automata definition and a cost tuple is gen-
erated that indicates a resource usage of one AP. The resulting component cost tuple XH is then
composed with the existing set of component cost tuples in X calling add_tuple(X,XH ).

At the end, the event cost NE,H of all component cost tuples XH is updated by the cardinality
of the graph components. The result of the algorithm is a set of component cost tuples X that can
be used by the following ILP-algorithm to solve the assignment problem.

5.2 ILP Formulation

An optimal assignment of component cost tuples to tile monitors allows designers to verify a
larger number of requirements or more complex requirements due to the higher number of avail-
able events. To achieve this, we propose an ILP-based assignment that maximizes the number of
available events for the given resource constraints of the monitoring hardware. The number of
supported events per tile monitor NE′ = 2WI is given by the supported event ID width Wie

in an
AP. Furthermore, the number of available AP resources and timer resources is given by NA and
NT . In the ILP, the monitor clusters can be modeled by one monitor that receives the resources of
all other monitors in the cluster. Thus, the number of available resources of a monitor m ∈ TM is
given by NA,m and NT ,m . Formally, we describe this behavior by a relation matrix PNTM×NTM , where
a monitor m provides its resources to monitor n if pm,n = 1. Similarly, the assignment of compo-
nents cost tuples is modeled by a matrix QNX×NTM where a component cost tuple XH is assigned
to a monitorm if qH,m = 1.

The objective of the ILP is to maximize the number of available events in the monitoring ar-
chitecture. Therefore, the number of monitors providing its resources to itself must be maximized
such that the number of clusters is minimized. Formally, the objective is given by Equation (12).

max
∑

m∈TM

pm,m (12)

To ensure that each monitor provides its resources to only one monitor (including itself), each row
of PNTM×NTM must contain exactly one assignment.

∀m∈TM

∑

n∈TM

pm,n = 1 (13)

Similarly, each component cost tuple must be assigned to exactly one tile monitor.

∀XH ∈X
∑

m∈TM

qH,m = 1 (14)

The available timing and AP resources a monitor gets provided is modeled by the equality con-
straints in Equations (15) and (16), respectively.

∀m∈TM

∑

n∈TM

pn,mNA = NAm
(15)

∀m∈TM

∑

n∈TM

pn,mNT = NTm
(16)
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Fig. 9. NoC Simulation Framework.

Finally, the assigned component cost tuples must be restricted by the number of available resources
for each monitor. Equations (17)–(19) model this using inequality constraints for each resource
type, respectively.

∀m∈TM

∑

XH ∈X
qH,mΠF (CH ) ≤ NAm

(17)

∀m∈TM

∑

XH ∈X
qH,mΠL (CH ) ≤ NTm

(18)

∀m∈TM

∑

XH ∈X
qH,mΠE (CH ) ≤ NE′ (19)

After the ILP is solved, the cluster ID of each monitor can be derived from PNT M×NT M
while

QNX×NTM describes the component to monitor assignments. Using this information, it is possi-
ble to assign unique IDs to events that are used in the same monitor cluster and, thus, generate
probe and tile monitor configurations.

6 EXPERIMENTAL RESULTS

In this section, we first evaluate the performance of the proposed SortNoC and, subsequently,
demonstrate the monitoring architecture in hardware on multiple case studies. Finally, we compare
the ILP-based assignment algorithm with a greedy assignment policy and present the hardware
overhead of the monitoring system.

6.1 Evaluation of the SortNoC Architecture

The performance of the tracing NoCs, discussed in Section 4.3, is evaluated using the simulation
framework illustrated in Figure 9. Based on System Verilog templates, we generate the code of the
SortNoC and the regular NoC architecture for different diameters, which are then synthesized in
the following to obtain the HW overhead of the architecture. Additionally, we simulate the archi-
tectures for 10,000 randomly injected trace elements for different EPCPS ratios. For the timestamp
offset of the sorting IPs, we choose to = max(2, 1.5 · Ndiam ) to ensure a correct order of the trace
elements in the naive tracing approach.

Figure 10(a) shows the average latency and the standard deviation of a 6x6 architecture for
different EPCPS ratios. The regular NoC with sorting IP shows a constant latency and a very low
standard deviation over all EPCPS ratios because the minimal time a trace element remains in
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Fig. 10. A comparison between the latencies of both NoC approaches.

the NoC architecture is defined by the timestamp offset to . In contrast, SortNoC shows a lower
latency with an exponential increase for large EPCPS ratios. Although the throughput of SortNoC
is limited by 1 EPCPS, for typical event detection ratios in RV (mili- and microseconds [6, 12]), a
throughput of up to 0.1 EPCPS is sufficient even for large-scale systems. A detailed discussion on
this limitation is presented in Section 3.3.

Figure 10(b) shows the average latency and its standard deviation for an average trace element
injection ratio of 0.1 EPCPS and different NoC sizes. The proposed SortNoC scales better for large
NoC architectures than the regular NoC architecture with sorting IP. While our approach responds
to temporal peaks in the injection ratio with a brief increase in latency, the design parameters of
the regular NoC with sorting IP must be designed for the worst case to ensure the correct order of
events at all times. Thus, a conservative choice of the timer offset to of the sorting IP is required,
which affects the NoC performance throughout the simulation.

In Figure 10(c) and (d), we evaluate the NoC latency in a histogram for a low EPCPS ratio of
0.001 and a relatively high EPCPS ratio of 0.1. In both latency histograms, it can be seen that the
overall number of packets, i.e., trace elements, in the SortNoC architecture is significantly higher
than in the regular NoC architecture. This behavior results from the properties of the target router.
It broadcasts all trace elements to all tile monitors, which increases the overall number of trace
elements in the NoC by a factor of NT M . The latency in the regular NoC architecture is defined
by the timer offset to in the sorting IP. As a result, the packet latency is fixed unless multiple trace
elements with the same timestamp are inside one sorting IP. In contrast, the latency in the SortNoC
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Fig. 11. The hardware overhead of both tracing NoC approaches.

depends on the hop distance of the packets and on the EPCPS rate. As a result, the latencies show a
broader distribution in the histogram. In Figure 10(c), both NoC approaches show a similar average
latency while a larger standard deviation can be observed for the packets in the SortNoC. However,
for larger architectures, SortNoC outperforms the regular NoC architecture with the sorting IP for
almost all packets as shown in Figure 10(b). This confirms the observation from Figure 10(b) that
SortNoC scales better with the size of the system.

We evaluate the area overhead of both approaches using the synthesis results of Vivado 2018.3.
We synthesize the naive tracing approach for different depths of the sorting IP.

Ndepth = α · Ndiam , with α ∈ {0.25, 0.5, 1, 1.5} (20)

The hardware overhead in terms of LUTs is illustrated in Figure 11(a) and in terms of FFs in
Figure 11(b). SortNoC utilizes 73% to 94% fewer LUTs than the regular NoC with sorting IP since
the NoC topology implements fewer links and fewer FIFOs. Furthermore, the sorting IP is mostly
implemented using LUTs, which results in a high overhead. In contrast, the delay stage requires
more FFs than the sorting IP. Thus, the regular NoC with Sorting IP uses fewer FF for α = 0.25
than SortNoC. Nevertheless, the overall overhead of FFs and LUTs is significantly lower for the
proposed tracing NoC than for the naive approach.

6.2 Demonstration of Runtime Verification Case Studies

We demonstrate the monitoring architecture, in the configuration presented in Section 4, on a
2x2 tiled MPSoC with five Leon3 cores per tile on a Virtex-7 FPGA. The power consumption of
each of the 20 cores is evaluated by a power emulator similar to the embedded power temperature
monitor (ePTMon) proposed by Listl et al. [19]. As there exist no standardized benchmarks for the
evaluation of monitoring systems, we evaluate the system on two typical debugging case studies
and on one performance benchmark for high-performance computers.

6.2.1 Case Study 1: Data Race. A prominent cause for the undesired behavior of an application
is a race condition. In a race condition, the behavior of the application depends on the timing or
the sequence of uncontrollable events. This situation typically arises if two threads have uncon-
trolled access to shared resources. An example for this situation, i.e., a data race, is illustrated in
Figure 12(a). Here, two threads consecutively read and write from a resourceA, such that the mod-
ification of thread_1 is overwritten by thread_0. Race conditions are especially hazardous because
they do not necessarily manifest themselves as a bug during the testing phase. A detection of a race
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Fig. 12. An example for a data race and the corresponding logical requirement.

Fig. 13. An example for a deadlock and the corresponding logical requirement.

condition by static code analysis is proven to be NP-hard [23]. Therefore, one might want to protect
the critical sections by runtime verification supplementary to the locking mechanisms in software.
The logical requirement for the protection of the critical section is illustrated in Figure 12(b) as
an automata. This requirement can be used to debug data races at design time. Furthermore, the
requirement can be used to protect the locking mechanism after deployment. If the data race mani-
fests itself as a bug, the monitoring architectures raises an interrupt to the operation system, which
can then initiate an appropriate reaction (e.g., rerun the involved threads). To demonstrate this case
study in HW, we wrote a short application containing the race condition illustrated in Figure 12(a).
Each of the threads was mapped to a different tile in the large-scale architecture. Using the require-
ment in Figure 12(b), it was possible to detect when the race condition manifests itself in a bug.

6.2.2 Case Study 2: Deadlock. Another prominent example for a race condition is the deadlock
illustrated in Figure 13(b). Here, two threads are competing for two shared resources in opposite
order. As a result, both threads are blocked from execution. Such a behavior can be prevented
by a strict locking order. The corresponding logical requirement is illustrated in Figure 13(b) as
an automaton for an arbitrary resource resi . The requirement not only prevents a data race for
the lock, it also ensures that no lock with a lower priority will be acquired, which guarantees
the strict locking order required to prevent deadlocks. Alternatively, a generic approach to detect
deadlocks is a timing requirement (estar tt _i

, estopt _i
, 0,Tmax ), which defines an upper bound for

the execution time of thread t_i . Again the requirements can be used to debug deadlocks pre-
and post-deployment. As existing approaches such as DiaSys and NUVA do not support timing
requirements, they do not support deadlock detection either pre- or post-deployment.
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Fig. 14. The detection latency of the monitoring architecture illustrated on a timeline.

We also demonstrated this case study in HW. Again, each of the threads was mapped to a differ-
ent tile in the large scale architecture and the monitoring system detected the deadlock with each
of the requirements illustrated in Figure 13(b).

6.2.3 Embarrassingly Parallel Benchmark. “Embarrassingly Parallel” is the name of one bench-
mark in the NAS Benchmark suite [4] that has been designed to evaluate the performance of su-
percomputers and large-scale systems. We decided to use the embarrassingly parallel benchmark
due to its high load on all cores in the system. Therefore, the benchmark can be seen as a stress
test for the complete system including the monitoring architecture. In this demonstration, we ver-
ify the major branches and the synchronization points of the application. To demonstrate the RV
architecture, we add synchronization and control-flow bugs to the code, which are then detected
at runtime. Furthermore, we use one of the timers to measure the detection latency between the
event causing an interrupt and the execution of the interrupt service routine (ISR).

The results are illustrated on the timeline in Figure 14, where the marked regions correspond
to the standard deviations of the measured times. The internal latencies in the monitoring archi-
tecture are obtained by simulations. On average, it takes 141 cycles from the detection of a wrong
event until the ISR is called. The other benchmarks of this benchmark suite are not presented in
this article because they would not generate further value.

6.3 Requirement Assignment

In order to evaluate the performance of the ILP-based assignment algorithm presented in Section 5,
we compare it to a greedy assignment policy. The greedy assignment policy follows assignment
Algorithm 3. Here, the algorithm goes through all requirements (either logical or timing) and tries
to assign each to one of the monitors. The function try_place returns true if the monitor resources
of tm are sufficient to incorporate requirement r and apart from that false. If a requirement r could
not be placed in any of the monitors, an error is returned. If the requirement was successfully
placed in one of the monitors, the algorithm checks whether some of the monitors must be merged
to one monitor cluster due to shared events between the monitors. Both algorithms are evaluated
for 100 synthetic requirements, which have been generated randomly out of an event pool. The
timing requirements are generated by randomly choosing two events out of the event pool that
serve as start and stop events. For the logical requirements, we first determine a random number
of states with an average of four and, subsequently, a random number of edges with an average of
four as well. Each edge is triggered by a random event out of the event pool. Requirements, which
are generated from a small event pool, are likely to have many shared events while requirements,
which are generated from a large event pool, are unlikely to have shared events. In Figure 15,
we present results for both scenarios. The graphs show that the ILP-based assignment algorithm
is superior to the greedy assignment policy independently of the event pool size and therefore,
independently from the number of shared events between the requirements. However, it can be
seen that the ILP-based assignment algorithm is especially promising for a low number of shared
events, which is also expected for real applications. Here, the algorithm must carefully decide
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Fig. 15. A comparison between the ILP-based assignment algorithm and a greedy assignment policy.

which assignment minimizes the cost function. For a large number of shared events, almost all
monitors must be assigned to one large cluster anyway, which gives the algorithm few options to
optimize the assignment.

ALGORITHM 3: Greedy Requirement Assignment Policy

1: function assign_req_greedy(R)
2: for r ∈ R do

3: assigned← False

4: for tm ∈ TM do

5: if try_place(r , tm) then

6: assigned← True

7: break

8: end if

9: end for

10: if not assigned then

11: return Error

12: end if

13: merge_mon_if_neccessary(TM )
14: end for

15: end function

6.4 Monitoring Overhead

Our monitoring architecture is non-intrusive. Therefore, only a hardware overhead but no perfor-
mance overhead needs to be considered. The required hardware resources to implement an exam-
ple configuration of the monitoring architecture are illustrated in Table 1. Here, each checkpoint
and each out-of-range detector supports 32 different events. Furthermore, 32 timers and 32 APs are
implemented on each tile monitor in the system. According to the needs of the system architec-
ture, this number could be increased or reduced. The overall hardware overhead of the monitoring
system corresponds to 10.8% in terms of LUTs and 30.6% in terms of FFs. Thus, the overhead is
significantly lower than other non-intrusive verification approaches like DiaSys [33], which intro-
duces an overhead of more than 50% in LUTs and FFs. In contrast to our monitoring architecture,
DiaSys does not provide error detection capabilities, which makes our lower overhead even more
noteworthy. In general, the implementation of debug units and runtime verification hardware is

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 8. Publication date: December 2020.



8:24 M. Mettler et al.

Table 1. The Resource Usage of the Monitoring Architecture and the Base System

Module LUTs FFs RAM36s RAM18s

Base System 471,918 231,980 270 1,480
1 Tile 126,370 71,656 67 402
2x2 NoC 8,981 9,517 0 0

Monitoring System 51,268 71,188 4 128
2x2 SortNoC 1,013 266 0 0
1 Probe 1,441 2,492 0 0
1 Probe (incl. EOP) 1,720 2,494 0 0
1 Tile monitor 3,454 4,000 1 32

1 AP 5 0 0 1
1 Timer 40 117 0 0

expensive in terms of hardware overhead. Even standard debug units, e.g., for the OpenProcessor
Platform [3] or an RISCV core [32], introduce area overheads of around 10%. Nevertheless, this
area is well invested, as no modern processors can be programmed efficiently without debug sup-
port. We believe that the area overhead for runtime verification will be also well invested, as it
is becoming increasingly difficult to verify all possible scenarios at design-time when developing
safety-critical software for complex many-core systems.

7 CONCLUSION

In this article, we presented a decentralized monitoring architecture for multi-tile MPSoCs that
support the verification of logical and timing requirements. The architecture consists of SortNoC,
a new tracing interconnect that generates a globally sorted event trace on which the runtime
requirements can be verified. Furthermore, a requirement assignment algorithm was proposed to
exploit the resources of the monitoring architecture best. In our evaluation, we showed the benefits
of the proposed tracing interconnect, we demonstrated the architecture on a Virtex-7 FPGA, and
we presented the advantages of our assignment algorithm.
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