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Abstract

The high population density in urban areas causes a variety of interactions and thus events,
which can have an impact on the cityscape. A notable proportion of this interaction also takes
place in urban street spaces and manifests itself in form of changes. These may have a direct
impact on road safety or be of interest to sustainable urban development. Various measurement
methods such as manual descriptions, images or 3D sensor measurements in form of point clouds
as well as a variety of carrier systems such as helicopters, drones or mobile mapping vehicles can
be used to record a street space.

In this work, changes in urban street spaces are detected based on point clouds of mobile mapping
vehicles. Based on a literature review conducted on the topics of change detection, volume-
based environment representation and fuzzy reasoning, research gaps emerge that lead to the
contributions of this thesis on the following three core aspects: (i) Representation of spatial
information subject to uncertainties and contradictions through a generic evidence grid and
the drawing of conclusions based on it, (ii) change detection on a spatially noisy, uncertain,
and inconsistent data set; and (iii) metrics for the quantitative assessment of the properties of
a generic evidence grid. When comparing two epochs, it is not possible to assume the same
visibility of the environment due to occlusions as well as deviations of the recording trajectories.
Therefore, ray tracing is used to determine the observed free space. Fuzzy logical reasoning
enables the determination of changes based on the resulting occupancy information, as well as
the subdivision of the latter by object classes. Fuzzy sets are used for information fusion; fuzzy
measures are utilized to quantify the degree of ignorance, uncertainty, and contradiction in the
available evidence.

A mobile mapping system equipped with two LiDAR sensors was used for data acquisition.
The two data sets recorded at di�erent times of the year contain various types of facades as
well as people, tra�c participants and vegetation in the vicinity of the TU Munich campus.
The results of the experiments show that information with a resolution of 0.4m can still be
represented with an F1 score above 0.9. Uncertainties and inconsistencies can be compensated
almost completely by choosing an appropriate membership function and by means of suitable
defuzzi�cation methods. Con�rmed environmental elements could be detected with an F1 score
of 0.93, and changed elements with an F1 score of 0.89. Qualitative experiments have shown that
in addition to large changes such as sca�olding, small changes such as Christmas decorations and
closed shutters can be reliably and comprehensively identi�ed.
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Kurzfassung

Die hohe Bevölkerungsdichte in urbanen Gebieten führt zu einer Vielzahl an Interaktionen und
damit zu Ereignissen, welche einen Ein�uss auf das Stadtbild haben können. Ein nenneswerter
Anteil dieser Interaktion �ndet auch in urbanen Straÿenräumen statt und äuÿert sich in Form
von Änderungen, aus denen sich direkte Auswirkungen auf die Straÿensicherheit ergeben können
oder die für die nachhaltige Stadtentwicklung von Interesse sind. Zur Erfassung des Straÿen-
raums können diverse Messmethoden wie etwa manuelle Beschreibungen, Bilder oder auch 3D-
Sensormessungen in Form von Punktwolken sowie verschiedene Trägersysteme wie Hubschrauber,
Drohnen oder Mobile Mapping Fahrzeuge herangezogen werden.

In der vorliegenden Arbeiten werden Änderungen im urbanen Straÿenraum anhand von Punkt-
wolken mobiler Mapping-Fahrzeuge detektiert. Auf Basis einer durchgeführten Literatur-
recherche zu den Themengebieten Änderungsdetektion, volumenbasierte Umgebungsrepräsen-
tation und unscharfes Schlieÿen ergeben sich Forschungslücken, die zu den Beiträgen dieser
Arbeit zu den folgenden drei Kernaspekten führen: (i) Darstellung von räumlichen, mit Un-
sicherheiten und Widersprüchen behafteten Informationen durch ein generisches Evidenzgitter
sowie das darauf basierende Ziehen von Schlussfolgerungen, (ii) Änderungsdetektion auf einer
räumlich verrauschten, unsicheren und widersprüchlichen Datengrundlage und (iii) Metriken zur
quantitativen Bewertung der Eigenschaften eines generischen Evidenzgitters. Da beim Vergleich
zweier Epochen auf Grund von Verdeckungen sowie von Abweichungen der Aufnahmetrajekto-
rien nicht von derselben Sichtbarkeit der Umgebung ausgegangen werden kann, wird mittels einer
Strahlverfolgung der beobachtete Freiraum bestimmt. Unscharfe logische Schlussfolgerungen er-
möglichen auf den daraus resultierenden Belegungsinformationen aufbauend die Bestimmung
von Änderungen sowie die Unterteilung von letzteren nach Objektklassen. Zur Informationsfu-
sion werden unscharfe Mengen eingesetzt. Zur Quanti�zierung des Grads des Unwissens, der
Unsicherheit sowie des Widerspruchs in den vorliegenden Evidenzen �nden unscharfe Maÿe An-
wendung.

Zur Datenaufnahme wurde ein mit zwei LiDAR-Sensoren ausgestattetes Mobile Mapping Sys-
tem eingesetzt. Die zwei zu unterschiedlichen Jahrenzeiten aufgenommenen Datensätze enthal-
ten verschiedene Typen von Fassaden sowie Personen, Verkehrsteilnehmer und Vegetation im
Umfeld des Campus der TU München. Die Ergebnisse der Experimente zeigen, dass Informatio-
nen mit einer Au�ösung von 0,4m noch mit einer F1-Score von über 0, 9 repräsentiert werden
können. Unsicherheiten und Widersprüche lassen sich durch die Wahl einer entsprechenden
Membership-Funktion sowie mittels geeigneter Defuzzi�zierungsverfahren nahezu komplett aus-
gleichen. Bestätigte Umgebungselemente konnten mit einer F1-Score von 0, 93 detektiert werden,
veränderte Elemente mit einer F1-Score von 0, 89. Qualitative Experimente haben gezeigt, dass
sich neben groÿen Änderungen wie etwa Baugerüsten auch kleine Änderungen wie Weihnachts-
dekoration und geschlossene Fensterläden zuverlässig und umfassend ermitteln lassen.
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1 Introduction

1.1 Motivation

1.1.1 Why is change detection in urban street spaces required?

Urban environments make up a signi�cant part of people's daily environment. This is particular
true for street spaces, as they are relevant to the day-to-day business of companies, administrations,
emergency services and drivers of autonomous vehicles. Detecting changes in urban street spaces is
of interest to research, businesses and government agencies alike. However, a structured overview
of possible �elds of application requires categorization. Hebel [2012] organized the goals pursued
by the various change detection methods into three time scales, the transitions of which, however,
are deliberately indicated �uidly, as a clear subdivision is not easily possible. A categorization in
long-term, medium-term and short-term changes is suggested. This form of subdivision has the
advantage that it bundles applications with similar intentions and objectives.

The category of long-term changes deals with a period of time that is in the range of years.
E�ects of such forms of changes are of interest for urban development in an administrative sense
and relate to topics such as the development, cultivation and usage of urban areas. Here the
detection of changes is required to detect new construction, renovation and demolition of buildings
and roads [Murakami et al., 1999]. This explicit awareness about changes is a precondition for
recognizing and understanding trends in the development of urban areas. Knowledge of such
trends can then be used to support infrastructure planning tasks, helping to improve factors such
as environmental friendliness and sustainability in urban development concepts.

Changes within a medium-term period include time intervals of a few days, weeks or months. A
much-studied application here is change detection in building construction (see also Tuttas [2017],
Xu & Stilla [2021], Huang et al. [2022]). Change detection is required here to check the extent to
which construction is on schedule, i.e. which construction phases are ahead or behind it. Explicit
knowledge of medium-term changes is also required for civil protection, especially when it comes
to assessing damage after severe natural disasters such as storms or �oodings [Michel et al., 2012].
The �eld of autonomous driving has grown in popularity in recent years. Change detection is
required here to extract robust features for vehicle navigation and automatically update feature
maps (see also Schachtschneider & Brenner [2020], Berrio et al. [2019]).

Change detection in the short-term time interval in required to be aware of short-term actions
and to handle spontaneously occurring natural events. One example is moving object detection,
which is used to identify moving people and objects. This information is important for autonomous
driving, as dynamic environmental elements must be identi�ed in order to control the vehicle safely
(see also Asvadi et al. [2016a,b]). Spontaneous events mainly fall into categories such as disasters
or accidents. Examples include the collapse of the Morandi Bridge in Genoa in August 2018 and
the collapse of the Historical Archive in Cologne in March 2009. In these cases, change detection is
required for the immediate assessment of the situation in terms of damage analysis. The insights
gained here can be incorporated into the decision-making process for disaster relief.
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As the above examples show, the motivations for the use of change detection in urban street
spaces are diverse. What all of the above approaches have in common is a speci�c goal. However,
it may be of interest to capture not only speci�c changes, but as many changes as possible. An
example for this is a city survey, in which changes in the urban environment are �rst recorded and
then evaluated by a viewer. In context of security-related applications, for example, a security
company might want to be noti�ed of all changes that could indicate break-ins or damaged fences.
If a method is supposed to detect a particular type of change, e.g. in vegetation, an appropriate
model must be chosen and its parameters optimized. The advantage of a generic change detection
method, however, is precisely that no problem-speci�c model is necessary. Accordingly, it is not
limited to a speci�c type of change.

1.1.2 Challenges of change detection

Sensor systems and acquisition concepts

In general, change detection in urban street spaces requires measurements of the environment
from at least two points in time. In the following, these are also referred to as epochs. These
measurements can for example result from photographs of a location, as shown in Figure 1.1, but
also from other sensors. The two example images illustrate that changes of di�erent magnitudes
coincide in an urban environment. Large-scale changes evident in the images include modi�cations
of long-term stable structures such as building facades and roofs. Installed trash cans, erected
streetlights and parked vehicles represent changes of moderate magnitude. Minor changes include
mounted street signs as well as replaced mailboxes and chimneys.

(a) (b)

Figure 1.1: An example of changes in an urban street space. a) A photo taken in 1988 showing the main
street of Sinsheim in Germany, b) the same location in 2021. Approximately 40 small and large changes
can be identi�ed between the two images. The pictures were kindly provided by Klaus Gehrung.

The choice of a sensor system or combination of sensor systems for change detection depends
on the intended area of application (see e.g. Hinz [2008]). The requirements for a general change
detection method are that both small and large changes can be detected. Therefore, the acquired
measurement data must represent the environment in such detail that even small structures can
be detected. For this purpose, it is advantageous to record measurements from as close as possible
and with as little occlusion as possible. In addition, it is advantageous if the sensor system enables
large areas to be measured quickly and cost-e�ectively. This is particularly useful when change
detection is to be used in a disaster relief situation.

In many of the applications mentioned in Section 1.1.1, mobile mapping has been established
as an acquisition strategy. Here, the sensor is either attached to a backpack, vehicle or boat
and can thus easily be used to record large areas [Vaaja et al., 2011]. This approach is similarly
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accurate to the stationary terrestrial laser scanning (TLS), where the latter is used, for example,
for the reconstruction of building facades, building models or the forest inventory (see also Pu &
Vosselman [2009], Liang et al. [2016], Chizhova [2019]). The use of a mobile mapping platform is
particularly bene�cial when a large area is to be surveyed in a short time and with high spatial
resolution. Other acquisition techniques involve airborne capture using helicopters or airplanes
and are used for the large-scale 3D reconstruction of urban areas and city models (see also Poullis
[2013], Dorninger & Pfeifer [2008]). These methods also deliver quite good results, but have a
lower resolution than the above-mentioned recording techniques. From the perspective of the
required resolution, ground-based systems meet the requirements better than airborne systems.

In addition to the acquisition strategy, the used sensor principle plays a role as well. Under this
term, both the physical principle of measurement and the methodology for obtaining information
from the measurement data are combined. Mobile mapping systems that utilize light detection

and ranging (LiDAR) can create detailed, high-resolution 3D measurements of the environment
[Borgmann et al., 2021]. Photogrammetry represents another common method that has been
successfully applied to create dense point clouds (see also Pollefeys et al. [2008], Gallup [2011] and
Cavegn & Haala [2016]). Even though both methods have their advantages and disadvantages,
they meet the requirements demanded above. In this work, a mobile mapping system with LiDAR
sensors was used to collect the data required for the change detection.

Sources of error

The most signi�cant error sources for a Mobile Laser Scanning (MLS) system are listed below. The
list results from direct hands-on experience of the author, who was involved in the construction
of a measurement vehicle. It is sorted according to the in�uence of said sources, starting with the
lowest in�uence:

q Mechanical deformation: Deformations of kinematic chains are caused by vibrations of
the rotating laser scanners or insu�ciently reinforced sensor mounts.

q LiDAR-speci�c sources of error: A multitude of di�erent errors can occur here, such as
discretization errors of the distance, re�ections on windows and crosstalk from other sensors.
In extreme cases, a wet surface can re�ect the laser light away from the sensor [Lindenbergh
& Pietrzyk, 2015].

q Intrinsic and extrinsic sensor calibration errors: Intrinsic calibration errors occur
when the translational and rotational alignment of a sensor element with respect to the sensor
has not been determined exactly. Extrinsic calibration errors occur when the transformation
between the vehicle and sensor coordinate systems has not been determined with su�cient
precision.

q Synchronization: The individual sensors and the navigation system must be synchronized
with one another. This is the only way to know the time stamp for each individual mea-
surement, otherwise the point cloud would be distorted even at low travel speeds.

q Navigation system: This category includes a number of factors that are related to navi-
gation, such as noise in the inertial sensors, wheel slippage when using a wheel encoder and
shadowing of the GNSS signal. The type and parameterization of the Kalman �lter can also
have an in�uence.

Mechanical deformations are negligible if the sensor carrier is designed appropriately. LiDAR-
speci�c errors can be greatly reduced using heuristics and the challenges associated with sensor
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synchronization can be solved using technical measures. As far as sensor calibration is concerned,
even small angular errors have a big impact. An angular misalignment of 0.1 ° can cause a dis-
placement of approximately 20 cm over a measuring distance of 120m, which leads to a distortion
of the point cloud. Localization errors can be partially compensated for by post-processing of the
navigation data and by applying registration methods such as SLAM. Together with calibration
errors, localization errors represent the main source of uncertainty in the information derived from
the measurement data of a mobile mapping system. The uncertainties must be taken into account
in the change detection method.

Con�icting evidence

In addition to the sensor-related sources of error presented in the last section, certain environmental
factors can lead to con�icting evidence. This in turn results in contradictions in the conclusions
derived from the measurement data. An example of an in�uencing factor are moving objects

like pedestrians, vehicles or �ags, in short everything that moves during recording. Due to the
movement of an object it occurs that an area is measured as occupied at one time and free at
another time. Another example is vegetation. Here, the laser pulses sometimes pass through the
free space between the foliage, sometimes they hit the foliage itself. Prior work has shown that
spatial data structures such as occupancy grids are prone to contradictions due to discretization
errors [Gehrung et al., 2017]. The e�ect occurs in areas where measuring rays pass along surfaces
at a shallow angle. In order for a change detection method to handle contradictions, a form of
representation is required that can explicitly represent the latter.

1.2 State-of-the-art

1.2.1 Change detection in point clouds

Singh [1989] de�nes change detection as the process of identifying di�erences in the state of an
object or phenomenon by observing it at di�erent times. A comprehensive overview of the �eld
is given in Lindenbergh [2010] and Lindenbergh & Pietrzyk [2015]. Lindenbergh [2010] further
di�erentiates between change detection and deformation analysis. Approaches of the �rst category
answer the question about changes in a binary way. It is determined whether the scene as a whole
or a speci�c part of it has changed. Approaches of the second category, deformation analysis,
quantify the degree of change. In the further course of this work, only change detection will be
discussed. Methods for change detection in point clouds can be divided into the four categories
point-, ray-, voxel- and object-based. Some more complex approaches may also utilize techniques
from more than one of these categories.

Point-based change detection

The point-to-point comparison, also called the surface di�erence, is the most direct way of detect-
ing changes between two point clouds. Basgall et al. [2014] realized this by calculating di�erences
between LiDAR and stereo-photogrammetric point clouds using a simple subtraction method.
Kang et al. [2013] calculated the point-to-point distances using the Hausdor� distance. This
approach was chosen to avoid issues related to local density variations.

Multiple octree-based approaches for storing the point clouds of multiple epochs were proposed
by Girardeau-Montaut et al. [2005]. Changes were indicated by comparing point distances between
epochs voxel by voxel, with a change occurring whenever the distance is above a noise threshold.
Empty voxels in one epoch and changes or shifts in the local normal of the points within a voxel
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were seen as further indications for changes. The changes themselves were determined in a more
accurate way by considering the neighbor voxels within the octree.

Xu et al. [2013] utilized a 3D Surface Separation Map, which encoded the distance of a point
to the nearest �tted plane from another epoch. Changes identi�ed by said map were classi�ed
into di�erent categories using a rule-based classi�er. This method required prior knowledge of the
scene in order to create the classi�er. Du et al. [2016] proposed an automatic method for building
change detection utilizing LiDAR data and aerial images. Both data sets were co-registered
using the ICP algorithm. Changes were indicated by height di�erence and grey-scale similarity
and a graph-cut method was applied to further optimize detection results by utilizing contextual
information. Murakami et al. [1999] proposed an approach based on digital elevation models

(DEM) for change detection based on ALS data. A surface representation was generated by
projecting the individual measurements onto a two-dimensional grid. Changes were detected by
subtracting an older representation from a newer one. A comprehensive discussion of DEM-based
methods to detect changes was published by Matikainen et al. [2010].

Change detection methods based on point-to-point distances are sensitive to variations in
point density. Due to the proximity to the recorded object, the e�ect is greater with mobile laser
scanning than with airborne laser scanning. This category of techniques does not reveal occlusions,
since no free space information is considered.

Ray-based change detection

If the recording position of the sensor is preserved, a point cloud can also be viewed as a set of
rays. A ray is the way along the laser pulse propagation path, including the measured surface
point. This allows not only to consider occupancy information implied by a measured surface
point, but also the free space between the sensor and said point. No assumption can be made for
the area behind the measuring point along an extension of the beam. The consideration of free
space also allows an informed statement about occlusion. This is important, because otherwise an
occlusion may be mistaken for a change.

Zeibak & Filin [2008] used a visibility map in form of a panorama depth map, which encoded the
distance between the individual scene points and the laser scanner based on spherical coordinates.
Applying a threshold allowed to divide the individual scene points of two recordings into the
categories change, no change and occlusion. The process is fast and easy to implement, but
cannot be applied between di�erent points of view.

Hebel et al. [2013] applied a ray-based procedure for change detection in ALS point clouds.
A three-dimensional grid structure was used to determine all rays in the neighborhood for an
arbitrary point in space. The degree of change was calculated by combining the belief functions
based on the Dempster-Shafer theory of evidence of all rays involved. This allowed to determine
whether new measurements con�rmed or contradicted the information provided by older measure-
ments. Xiao et al. [2015] proposed a similar approach based on mobile laser scanning data that
further improved the method with a point-to-triangle distance-based technique to conduct direct
consistency evaluation on points.

Ray-approaches allow detailed statements about changes in the environment, but since each
ray has to be considered individually, these techniques are challenging in terms of runtime for the
large amounts of data produced by mobile laser scanning.
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Change detection based on 2D and 3D grids

The methods listed here require a transformation of the point clouds into a two- or three-
dimensional representation. The latter is either a grid, an octree or a set of voxels. Changes
are found by comparing the occupancy of cells or voxels for di�erent epochs.

Pagac et al. [1998] utilized a two-dimensional occupancy grid that represented the environment
of an autonomous vehicle and was intended for the purpose of navigation. Sonar sensor readings
were integrated into said grid by the Dempster-Shafer inference rule. Wolf & Sukhatme [2004]
used a similar approach for SLAM-based robot navigation that utilized two occupancy grids to
represent static and dynamic parts of a scene. The state of occupancy was speci�ed as either
free, unknown or occupied. The comparison of di�erent states of occupancy allowed to conclude
if some entity that was previously considered static was moved.

The idea of dividing the environment into static and dynamic elements was also used by Azim
& Aycard [2012]. They utilized con�ict search on an occupancy grid in order to determine dynamic
elements. These were classi�ed and tracked using a global nearest neighbor technique.

The methods mentioned here do not meet the requirements of this work regarding the handling
of uncertainties and contradictions.

Object-based change detection

Change detection methods focus on high-level structures such as objects, segments or clusters as
basic units for detecting changes. Vosselman et al. [2004] utilized laser scanning data to detect
building changes in a two-dimensional map. A segmentation and �lter step was used to iden-
tify bare earth points and extract object points. The latter were then classi�ed as buildings or
vegetation based on surface roughness, segment size, height, color and �rst-last pulse di�erence.
Changes were identi�ed by comparing classi�ed segments with the building objects on the map.

Aijazi et al. [2013] classi�ed point clouds into the object categories permanent and temporary.
A similarity map derived from an evidence grid was used, inter alia, to detect natural or human-
made changes in an urban environment, which were then analyzed using cognitive functions of
similarity. These results were then utilized to progressively modify and update a 3D map. Voelsen
et al. [2021] segmented point clouds of an urban environment using a region growing algorithm
and then used points of each segment to create an occupancy grid. This was then used to assess
the temporal behavior of the extracted clusters.

Huang et al. [2022] detected changes of construction sites using photogrammetric point clouds
by considering both geometric and semantic changes. In a �rst step, semantic changes were de-
tected using an occupancy-based change detection method inspired by the work of Hebel et al.
[2013]. In a next step, geometric changes were considered to check consistency and detect con-
�icts. The usage of semantic information made the method application-speci�c. Hirt et al. [2021]
proposed an approach for detecting changes in trees. A three-stage process consisting of trunk ex-
traction, tree separation and crown expansion was used to extract tree instances from point clouds.
These instances were then combined with geometric changes determined using an occupancy grid.

Voelsen et al. [2021] described a multitemporal analysis based on 14 epochs of mobile mapping
LiDAR measurements used to derive a static reference map. This map contained all elements of
the environment that had not changed over time. Changes corresponded to non-static objects or
static objects that existed only temporarily. The point cloud of each epoch was �rst segmented by
region growing. The segments were then classi�ed by a random forest into the �ve static classes
facade, pole, fence, tra�c sign and vegetation as well as the three dynamic classes vehicle, bicycle
and person. All static objects from all epochs were then organized using a voxel grid and combined
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with a visibility analysis in order to di�erentiate between free space and occlusion. Based on this
information, the suitability of each voxel for being part of the static reference map was classi�ed.
This avoided eliminating occluded voxels or keeping segments such as sca�olds that were only
temporarily present. The algorithm proposed by Voelsen et al. [2021] is a good example of a
hybrid approach, as it utilizes techniques from several of the categories described here to classify
change detection methods.

Changes derived from objects are usually more descriptive than changes in surface or volume,
but require prior knowledge about the scene. Therefore, object-based techniques are less suitable
for generic use and more for applications in special �elds. In addition, change detection results
are highly dependent on the performance of the classi�er used to detect scene objects.

Moving object detection and removal

Moving object detection and removal is an area of research that shares similarities with change
detection, but usually takes place in a shorter time frame. In the context of this work, the term
moving object removal is used whenever change detection is applied in the current measurement
run, that is, in the same data set. The di�erent approaches can be divided into categories, with
representatives of the categories being discussed below. The topic is extensively researched in the
�eld of computer vision, especially in relation to object tracking in 2D images. However, since
the focus of this work is on mobile LiDAR data, the most relevant topics from a methodological
point of view are the above mentioned change detection and the detection and tracking of moving

objects (DATMO). The latter is often found in the context of robotics, autonomous driving and
mobile mapping.

A frequently cited method for detecting change is that of Underwood et al. [2013]. In the
proposed approach, di�erences between two point clouds are determined by placing one of the
two in a spherical grid that has its origin in the sensor position. For the other point cloud, it
is then checked whether or not one of its points shares a grid cell that is already occupied. If
this is the case, the distance and angle between the two points are checked. If both are above
a certain threshold required to suppress the in�uence of noise, then an object has appeared. In
order to identify disappeared objects, the roles of both point clouds are swapped and the process
is repeated. The method is well suited for quickly and e�ciently �nding di�erences between two
point clouds and can be made more robust by forming clusters after removing the ground plane.

A method that explicitly focuses on removing moving objects was presented by Schauer &
Nüchter [2018]. The authors also referred to this approach as the peopleremover. The method
utilized an occupancy grid and can be used for mobile LiDAR data as well as for stationary
terrestrial data. Each voxel in the grid contained a set of identi�ers from each scan with at least one
measurement point within the voxel. The reason for storing references instead of occupancy was to
be able to abort the voxel traversal early. Furthermore, it allowed to avoid self-intersections as well
as to achieve sub-voxel accuracy. Based on said data structure, all voxels that intersect with the line
of sight of the sensor and contain a non-empty set of scan identi�ers were determined and classi�ed
as dynamic. Voxel traversal was stopped once a voxel with the same identi�er as the current scan
was encountered. A point was removed if it falls into a voxel that is marked as dynamic. The
peopleremover-method produces visually appealing results, is faster than Underwood's approach
in terms of runtime and comparable with respect to the F1-score.

The method proposed by Asvadi et al. [2016a,b] was developed within the �eld of autonomous
driving. Due to real-time constraints, the approach was trimmed to speed, which is why free and
unknown space were not taken into account. After removing the ground plane, the remaining part
of the LiDAR scan was voxelized by quantizing the measurements. For each voxel, the number of
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measuring points within were counted. The basic assumption was that more measurement points
accumulate in the voxels occupied by static structures than in those occupied by dynamic objects.
Based on this occupancy grid, a two stage approach was applied. The �rst stage provided a rough
estimation of static and dynamic voxels by applying a simple subtraction mechanism. The second
stage re�ned the results by analyzing the 2D histogram computed from the output of the �rst
stage. Since no free space was considered, the approach had to make a number of assumptions
about the environment and also employed several heuristics in order to cope with occlusion.

Lee et al. [2020] examined the topic of moving objects removal from a mobile mapping point
of view. Moving objects needed to be removed from the 3D scans in order to create a clutter-free
image of the environment. The authors noted that a moving object looks di�erent than a static
instance of the same object, so detecting one in the accumulated point cloud is not an option.
Instead, the object is detected in camera images and the pose obtained in this way is used to
remove it from the individual LiDAR scans. The challenge with segmentation-based approaches
like this is that only object classes for which a classi�er exists can be removed. Also, it requires a
second sensor in form of a camera and a known relative pose between it and the LiDAR sensors.

As shown, there is an overlap between the detection and removal of moving objects and change
detection. The former represents an important tool in the pre-processing of LiDAR measurements.
However, none of the above methods is suitable to account for uncertainties and inconsistencies
in information derived from measurement data.

1.2.2 Spatial data representation

Volumetric spatial data structures are typically used to map location-based information to a
linear memory. Addressing is based on a multidimensional search key. This is usually done
with the intention of providing e�cient, location-based access to a data set. Volumetric data
structures can be categorized as occupancy grids, elevation maps and octree-based representations.
A comprehensive overview of the subject is provided in [Xu et al., 2021].

Occupancy grids

Occupancy grids are a speci�c form of evidence grids that represent the degree of occupancy for
a region of space with given boundaries. Elfes [1989] proposed an approach for indoor mapping
that utilized a 2D grid for storing occupancy information. The state of each cell was represented
by a probability that can be interpreted as either free, occupied or unseen space. The grid was
constructed using ultrasonic sensors and allowed for an accurate representation of the environment,
despite the wide aperture angle of the used ultrasonic sensors. Borenstein & Koren [1991] proposed
a technique called histogramic in-motion mapping (HIMM). It used rapid in-motion sampling
based on ultrasonic range �nders to create a pseudo-probability distribution over the environment.
The content of each cell corresponded to the level of evidence that an obstacle is present. The
system was designed for real-time robot navigation and enabled quick reactions in terms of obstacle
avoidance. Roth-Tabak & Jain [1989] used a 3D grid generated from distance measurements.
Uncertainties were not taken into account.

For all the approaches listed here, the boundaries of the represented area must be known.
Furthermore, the grid structure resolves homogeneous and heterogeneous areas with the same
resolution, which leads to an unnecessarily high memory consumption.

Elevation maps

Herbert et al. [1989] proposed two-dimensional grid structures in which each cell stored a height
value. They referred to this data structure as elevation maps or 2.5D maps. The approach



1.2. State-of-the-art 9

cannot represent overhanging structures such as trees, bridges or underpasses. Therefore, it is only
applicable in cases where a surface representation of the environment is su�cient. An example
where this is su�cient would be the contribution to the scene understanding tasks of driver
assistance and autonomous systems proposed by Pfei�er & Franke [2010]. The approach used
so-called Stixels, rectangular sticks of a certain width that limit the free space in front of the
vehicle. It was based on the assumption that objects are located on the ground and have an
approximately vertical pose with a �at surface.

A number of extensions have been published that intended to increase the descriptiveness of
elevation maps. Triebel et al. [2006] and Pfa� et al. [2007] proposed several surfaces per cell.
Gutmann et al. [2008] suggested to use multiple cell classes in order to describe di�erent struc-
tures. The disadvantage of 2.5D maps is that they do not represent a volumetric representation,
but rather a discretization along the height. This severely limits their informative value, which
makes them un�t for tasks that require an exact representation of a complex environment. As a
possible solution to this, Ryde & Hu [2010] suggested to store a list of voxels in each grid cell.
Although this representation was volumetric, no distinction between free and unobserved volumes
was made. Dryanovski et al. [2010] suggested to store a list of both occupied and free voxels per
cell. Douillard et al. [2010] presented a hybrid approach that utilized elevation maps to describe the
background, while foreground objects were represented by high-resolution voxel structures. The
above approaches are suitable for representations where three-dimensional information related to
the ground plane plays a central role.

Octree-based environment representations

The advantage of octrees over grid-based data structures is that their resolution can be adapted
locally to the data. Homogeneous areas can be represented with a lower resolution than areas
with a high information density. The usage of octrees for the representation of spatial information
was suggested by Meagher [1982]. Wilhelms & Van Gelder [1992] extended this approach to deal
with the storage of binary information such as occupancy information. An example application
for octree-based approaches is that of Surmann et al. [2003]. This approach used an octree as a
generic and quick-to-generate environment representation, which was used for the navigation of a
robot.

Payeur et al. [1997] used octrees to expand the two-dimensional occupancy grid mentioned
above into three dimensions. In the course of this, a probabilistic approach to modeling free
and occupied space was presented. Another approach based on octrees called Deferred Reference

Counting Octree was introduced by Fair�eld et al. [2007]. The sharing of subtrees between several
octrees and a sophisticated update mechanism allowed octrees to be copied quickly, which turned
out to be an important property with regard to particle �lter SLAM. A maximum likelihood
approach was periodically used for compression and child nodes with the same status were pruned.

The probabilistic octree-based occupancy grid referred to as OctoMap proposed by Hornung
et al. [2013] is based on the works of Fair�eld et al. [2007] and Moravec [1988]. One of the essential
extensions was the use of limited con�dences for the almost loss-less compression. Furthermore,
multi-resolution queries and the problem regarding representations with exaggerated con�dence
were also addressed. The log-odd notation introduced by Moravec [1988] doesn't keep track of
evidences for and against the information, but instead stores the evidence using a ratio of both.
This doesn't allow to distinguish between the case of no evidence at all and the case of contradicting
evidence. A limited statement about the degree of uncertainty associated with the evidence can
be made, but no statement about the degree of ignorance. Also, none of the above representations
is designed to represent arbitrary spatial information.
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1.2.3 Fuzzy spatial representations and inference

Fuzzy logic is a form of many-values logic that is employed to handle the concept of partial truth
[Vilém Novák, 1999]. Its ability to describe concepts such as vagueness allows the handling of
error-prone measurement data. Fuzzy logic is used, among other things, to represent location-
based information. The use of fuzzy logic to represent location-based information can be divided
into two categories, fuzzy spatial representations and fuzzy spatial-semantic relations.

Fuzzy spatial representations

The approach presented by Tunstel [1995] is similar to the probabilistic approach of Moravec &
Elfes [1985]. A fuzzy two-dimensional occupancy grid was utilized to help a vehicle navigate in
an unsafe environment. A numerical value in the interval [0, 1] in each grid cell described the
degree of occupancy as the degree of belonging to an element of a fuzzy set. Furthermore, the grid
contained additional information such as the slope of the ground in order to additionally support
the navigation. Information could then be derived using if-else rules. The approach was used
to simulate an abstract map of the environment, which was then used to demonstrate the path
planning for a mobile robot.

Ning et al. [1993] presented an approach that was able to reason about uncertainty in terrain
description. The environment was not subdivided into a regular grid, but into contiguous regions.
The boundaries of the latter were de�ned by fuzzy half-planes, which were represented by linear
inequalities with triangular fuzzy numbers as coe�cients. The terrain was classi�ed into a set of
fuzzy regions, which resulted in an uncertainty map where the weight of each region was interpreted
as a linguistic variable. This allowed reasoning about terrain features under uncertainty, which in
turn was applied to do path planning in uncertain terrain.

Hofmann et al. [2013] utilized fuzzy theory in a spatial way in order to solve the problem of
vehicle cross-country mobility. Addressing factors with regard to thematic and spatial vagueness,
the work combined multiple sources of information about terrain reliefs, vegetation cover, soils
and soil cover, weather and climate, hydrology, built-up areas and road networks into a cost map.
The map was then used to make a statement about the passability of terrain. The system was
integrated into a geographic information system (GIS).

Robinson [2003] reviewed many of the major aspects of fuzzy set theory and its linkage to
geographic information systems, thereby showing the widespread use of fuzzy logic in this �eld of
research. The author discussed several topics and their applications in relation to GIS systems,
including membership functions, fuzzy clustering, basic logical operations, fuzzy relations as well
as fuzzy control systems. The need to deal with uncertainty was named as one of the main reasons
for adapting fuzzy logic in the GIS community.

Zhang et al. [2017] proposed an approach that utilized the fuzzy analysis of airborne LiDAR
data to determine rainforest boundaries. Variables derived from LiDAR data were used to calculate
membership function values for both rainforest and non-rainforest. Confusion index values were
derived to illustrate the transition zones between both classes.

The above approaches bind a semantically interpretable information to a spatial area, but
represent only application-speci�c information. A representation of arbitrary information is not
intended, generic combination rules are not provided.

Fuzzy spatial-semantic relations

Dutta [1991] used fuzzy logic to represent spatial constraints between landmarks given imprecise
or incomplete information about them. The information can be both quantitative (e.g. the chair
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is 2 feet from the desk) and qualitative (e.g. the chair is near the desk) in nature. The resulting
framework allowed reasoning about relative positions and motion of objects in response to spatial
queries about such relationships.

Similar approaches have been proposed in computer vision. Krishnapuram et al. [1992] pre-
sented a uni�ed methodology to characterize properties and spatial relationships of object regions
in images, which play an important rule in scene understanding. Rosenfeld [1998] reviewed work
on the fuzzy topology and geometry of image subsets and discussed a variety of properties, as well
as some applications of these concepts in image processing and analysis. A similar report was pub-
lished by Freeman [1975], which discussed various approaches for encoding spatial relationships
between objects in an image. Psychological investigations related to human image encoding were
also examined and parallels were drawn.

The above approaches deal with the fuzzy representation of spatial relations, but between
abstract semantic elements. An application of these methods would therefore require that �rst
abstract elements such as objects are extracted from the data. Generic spatial information de-
scribed by the means of fuzzy logic can thus not be represented.

1.3 Objectives and contributions

The top-level goal of this work is to develop a method for the robust and accurate detection of
changes in urban street spaces from mobile mapping point clouds. Emphasis is placed on keeping
the change detection method as generic as possible so that as many di�erent categories of changes
can be detected. The following research questions, which have not yet been addressed or fully
answered in the current state-of-the-art, are considered:

I To what degree can the in�uences of vagueness and contradiction in information derived from
mobile LiDAR measurement data be reduced and what properties of method and data support
this?

II With what accuracy is it possible to automatically detect changes in an urban street space
based on vague, contradicting and spatially blurred mobile mapping point clouds and does it
allow the use of the method in the context of applications such as city surveys and security
applications, either supportive, or fully automatic?

III What metrics are appropriate for evaluating the spatial representation developed in this work
and what are their limitations?

Based on the analysis of the change detection techniques as well as spatial data representations
presented in the previous section, the research questions shall be answered by pursuing the follow-
ing speci�c objectives in this thesis. From a methodological point of view, these can be divided
into three groups.

1.3.1 Representation and inference of spatial data

Dealing with occlusions is required for detecting changes in urban street spaces, as they occur
in large numbers due to the high concentration of objects and people in a con�ned space. This
requires information on free space, because without that, it is not possible to distinguish between
occlusions and changes. According to the current state-of-the-art, there are two categories of meth-
ods capable of representing free space. Ray-based methods such as the ones presented by Hebel
et al. [2013] and Xiao et al. [2015] are able to model the free space very accurately. With methods
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of this type, challenges such as neighborhood search and comparison of the measurement rays of
two epochs arise, the in�uence of which is then re�ected in the runtime complexity. The other
category involves voxel-based approaches such as OctoMap presented by Hornung et al. [2013].
However, state-of-the-art volumetric representations do not meet the requirements of the problem
at hand. Most voxel-based approaches use the probabilistic evidence description developed by
Fair�eld et al. [2007] and Moravec [1988]. Such approaches do not represent evidence directly,
but only through the ratio of evidence for and against the information at hand. Consequently, no
statement can be made as to whether enough evidence is available to draw an informed conclu-
sion. The chosen form of representation also means that con�icting evidence caused by moving
objects and vegetation cannot be handled, since a distinction between no evidence and con�icting

evidence is not possible.

The detection of changes requires a way to perform inference based on the chosen form of
representation. If the information is represented by a generic evidence grid, an equally generic
inference, for example based on Boolean logic, can be build upon it. This can also be used
to combine the results with additional information, which makes it possible to answer complex
questions. Furthermore, results can be �ltered, e.g. according to object classes, which allows the
advantages and disadvantages of the method to be examined in more detail. Such a form of
generic evidence grid with incorporated inference has not yet been developed according to the
current state-of-the-art. In summary, the tasks related to the generic representation of uncertain
and con�icting spatial information required for change detection can be stated as follows:

q De�ne a methodological approach to represent arbitrary spatial information that allows to
(i) handle uncertainty, (ii) is able to describe contradictions, and (iii) enables a statement
about the degree of ignorance.

q Develop an inference mechanism based on the above methodological approach that allows
logical reasoning in accordance with Boolean logic.

A solution to the above tasks provides the foundation for the development of a methodical
approach to change detection that is capable of dealing with measurement data that is subject to
uncertainty.

1.3.2 Change detection

Given a representation and inference mechanism as motivated in the last section, the complexity
of the change detection task decreases, as the handling of the associated uncertainties and contra-
dictions has already been taken care of. In addition to the noise associated with an information,
however, there remains another disruptive factor to be compensated for, namely the noise on the
localization of said information. Such an error can occur due to residual errors in the boresight
calibration and the registration of the measurement data. Once this is compensated, the actual
change detection is little more than applying the inference mechanism. One possible solution for
this is motivated by classical two-dimensional image processing. If the information is spatially
blurred with a radius larger than the actual spatial deviation, this reduces the occurring false pos-
itives at the expense of detection sensitivity. In the context of image processing, such an operation
can be realized by a Gaussian �lter [Forsyth & Ponce, 2012]. In the case of convolutional neural
networks, a similar operation is used for feature extraction [Scherer et al., 2010]. In summary, the
tasks with respect to change detection can be formulated as follows:

q De�nition of a methodical approach for change detection based on the aforementioned spatial
representation, capable of dealing with the uncertainty and contradictions inherent to MLS
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data. This also includes the correct handling of areas where no statement can be made due
to a lack of observations.

q Adaptation of the above methodology to address not only uncertain information, but also
spatially blurred information resulting from sources of error such as calibration and regis-
tration errors.

Ful�lling these tasks not only allows to robustly process changes a�ected by uncertainty, but
also to take into account the aspect of spatial fuzziness caused by certain error sources. This
provides all the techniques necessary for the main objective of this work.

1.3.3 Evaluation metrics

The results of change detection are encoded within the above-mentioned method for spatial rep-
resentation. However, in order to evaluate the results, they must be compared with a ground
truth. Since the data used in this work is based on point clouds, the same point clouds are used
to carry the ground truth. The comparison can be made in several ways. First, the representation
containing the results can be directly compared to the ground truth. Second, the representation
can be converted to a point cloud before comparison. Third, the ground truth can be encoded in
the same representation as the change detection results. The literature refers to numerical error
measures such as precision, recall, and F1-score, which are based on a confusion matrix. These
error measures were chosen as a starting point for the development of custom metrics capable
of evaluating the above representation. The tasks in regard to the development of the metrics
required for evaluation are:

q Development of a metric for the comparison of the represented information to a ground
truth. This is required in order to make an informed statement about the strengths and
weaknesses of the representation.

q Development of a metric for the comparison of the represented information with a ground
truth after the former has been extracted from the representation. Thus, the overall perfor-
mance of the representation can be evaluated, although systematic e�ects are not excluded.

q Development of a metric for the comparison of the represented information and ground
truth in the context of the above representation. This is necessary to evaluate the perfor-
mance of the representation, while excluding any systematic e�ects due to the nature of the
representation.

Meeting these objectives allows the methodology for change detection in urban environments
proposed in this work to be quantitatively evaluated and analyzed for advantages and disadvan-
tages.

1.4 Structure and organization

This work is structured as follows. Chapter 2 presents an overview over the theoretical background
of fuzzy logic and inference. In Chapter 3, fuzzy spatial reasoning is introduced, i.e., the methods
for information fusion as well as for quantifying the degree of ignorance, uncertainty, and contra-
diction. Chapter 4 explains how fuzzy spatial reasoning is used for change detection. Chapter 5
presents metrics for comparing fuzzy representations to each other or to a ground truth in form
of a point cloud. Chapter 6 presents the experiments used to examine the capabilities of spatial
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reasoning as well as the change detection procedure that is based on it. The data set used for
evaluation and the associated ground truth are also discussed here. Chapter 7 presents the results
of the evaluation and their analysis. Chapter 8 contains the discussion with respect to the three
research questions of this work, namely the performance of fuzzy spatial reasoning, its suitability
for change detection and the signi�cance of the evaluation results. Chapter 9 �nalizes this work
by presenting the conclusion and outlooks for future works.
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2 Basics

This chapter brie�y outlines the basic concepts and principles of fuzzy reasoning. First, an overview
of the �eld is provided and a number of fundamental terms are de�ned. The fuzzy sets used to
represent evidence and the corresponding logical operations are introduced. Subsequently, the
fuzzy measures used for the analysis of the fuzzy sets are presented. These basics are then utilized
to introduce general fuzzy reasoning as well as the evidence-based fuzzy reasoning, which is based
on the former. The chapter concludes by outlining how an evidence distribution can be interpreted
using a fuzzy measure.

2.1 About fuzzy reasoning

Fuzzy reasoning is a theoretical framework with multiple degrees of freedom [Klir & Folger, 1987].
Weisbrod [1996] discussed two specialized forms of fuzzy reasoning that do not have any degree
of freedom. One is called possibilistic reasoning, the other one evidence-based reasoning. Compare
Figure 2.1 for an overview.

Figure 2.1: Comparison of evidence-based reasoning and possibilistic reasoning. Both are special forms of
fuzzy reasoning based on di�erent sources of information.

Possibilistic reasoning is based on a so-called reliable source of information that only forwards
information that is considered completely reliable, but possibly incomplete. Said information
must contain little or no contradictions. The basic idea is to gradually reduce con�dence in those
statements that are excluded by the information source. Evidence-based reasoning utilizes a so-
called communicative source of information. It communicates whatever it deems credible in an
un�ltered manner, even if these statements contain contradictions. In such a case, signi�cantly
more information is available than with a reliable source of information. However, this information
does not always have to be accurate. The underlying idea is to collect information that supports
the respective statements. This approach of reasoning also allows information to be ignored if it
turns out to be incorrect.
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Possibilistic and the evidence-based reasoning are complementary to each other. This can be
seen, among other things, from the handling of the fuzzy set. In case of possibilistic reasoning,
the fuzzy set of potential results decreases with increasing knowledge (formation of intersections).
In case of evidence-based reasoning, the fuzzy set increases (formation of union).

Modern sensor systems are to be regarded as a communicative source of information due to the
sources of error mentioned in Section 1.1.2. Therefore, the focus of the theoretical basics imparted
here is on evidence-based reasoning.

2.2 Vagueness and uncertainty

The concept of fuzziness comprises two concepts that describe important properties of information.
These concepts are called vagueness and uncertainty. According to Weisbrod [1996], vagueness
describes the conscious or unconscious lack of precision. Klir & Folger [1987], on the other hand,
associate vagueness as the di�culty of making sharp or precise distinctions in the world. In other
words, vagueness is always present when no sharp borders can be drawn.

A vague statement therefore is considered to be fuzzy because vague boundaries were drawn
in its formulation, for example through the use of abstraction. Linguistic terms are usually vague,
since the concepts described by them are usually not explicitly de�ned. An example of this is the
statement The witness observed a tall person. By referencing the concept of a tall person, the
possible height of said person is reduced to an interval with implied but not clearly de�ned limits.
The use of such a concept can, but does not have to, presuppose ignorance. Weisbrod [1996]
describes a coarse abstraction like the one mentioned as fundamental for processing complex
knowledge. Vagueness is formalized through the use of a fuzzy set.

Weisbrod [1996] equates the concept of uncertainty with admitting a lack of knowledge. To
follow up on the above example, the sentence It was dark, the witness is not entirely sure of the

height of the person proves to be a statement fraught with uncertainty. The height of said person is
therefore a fuzzy variable and only uncertain statements can be made about its value. Uncertainty
is formalized through the use of fuzzy measures. Klir & Folger [1987] equate fuzzy measures with
ambiguity, that is an unspeci�ed choice between two or more alternatives. However, the above
example shows that ambiguity addresses a concept that is comparable to uncertainty.

The transition between the concepts of vagueness and uncertainty can be viewed as smooth.
Vagueness does not automatically imply uncertainty, since a vaguely de�ned statement (e.g. about
a person's height) can be made despite the fact that certain knowledge about the height is present.
The focus on fuzzy information is particularly useful when intermediate and �nal results can be
calculated exactly, but pretend to have an unjusti�ed precision.

2.3 Fuzzy sets

Large parts of the terms and de�nitions on the subject of fuzzy sets used today were coined by
Zadeh [1965]. The fundamental idea can already be found in the publications of Black [1937].
The concept of the fuzzy set was probably �rst formulated in French as ensemble �ou [Menger,
1951]. Fuzzy sets are a generalization of the classical, Boolean set algebra. Instead of a de�nitive
assignment of a variable to an element of a set, a gradual assignment is given.

2.3.1 De�nition

Fuzzy sets are denoted by Ã. The characteristic function in Equation 2.1 indicates the degree to
which element u from universe U belongs to the fuzzy set Ã.
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µA(u) : U → [0, 1] (2.1)

The speci�c nature of the function is problem-speci�c and does not follow any formal frame-
work. Rather, the only requirement is that it roughly describes the a�liation to the fuzzy set. A
triangle function is often used.

2.3.2 Union, intersection and complement

In order to handle fuzzy sets, generalized fuzzy set operations are required. The de�nition of the
operations union and intersection is based on so-called s- and t-norms (see Equations 2.2 and
2.3).

µA∪B(u) := s(µA(u), µB(u)) (2.2)

µA∩B(u) := t(µA(u), µB(u)) (2.3)

The fuzzy complement function is de�ned as

µAc(u) := c(µA(u)) (2.4)

The functions for the realization of union, intersection and complement function have to ful�ll
certain formal properties which are explained in detail in Weisbrod [1996].

2.3.3 Norm pairs

There are di�erent families of s- and t-norms, with each s-norm always having an associated t-
norm. Using DeMorgan's law and the complement function, an s-norm can be converted into the
t-norm of the respective family and vice versa. This is also referred to as a norm pair.

(a) (b) (c)

Figure 2.2: Fuzzy set operations based on s- and t-norms. a) Examples of two membership functions, b)
union of both functions, c) intersection of both functions.

The most common norm pair are themaximum- and minimum-norm. Their special signi�cance
is due to the fact that they are the only norm pair that does not include additional, problem-speci�c
knowledge. This can be, for example, a mutual reinforcement of membership functions linked in
disjunctive manner or a reciprocal weakening of membership functions linked in a conjunctive
manner. Using the maximum- and minimum-norm, the intersection and union operations are
formulated as shown in Equation 2.5 and 2.6.
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µA∪B(u) := max{µA(u), µB(u)} (2.5)

µA∩B(u) := min{µA(u), µB(u)} (2.6)

An example can be seen in Figure 2.2. The complement is implemented using the so-called
intuitive complement function:

µAc(u) := 1− µA(u) (2.7)

It is also known as the standard complement.

2.3.4 Exclusive or

Utilizing the basic logical operations de�ned above, more complex operations such as the exclusive
or (XOR) can be formulated:

µA⊕B(u) := t
(
s
(
µA(u), µB(u)

)
, c
(
t
(
µA(u), µB(u)

)))
:= min

{
max

{
µA(u), µB(u)

}
, 1−min

{
µA(u), µB(u)

}} (2.8)

This operation is of importance for the change detection, since it allows to identify those
elements of the environment that have not remained the same.

2.4 Fuzzy measures

2.4.1 Fuzzy variables

A mathematically exact and also intuitive explanation of the topic can be found in [Weisbrod,
1996]. The foundation of a fuzzy measure is the canonical variable. This is a form of random
variable, the value of which should not depend on a random experiment. A canonical variable
x is a representative for an element u from the universe Ux. A fuzzy measure is described as a
mapping that assigns a value within the unit interval to all subsets of a universe. In this context,
all subsets are de�ned as the power set over the universe, thus P(Ux).

U : P(Ux)→ [0, 1] (2.9)

For the formal properties of such a fuzzy measure it is referred to Weisbrod [1996]. The
semantic di�erence between uncertainty and vagueness can be illustrated, among other things, by
the mapping function. While in case of vagueness the universe is mapped into the unit interval,
in case of uncertainty the power set of the universe is mapped. A fuzzy variable (x, U) is de�ned
as a canonical variable x in combination with a fuzzy measure, as it is shown in Equation 2.9.
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2.4.2 Basic assignments

A basic assignment is a mapping such as the one de�ned in Equation 2.9 and considered to be
a fundamental component of a fuzzy measure [Shafer, 1976; Klir & Folger, 1987; Wang & Klir,
1992; Kruse et al., 1993]. The basic assignment m(A) re�ects the con�dence that a fuzzy variable
x has exactly the value of the subset A ∈ Ux. The value assigned in this way will be also referred
to as the mass or evidence mass.

A basic assignment has the following properties. On the one hand, the empty set may only
be mapped to zero. The reason for this is that the fuzzy variable x must always take on a value
from Ux. Furthermore, the sum of all evidence must be 1. All mass that cannot be assigned to a
real subset of Ux is automatically assigned to the certain statement, therefore the subset of P(Ux)

that contains all elements.

In case m(A) > 0, one speaks of a focal element. The focal elements are the subsets of the
universe Ux that the available evidence is focused on. There is complete ignorance when the only
focal element is the certain statement.

2.4.3 Belief and plausibility measure

The two basic assignments used in this work are the belief measure and the plausibility measure.
The belief measure Bel(A) equals the mass of all evidences that support the statement x ∈ A:

Bel(A) :=
∑
B⊆A

m(B) (2.10)

The plausibility measure Pl(A) equals the mass of all evidences that do not contradict the
statement x ∈ A:

Pl(A) :=
∑

B:B∩A 6=∅

m(B) (2.11)

These evidences are all subsets B ⊆ Ux that overlap with A. The two mentioned measures are
well-known in the context of the Dempster-Shafer evidence theory [Dempster, 1967; Shafer, 1976;
Fine, 1977]. An example for a fuzzy measure can be seen in Figure 2.3. Evidence mass m(A), the
belief measure Bel(A) and the plausibility measure Pl(A) are in relation to each other. If one of
them is known, the other two can be derived from it. The belief measure can at most be as large
as the plausibility measure. If there is only evidence for all single-element elements of the power
set P(Ux), the belief and plausibility measure coincide and form a probability measure.

(a) (b) (c)

Figure 2.3: Example of a fuzzy measure. a) Universe over which the measure is de�ned, b) an exemplary
fuzzy measure, c) the associated belief and plausibility. All focal elements are marked with a blue symbol.
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2.5 General fuzzy reasoning

The basics of general fuzzy reasoning and evidence-based reasoning can be found in Weisbrod
[1996]. A fuzzy set Ã can also be interpreted as a linguistic term. x is Ã is then referred to as
predicate. x is a canonical variable, which in this context is also called a linguistic variable and
stands for the vague quanti�cation of an observation. As the terminology implies, fuzzy reasoning
is rooted in natural language processing.

2.5.1 Generalized modus ponens

The linguistic rule describes a connection between two linguistic predicates. An example of such
a linguistic rule is:

IF x is Ã THEN y is B̃

To apply a rule to observations, the generalized module Ponens for linguistic predicates is
required [Zadeh, 1973].

IF x is Ã THEN y is B̃ (rule)

x is Ã′ (fact)

y is B̃′ (conclusion)

(2.12)

2.5.2 Implication

The implementation of the generalized modus ponens requires an implication relation. It is based
on the fuzzy relation that maps a fuzzy set R̃ to a product space. It is described by the following
membership function:

µR : U1 × U2 × · · · × Uk → [0, 1]

An implication relation is a suitable representation of the linguistic rule [Ã⇒ B̃]. Both the two
fuzzy sets Ã and B̃ are de�ned via the power set of their respective universes. The implication
relation is realized by the implication function i(µA(u), µB(v)). The choice of the function i

represents a degree of freedom within the framework of fuzzy reasoning.

2.5.3 Composition

A composition connects a fact x is Ã′ in the form of a fuzzy set with a rule represented by an fuzzy
relation, such as the implication relation. The fact is de�ned by the power set of the universe.
The s-t composition is formed by the s- and t-norms, which results in the max-min composition

[Zadeh, 1965]:

µP◦Q(a, b) := s
v∈V

(
t
(
µP (u, v), µQ(v, w)

))
:= max

v∈V

{
min

{
µP (u, v), µQ(v, w)

}} (2.13)



2.6. Evidence-based reasoning 21

2.5.4 Realization of the generalized modus ponens

The implication relation [Ã ⇒ B̃] is applied to the fact Ã by linking the fuzzy set Ã′ and the
implication relation R′ using the composition Ã′ ◦ R̃′.

µA′◦R′(v) := max
u∈Ux

{
min

{
µA′(u), µR′(u, v)

}}
(2.14)

Inserting this into Equation 2.12 results into the compositional rule of inference [Zadeh, 1973;
Hellendoorn, 1973]. The relation R̃ doesn't have to be an implication, it can be seen as a universal
mechanism for evaluating fuzzy relationships between canonical variables.

2.5.5 Applying multiple rules

The topic of applying several rules is discussed in detail in Turksen & Tian [1993]. There are two
options when applying multiple rules. A reduction type inference relies on minimum formation,
which is suitable for reliable information. It is executed by linking the results of multiple rules
with an intersection.

With the expansion type inference the processing of several rules is based on the union op-
eration. It is suitable for unreliable information, which requires a careful, disjunctive connection
[Lee, 1990; Turksen & Tian, 1993]. As already stated above, the sensor systems used are to be
considered as rather communicative sources of information, which speaks in favor of expansion
type inference.

It is also relevant whether all rules are applied �rst and then the partial results are aggregated
or whether all rules are aggregated and the resulting rule is applied to the fact Ã. The former is
called local rule application, the latter global rule application.

2.5.6 Multiple premises and consequences

The negation is a single-element premise that can be determined using the complement of the
fuzzy set. In case of linguistic predicates that are concatenated with and respectively or, there
are multi-element premises. In the further course of this work, there are only concatenations
of predicates with an identical universe. Therefore, the concatenations of predicates with and-

respectively or-operators takes place as de�ned in Equations 2.2 and 2.3.

2.6 Evidence-based reasoning

Evidence-based reasoning is a special case of fuzzy reasoning that assumes a communicative and
therefore contradicting source of information. A detailed explanation of the topic as well as the
formal background can be found in Weisbrod [1996]. The basic building block of evidence-based
reasoning is the evidence distribution, which is de�ned as a mapping of the universe U into the
unit interval:

σx : Ux → [0, 1] (2.15)

For u ∈ Ux, the function σx(u) indicates the degree to which the assumption x = u is supported.
Complete ignorance is expressed by σx(u) = 0, whereas σx(u) = 1 expresses precise knowledge. A
linguistic predicate x is Ã can be interpreted as an evidence distribution by specifying σx := µA.
Rules can be implemented as a common evidence distribution σx,y. The composition of evidence
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distributions is then carried out as stated in Equation 2.14. The Minimum- or Mamdani-relation

is used as the implication relation:

µR(u, v) := min
{
µA(u), µB(v)

}
(2.16)

It does not matter whether global or local rule application is used when applying several rules,
since a combination is determined by expansion type inference, which is in this case via the
formation of the maximum. This ensures that the resulting evidence distribution contains the
information of all the incorporated evidence distributions.

2.7 Relation between evidence distributions and fuzzy measures

Fuzzy reasoning allows both the vagueness and uncertainty of information to be taken into account.
As already explained above, vagueness is represented by fuzzy sets, uncertainty by fuzzy measures.
However, the connection between the two requires explanation.

In evidence-based reasoning, logical operations such as intersection and union are carried out
on an evidence distribution. This is to be equated with a fuzzy set, which is therefore regarded
as a knowledge base. The tool for formally assessing the completeness of this knowledge base
are fuzzy measures. The fundamental idea is that the process of drawing sharp conclusions from
vague information leads to statements fraught with uncertainty [Weisbrod, 1996]. For example, the
attempt to conclude the exact height of a person from the statement that it is very tall only leads
to an interval in which each element is represented with a certain degree of uncertainty. It does
not matter here whether the information behind the vague statement was already fraught with
uncertainty or has only become a vague statement through abstraction from a precise statement.
An illustration of the issues discussed here can be found in Figure 2.4.

Figure 2.4: Example of a vague statement. left) Statement about the height of a person, given as both
as a precise and an uncertain information, center) the derived vague statement, right) an interval fraught
with uncertainty, resulting from an attempt to reconstruct the original information.

(a) (b) (c)

Figure 2.5: Relation between evidence distributions and fuzzy measures. a) Evidence distribution, b)
associated fuzzy measure with simple normalization, c) associated fuzzy measure with height-based nor-
malization.

Formally, this is done by equating an evidence distribution with a fuzzy set [Weisbrod, 1996].
This is possible because the trust placed in a statement by a basic assignment is equivalent to the
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support of the statement by the evidence distribution. However, it must be taken into account
that a basic assignment must be normalized. The choice of the normalization factor is crucial. A
simple approach would be to divide each element by the sum of the mass of all elements of the
evidence distribution. However, this would cause that only the single-element elements are focal
elements. This in turn would lead to the credibility and plausibility coinciding and forming a
probability measure. Therefore, the height of the evidence distribution, which acts as a measure
for the overall evidence, is used for normalization:

H(σx) := max
u∈Ux
{σx(u)} (2.17)

As suggested by Weisbrod [1996], the normalization takes place via the following case distinc-
tion:

∀A ⊂ Ux : m(A) :=


H(σx)∑

u∈Ux
σx(u)σx(u), if A = {u}, u ∈ Ux

1−H(σx), if A = Ux
0, else.

(2.18)

The direct implication is that there is no longer any value that is fully supported. The mass lost
as a result is assigned to the trivial statement x ∈ Ux. As a result, the credibility and plausibility
measures are di�erent and therefore do not form a probability measure. An illustration of the
di�erence between simple normalization and height-based normalization can be found in Figure 2.5.
The scaling is compatible with both the inference mechanisms as well as with the concept of fuzzy
sets. This is because the logical operations used are invariant to such manipulations [Weisbrod,
1996].
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3 Fuzzy spatial reasoning

This chapter describes the basic principles of the fuzzy spatial reasoning, that was developed as
part of this work. The representation of spatial data as well as the mechanisms for inference
are explained. The basic idea of this technique is to map the distribution of evidences for and
against a given information to a three-dimensional space. Fuzzy spatial reasoning is based on two
components. The �rst component is a volume-based spatial data structure that links an area in
three-dimensional space with a payload. The second component is said payload, which manages
the evidence, performs the mathematical part of the inference and allows a statement about the
degree of certainty and the degree of ignorance connected with the represented information.

The chapter is divided into three parts, with the �rst two parts covering the above mentioned
components of fuzzy spatial reasoning. The third part introduces a selection of so-called spatial
predicates relevant for this work and describes how they are generated. Spatial predicates are fuzzy
representations such as occupancy grids. These form the building blocks which are combined by
means of the inference mechanisms of fuzzy spatial reasoning.

3.1 Organization of large data quantities

LiDAR data is often available in large quantities, so organizational structures are needed to manage
them. This section therefore describes the approach used to manage said data sets, as well as other
resources such as the data structures for spatial fuzzy reasoning. This part is technical in nature
and not directly related to spatial fuzzy reasoning, but needs to be explained to understand the
overall concept.

3.1.1 Challenges of data management and processing

Mobile laser scanning produces large quantities of individual LiDAR measurements, the handling
of which presents a number of challenges. First and foremost here is the organization of data.
A measurement run of a few minutes can lead to billions of samples. A data set that is too
large cannot be processed in one piece if it exceeds the maximum working memory of a computer.
E�cient memory management techniques are therefore required so that data can be cached during
processing. It must be taken into account that interactions with storage devices such as hard disks
are orders of magnitude slower than interactions with the working memory.

Another issue is that for many applications, all measurements must be accessible for a given
area. Due to the layout of a city, many streets have to be visited several times during the acquisition
process. In order to access all measurements for one of the streets in question, the entire data
set would have to be searched. Storing the data in the form of individual scans would therefore
require additional processing each time the data is accessed. It is therefore necessary to store the
data in such a way that such requests can be ful�lled without much computational e�ort.

The possibility for parallel processing represents a third challenge. An algorithm can only be
optimized up to a certain point. All other speedups arise only when the algorithm is instantiated
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multiple times and applied in parallel to the data at hand. While this does not reduce the
computational e�ort as optimization does, it does drastically reduce the overall run time. The
challenge is to �nd a way to parallelize a particular process, as this is not always possible. The
alternative is to partition the underlying data. The latter has the advantage that the method itself
does not have to be parallelizable at all. Next, it is explained how the data structure underlying
the fuzzy spatial reasoning deals with the above challenges.

3.1.2 Data organization

The approach to organizing the data is based on previous work [Gehrung et al., 2016]. A simple
but e�cient way to overcome the above challenges is to split the data into small chunks. The
details associated with this are explained below.

Local coordinate frame

An key cornerstone for data organization is the local coordinate frame, for which a Cartesian co-
ordinate system was chosen. The use of an earth-centered, earth-�xed (ECEF) coordinate system
was deliberately avoided because the tilt of the data in the coordinate system depends on the
latitude (cf. Figure 3.1a). Instead, all measurements were transformed into a local tangent plane

coordinate frame, that is into a right-handed east, north, up (ENU) coordinate frame. A speci�c
point in the data set was chosen as the point of origin. This procedure ensures that the mea-
surements are represented in a way that appears natural to the observer (cf. Figure 3.1b). This
facilitates the interpretation of the measurement data.

(a) (b) (c)

Figure 3.1: Overview of the coordinate systems used. a) Symbolic measurement data appears skewed when
observed in an ECEF coordinate frame, b) the same data after transformation into an ENU coordinate
frame, c) the coordinate frame of a single cell embedded in the local/grid coordinate frame.

Addressing scheme

Based on the local coordinate frame, an intuitive mapping of data to chunks can be done by
tessellating the space into a regular, three-dimensional grid. A cell can therefore be addressed
based on its position in the grid. This addressing scheme can be continued in�nitely along all
axes. A prede�ned bounding box, as is necessary with other approaches such as the one proposed
by Hornung et al. [2013], is therefore not required.

Furthermore, a direct mapping between spatial coordinates within the local coordinate frame
and the addresses within the grid is possible. The relationships between the local and grid coordi-
nate frame as well as the one of a single cell are illustrated in Figure 3.1c. Converting from local
coordinates plocal to grid coordinates pgrid is de�ned as
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pgrid =

1
l

1
l

1
l

 plocal, (3.1)

where l is the edge length of a cell in the regular grid. The places before the decimal point
indicate the index in the grid, which can therefore be determined from a position in grid coordinates
by rounding o�. The inverse transformation, i.e. from grid coordinates to a point in the local
coordinate frame, is de�ned as

plocal =

l l

l

 pgrid. (3.2)

Calculating a position in the coordinate frame of a grid cell is carried out by subtracting the
cell address bpgridc from the position pgrid in grid coordinates. As octrees are a focal point of this
work and will be addressed frequently in the further course, the term grid cell would only cause
confusion. The same applies to the term supervoxel. Therefore, each grid cell is referred to as 3D
tile, due to its similarity to a tile as it is used in geodesy.

3D tile dimensions

It is also the aspect of octrees that has an in�uence on the size of a 3D tile. As for octrees, the
space encompassed by one is successively divided into higher and higher resolution areas. The
edge length of an octree cell is halved with each octree resolution level. Thus, the edge length of
a 3D tile must be a multiple of the edge length of a voxel of the highest resolution level. A 3D tile
should be small enough so that many of them can be kept in memory, but also large enough that
the data is not too fragmented. A good tradeo� between the two requirements is 25.6m, which is
a multiple of the maximum resolution of 10 cm used in this work.

Figure 3.2: Organizational levels of a 3D tile. Data is organized at the level of epochs, resources and
instances. The latter are speci�c versions of a resource for a speci�c point in time.
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Levels of organisation

For the structured storage of data, there are several levels of organization in each tile (cf. Figure
3.2). The �rst one is the epoch. Since the focus of this work is on change detection, a distinction
between di�erent time periods is necessary. Each time period has its own pool of data. The
next level of organization is the resource. It is subordinate to the epoch, which can have several
resources. A resource comprises all data of a category and epoch for the area covered by the 3D
tile. For example, a resource can be a series of 3D measurements or an octree-based fuzzy evidence

grid as described in Section 3.2. It may happen that there are several versions of a resource per
epoch. In this case one speaks of an instance of said resource. For example, there may be multiple
fuzzy evidence grids describing properties of the underlying area such as occupancy or navigability.
Epoch, resource and instance form a hierarchical structure that enables e�cient access to the data
stored in a 3D tile.

Memory management

The basic idea of memory management is to keep the 3D tiles that are still used in memory and to
swap out all the others. If this happens in the background without an application being aware of
it, this is called transparent caching. The least recently used (LRU) paradigm is used as a caching
strategy. This means that the least used element is removed from the cache whenever it is full
and an non-cached 3D tile is requested. If the least used element has been changed, it is written
to a storage medium, otherwise it is discarded.

Resource �ltering

Filtering is another way to save run time when loading 3D tiles. The idea is to �lter data at the
organizational levels illustrated in Figure 3.2. For this purpose, a whitelist describing the required
epochs, resources and instances is passed to the cache. The cache then ensures that only listed
data is loaded for each 3D tile. This not only reduces the required memory, but also drastically
decreases the run time, as the loading time accounts for a signi�cant part of it.

3.1.3 Measurement data import

The breakdown of the data into processable chunks requires that the measurement data is dis-
tributed across the 3D tiles. Here, not only the surface measurements but also the free space they
traverse must be taken into account. The latter is located between the measured surface point
and the sensor position. The combination of free space and surface point is therefore also called
a ray. The rays must be distributed to the 3D tiles they traverse. For performance reasons, all
rays that belong to a 3D tile are truncated at its boundaries. Since this means that it is no longer
possible to distinguish between traversing rays and rays ending within the 3D tile, both categories
of rays are represented by mutually exclusive sets of indices.

The process of distributing 3D measurement to the corresponding tiles is referred to as mea-
surement data import. Each surface point is handled in combination with the corresponding sensor
position, as mentioned above. Using the ray casting algorithm proposed by Amanatides & Woo
[1987], the 3D tiles traversed by each ray are determined. This is done by deriving the address
of the start tile using Equation 3.1 and then successively using the ray's direction to determine
the following tiles up to the end of the ray. This process is illustrated in Figure 3.3. The rays are
truncated to each of the traversed tiles using a technique proposed by Kay & Kajiya [1986]. This
is a fast slab-based intersection test between a ray and an axis aligned bounding box as used in
computer graphics.



3.2. Components of fuzzy spatial reasoning 29

Figure 3.3: Distribution of rays on tiles. Raytracing is used to determine the tiles intersected by the ray,
where the latter is mapped to each traversed tile.

3.2 Components of fuzzy spatial reasoning

This section describes fuzzy spatial reasoning, which is one of the main contributions of this work.
First, a description is given of how the theory of fuzzy reasoning must be adapted. Based on this,
the fuzzy evidence grid is de�ned and it mechanisms for logical inference are explained. Certain
core elements are explained in detail. This includes the methods used to determine the degrees of
uncertainty and ignorance, the membership function used to convert measurements to evidences
and the defuzzi�cation.

3.2.1 Concept for evidence representation

Fuzzy spatial reasoning utilizes a representation that stores evidence in three sequential layers.
Each of them holds the same information, but in a di�erent form. The three layers and their
relationship to each other are shown in Figure 3.4. The bottom layer symbolizes the raw data that
is to be integrated into the representation. In case of an occupancy grid, it is 3D measurement
data. These are converted into a fuzzy set. For this an membership function which is described in
detail in Section 3.2.6 is used. Fuzzy sets act as a middle layer and are used to logically combine
information. For example, a representation of changes in the environment can be and -linked with
a representation marking all vehicles in the scene in order to get the all changes related to vehicles.

In order to interpret a fuzzy set, it must be transformed into a fuzzy measure. These form the
top layer that enables evaluation and interpretation. In addition to the degree of certainty regard-
ing the available evidence, the degree of ignorance can be quanti�ed. The process of transforming
a fuzzy set to a fuzzy measure is described in Section 2.7 and involves applying Equation 2.18.

3.2.2 Adjustments to fuzzy reasoning

Evidence for and against a certain information is represented by a fuzzy set. This means that the
two elements of said fuzzy set are by de�nition the opposite of each other. This has consequences
for the logical operations which are used in the context of inference, since the fuzzy reasoning
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Figure 3.4: Overview over fuzzy spatial reasoning. Raw data (bottom layer), here in form of 3D measure-
ments, is transformed into fuzzy sets used for logical operations (middle layer). The fuzzy sets in turn are
translated into fuzzy measures (top layer) for the purpose of evaluation and interpretation.

described in Chapter 2 has to be adapted to the case at hand. This section explains the underlying
problem and the solution found for it.

Consequences of an imperfect measurement function

A perfect measurement function would capture all information relevant in the context of an appli-
cation not only with perfect precision and accuracy, but also with completeness. The latter is best
illustrated by an example involving the occupancy of a volume of space. If the volume is measured
to be 30% occupied, then a perfect measurement function would allow the conclusion that the
volume is also 70% free. The entire space would be observed and unobserved space would not be
present (cf. Figure 3.5a). Therefore, to represent occupied and free space, only a set with a single
element representing the occupancy level is required. The degree of free space can then be derived
using the standard complement, since the observations are generated by a physical process due to
which the space can be either free or occupied, but not both at the same time.

(a) (b)

Figure 3.5: Consequences of an imperfect measurement function. a) An exemplary scene with free (blue),
occupied (dark gray) and unobserved (light gray) space, completely observed due to a perfect measuring
function, b) partial observation due to an imperfect measurement function, as is the case with mobile
mapping.



3.2. Components of fuzzy spatial reasoning 31

In reality, however, the environment to be measured is rarely fully recorded. In other words,
there is always some part of the environment which is not observed. Therefore, sensor measure-
ments are only an approximation of the environment. In the above example, the measurement
with a laser scanner corresponds to the random sampling of free and occupied space (cf. Figure
3.5b). This results in both the degree of free space and the degree of occupied space being un-

derestimated, but never overestimated. Consequently, there is a (not necessarily contiguous) area
that has not been observed. It can be both partly free and partly occupied. As a consequence of
the imperfect measurement function, it is no longer possible to conclude the degree of free space
from the degree of occupied space. Whereas a perfect measurement model would have required
only a set with a single element, in this case two elements are required. By de�nition, the second
element is always the inverse of the �rst element, since the former contains all the evidence for the
information to be represented and the latter all the evidence against it. Hence these two elements
are called A and Ā, each collects the evidence for one of the two cases mentioned. For the given
example, the �rst element represents the degree of occupancy of a volume and the second element
the degree of unoccupied space, i.e. free space.

The role of the complement

Given the representation proposed in the last section, negation based on the standard complement
now no longer leads to the desired result. This can be shown using the boundary conditions of
classical Boolean logic as a benchmark. The reason for this is the unobserved space, which plays
the role of a third case, or rather a pseudo-case, since it is not directly measurable. Applying
the standard complement to an element causes the element's complement to contain not only the
evidence mass for the other element, but also the evidence mass associated with unobserved space
(cf. Figure 3.6a). In case of occupied space, the complement corresponds to the evidence mass
for free space plus the evidence mass for unobserved space. For free space it is similar, here the
complement is equal to the evidence mass for occupied space plus that for unobserved space.

(a) (b)

Figure 3.6: Comparison of standard complement and set complement. a) The standard complement
includes the evidence mass for unobserved space, b) the set complement includes only the evidence of the
opposed case.

The use of logical operations that contain a negation leads to a violation of the boundary

conditions requirement mentioned above. In other words, the results for edge cases are no longer
comparable to those of classical Boolean logic. Another way, however, is to interchange the value
of the element to be negated with the combined evidence mass of the other element(s) that have
no intersection with said element. By doing this, the evidence mass of the unobserved space is
explicitly excluded (cf. Figure 3.6b).



32 3. Fuzzy spatial reasoning

Operation Element A Element Ā

And min(µA1 , µA2) max(µĀ1
, µĀ2

)

Or max(µA1 , µA2) min(µĀ1
, µĀ2

)

Xor max(min(µĀ1
, µA2),min(µA1 , µĀ2

)) min(max(µA1 , µĀ2
),max(µĀ1

, µA2))

Inhibition of A min(µA1 , µĀ2
) max(µĀ1

, µA2)

Inhibition of Ā min(µĀ1
, µA2) max(µA1 , µĀ2

)

Table 3.1: Operations required for using the set complement.

µAc(u) =

{
µ(Ā), if u = A

µ(A), if u = Ā
(3.3)

In this work, this is referred to as the set complement. For the two-element case, it is de�ned as
shown in Equation 3.3. The application of this complement instead of the standard complement
avoids the violation of the boundary conditions mentioned above and the results are compatible
with those of classical logic.

Consequences for logical operations

Using the set complement has consequences for performing logical operations. Whenever an oper-
ation is applied in fuzzy reasoning, every element of the set is a�ected, i.e. the same operation is
applied to every element of the set. As described above, the second element Ā is by de�nition the
complement of the �rst element A. Thus, although the applied operation is the same for element
Ā, the former must also be negated before it is applied to the latter. This is done by applying De
Morgan's laws. Starting from Equation 2.6, the and -operation is negated and rewritten using De
Morgan's laws as follows:

s(µA1 , µA2) = min(µA1 , µA2)

= max(µĀ1
, µĀ2

)

A similar procedure is carried out in the case of the or -operation. Every compound operation
is treated analogously, i.e. it is �rst composed and then negated using De Morgan's laws. A list
of common operations is shown in Table 3.1.

3.2.3 De�nition of fuzzy evidence grids

The theoretical framework for fuzzy reasoning is described in detail in Chapter 2 and its modi�ca-
tion for the case at hand is discussed in the previous section. However, the former is designed for
handling abstract semantic information in the context of human language. Therefore, one of the
main points of this work is the extension of said framework to spatial information. This involves
addressing two major topics. The �rst one deals with creating a form of representation suitable
for handling fuzzy information in a spatial context. The nature of the representation, which is
denoted as a fuzzy evidence grid, is discussed in this section, as well as the reasons behind the
design decisions made. Based on this, the second topic deals with the inference on fuzzy evidence
grids, which is discussed in Section 3.2.4.
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Representation of spatial information

Evidence grids, as described in Section 1.2.2, are a suitable starting point for linking information
to space. These o�er a number of properties that are advantageous for the representation of spatial
data. One of them is the discretization of space, where certain areas are grouped together and
described by a single set of parameters. The means for space partition is the so-called voxel. It is
a unit of three-dimensional spatial information that describes the properties of the area enclosed
within its bounding box. If a hierarchical grid in form of an octree is used instead of a grid, the
resolution can be adapted locally to the spatial distribution of the information. Homogeneous
areas can be represented by few large voxels, heterogeneous areas by several small ones. It should
be noted that, from a theoretical point of view, the representation is still a grid, but with a variable
resolution. Hence the term evidence grid is still appropriate.

The use of an octree has the additional advantage that several levels of resolution are available
for the data. This can be useful, for example, in order to make preliminary calculations at a
crude resolution, before applying a computationally expensive operation to a higher resolution.
Furthermore, utilizing an octree allows the de�nition of a �xed upper memory limit. The maximum
resolution and thus the maximum octree depth dmax is �xed, therefore the memory requirement
is equal to a grid with the same resolution. Summing the memory requirements with those of the
grids of the other resolution levels gives the maximum memory usage for the octree.

From a formal point of view, the voxels are not independent of one another. For example, if an
occupancy grid representing the environment contains a car, all octree cells that encompass the
space occupied by the vehicle depend on said vehicle and are therefore interlaced with each other.
Modeling all interrelationships requires detailed knowledge of the environment and addressing all
of them makes the problem very expensive from a computational point of view. This is the main
reason why the assumption of independence is often promoted in the literature, knowing that said
assumption is only an approximation of the actual events [Thrun et al., 2005]. It states that the
information in each cell is independent of the information in all neighboring cells. The assumption
reduces the computational requirements drastically and is therefore a necessity, even if it is not
entirely correct.

Combining octrees and fuzzy information

Fuzzy information in a spatial context can be represented by choosing an evidence distribution as
the voxel payload. At this point, it is worth remembering that this distribution is essentially a
fuzzy set. The universe that de�nes the fuzzy set contains only two elements and is similar to the
one shown in Figure 2.5. The elements represent the collected evidence mass for and against the

presence of a certain information, represented by the elements A and Ā. Note that the nature of
this information does not have to be explicitly de�ned and the distribution is only given its meaning
by interpretation. The lack of an explicit description of the nature of the information and the
resulting need for interpretation o�ers the �exibility required to represent arbitrary information.
It also allows the combination of di�erent pieces of information that have di�erent meanings.

The chosen universe resembles that of approaches such as the one published by Hornung et al.
[2013]. However, the representation of the actual information is di�erent. Since the two opposing
cases are not represented by a single variable as it is the case with log odds, but are instead managed
separately, contradictions can be modeled. A contradiction exists if there is both evidence for and
against the represented information. Or in other words, that means a high membership for both
A and Ā. In the case of mobile laser scanning, for example, this can indicate an area of space that
has been crossed by a moving object.
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Di�erentiation from own previous work

The procedure motivated above for combining an octree with an evidence distribution for fuzzy
information handling results from previous work. It is rooted in an approach utilizing so-called
density functions [Gehrung et al., 2019b]. This form of representation describes the spatial distri-
bution of the intensity of an information. The techniques related to the evidence grid underlying
the approach are the same as presented here. Instead of an evidence distribution, the accuracy of
the information was used as voxel payload. The combination of information was carried out using
an arithmetic specially designed for this purpose. The particular approach had two disadvantages.
First, it is not able to represent uncertainties, which means that the reliability of the information
represented cannot be assessed. Second, contradictions cannot be dealt with. Both problems are
resolved with the fuzzy reasoning based approach proposed in this work. Fuzzy evidence grids

allow to derive the degree of uncertainty encoded in the fuzzy information. This allows to address
the reliability of information without having to resort to a separate theoretical construct. More
details are discussed in Section 3.2.5.

3.2.4 Logical inference

The topic of logical reasoning consists of three parts. The �rst part deals with the formalization
of the inference process, the other two with the structural combination of the underlying data
structure and with the methodological combination of evidence in terms of fuzzy logic.

Formalization

The logical inference describes the combination of two fuzzy evidence grids via an operation. This
creates a new fuzzy evidence grid that contains the result of the operation. Since a fuzzy evidence
grid is essentially a spatial grid, it can also be interpreted as a set of voxels. An operation on a
fuzzy evidence grid can therefore be seen as a set operation. Equation 3.4 de�nes the combination
of two fuzzy evidence grids σx and σy with the operation • as:

f•(σx,σy) := {σx • σy|∀(σx, σy) ∈ σx × σy, l(σx) = l(σy)}. (3.4)

The above de�nition is to be interpreted as follows. The function f•(σx,σy) combines the fuzzy
evidence grids σx and σy. The return value of said function is an evidence grid that contains the
result of the combination. All elements of both sets σx ∈ σx and σy ∈ σy are combined using the
previously mentioned operation •, but only if the location l(.) of both elements is equal, which is
expressed by l(σx) = l(σy). In layman's terms, this means that only the grid cells at the same
location are combined with one another.

So far, the combination of entire fuzzy evidence grids has been described from a formal point
of view. However, the question arises as to how the evidence distributions stored in the cells are
combined with one another. From a formal point of view, the combination of evidence distributions
σx and σy is de�ned as shown in Equation 3.5. σz is the evidence distribution in the cell of the
fuzzy evidence grid that stores the result of the operation.

σz = σx•y ◦ σ(x•y)⇒z (3.5)

In the above equation, the result of operation σx•y is linked with the implication function.
As explained in Section 2.5.4, this is done using the compositional rule of inference. Taking into
account said rule from Equation 2.14 and the Mamdani-relation from Equation 2.16, the following
equation for the combination of evidence results
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σx•y⇒z(v) := max
u∈U

{
min

{
σx•y(u),min

{
σx(u), σx(v)

}}}
, (3.6)

where σx•y⇒z is the resulting evidence distribution. The above equation is used to determine
the said evidence distribution for each element v ∈ U .

Structural combination

The inference in fuzzy evidence grids consists of two parts. Part one deals with the wrappers of
the evidence distributions, i.e. the octrees, which are responsible for the e�cient data storage of
spatial data. That part is discussed here. The second part deals with the inference of the spatial
information itself and is discussed in the next section.

Figure 3.7: Combination of two octrees into an octree with a common structure. The latter stores the
fuzzy evidence representation obtained by combining two fuzzy evidence grids.

When combining two fuzzy evidence grids, it is necessary that the result can be stored just
as e�ciently as it is the case with the input. If both octrees to be combined have an identical
structure, then the structure of the common octree does not di�er either. The result is thus
represented e�ciently. In a real application, however, it is unrealistic that this case will occur.
Rather, it is more likely that both octrees resolve di�erent areas with di�erent levels of detail.
Therefore, the common octree that does justice to both input octrees is resolved �ne enough so
that no information is lost, but at the same time resolved coarsely enough so that no non-existent
information is added. This is illustrated in Figure 3.7. The octree with such a structure is also
the most e�cient representation of the information contained in both octrees. Needless to say,
both octrees need to occupy the same space and therefore have the same bounding box. This is
taken for granted, since each octree is located in a 3D tile with �xed boundaries.

The basic idea explained above leads to the algorithm for constructing the common octree
in a recursive manner, as described in Algorithm 1. The algorithm is a modi�ed version of the
one published in own previous work [Gehrung et al., 2019a]. There are two major steps which
are repeated recursively. The �rst step is executing the logical operation based on the evidence
mass of both nodes. The exact procedure depends on the operation. The second step is selecting
the nodes in both octrees that are used for further recursion. There are up to eight child nodes
and recursion is done separately for each child node index. For a given index, the following case
distinction is made:

q If both nodes have a child node for the given index, recursion is continued with said child
nodes.

q If one of both nodes has no child node (or has not had a child node in the past, which can
be determined based on its depth in the octree), a node without any evidence is generated.
Recursion is continued with said node and the available child of the other node.
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Data: Octrees nodei and nodej .
Result: Octree nodec with common structure.

Function construct(nodei, nodej, nodec):
// Merge payloads and store result in nodec.
updatePayload(nodei, nodej , nodec)

// Construct the octree with common structure.

for child← 0 to 7 do
// Ensure that at least one node has a child at index child.
if getDepth(nodei) > getDepth(nodej) then

hasChildNode← hasChild(nodei, child)
else if getDepth(nodei) < getDepth(nodej) then

hasChildNode← hasChild(nodej , child)
else

hasChildNode← hasChild(nodei, child) ∨ hasChild(nodej , child)

// Select the nodes for recursion.

if hasChildNode then
if getDepth(nodei) < getDepth(nodej) then

nexti ← createEmptyNode()
else

if hasChild(nodei, child) then
nexti ← getChild(nodei, child)

else
nexti ← createEmptyNode()

if getDepth(nodej) < getDepth(nodei) then
nextj ← createEmptyNode()

else
if hasChild(nodej, child) then

nextj ← getChild(nodej , child)
else

nextj ← createEmptyNode()

// Recurse.

construct(nexti, nextj , createAndGetChild(nodec, child))

Algorithm 1: Recursive generation of the octree nodec with common structure from
two octrees nodei and nodej .
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The latter case is necessary whenever an area has not been observed in one of the two epochs.
Hence it is simulated by a node without any evidence mass. It is possible to use the information
stored in a node with a higher resolution, but this would lead to the formation of artifacts and
thus to erroneous results. In order to terminate at the leaf nodes, the recursion is only continued
if at least one node has a child node for the given index.

Operations for combining evidence

The formal and technical side of combining fuzzy evidence grids have been shown in the last
sections. This section explains how to combine the evidence distributions contained in each grid
cell. As mentioned above, two fuzzy evidence grids are combined using logical inference in order
to derive a new representation with a di�erent semantic meaning. Since evidence distributions
are de�ned as fuzzy sets, the theoretical background described in Section 2.3 can be applied to
logically link said distributions. The basic operations such as the single-valued complement as
well as the two-valued intersection and union are de�ned in Equation 3.3, 2.5 and 2.6. They are
applied as described in Algorithm 1. It is also possible to use compound two-valued operations
derived from the basic operations, such as the exclusive or shown in Table 3.1. The fuzzy evidence
grid obtained after applying a logical operation still contains the same information as the fuzzy
evidence grid(s) involved, however, the semantic meaning is di�erent. For example, by linking
information about navigable surfaces and the footprint of vegetation using a logical intersection,
knowledge about possible shady parking spaces can be derived. Another intersection with the
sphere of in�uence of the local cinema highlights all areas where, most likely, one may not �nd a
parking space on a sunny Saturday afternoon*.

3.2.5 Uncertainty handling

As described in Chapter 3, the uncertainty is quanti�ed using fuzzy measures. The relation be-
tween the fuzzy measures and the evidence distributions used to represent information is discussed
extensively in Section 2.7. It is also stated there that a fuzzy measure is derived directly from
a fuzzy set (and thus also from an evidence distribution). Because the combination of evidence
distributions using logical operations again leads to an evidence distribution, the fuzzy measure
can be derived at any time. No separate handling of the uncertainty is therefore necessary.

3.2.6 Membership function

A membership function establishes the relationship between measured evidence and the member-
ship to the element of the evidence distribution that represents said evidence. Since the focus of
the work is on 3D measurements, said evidence is available in the form of samples of the envi-
ronment geometry. Any algorithm that acts as a membership function must therefore derive the
membership for each voxel based on the number of samples contained therein. For each voxel
there are i samples for element A and j samples for element Ā. By de�nition, the membership to
an element of the evidence distribution must be in the interval [0, 1]. A simple way to map the
number of samples to a membership would be to divide them by the sum of all samples. However,
this approach is misleading, as it results in σA + σĀ = 1. This rules out the case of maximally
contradicting evidence, expressed by σA = 1 and σĀ = 1, which would lead to σA + σĀ = 2. It
also limits the ignorance class represented by m(A, Ā) to a maximum value of 0.5. As a result of
the normalization method described above, the overall system is restricted in such a way that its
informative value is greatly restricted.

*This rule of thumb may not apply to the year 2020/2021, when large parts of this work were written.
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In order to prevent this, both classes are handled independently of each other. A membership
function is required for mapping from samples to the interval [0, 1]. The function should be
continuous and allow as many intermediate stages as possible. Two functions are considered. The
linear function is the most simple function that meets the criteria mentioned above. The logistic
function is a more complex function that suppresses intermediate values and mostly maps towards
extreme values at both ends of the spectrum. In addition, a third, task-speci�c membership
function is examined to generate the occupancy representation, which, contrary to the above,
generates a certain degree of dependency. This is required to compensate for the e�ect described
in Gehrung et al. [2017].

Linear membership function

The linear membership function is de�ned as shown in Equation 3.7. The number of samples for
a class u is represented by x.

σu(x) := m ·x+ n (3.7)

The parameters m and n are determined in a way that the line intersects with two points
(cf. Figure 3.8a). The �rst point is the origin of the coordinate axes. To do this, n must be set
to zero. The slope m is chosen so that the line intersects with the second point (x1, y1), where
x1 corresponds to the median number of samples per voxel and y1 = 1. Therefore, the slope is
determined as:

m =
y1

x1
=

1

x1
(3.8)

Since x1 corresponds to the median number of samples, a normalization to the interval [0, 1]

is required.

Logistic membership function

Another candidate for the mapping from samples to a membership is the logistic function from the
class of sigmoid functions. It is computationally more expensive to calculate due to the exponential
function, but has di�erent properties than the simpler linear function. It is de�ned as:

σu(x) :=
1

1 + e−ku · tu(x)
(3.9)

The number of samples for a class u is represented by x. The design parameter k allows to
adjust the steepness of the curve. The function tu(x) is a transfer function that is responsible for
shifting the turning point of the logistic function. It is de�ned as

tu(x) := x− su. (3.10)

The number of samples su that describes the location of the turning point of the logistic
function can be derived from the data. For this purpose, the number of samples contained for a
class u is recorded for all voxels in the data set and a quantile such as the median is calculated.
The resulting number of samples is used as su.
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(a) (b)

Figure 3.8: Transfer function of linear and sigmoid membership function. a) The linear function directly
maps samples to membership, b) the logistic function maps to extreme values.

σunorm(x) := max
(

0,min

(
σu(x)− σu(0)

σu(2 · su)− σu(0)
, 1

))
, (3.11)

The result of the membership function for each element of the fuzzy set is normalized linearly
to map into the interval [0, 1] using Equation 3.11, where the starting point is chosen at x = 0

and the end point at x = 2 · su.

Occupancy membership function

This membership function is a variation of the logistic function. During the creating of an occu-
pancy grid, an e�ect occurs which negatively in�uences the evidence distribution within. This has
been described in detail in Gehrung et al. [2017] and arises when measuring rays cross an occupied
voxel during ray casting. One method to compensate for this is to decrease the weight of the
evidence for free space whenever there is high evidence for occupied space. This approach makes
it possible to reduce the e�ect without having negative e�ects on the evidences within areas that
contain only free space. The transfer function for occupied space is identical to that in Equation
3.10:

tocc(x) := x− socc (3.12)

The amount of evidence for free space depends on the amount of evidence for occupied space.
The more pronounced the latter, the further the function value of the transfer function for free
space is shifted in the direction of smaller values. Colloquially it can be said that this shifts the
turning point of the logistic function to the right:

tfree(x) := x−
(
sfree + sfree ·σocc(x)

)
(3.13)

In addition, the slope is reduced, graded linearly between the slope for occupied space kocc and
a minimum value kmin:

kfree := kocc − σocc(x) · (kocc − kmin) (3.14)
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(a) (b) (c)

Figure 3.9: Visualization of the free space function of the occupancy membership function. a) High
evidence for occupied space, b) medium evidence for occupied space, c) low evidence for occupied space.
The evidence for free space (green point) is always the same, but the evidence for occupied space (red
point) is varied.

The previously introduced rule regarding keeping membership functions independent is bend,
but not broken. It is still possible to reach a degree of maximum ignorance, but this is now
bound to certain conditions. Examples of the above-mentioned membership function for di�erent
evidences can be found in Figure 3.9. As before with the logistic function, the membership values
for both free and occupied space need to be normalized as described in Equation 3.11.

Computation mode for parameter estimation

A membership function has at least one free parameter which, for the sake of simplicity, is esti-
mated from the data. In the present case it is the median over the number of samples per voxel.
Several approaches are conceivable as to how the parameters can be estimated. As part of a global
approach, the parameter is estimated across all voxels of the representation. With the tile-based
approach, only the voxels within the same tile are used. In another approach, a sliding window is
used to take into account all voxels in the close vicinity for the parameter estimation. It works
based on a grid with the same resolution as the voxel under consideration. The parameters for
each cell of said grid are estimated. The choice of mode is decided during the evaluation.

3.2.7 Defuzzi�cation

The process of sharpening a fuzzy information is called defuzzi�cation. This is required for the
purpose of interpretation, visualization and other tasks. The approach to defuzzi�cation can be
freely chosen. In the context of this work, however, three types of defuzzi�cation have prevailed.

Threshold �lter

For threshold �ltering, a threshold is applied to the collected evidences in order to sharpen the fuzzy
representation. Whenever the certainty m(A) for the information exceeds the threshold tcertainty,
the corresponding voxel is considered to belong to case A, that is to support the represented
information:

σα := {σα|m(A) ≥ tcertainty} (3.15)

The disadvantage of this method is that the quantity of the evidence is considered, not the
ratio in between. This procedure will therefore not produce reliable results in location for which
only little evidence has been collected.
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Pro/contra �lter

The pro/contra �lter selects all those voxels for which there is more supporting than contradicting
evidence. This is de�ned as follows:

σα := {σα|m(A) > m(Ā)} (3.16)

In contrast to the threshold-based approach, this has the advantage that a more di�erentiated
decision is made. The decision is also made based on the ratio between the supporting and
contradicting evidence mass, not just based on the amount of collected evidence mass.

Ignorance �lter

The ignorance �lter is used to sort out those voxels for which the representation, to put it in
layman's terms, has too little knowledge about. The resulting representation is referred to here
as σα. This notation is motivated by the α-cut, which is similar to the operation executed here.
The �lter is de�ned as:

σα := {σα|m(A, Ā) ≤ tignorance} (3.17)

The threshold tignorance indicates the maximum allowed level of ignorance. A low threshold
value means that there is a low degree of ignorance, whereas a high threshold value also allows
a high degree of ignorance. Again in layman's terms, the former corresponds to a low level of
missing knowledge, the latter to a high one.

3.3 Spatial predicates

In modern predicate logic, a predicate is the part of an atomic statement that is truth-functional.
It is basically a function that maps one or more arguments to a Boolean value. As described in
Section 2.5, a predicate x is Ã maps an argument onto a membership function. The term predicate

is preferred to the term linguistic variable, since it does not imply any connection with language.
One of the key points of this work is to expand the fuzzy logic for reasoning in spatial information.
For this reason, a spatial predicate denotes a function which maps spatial information, i.e. a three-
dimensional argument, to a fuzzy truth value that is associated with some point in space. Spatial
predicates are the building blocks that are combined using fuzzy logic in order to solve a problem
within a spatial context. In the following, all spatial predicates that play a signi�cant role in this
work are explained in detail.

3.3.1 Fuzzy occupancy grids

A fuzzy evidence grid can represent arbitrary spatial information. However, much of the spatial
representations important for this work can be derived from occupancy information. Changes
can be derived, for example, from di�erences in the occupancy of two epochs. When referring
to an occupancy representation, this is understood to be a fuzzy evidence grid, which describes
the occupancy of space by means of a two-element evidence distribution. One element represents
the evidence collected for free space, the other for occupied space. Contradictions are possible, i.e.
that a position in space contains evidence of both the free and occupied case. The generation
of an occupancy grid is a time-consuming process, since the way of each measurement ray has
to be traced. This is particularly resource-intensive for high-resolution representations. In the
following two methods for constructing a fuzzy occupancy grid are presented and their advantages
and disadvantages are discussed.
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Generation by means of raycasting

A frequently used approach for creating occupancy grids is raycasting. This means that in addition
to the surface points measured by the sensor, the free space traversed by each measurement ray
is also determined. This is usually done as proposed by Amanatides & Woo [1987]. Here, the ray,
that is the path between sensor position and the corresponding surface point, is mapped onto a
virtual grid. For this, �rst the address of the start cell is derived from the sensor position. Then,
based on the direction of the ray, the addresses of all cells intersected by the ray are determined
incrementally. The �nal cell is designated to contain the measured surface point, all other cells
are assumed to correspond to free space, since they have been traversed by the measurement.

This process is repeated for each measurement. The result consists of two lists, one including
all occupied cells, the other all free cells. Each cell can appear several times in the list, therefore
each entry contains the cell address and a counter. Based on these lists, the occupancy grid is
updated. Updating the occupancy statistics within a cell can be done in di�erent ways, depending
on the approach. Procedures that work with dynamic environments, such as the one proposed by
Hornung et al. [2013], require the exact time sequence of the measurements. For procedures that
compare static environments, as it is the case in this work, the number of traversing and ending
rays per cells is su�cient information. The a�liation of a cell to the classes occupied and free,
represented by the fuzzy elements uocc and ufree, is de�ned as explained in Equation 3.9.

The lower resolution levels are built up from the highest resolution level. This has the advantage
that the computationally expensive raycasting operation only has to be carried out once. The
resolution pyramid is built up by manipulating the address for each cell in the list using a bit
shift operation so that the address of the higher-level voxel can be read from it. By evaluating
the two lists manipulated in this way, the number of samples for free and occupied space can now
be derived for each a�ected voxel. This is repeated for each level of resolution until the root node
of the octree is reached. The runtime for this procedure is negligible in comparison to performing
another raycasting-step.

Since the process of generation is, as mentioned, very consuming in terms of computational
resources, parallelization is required. Two approaches were examined as part of this work. The
�rst is the parallelization at tile level, where each tile is assigned to a task that processes the entire
measurements of said tile. The second option involves the distribution of all measurements within
a single 3D tile to multiple tasks. The results of all tasks are combined by concatenating the partial
lists created by each task. In practice, the second approach has proven to be more e�cient despite
the additional overhead, not least because it enables individual tiles to be processed quickly for
test purposes.

Generation by means of iterative re�nement

The disadvantage of raycasting is that all areas are resolved with the same resolution. However,
this is not always necessary, since free space in particular represents a homogeneous area that can
easily be summarized by several large voxels without a loss of information. Only the area on the
border between free space and occupied space needs to be represented with a high resolution, as
it is very heterogeneous. The most suitable data structure for the representation is an octree.

The method of iterative re�nement was developed to generate an occupancy representation
with high resolution in heterogeneous areas and low resolution in homogeneous areas [Gehrung
et al., 2018]. As part of the method, a voxel is re�ned until the evidence it contains is either
homogeneous or a maximum depth has been reached. An overview of the method is given in
Algorithm 2. The procedure starts with an octree, of which only the root voxel exists. Said voxel
is re�ned in an iterative manner. First, all rays assigned to a voxel are used to update its evidence
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Data: Set of rays r, maximum octree depth depthmax.
Result: Octree nodeo with occupancy information.

Function refine(nodeo, r):
updateOccupancyStatistics(nodeo, r)
if hasContradictions(nodeo) and getDepth(nodeo) < depthmax then

for child← 0 to 7 do
nodechild ← createChild(nodeo, child)

// Find all rays intersecting the child node.

rchild ← determineRaySubsetByIntersection(nodechild, r)

// Update the child node.

re�ne(nodechild, rchild)

Algorithm 2: An iterative re�nement based approach to derive an occupancy octree
nodeo from a set of measurement rays r.

distribution using Equation 3.9. If there is a contradiction, i.e. if there is evidence for both free

and occupied, the node is further re�ned and the measurements are distributed to each of the eight
possible child voxels. For this purpose, an intersection test between each measurement ray and the
voxel under consideration is carried out using the method proposed by Kay & Kajiya [1986]. The
process described here is then repeated for each of the child voxels. This process automatically
leads to a multi-resolution pyramid, but can only be parallelized at tile level. A slightly modi�ed
variation of the procedure allows to introduce free space with a lower resolution than the one used
for the occupied space. This reduces computational costs, however, it also reduces the quality of
the representation.

Comparison of both approaches

The main advantage of raycasting is that it generates very accurate results. Iterative re�nement,
on the other hand, leads to representations that consume less memory and usually also require
fewer computational resources, especially if the free space is entered with a lower resolution. The
number of voxels required is related to the complexity of the scene, not to the resolution implied
by the scene, as is the case with raycasting.

Nevertheless, raycasting is still preferable to iterative re�nement. As a result of the latter one,
a voxel may not be further re�ned, although there is not evidence for all child voxels. Actually
unobserved space is marked as either free or occupied space, whereby the former usually applies. If
two epochs created in this way are compared in the context of change detection, phantom changes
occur in places that were actually unobserved in one of the two epochs. The extent of these false
positives depends on the voxel size and is usually not negligible.

The bottom line is that iterative re�nement should be avoided when the comparison of two
epochs is necessary. It is therefore not used in the further course of this work. However, it is
mentioned here for the sake of completeness and to answer possible questions regarding occupancy
representations with varying voxel size.
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3.3.2 Object classes

The object class labels of the TUM-MLS data set described in Section 6.3.4 are also considered
to be spatial predicates, since they can be used to describe the a�liation of a spatial area to an
object class. This is useful additional information in order to evaluate the results of the change
detection in more detail. To do this, the labels are converted into a fuzzy representation using the
following method.

Each point in the labeled point cloud of the TUM-MLS data set has a number assigned to it.
By applying a division and modulo operation, both the object class identi�er as well as the object
instance identi�er can be derived from this number. However, the latter information is not used
in this work. Since the building class is divided into both the facade and interior sub classes, a
case di�erentiation for both subclasses and all classes with higher identi�ers is required.

For each point in the TUM-MLS point cloud, the tile and then voxel in the representation for
the corresponding object class is determined. As with the creation of the fuzzy occupancy grid,
there are sample counters from which the evidence distribution is derived. For each sample, the
counter for A in the representation of the corresponding object class is incremented by one. In
addition, the same is done in the representations of all other object classes, but here the counter
for Ā is incremented. In this way, an e�ective distinction is made as to which areas do belong
to the object class, which do not and which are not covered by the data set. After all points are
processed, the logistic membership function explained in Section 3.2.6 is applied to each voxel of
all object class representations.

3.3.3 Compensation of registration errors

Although the data sets used here have been registered with one another as described in Section
6.3.2, a residual error remains. In some places this is larger than the selected voxel resolution of
0.1m. One way to counteract this error in the context of the occupancy representation is to blur
the latter. In the following, two methods are described which exercise spatial blurring based on
the local neighborhood.

Max-pooling

This technique is inspired by max-pooling in convolutional neural networks [Scherer et al., 2010].
In max-pooling, the maximum value within a local neighborhood is determined. This is realized
by a three-dimensional �lter kernel that is slided over each voxel in the representation. The kernel
size is always an odd number, since it must include the voxel under consideration and its N next
neighbors in each direction. For each voxel covered by the kernel, the maximum values for both
A and Ā are selected and assigned to the voxel in the center.

Low pass �ltering

In low pass �ltering, the representation is convolved with a symmetric Gaussian function, reducing
high frequency components. Said approach is often used in computer vision [Forsyth & Ponce,
2012]. In the present case, the application of the �lter has the e�ect of spatially blurring the fuzzy
information. The kernel used for convolution is calculated with the following function:

G(x, y, z) =
1

(2π)
1
8σ3

exp(−x
2 + y2 + z2

2σ2
) (3.18)

An illustration can be seen in Figure 3.10. The value for σ is given in meters, the function
is then sampled based on the selected resolution level to calculate the values for the respective
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voxels. It is necessary to normalize the �lter kernel to one, otherwise the representation will be
subject to an e�ect that is similar to an image being brightened or darkened. The kernel is applied
to each voxel and sets the fuzzy information to the weighted average of the voxel's neighbors. The
original voxel's value receives the highest weight, the neighboring voxels get a smaller weight with
increasing distance. From a statistical point of view it is recommended to set the range of the
�lter to 3σ in each direction. However, this can be very computationally expensive, so applying
it to the nearest N neighbors in each direction is a necessary compromise.

Figure 3.10: Visualization of a 3D Gaussian kernel. The Gaussian bell with σ = 0.15 is discretized in order
to be used with a regular grid.

Comparison of both approaches

Both �lters blur the representation, but with a di�erent result. When the Gaussian �lter is applied,
the resulting representation only shows softened, vaguely de�ned edges and corners. The max-
pooling on the other hand produces an in�ated version of the occupancy grid, but with edges and
corners as crisp as in the occupancy representation. While the latter operation only spatially blurs
the representation, the former also seems to add noise due to the weight of the Gaussian function,
therefore blurring the evidence distribution itself. This leads to a visible loss of quality in the
changes derived from the blurred occupancy representation. Therefore, no further investigation
of the Gaussian �lter was performed. It is mentioned here only to answer the obvious question
about using a Gaussian �lter.
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4 Change detection

This chapter presents a method to detect changes in urban environments utilizing fuzzy spatial

reasoning. Figure 4.1 gives an overview over the process and its individual steps. The �rst
step is the distribution of the 3D measurements to 3D tiles, which is described in detail in Section
3.1.3. This step comprises the distribution of the measurements to the individual tiles. The second
process step involves the preparation of the fuzzy representations. This includes the construction of
the fuzzy occupancy representation as described in Section 3.3.1. The max-pooling representations
described in Section 3.3.3 are also generated here. The third process step involves the actual
change detection. This includes the use of several fuzzy Boolean operations. These operations are
formulated using the convention de�ned in Section 3.2.4 and are explained in detail below. The
fourth step of the process includes the defuzzi�cation of the results utilizing the means proposed
in Section 3.2.7.

Figure 4.1: Overview over the change detection process. The individual process steps are shown on the
left, their implementation on the right.
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4.1 Representation of changes

There are �ve cases to be handled in change detection. The three main cases include the detection
of con�rmed, appeared and disappeared elements. These are the actual changes which every change
detection algorithm should supply. In addition, the procedure must be able to identify areas that
were not observed in either of the two epochs being compared. These are the two remaining cases.
This should be done either explicitly or implicitly. If the method is not able to recognize these
two cases, phantom changes occur which at best are actual changes that cannot be con�rmed as
such or, at worst, are false positives.

Changes can be represented in two ways. First, it is possible to use a single data structure to
encode all �ve of the above cases. Such a structure has been used in a previous own work in which
it was referred to as a delta-octree [Gehrung et al., 2019a]. Second, a separate data structure
can be used for each of the above cases (e.g. one for disappeared elements, one for con�rmed
elements, etc.). In the context of this work, the latter was chosen because because this approach
�ts seamlessly into the theoretical framework described above.

4.2 Determining con�rmed elements

An element is considered con�rmed if it occurs in both of the compared epochs. From a logical
point of view, this corresponds to applying an and -operation. However, executing this operation
on the occupancy representation would lead to various false negatives. This is due to residual
errors caused by poor registration of the MLS data or calibration errors of the MLS system.
These can be compensated to a certain extent by utilizing a max-pooled version of the occupancy
representation of each epoch. The resulting loss of detail is kept within limits if the neighborhood
of the smoothing operation is kept low. The and -operation is applied between the epoch to be
con�rmed and the max-pooled version of the other epoch. The following equation demonstrates
this for the �rst epoch:

σconfirmed1 := f∧(σoccupancy1 ,σmax−pooled2) (4.1)

The second epoch is calculated using the following equation:

σconfirmed2 := f∧(σmax−pooled1 ,σoccupancy2) (4.2)

This results into two result representations for the con�rmed case. However, this is not a
problem, but must be taken into account in the evaluation.

4.3 Determining appeared and disappeared elements

The Boolean operation used to determine all changes is the xor -operation. Here, however, no
distinction is made between appeared and disappeared elements. For this reason, the two partial
operations that make up the xor are used, namely the inhibition-operations. The case appeared is
calculated using the Inhibition of Ā. This corresponds to an and -operation with input negation:

σappeared := f∧(σmax−pooled1 ,σoccupancy2) (4.3)

The procedure for the disappeared case is similar. It is computed by the Inhibition of A, which
is also realized by an and -operation, but this time the other input is negated:
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σdisappeared := f∧(σoccupancy1 ,σmax−pooled2) (4.4)

The use of max-pooled representations is necessary to avoid false positives. As in the case
of the con�rmed elements, incorrect conclusions would arise due to the aforementioned residual
errors in the underlying data.

4.4 Determining elements unseen in the other epoch

As described above, an important point in change detection is dealing with areas that were only
observed in one of the two epochs. This is a two-step process. The �rst step is to localize where
the aforementioned case is present. As described in Section 3.2.4, this is done during the logical
inference, more precisely when merging two octrees into one with a common structure. An area
is not observed in the other epoch if a voxel exists in one octree, but not in the other.

The second step is to handle the aforementioned case. During the logical inference, whenever
a voxel doesn't exist in the other epoch, a placeholder voxel without evidence is created. It is in
the nature of the fuzzy reasoning that none of the logical conjunctions used for change detection
will result in a false positive if one of the evidence distributions involved does not contain any
evidence. Or in other words, a logical conjunction of evidence and complete ignorance does not
lead to a result that suggests an information that is not present.

4.5 Filtering by object classes and instances

In order to make the changes for individual object classes and instances investigatable, these can
be linked with one another. For example, all changes to vehicles can then be identi�ed. In order
to �lter changes for objects of a certain class, these must be linked with an and -operation:

σconfirmedi := f∧(σconfirmed,σclassi) (4.5)

A comparable procedure is necessary to �lter individual instances:

σconfirmedij := f∧(σconfirmed,σinstanceij ) (4.6)

The equations shown above are exemplary. In principle, said information can also be included
in another way, for example by �rst linking di�erent object classes by applying an or -operation
and then extracting the changes via an and -operation.
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5 Fuzzy evaluation metrics

The fuzzy spatial reasoning approach presented in this thesis represents a novel form of spatial
representation. Metrics are required to answer the question of the degree to which information
can be reproduced correctly. For this purpose, two metrics for quantitative evaluation of fuzzy
representations have been developed.

Figure 5.1: Overview of the evaluation metrics. Comparing fuzzy representation and ground truth requires
di�erent metrics depending on whether the former has been defuzzi�ed or the latter has been inserted into
a fuzzy representation. The comparison of crisp representation and fuzzy ground truth does not play a
role for the present case.

The error measure described in Section 5.1 is suited for comparing a fuzzy representation
with a crisp ground truth such as an annotated point cloud. While the confusion matrix can
be used to compare a defuzzi�ed representation with a crisp ground truth, the fuzzy confusion

matrix presented in Section 5.2 is used to compare a fuzzy representation with a fuzzi�ed ground
truth. The latter is obtained by importing the ground truth into a fuzzy representation. Figure
5.1 illustrates in which case which metric is to be used.

5.1 Error measure

The purpose of the error measure is to determine the di�erence between a fuzzy representation
and a ground truth represented by an annotated point cloud. In other words, the error measure
determines the deviation between a set of labels and the evidences represented by the voxels.
The latter are represented by certainties so that contradictions in the evidence can be taken into
account. A fuzzy representation summarizes the evidences for and against a single class. However,
the labels of the ground truth usually contain more than two classes. With regard to the error
measure, this is handled by applying a binarization to the ground truth labels. All labels that
correspond to the class of the fuzzy representation are assigned to one class A, all other labels
to another class Ā. Since the error measure is based on the theoretical framework described in
Chapter 4, the same formalization was chosen. What is referred to here as a class corresponds
to an element of the fuzzy set. Since the ground truth was organized this way, the error measure
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only has to determine the di�erence between a binary representation and a binary ground truth.
It is de�ned as:

e =
1

N

N∑
i=1

|Li −m(Ai)|+ |1− Li −m(Āi)| (5.1)

The more fuzzy representation and ground truth match, the smaller the error. N is the number
of all labeled points in the ground truth, Li is a numerical value that represents the a�liation of
the label i to the class under consideration. The value is 1 if the label equals said class or 0 if it
is a label of another class. m(Ai) and m(Āi) represent the certainties associated with the voxel
in which the labeled point is located. The former summarizes the certainty for the class under
consideration, the latter against it. For the reasons explained below, the interval covered by the
error measure is [0, 2].

For a better understanding of the error measure and the associated possibilities, its individual
components are explained here. The explanations are supported by 3D plots of the parameter
space. These are generated by random sampling of the examined parts of the error measure. The
basic idea of the error measure is that the numerical distance between the label and the evidence
associated with the class is calculated. However, instead of using the evidence directly, the derived
certainties are used, since this allows contradictions to be handled better. The error measure is
structured as follows. For each labeled point, the corresponding voxel in the representation is
determined and a distance function between the certainties stored within the voxel and the label
is calculated. Since a voxel stores evidence for and against an information, the distance function
consists of two parts. A numeric value of either 1 or 0 is assigned to the label, depending on
whether it stands for or against the class represented by the fuzzy representation. Adding the
individual errors for each labeled point results in the total error.

5.1.1 Relationship between membership and certainty

As explained in Section 2.7, the certainty is derived from the evidence distribution using Equation
2.18. One may assume that the relationship between both evidence and certainty is linear. How-
ever, this is not the case. Figure 5.2a shows that the relationship is non-linear. The surface plot
can be divided into two areas, with the diagonal representing the dividing line. It represents the
part of the function where there is exactly the same amount of evidence for both classes. If the
greatest possible contradiction is present, i.e. both classes take a value of 1, then the maximum
certainty for class A is 0.5. The area below the diagonal includes all points at which the evidence
for class Ā is greater than that for class A. Accordingly, the certainty for class A grows very
slowly and, as mentioned, is capped at a value of 0.5. Above the diagonal, the evidence for class
A predominates, and the certainty increases rapidly, up to the maximum value of 0.1. The plots
for class A and Ā are mirrored, but otherwise have the same shape (cf. Figure 5.2b).

The non-linear relationship between evidence and certainty can be explained by the residual
class of the fuzzy measure. As a reminder, a fuzzy measure is used to describe the certainty
associated with the elements of a fuzzy set, i.e. the elements of the evidence distribution. The
evidence distribution is de�ned over the universe U , while the fuzzy measure is de�ned over the
power set of said universe. This means that instead of two elements of interest, there are three
elements through which the evidence must be distributed. Any certainty mass that is not allocated
to either class A or Ā is instead allocated to the third element, which re�ects the state of ignorance.
As illustrated in Figure 5.2c, the mass allocation for ignorance is highest when there is no evidence
at all and lowest when there is full evidence for at least one of the two classes.
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(a) (b) (c)

Figure 5.2: Relationship between membership and certainty. a) Relationship between the membership to
both classes and the certainty for class A, b) the same for class Ā, c) the certainty of the ignorance class.

5.1.2 Discussion of the error terms

Based on this information, the error measure and its individual elements are explained in more
detail. The central element of the function is the distance between the label and the certainty
of a class. Since the label either represents a certain class or its counter-class, it can only take
the value 0 or 1. Figure 5.3 therefore illustrates the di�erent terms of the error measure for both
variants. The error terms for both classes A and Ā shows properties comparable to those described
in the previous section, since certainty plays a dominant role in the error term. Compare Figures
5.3a, 5.3b and 5.3c, 5.3d for an illustration. The term is designed in a way that the error is at its
maximum when the deviation between label and evidence is at its maximum.

5.1.3 Discussion of the total error

The total error is the sum of the two error terms for class A and Ā. Figures 5.3e and 5.3f show
the total error for both label values of 0 and 1. As before, the diagram shows two di�erent regions
that need to be discussed separately. The lower part represents the case when label and class A
are equal to a certain degree and class Ā supports this by having a value that is opposite to class
A. If both classes are in such a way, the error is zero. At the transition between the two areas,
the error is 1, because here either class A supports the label and class Ā is not properly opposed
to class A or class A contradicts the label and class Ā is properly opposed to class A. Either way,
either class A or class Ā is wrong, while the other is right. The error measure reaches its maximum
in the remaining area. Here, both classes A and Ā contradict the label to a certain degree. At the
most extreme point, the error measure reaches its maximum value of 2.

5.2 Fuzzy confusion matrix

The error measure is intended for the comparison between crisp labels and the fuzzy representation,
as is required by the �rst research question. When comparing the results of the change detection
with the ground truth, however, discretization errors should be avoided, especially in the case of
coarser resolution levels. These errors occur when the resolution of the ground truth is higher
than the resolution of the fuzzy representation to evaluate. For this reason, a fuzzy form of the
classical confusion matrix was developed. For this purpose, the ground truth itself is converted
into a fuzzy representation. The comparison then takes place as explained below.

The basic idea is that the individual cases true positive, true negative, false positive, and false

negative are assigned proportionally for each voxel. This is best illustrated by Figure 5.4. True
positives and true negatives correspond to the overlap of the estimate P with the ground truth
G. For the former, it is the overlap between AP and AG, for the latter, it is the overlap between
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Components of the error measure. The left column shows label values for 0, the right column
label values for 1. a-b) Deviation between label and certainty for class A, c-d) the same for class Ā, e-f)
the overall error for both classes.

ĀP and ĀG. A false positive occurs whenever the AP of the representation overestimates the AG
of the ground truth. A false negative occurs whenever the ĀP of the representation overestimates
the ĀG of the ground truth. The following formulas re�ect this:
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(a) (b)

Figure 5.4: Stacked bar charts illustrating the concept of the fuzzy confusion matrix. (a) Example of a false
positive caused by an overestimation of A. (b) Example of a false negative caused by an underestimation of
A. True positives and true negatives correspond to the minimum overlap of the estimates with the ground
truth.

TP = min
(
m(AP ),m(AG)

)
FP = max

(
0,m(ĀG)− (1−m(AP )

)
FN = max

(
0,m(AG)− (1−m(ĀP )

)
TN = min

(
m(ĀP ),m(ĀG)

) (5.2)

As already mentioned, AP and ĀP denote the evidences of the fuzzy representation, AG and
ĀG those of the fuzzi�ed ground truth. For each voxel, all four cases are computed and then
normalized so that their sum equals one. When comparing two distributions of evidence that
represent complete ignorance, this restriction does not apply since all four variables are zero.
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6 Experiments

In this chapter, the experiment designs as well as the experiments are presented. Additionally, the
data set acquired for the purpose of evaluation is presented, including the measurement system
used, pre-processing steps such as intrinsic and extrinsic sensor calibration, intra-epoch and inter-
epoch registration, and �ne registration. Furthermore, ground truths for change detection and
semantic classes built on the data set are presented.

6.1 Experiment design

In order to determine the performance of the methods presented in Chapters 3 and 4, a series
of experiments was conducted. Among other things, the results of the experiments also allow
conclusions to be drawn about the error measures presented in Chapter 5. The experiments can
be divided into two major groups.

The �rst group of experiments deals with the veri�cation of the fuzzy spatial representation and
can be divided into two subgroups. The �rst subgroup deals with determining open parameters,
which includes the choice of the membership function. The second subgroup deals with the
determination of the properties of the fuzzy representation before and after defuzzi�cation. This
is performed by importing a known structure in form of an annotated point cloud into a fuzzy
representation and then comparing it to said point cloud. The ground truth for the semantic
object classes from the �rst epoch of the TUM-MLS data set is used for that point cloud (cf.
Section 6.3.4). The comparison between fuzzy representation and crisp ground truth is performed
using the error measure presented in Section 5.1.

The second group of experiments tests the ability of the fuzzy spatial reasoning to detect
changes on a real-world data set that includes an urban street space. For change detection, the
process shown in Figure 4.1 is performed. The data set is organized as explained in Section 3.1
and a fuzzy occupancy grid is created for each of the two epochs by the means described in Section
3.3.1. Open parameters are determined, which includes the choice of membership function for fuzzy
occupancy grids, its computation mode, the max-pooling neighborhood and the defuzzi�cation
method. Subsequently, the properties of the change detection process are determined. Both
epochs of the TUM-MLS data set are used for testing. The results are evaluated using the ground
truth presented in Section 6.3.4. The comparison between the defuzzi�ed change detection results
and the crisp ground truth is done using a classical confusion matrix. The comparison between
the fuzzy results and the fuzzi�ed ground truth is done using the fuzzy confusion matrix presented
in Section 5.2.

The experiments and their evaluation also allow conclusions to be drawn about the properties of
the metrics used. For this reason, no additional experiments are necessary. Both the experiments
and the methodology under investigation were implemented using C++. The system that the
experiments were performed on had an Intel i9 CPU with 36 cores a 2.60 GHz and 64 GB of
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RAM. The implementation of some components was based on the point cloud library PCL [Rusu
& Cousins, 2011].

6.2 Summary of experiments

Two groups of experiments were developed. The �rst group deals with the veri�cation of the fuzzy
representation. The second group investigates the suitability of fuzzy spatial reasoning for change
detection in urban street spaces.

6.2.1 Assessment of the spatial representation

The purpose of the series of experiments described in this section is to determine the properties
of the fuzzy representation presented in Chapter 3 and to verify its ability to reliably reproduce
information. First, a counting of all voxels in both epochs was performed, by means of which the
average memory consumption for the investigated urban environment is estimated. The memory
is calculated by multiplying the number of voxels with the bits required per voxel, where the result
is then averaged over all tiles. Per voxel, the required memory equals 73 bit. That is one byte to
indicate the presence of child nodes, a single bit for the presence of a payload and two times four
byte to encode the evidences in form of two �oating-point numbers.

Subsequently, the ground truth of the semantic object classes from the �rst epoch of the
TUM-MLS data set was imported into a fuzzy representation (cf. Section 6.3.4). A separate
representation for each object class was generated. The error measure explained in Section 5.1
was calculated for each resolution level of each representation. The average error was calculated
by averaging the error measure for each resolution level over all object classes. This was then sub-
sequently used to compare the linear and logistic membership function. The steepness parameter
k of the logistic function was set to 1.0, all other free parameters were estimated from the data
set as explained in Section 3.2.6. In addition, histograms over the number of samples as well as
the evidence after application of the linear and logistic membership function were generated. The
data for this was averaged over all voxels.

Based on the error measures of the object classes, it was then tested how well the corresponding
information can be reproduced in a fuzzy way. In addition, following the same procedure as above,
histograms were generated over the evidence for A and Ā and the error measures. Only voxels that
contained one of the ground truth samples were considered. The representations generated from
the object classes were then defuzzi�ed using pro/contra �ltering (cf. Section 3.2.7) in order to test
how well the information is represented when defuzzi�cation is involved. A confusion matrix was
used for evaluation, as well as the derived measures precision, recall, and F1-score. In addition,
the in�uence of discretization errors was investigated by examining the false positives and false

negatives. This was also done based on the confusion matrix.

6.2.2 Assessment of fuzzy reasoning and change detection

The experiments described in this section are designed to validate the spatial fuzzy reasoning and
test its suitability for change detection in urban urban street spaces. The process shown in Figure
4.1 is executed to generate the required fuzzy representations. Therefore, the data set is organized
as explained in Section 3.1 and a fuzzy occupancy grid is created for each of the two epochs by
the means described in Section 3.3.1. The steepness parameter k of the occupancy membership
function was set to 1.0. Values of 5.0 and 1.0 were selected for the steepness parameters kocc and
kmin of the logistic membership function. The steepness parameters k of the logistic function was
set to 1.0. All other free parameters were estimated from the data set as explained in Section 3.2.6.
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Based on this, a max-pooled representation is generated (cf. Section 3.3.3). The determination
of con�rmed, changed, and unseen elements is performed as described in Section 4.2, 4.3 and 4.4
based on the max-pooled occupancy grids.

The experiments consist of a two-stage process. In the �rst stage, the still open parameters
are clari�ed. Multiple occupancy grids were generated to determine the best �tting membership
function and its computation mode. A tile-based computation mode was used for the former. The
results are interpreted visually. Based on this, in the second stage multiple instances of the change
detection process are executed to determine the size of the max-pooling neighborhood and the
defuzzi�cation method. For this, di�erent max-pooling neighborhoods of 0-2 voxels are tested once
with, once without pro/contra �ltering. These are then evaluated using fuzzy confusion matrices
as described in Section 5.2. The Alte Pinakothek subset of the two TUM-MLS data sets is used
for all tests mentioned above. This was done because the �ne structures of the sca�olding are very
sensitive to any problems that may arise and the subset also contains many of the elements that are
otherwise found in a street space. The ground truth described in Section 6.3.4 is imported into a
fuzzy representation and compared to the change detection results using the fuzzy confusion matrix

proposed in Section 5.2. The metrics precision, recall and F1-score are used for the comparison.
The F1-score is preferred over the accuracy, since the former is more robust compared to said
asymmetric distribution than the latter, because the comparatively large number of true negatives
is not taken into account. For the same reason, precision/recall curves are to be preferred over
receiver operating characteristic (ROC) plots, see Saito & Rehmsmeier [2015].

In the second stage, the properties of the change detection process are determined. This
is carried out with the parameters that were determined in stage one. The change detection
process is applied to the full data set and the result is compared to the fuzzi�ed ground truth
using a fuzzy confusion matrix. Since no meaningful ground truth could be created for changes
in vegetation, it was removed from both the representations and the ground truth using a logical
and-not operation. Since most of the changes are in the Alte Pinakothek subset, this is examined
separately. Again, the vegetation was removed from representations and ground truth. For a
more in-depth examination, the change detection results obtained on the subset are subdivided
by object classes using fuzzy spatial reasoning and examined in more detail. For this, an and

operation is performed with the ground truth of the semantic object classes.

6.3 Data sets and ground truth

For a better understanding of the data sets created for the evaluation, the mobile mapping system
used for the acquisition is presented. Furthermore, it is explained how the quality of the recorded
data was ensured. This includes measures for sensor calibration as well as for the registration of
LiDAR data. In conclusion, the data sets recorded for the evaluation and the ground truth for
change detection created from them are presented.

6.3.1 Measuring system

The data sets used for testing, calibration and evaluation have been recorded using the measure-
ment vehicle MODISSA of the Fraunhofer Institute of Optronics, System Technologies and Image

Exploitation (IOSB). The designation MODISSA is an acronym and stands for Mobile Distributed

Situation Awareness. The vehicle is used for hardware evaluation as well as research and software
development in the contexts of automotive safety and security applications. An illustration of the
vehicle and the build-in sensor and navigation system can be seen in Figure 6.1. The vehicle is also
used to demonstrate the developed technologies in-house and how they interact. In the further
course, an overview of the system architecture and the installed sensors is given. A comprehen-
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sive description of the overall system, the sensors as well as the hardware and software system
architecture can be found in Borgmann et al. [2021].

Figure 6.1: The mobile mapping system MODISSA.

System architecture

A transporter from a well-known German car manufacturer serves as the platform for the mobile
mapping system. The vehicle has a long wheelbase and an all-wheel drive. Originally equipped
with three rows of seats, the middle one was removed to make room for data processing equipment.
The vehicle can accommodate up to �ve people, including a driver and a navigator in the front
row as well as technical personnel in the back row. A server rack and monitor are mounted in
the passenger area of the vehicle, replacing the middle row of seats. The rack is equipped with
several computers and other electronic components used for sensor interaction, control tasks, data
recording and on-board data processing. A 10GBit high-bandwidth Ethernet network connects
sensors, computers and other equipment. A WiFi access point allows to integrate mobile devices
to view sensor data or to be able to control the measuring system from outside the vehicle. From a
software point of view, a large part of the measuring system is based on the robot operating system
ROS*. The power supply of the measuring system is completely independent of the electrical
system of the vehicle. Behind the rear bench is a box with four large lithium-ion batteries,
connected in a way that they provide 24V/600Ah. They are housed in a box in the trunk of the
vehicle. An inverter provides up to 2000W at 230V AC for more than �ve hours before recharging
is required.

Sensor systems

The sensors are mounted on specially designed platforms on the roof of the vehicle. Only the
LiDAR sensors are relevant for the present work. However, in order to give a comprehensive
overview of the vehicle, the other sensors are also brie�y discussed.

*http://wiki.ros.org
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At the time the �rst TUM-MLS data set was recorded in April 2016, two Velodyne HDL-64E

LiDAR sensors were installed on the roof of the vehicle. Both sensors were tilted by a 25 ° angle
to the horizontal by aluminum wedges installed under the base plate of each sensor. Also, each
sensor was rotated outwards at a 45 ° angle. This unique sensor setup allowed to record both the
area in the near vicinity of the vehicle as well as building facades and also parts of the roofs.
The data collected in this way can be used for use cases such as pedestrian detection, mobile
mapping and change detection. The �eld of view of both LiDAR sensors can be seen in Figure
6.2. Each LiDAR sensor is composed of 64 laser range�nders with a maximum detection range
of 120m. In the present setup, it rotates with a frequency of 10Hz and acquires about 130,000
range measurements per second. Although the data is acquired continuously, the stream of 3D
measurements is split for easier processing to a sequence of scans of 1/10 second duration. This
corresponds to a single 360 ° rotation of the scanner head.

Figure 6.2: The �eld of view of the LiDAR sensors. Two Velodyne HDL-64E LiDAR sensors are installed
on the roof of the measurement vehicle MODISSA.

In addition to LiDAR sensors, the measuring vehicle also has an array of digital cameras.
These can for example be used for person detection or for texturing the point clouds generated
by the LiDAR sensors. There are eight cameras in total mounted to the roof structure of the
vehicle. Two cameras are attached to each corner, pointing away from each other at roughly a
right angle. This setup is used to avoid obscurations by the vehicle roof and other components
of the measuring system. All eight cameras create a panoramic setup that covers the entire area
around the vehicle. The main advantage over an integrated panoramic camera is that there is no
obstruction by the vehicle. A disadvantage of such a system, however, is that the cameras do not
have a common projection center and therefore stitching the images into a 360 ° panorama is more
complicated.

On top of the vehicle, a gyro-stabilized pan-tilt-unit with additional directional sensors is
installed. These are a thermal infrared camera, a gray scale camera for visible light and a laser
range�nder. With the thermal infrared camera, for example, the heat radiation of building facades
can be examined. In this case, the images from the gray-scale camera can be used for comparison
of the infrared images with the visible parts of the facade. The laser range�nder is used in the
context of visual SLAM research.
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In order to enable sensor fusion, i.e. the combination of the measurements from several sensors
with one another, the timestamp of each recording must be known with high accuracy. For this
reason, a system clock is available to synchronize all sensor systems. The system time is made
available by the navigation system, which in turn gets it from the GNS system. The position
computer of the navigation system provides four event inputs for timestamp signal pulses and four
serial interfaces that can transmit National Marine Electronics Association (NMEA) messages and
associated pulses. Both are used for di�erent sensors. The LiDAR sensors have an internal clock
that is set by receiving an NMEA message and a pulse-per-second (PPS) signal. Interface logic is
required in order to mediate between the messages sent by the navigation system and the sensors.
This logic is implemented in a small Field-Programmable Gate Array (FPGA). All cameras are
triggered by an external signal. The signals required for this are generated by an additional FPGA.
The synchronization system described here ensures that the timestamp of every measurement from
every sensor is available with a high degree of accuracy. This is essential to combine sensor data
with one another, but also to compute a consistent point cloud from the continuous LiDAR and
INS measurements.

Navigation system and post-processing

The measuring vehicle is equipped with an inertial navigation system (INS) so that it can deter-
mine its 6D pose with a high temporal and geometrical precision. As mentioned above, this is
required to generate consistent point clouds even if the vehicle is moving. The INS used in the
measuring system is an Applanix POS LV V5 520. It includes the following components. An
inertial measurement unit (IMU) is utilized to measure the vehicles speci�c forces and angular
rates by a combination of accelerometers and gyroscopes. Two GNSS antennas allow to determine
the position using global positioning systems such as GPS, Galileo and GLONASS. The second
GNSS-Antenna is required to determine the heading of the vehicle using a technology called GNSS
Azimuth Measurement Subsystem (GAMS). A distance measuring indicator installed at one of the
rear wheels is used to determine the distance covered by the vehicle. A build-in position com-
puter combines all the measurements of the aforementioned navigation system components into a
consistent pose measurement.

The georeferencing of all sensor measurements is based on the navigational data provided by the
Applanix navigation system. Various interferences, such as GNSS signal re�ections or atmospheric
refractions, can occur during a measurement. Any orbit correction data of the GNSS satellites are
also only known afterwards. Therefore the navigation data requires post-processing to increase the
overall accuracy of the position measurements. This is done using the POSPac Mobile Mapping

Suite. The correction is carried out by augmenting the recorded navigation data with correction
data of the German SAPOS network. The sensor measurements are then georeferenced based
on the revised navigation data. Based on the timestamps embedded in the LiDAR data and the
corrected navigation data, it is possible to determine the position for each distance measurement.
Since the navigation data is only delivered with a frequency of 200Hz, linear interpolation is
applied to determine the individual position of each measurement.

6.3.2 Data quality assurance measures

This section describes the measures used to ensure the quality of the data. The methods used
for intrinsic and extrinsic calibration of the LiDAR sensors are described. Furthermore, it is
described how the intra-epoch registration, inter-epoch registration as well as the �ne registration
of the recorded data sets was performed.
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Intrinsic LiDAR sensor calibration

The intrinsic parameters are sensor-speci�c parameters such as the orientation of the laser range
�nders. Although the Velodyne HDL-64E are pre-calibrated at the manufacturer, the accuracy
has been further improved by applying the calibration technique proposed by Gordon & Meidow
[2013]. For this purpose, a point cloud generated from the measurements of the Velydyne HDL-64E
was compared with the more precise measurement of a terrestrial laser scanner. The calibration
parameters were �nally derived from both data sets, resulting in a nearly halving of the planar
surface misclosure, which has been reduced from 3.2 cm to 1.7 cm.

Extrinsic LiDAR sensor calibration

Extrinsic sensor parameters describe the rotation and translation between the sensor coordinate
frame and the vehicle frame. The e�ect of inadequately precise extrinsic parameters leads to the
resulting point cloud being distorted. This leads to problems that cannot be solved with the
subsequent co-registration of the individual scans and therefore in�uences the change detection
negatively. As part of this work, a contribution was made to the research of a new extrinsic
calibration method for LiDAR sensors by participating in the research of Diehm et al. [2020].

Determining the transformation between the sensor and the vehicle frame is challenging be-
cause the latter is a coordinate system whose point of origin is not de�ned by a physical marker
or object, and therefore the distance cannot be measured. The simplest solution is to derive the
transformation from the vehicle's construction plans. Then, with su�ciently low manufacturing
tolerances, any form of extrinsic calibration is completely unnecessary. However, the data in ques-
tion is usually not available. Unfortunately, this also means that no ground truth is available to
verify the functionality of a calibration method.

Although sensors can be calibrated extrinsically with one another relatively easily through
data registration, sooner or later at least one sensor must be calibrated extrinsically to the vehicle
frame. However, deriving this transformation in a data-driven way is not straightforward. One
way of doing this is to set both the sensor and the vehicle in motion, determine the trajectory
from both navigation system and sensor and then derive the extrinsic calibration parameters by
comparing both trajectories. This would be possible using a �ash LiDAR sensor, since it executes
all measurements at the same time. In order to get consistent images of the environment from a
rotating LiDAR sensor, however, the same extrinsic calibration is required to generate a consistent
set of 3D scans.

The procedure used here to calibrate the vehicle is, from a logical point of view, the next
best option to solve the problem at hand. The basic idea is to observe the average scatter of the
measurement points along the normal of locally planar surfaces. This should tend towards zero if
the extrinsic calibration is correct, even if the noise of the measurements or the intrinsic sensor
parameters prevent the scatter from being completely zero. The higher the misalignment of the
sensor, the greater the scatter along the normal to a planar surface. The solution is to roughly
estimate the approximate values and then use a data-driven process to re�ne them, by minimizing
an error measure based on the mentioned average scatter along planar surfaces. This lays down
some requirements on the data set used for calibration. On the one hand, the measured terrain
must contain smooth surfaces from which the scatter can be determined. On the other hand,
appropriate driving maneuvers must have been carried out so that each of the parameters to be
determined can also be reliably derived.

A total of six parameters are to be determined, three of which are translational (lever-arm)
and three are rotational (boresight). The e�ect of incorrect translational parameters is far less
serious than that of the rotational parameters. Therefore, an incorrect estimate of the translation
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only leads to relatively small errors. In the case of rotation, however, this looks di�erent, since a
misalignment of 0.6 ° results in a displacement of 1.0m for points at a distance of 100m. Since
the translational aspect of the extrinsic parameters can easily be determined in another way, this
is by measuring with a tape measure, and because an error does not play a major role, the main
focus was placed on the boresight calibration, i.e. the estimation of the rotational component.

(a) (b)

(c) (d)

Figure 6.3: Parameter space resulting from the LiDAR calibration. a) Rotational parameters for an urban
area data set and curvy driving style, b) rotational parameters for a rural area data set, c-d) translational
parameters for the aforementioned urban data set for the left and right sensor. All plots show the 0.05
quantile of the parameter space.

To solve this problem, an error measure is �rst set up with which the quality of the point
cloud generated from the measurements can be assessed. As mentioned, this assumes that the
scene is characterized by smooth surfaces and that these have also been measured to an adequate
extent. The occurrence of inhomogeneous structures such as vegetation leads to an almost constant
background noise, since the detection of these structures does not produce smooth surfaces under
any assumed sensor position. The scatter of the points is determined by means of the principal
component analysis (PCA). For this purpose, the N nearest neighbors for each measuring point
are determined using a k-d tree. A �xed number of neighbors was chosen instead of a radius
so that the method can better adapt to variable local point densities. Using this neighborhood,
the centroid and covariance matrix are computed and the PCA is carried out. Each eigenvalue,
divided by the number of neighbors, can thus be viewed as a normalized measure for the scatter
of the measuring points in the direction of the respective eigenvector. The smallest normalized
eigenvalue belongs to the eigenvector, which can also be viewed as the normal of the planar surface.
The error measure is now formed by determining the mean value of all the smallest eigenvalues,
the latter being normalized with respect to the number of points in each local point neighborhood.
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The optimal calibration parameters are determined by minimizing the error measure. This is
done through an exhaustive search. Assuming a grid for sampling the rotational parameters with
values between -3 ° and +3 ° in steps of 0.1 ° and another for the translational parameters with
values between -1m and +1m in steps of 5 cm, then this would result in more than 1010 com-
binations. This is another reason in order to determine rotational and translational parameters
independently of one another, as this reduces the number of samples to be examined to approx-
imately 230,000 elements. An alternative is the recurrent dimensional search, in which only one
parameter is varied at a time while the others are kept �xed. The recurrent dimensional search can
be supplemented with a re�ned step size, i.e. by reducing the sampling distance of the parameter
space in each iteration. However, this can mean that no global optimum is found.

(a) (b)

Figure 6.4: Example of the in�uence of the rotation LiDAR calibration parameters. a) Point cloud before
applying said parameters, b) the same point cloud, after application of the parameters.

The procedure was evaluated, a detailed summary of the results can be found in Diehm et al.
[2020]. Five di�erent scenes were examined, which contain urban and rural areas, as well as �elds
and forests. Each scene also contained di�erent driving maneuvers. The evaluation was carried
out by intentionally applying manipulated extrinsic parameters on the measurement data, which
then had to be compensated by the method. In the absence of a ground truth, this is the next
best approach.

Figures 6.3a and 6.3b show the 0.05 percentile of the parameter set evaluated by the error
measure for two scenes. The �rst one shows the result for an urban environment, the second one for
a rural one. The black cross corresponds to the rotational parameters before intentionally adding
the error and can therefore be viewed as a ground truth. The blue cross indicates the parameter set
selected by the procedure. Examination of the plots shows that a clear global minimum emerges
when the environment and driving maneuvers are appropriate. It is also demonstrated that a curvy
driving style in an urban environment creates the better conditions for the calibration than other
environments. From the small di�erence between the ground truth and the selected parameter set,
it has been concluded that the method is successfully able to determine the rotational parameters
with su�cient accuracy. The shape of the parameter space suggests that the parameter set is
on the only global minimum. This can easily be veri�ed by looking at the point cloud generated
with the determined parameter set (cf. Figure 6.4). However, the results given in the publication
also suggest that even under the best of conditions, the �nal result still varies on the order of
0.1 °, which is the resolution of the grid search. This corresponds to a point positioning accuracy
of 17 cm at a distance of 100m. Furthermore, it can be seen from Figure 6.3c and Figure 6.3d
that the translational parameters can only be insu�ciently derived, since the necessary driving
maneuvers were not carried out. This is driving over hills or bumps in order to gain movement
along the z-axis.

Intra-epoch registration

Due to various sources of error in connection with the GNSS and IMU components of the navigation
system, the trajectory of a mobile mapping system cannot be determined with absolute accuracy.
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This is particularly evident when the vehicle travels long distances that start and end at the same
location. Both ends of the trajectory are then usually shifted several meters to one another, and
that along all three translational axes. As described above, the quality of the trajectory can be
improved by INS data post-processing. However, there still remain disruptive factors, such as
GNSS signal interruptions or re�ections caused by urban canyons. These and other sources of
error mean that the measurement vehicle cannot be located absolutely in retrospect on the basis
of its navigation data alone. How this a�ects the quality of the measurement data can be seen
in Figure 6.5a. It shows the measurement data after the trajectory generated by the navigation
system has been post-processed. It can be clearly seen that despite the relatively short driving
distance between the scans, driving past the building three times already led to clearly visible
deviations in the accumulated point cloud.

(a)

(b)

Figure 6.5: Examples of intra-epoch registration. a) Point cloud after INS data post-processing, b) the
same point cloud after SLAM-based registration. Di�erent pass-by recordings of the same area are shown
in red, green and blue.

If absolute position accuracy cannot be achieved, the next best solution is to modify the
trajectory so that the measurements are inherently consistent. This means that they �t together
without contradiction, even if the same location was recorded at di�erent points in time. The
event that occurs when the measuring vehicle crosses its previous path or comes within visual
range is also known as a loop closure. In order to close a loop, a correction vector needs to be
determined. Said vector superimposes the measurements associated with both points in such a
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way that they result in a consistent point cloud. It also indicates how the trajectory needs to be
shifted and rotated since the last pass in order for the measurements to align.

Figure 6.6: Example graph as used in graph based SLAM. Positions measured by the navigation system
are shown as blue dots, odometry constraints and loop closures as green or red lines.

Since many loop closures can occur during a measurement run, the correction vectors must be
distributed over the entire trajectory. For this purpose, a process referred to as graph-based SLAM
was utilized [Grisetti et al., 2010]. A pose graph is created, in which the nodes correspond to the
measured vehicle poses, i.e. the translation and rotation of the vehicle at the respective point in
time. The nodes are connected in chronological order via so-called odometry constraints. In the
present case, these are taken from the post-processed trajectory. Whenever a loop is found, an
additional loop closure constraint is inserted between the current node and the matched node. A
part of the pose graph for the scene shown in Figure 6.5 can be found in Figure 6.6. The trajectory
is optimized by interpreting the graph as an optimization problem, which is then solved using a
standard optimization method such as Levenberg-Marquardt. The �rst vehicle pose is �xed,
otherwise the optimization problem cannot be solved. In addition, the loop closure constraints
are weighted higher than the odometry constraints, because they are considered more accurate.
In a �nal step, the correction vectors for rotation and translation are derived from the corrected
graph and added to the individual measurements.

To determine loop closures, references to all poses are stored in a two-dimensional grid. The
vehicle poses are processed in sequence. Before inserting a pose into a cell, a neighborhood
search on said cell and its neighbors is performed. If a reference is found, the corresponding
measurements are compared and the correction vector between the two scans is determined using
an automatic registration algorithm such as ICP. Whether or not the ICP procedure was successful,
i.e. a reasonable match between the two measurements was found, is determined by applying a
threshold to the ICP error measure. If a match has been found, a new loop closure constraint is
added to the pose graph. The �nal result can be seen in Figure 6.5b. As can be seen, most of the
registration errors have been successfully corrected.
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Inter-epoch registration

Inter-epoch registration is required whenever an epoch of new measurements is to be registered to
an existing data set. As already described in the last section, the new measurements are subject
to the same sources of error, which is why a location with absolute accuracy is not feasible. As
before, the data must therefore be registered in such a way that it is consistent. Consistent here
means that the measurements from the new measurement run agree both with themselves and
with the previously recorded data set of the same area.

The procedure is similar to that of the intra-epoch registration. Again, a grid for storing
the references to the vehicle poses is utilized. However, before the vehicle poses of the new
measurement run are added to the grid, the ones from the trajectory of the �rst measurement
run are inserted. From here on, the procedure is analogous to that in the last section, with the
exception that loop closures are now not only possible within the current measurement run, but
also with the �rst one. From a logical point of view, the pose graph constructed in this way is
therefore divided into two parts. First, as described, a reference pose graph is constructed. It
contains only nodes, which are set to be �xed in the context of the optimization. There are no
odometry or loop closure constraints. Then the pose graph of the measurement ride to be registered
is constructed by adding the vehicle poses step by step, this time with odometry contraints. Loop
closure constraints are possible between nodes of the second pose graph, but at the same time also
with nodes of the reference graph. As in the previous section, an optimization problem is then
created from this combined pose graph and solved using standard methods.

(a) (b)

Figure 6.7: E�ect of chunk-based �ne-registration. a) Point cloud after SLAM-based inter-epoch registra-
tion, b) the same point cloud after chunk-based detailed registration.

The quality of the results is comparable to that of the inter-epoch registration. However, as
Figure 6.7a is intended to show, despite the subsequent registration, some smaller registration
errors may still remain. Although the ends of the trajectory subsection between two loop closures
are properly registered, this does not automatically mean that the sections in between also are.
The longer said subsection, the higher the probability of a deviation, since a navigation system can
only cover a route for a certain period of time without any noteworthy tracking errors. However,
since the registration of such a subsection is already pretty good, a simple technique for �ne-
registration can be used to improve the results. Said technique is described in the next section.

Fine-registration

An accumulated point cloud based on the �rst measurement run is used as a reference for the
�ne-registration. The basic idea is to register every scan of the new measurement run against the
reference. A scan is a full rotation of the sensor head, i.e. a 360 ◦ point cloud. This procedure is
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not a substitute for inter-epoch registration, as there can be large shifts between the data sets or
changes in the environment that can only be dealt with by correcting the trajectory. After inter-
epoch registration, however, the shifts are usually small enough that registration techniques such
as ICP deliver satisfactory results. Combining multiple scans into a so-called chunk enables the
registration of scans that are poor in detail. It also signi�cantly reduces the likelihood of incorrect
registration. In the procedure implemented in this work, 5 scans are combined into a chunk,
whereby the scans are spaced 10 scans apart. This distance corresponds to exactly one second. A
chunk corresponds to 5 seconds of driving for which a stable trajectory can be assumed. All scans
of the chunk are then combined into a single point cloud and registered to the aforementioned
reference point cloud using ICP. The reference point cloud is downsampled to a resolution of 10 cm,
which increases the runtime drastically. The lack of detail is compensated for by the spatial extent
of each chunk. Thus, the registration is essentially done using large or distinct structures such as
the ground plane, walls, vehicles, or tree trunks. The bene�t of the chunk-based �ne-registration
can be seen in the upper right corner of Figure 6.7b.

6.3.3 Data sets

This section presents the data sets that were used for extrinsic sensor calibration as well as for
evaluation of the methods presented here.

Ettlingen calibration data set

The data set was recorded in May 2019 using the mobile mapping system MODISSA and includes
a measurement run over the compound of the Fraunhofer IOSB in Ettlingen. Only a few minutes
of data were recorded. Several short sections were selected and used to determine the extrinsic
calibration parameters between the coordinate frame of the LiDAR sensors and the vehicle coor-
dinate frame. The quality of the urban features contained in the data set only plays a subordinate
role. Instead, the focus is on the geometry as this is used by the calibration process. The data set
is particularly suitable for calibration, since the majority of the surfaces recorded by the sensor
vehicle are planes. These planes are at di�erent distances from the vehicle, so it is likely that there
will always be planes where the calibration errors are su�ciently evident.

It was ensured that the vehicle was moved along all rotation and translation axes during the
recording of the data set. This was achieved by placing cable bridges on the ground, so that the
vehicle was raised by a few centimeters and rotated by a few degrees along the roll and pitch axis
when driving over it. A rotation around the yaw axis was achieved by driving serpentine lines.
The trajectory can be seen in Figure 6.8. The data set is short enough that the trajectory supplied
by the navigation system can be viewed as ground truth of the vehicle location over time. Dead
reckoning, based on the IMU, works reliably for short periods of just a few seconds, so GNSS
localization errors are irrelevant. The scans from both LiDAR sensors were used to perform the
extrinsic sensor calibration described in Section 6.3.1.

TUM-MLS data sets

The TUM-MLS data set was recorded as part of a cooperation between the Chair for Photogram-
metry and Remote Sensing at the TU Munich and the Fraunhofer Institute of Optronics, System
Technologies and Image Exploitation in Ettlingen. The data set consists of a total of two mea-
surement runs, the trajectories of which can be found in Figure 6.9. Two recordings were made at
a large time interval in order to allow the environment to change in a way that makes the search
for non-trivial changes possible. The �rst epoch was recorded in April 2016 and includes the TUM
city campus as well as the adjoining street areas. The record of the second epoch took place in
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Figure 6.8: Overview of the trajectory used for the extrinsic sensor calibration. The source for background
image and 3D model is Google Earth.

December 2018. Both measurement runs were made with the MODISSA measuring vehicle as
part of this work.

(a) (b)

Figure 6.9: Overview of the trajectories for the TUM-MLS-2016 and TUM-MLS-2018 data set. a) Trajec-
tory for the �rst data set recorded in April 2016, b) trajectory for the second data set recorded in December
2018. The source for background image and 3D model is Google Earth.

A variety of sensors was used during both measurement runs. As described in Section 6.3.1, this
includes two LiDAR sensors for three-dimensional recording of the environment, several cameras
working in the visible spectrum and an uncooled microbolometer for recording longwave infrared
(LWIR). Georeferencing was supported by SAPOS and a Leica reference station, which was in-
stalled on the roof of one of the TUM buildings for the duration of each measurement drive. The
3D recordings of both data sets are available in form of georeferenced single 360 ◦ scans. Said scans
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and the images of the bolometer were made available to the public under a Creative Commons
License�.

Both data sets cover many scenarios and occurrences that can be found in an urban environ-
ment. Large numbers of people were recorded on the campus, some of whom were seated, standing
or walking. Various tra�c situations such as cars turning at intersections and road crossings were
recorded in the street space. Cars, vans, pedestrians and two-wheelers were involved. Buildings
with complete facades, vegetation at di�erent times of the year and various street furniture were
also recorded. An overview of the data set can be found in Figure 6.10.

A subset of the data sets was selected for the purpose of parameter estimation. The area
around the Alte Pinakothek was chosen for this purpose. This section contains the multitude of
all objects that can be found in an urban street space. Furthermore, many changes are present
here, as well as small �ne structures that can be used to investigate quantization errors. The area
of the test data set in marked in Figure 6.10.

Figure 6.10: Accumulated 3D point cloud of the �rst epoch of the TUM-MLS data set. The point cloud is
shown in birds-eye view. The area of the subset used for parameter estimation is indicated by a red box.

The approach of Underwood et al. [2013] was used to remove the moving objects from both
epochs. Said approach is designed to compare two point clouds with each other. However, the
measurements of the mobile mapping system consist of a sequence of individual 360 ◦ scans, where
one scan represents a geolocated point cloud with about 100,000 individual measurements. Un-

�The TUM-MLS 2016 and TUM-MLS 2018 data sets can be downloaded at http://s.fhg.de/mls1
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derwood's process has been adapted to e�ciently compare the above mentioned individual 360 ◦

scans. It was ensured that the scans depict the same location as far as possible, but that the time
interval between them is as large as possible. This was solved by utilizing a two-dimensional grid
in which each scan is stored based on its sensor position.

First, all scans were distributed on said grid. Then all scans are processed in sequence, the
corresponding grid cells and their neighbors are determined, and another scan is selected that is
as far in the future or past as possible. Both scans are then compared and the moving objects,
i.e. the changes, are determined. A fuzzy representation is then created from the information
about the locations of all moving objects. This can then be subtracted from the occupancy grid
using an and not operation. This approach has the advantage that said representation can be
swapped against another one generated from a ground truth, if additional sources of error are to
be excluded during the evaluation.

6.3.4 Ground truth

This section presents the ground truth that was created for the quantitative evaluation of the
change detection method presented in this work. Furthermore, the ground truth of semantic
object classes, also used in the evaluation, is discussed.

Ground truth for change detection

In order to be able to quantitatively evaluate the results of the change detection methods pre-
sented in this work, a ground truth is required. The ground truth describes the elements of the
environment that changed between epochs. Since there is no ground truth for the real-world data
available, there is no choice but to create it manually. Here, however, it must be considered that
it can only be an approximation to a real ground truth that is at most as good as the person that
makes the annotation. Especially when free space information plays a major role, there is a poten-
tial for error, because its clear visualization is not easily possible. A subset of the TUM-MLS data
set containing the Arcisstrasse was selected and manually annotated. Encoding changes requires
two point clouds for each pair of epochs, one to encode the changes between epoch A and B and
vice versa. Each point has one of the following labels:

q unchanged

q moving object

q appeared in epoch B

q disappeared from epoch A

q not observed in epoch A

q not observed in epoch B

The unchanged and moving object labels are applied to points in both point clouds in order to
mark unchanged surface points and points that are part of objects that moved during recording.
In addition, the point cloud that describes the transition from epoch A to B encodes both surface
points that disappeared and those that are in an area that was not observed in epoch B. The other
point cloud representing the transition from epoch B to A describes appeared surface points as
well as all points that were not observed in epoch A. The use of two point clouds also simpli�es
the process of manual labeling, as both epochs can be visualized side by side. The point clouds on
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which the manually created approximated ground truth is based are generated by accumulating
and downsampling all individual measurements in the above-mentioned area. The downsampling
was carried out using a grid with a resolution of 10 cm, with the �rst observed point per cell being
selected as a representative for all other points in said area.

In order to remove points that are the result of re�ections and sensor noise, all points that
have less than 5 neighbors within a half meter radius were removed. Remaining clutter was then
removed in a manual post-processing step. Subsequently, an initial version of the annotations
was bootstrapped by transferring automatically generated suggestions to both point clouds. This
is necessary to identify areas that were not seen in the other epoch. This requires information
about the space that was traversed by the measurement rays, therefore this can only be done
automatically, since this information cannot be presented in a meaningful way during manual
post-processing. Furthermore, the automatic suggestions simplify the issuing of manual labels,
since existing labels only have to be corrected and not completely reassigned. In a �nal step,
labels are corrected manually. This task took approximately four weeks to complete. The results
of the automatic labeling as well as the �nal labels can be seen in Figure 6.11 and Figure 6.12.

As already mentioned, a preliminary version of the labels was created automatically. There
are two main reasons why suggestions in form of automatically generated labels are recommended.
Annotating the complete data set is a very cumbersome and time-consuming process. On the other
hand, it is straightforward to automatically generate labels by a simple comparison of occupancy
information. In some cases, this approach is even superior to the manual approach, for example
when multi-layered structures such as sca�oldings are involved. Furthermore, it is easier for an
observer to check existing labels for plausibility and correct erroneous ones, instead of having to
assign labels to a completely unlabeled point cloud. The second reason concerns the abilities to
visualize the information that is required to make informed decisions. It is not straightforward to
visualize areas that have been observed as free, i.e. that have been traversed by measuring rays.
In order to be able to di�erentiate correctly between a changed object and an object not observed
again, this information is essential. Of course the required information can be visualized by a
bundle of lines, but not to the extent that the observer can still interpret the result. The main
reason for this is the lack in depth perception caused by the many visual elements that obscure
each other and the points to be labeled.

Similar to the method presented in this thesis, the annotations were created on the basis of a
comparison of occupancy information. At this point it should be mentioned that all labels were
corrected manually until they appeared plausible to a human observer. The author of this work
would like to emphasize that to the best of his knowledge and belief he has minimized any bias
in the ground truth. Occupancy grids with a resolution of 10 cm were generated, one for each
epoch. Each grid cell contains statistics derived from the measurement data, namely two counters
that store the number of measurement rays that pass through the cell and that represent surface
points. Said information is obtained by means of raycasting [Amanatides & Woo, 1987]. If a
cell is traversed by more than 10 rays, then it is considered to be free. It it contains more than
10 surface points, than it is considered to be occupied. If both cases are present, then the one
with the higher number of samples is preferred. In order to automatically derive the labels, the
occupancy grids of both epochs are compared with each other cell by cell. Depending on the result
of the comparison, all points that fall into each cell c are annotated accordingly. If two compared
cells are occupied, the points are labeled as unchanged. In case one of the cells is occupied and
the other one is free, then the points are annotated as changed. That means that if a cell in epoch
A is compared to the same cell in epoch B, the points are marked as disappeared, otherwise as
appeared. If the counters in one of both cells are zero, than the area hasn't been observed and the
points are marked as either not observed in epoch A or not observed in epoch B, depending on the
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Figure 6.11: Overview of automatically generated change detection labels. Unchanged points are green,
appeared and disappeared points are yellow and red. Points unseen in the other epoch are marked in blue.
Moving objects are not part of the automatically generated labels.

direction of comparison. In order to annotate both point clouds, the process has to be repeated
symmetrically. That means that epoch A has to be compared to epoch B and vice versa. The
resulting point clouds can be seen in Figure 6.11. The labeling errors resulting from the process
and the measures for manual correction are explained in the next section.

The automatically annotated data is too noisy to be used as ground truth, which is why manual
post-processing is required. For this purpose, a special editor was developed that visualizes both
epochs side by side. Both views are synchronized, so changing the viewing angle in one view
automatically changes the other view. This ensures that both views always show the same area
from the same perspective. A grid can be displayed to enable comparison of partial areas. The
labels of one or more points can be changed by dragging a frame around them with the mouse.
For all selected points, the label is then replaced by one with the previously selected class. All
points within the frame are a�ected, including those at a great distance from the camera. For this
reason the annotation was simpli�ed by dividing the data set into several tiles, with each tile being
annotated independently of the others. Since the subdivision into tiles takes place at runtime,
the complete data set is available at all times. Depending on the object class, di�erent challenges
have arisen during annotation. The following subsections provide a detailed explanation. The
manually revised labels can be seen in Figure 6.12.

Buildings Signi�cant changes in the building structure such as destroyed or newly con-
structed buildings are not part of the data set, only minor changes such as extensions and bricked
up windows. Since these are signi�cant changes in �at structures, these were also detected reli-
ably by the bootstrapping method. Smaller deviations at the building edges and windows were
manually corrected.

Narrow structures Despite the relatively high resolution of mobile laser scanning, the
resolution of narrow structures such as people and bicycles is relatively low. This is due to the
fact that only few measuring points are recorded on their surface. Due to the discretization of
the bootstrapping method, this often leads to incorrect labeling results, especially at the edges.
A�ected labels were adjusted manually.
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(a)

(b) (c)

Figure 6.12: Sample scenes of manually revised labels. a) Alte Pinakothek, b) street scene, c) construction
site. Unchanged points are green, appeared and disappeared points are yellow and red. Points unseen
in the other epoch are marked in blue. Moving objects are marked in gray, but are only shown in a) for
reasons of clarity.

Partially displaced objects The problem of partially displaced objects is particularly ev-
ident in case of vehicles, especially for those which are parked at the roadside. If a vehicle is
slightly displaced between two epochs, this usually results in two symmetric occupancy changes.
Surface points seem to have appeared at one end of the vehicle and disappeared at the other end.
The slight displacement of cars between two epochs can be explained by marked parking bays at
the roadside. A similar e�ect occurs whenever a vehicle is replaced by one with a di�erent shape.
All vehicles were checked manually and the entire vehicle was marked as changed if it was moved
or replaced.

This introduces a potential for error, as it mixes semantic annotations and an otherwise purely
geometric annotation. However, from the author's point of view, there was no justi�cation here
for annotating only the geometric changes from the perspective of a potential application.

Moving objects Marking moving objects in an accumulated point cloud is easier and less
time-consuming than in single scans, and also leads to similarly good results. Moving objects can
usually be recognized by the tubular structures they form in accumulated point clouds. Their
positions are also limited to certain areas within the data set, such as sidewalks and crosswalks.
The automatic annotation procedure marked most parts of said tubular structures as unchanged,
because there were too few points per cell to accept a change.
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Noise and artifacts The automatic annotation is susceptible to noise and other error
sources. The reason for both can be explained by the discretization of space. In case of noise,
spatial areas are combined, which can lead to points or point clusters being given an inappropri-
ate label. Some artifacts can be explained by measurements that pass by �at surfaces at a small
angle [Gehrung et al., 2017]. The automatic annotation procedure then recognizes these areas as
changed based on di�erences in the perceived occupancy. Both e�ects were corrected by manual
post-processing.

Vegetation Labeling vegetation is challenging, both for the automatic annotation procedure
and a human observer. Foliage has many �ne structures, too �ne to be accurately reproduced by
mobile LiDAR scans. Due to shadowing from leaves, �ne branches cannot be recognized properly.
The degree of foliage is approximately the same in most cases, only slightly more in the �rst epoch,
since the recording took place in another season. The suggestions of the bootstrapping method
were partially adopted, but since they are di�cult to con�rm or refute manually, the vegetation
class is only marginally considered in this work.

Occluded areas An important task with regard to change detection is to identify areas that
are visible only in one epoch, but not in the other. This is because a change can only be detected if
the area under consideration has been observed in both epochs. In the data set, such events usually
occur in two places, that is within buildings and behind vehicles. Unobserved areas in building
interiors are caused by shutters or doors that are open in one epoch, but closed in the other. For
example, if a shutter has been partially lifted, as was the case in one of the campus buildings,
more space is visible in one epoch than the other. A human observer can recognize such a case on
large areas such as walls, but only with di�culty on an apparently appeared independent object
such as a ceiling lamp. Such occurrences can usually only be deduced from the automatically
generated labels, since it is di�cult to intuitively visualize the space traversed by measuring rays.

The other type of area that is usually subject to occlusion can be found behind vehicles. Since
the sensors cannot detect this area, a kind of observation shadow seems to form here. The areas
of unobserved space annotated by the automatic process are usually too small and are surrounded
by a halo of points that are marked as changed. However, since these areas are located on planar
surface such as a streets or sidewalks, it is straightforward to correct the labels manually. Two
tools were used to simplify this process. The �rst one is a lock for points marked as changed that
prevents them from being edited. This is necessary in order to be able to label points under the
vehicle without changing the labels of the vehicle points. The second tool is the above mentioned
grid that is projected onto the screen. This is inspired by techniques used to copy paintings.
Without both tools it would not be possible to reproduce complex occlusion patterns accurately
and correctly localized.

Ground truth for object classes and instances

The change detection method examined in this work allows additional information to be included.
These are not required for �nding changes, but can be used for a more in-depth analysis of the
results. In the present case, the bene�t of semantic object classes is that they enable a class-
speci�c examination of the results of the change detection. Data sets containing semantic object
classes are usually used as benchmark data sets, i.e. to determine the performance of automatic
semantic annotation processes. The results generated by a procedure are compared to a ground
truth and the correspondence between the two is expressed numerically. As discussed in detail by
Matrone et al. [2020], the creators of the ArCH benchmark data set, it is important that the classes
contained in a benchmark data set �t thematically to the examined environment. A wide range
of benchmark data sets for semantic labeling exists. For those based on 3D data, the Oakland
outdoor MLS data set [Munoz et al., 2009], Semantic3D.net TLS data set (Semantic3D) [Hackel
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et al., 2017], Paris-Lille-3D MLS data set [Roynard et al., 2018], Toronto-3D MLS data set [Tan
et al., 2020], Daimler urban segmentation data set [Scharwächter et al., 2013] and A2D2 data set
[Geyer et al., 2020] can be given as examples.

In addition to the thematic suitability, the conditions that prevailed during the recording must
also match. The platform used for the measurements plays a signi�cant role because accuracy,
density, and quality of the resulting point clouds vary signi�cantly between recording techniques.
Therefore, if one only limits to semantically annotated data sets that are based on mobile laser
scanning data, then this list contains the Oakland 3D data set [Munoz et al., 2009], the Sydney
Urban Objects data set [DeDeuge et al., 2013], iQmulus [Vallet et al., 2015], Paris-Lille-3D [Roy-
nard et al., 2018], SemanticKITTI [Behley et al., 2019], Toronto-3D [Tan et al., 2020], the Daimler
urban segmentation data set [Scharwächter et al., 2013], the A2D2 data set [Geyer et al., 2020]
and both the TUM-MLS-2016 and TUM-MLS-2018 data set [Zhu et al., 2020].

The latter two are based on the data sets that were recorded for this work. The manual
annotation has been done by Zhu et al. [2020]. Two di�erent types of labels are provided, the �rst
are semantic annotations with eight classes, the second are annotations for instance segmentation.
Both are available as voxel grids with a resolution of 20 cm. For ease of use, the annotations
have been transferred to accumulated point clouds with the same resolution. In addition, the
object class labels were transferred back to the 360 ◦ laser scans. The advantage of the TUM-MLS
data set is that, in addition to the semantic labels, the sensor position is also preserved for each
measuring point, which is required for the change detection within the scope of this work

Annotations of the data set were made directly in 3D, which is a labor-intensive but reliable
operation. The underlying point cloud equals the one used for annotating changes. Statistical
outlier removal as well as downsampling has been applied to the point cloud. The latter has the
advantage of removing duplicate points that were generated by waiting periods of the measuring
vehicle, for example at a tra�c light. The annotation itself was carried out using the software
CloudCompare. More than 40 million points were labeled with eight semantic classes following
the ETH standard, namely the Semantic3D.net benchmark [Hackel et al., 2016].

Figure 6.13: Number of samples per object class. Some classes are several orders of magnitude more
represented than others.
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(a) (b)

Figure 6.14: Overview over the TUM-MLS semantic segmentation benchmark data set. a) Overview of
object class labels, b) overview of object instance labels.

Classes Label Index Content

Man-made terrain 1 Roads and impervious ground.
Natural terrain 2 Grass and bare land.
High vegetation 3 Trees.
Low vegetation 4 Bushes and �ower beds.

Buildings 5 Building facades, roofs and interior.
Hardscape 6 Walls, fences, light poles.

Scanning artifacts 7 Power cables and arti�cial objects.
Vehicles 8 Parked cars and buses.

Unclassi�ed 0 Noise, outliers, moving vehicles,
pedestrians, and unidenti�ed objects.

Table 6.1: Annotated object classes of the TUM-MLS semantic segmentation benchmark data set.

An overview of all classes can be found in Table 6.1, an illustration of the annotated data set
in Figure 6.14a. The classes natural terrain, low vegetation and high vegetation describe natural
structures usually found in an urban environment. Arti�cial structures are represented by the
classes man-made terrain, buildings and hardscape. The scanning artifacts class largely includes
hose-like structures that are caused by moving objects. All points that have not been assigned
a label are summarized by the unclassi�ed class. Since the data set was published, the buildings
class has been expanded to include interior points. The samples are unequally distributed across
all classes, as can be seen in Figure 6.13.

As with the annotation of the change detection data, the instance labels provided by the
benchmark data set were �rst automatically annotated and then manually corrected. Therefore,
both automatically and manually generated labels were created in a two-step approach. The �rst
step comprises the automatic segmentation using an unsupervised clustering [Xu et al., 2018]. The
second step is a manual error correction and object boundary re�nement. The manually corrected
labels can be seen in Figure 6.14b. At the time the benchmark was published, there have been
1002 objects of the eight classes mentioned above.
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7 Results and Analysis

This chapter presents the qualitative and quantitative results of the experiments described in
Chapter 6, which were used to evaluate the methods described in Chapters 3-5. The results
presented here provide the foundation for the discussion of the method under investigation.

7.1 Spatial representation results

This section summarizes the results of all experiments used to evaluate the generic evidence grid
for spatial representation.

7.1.1 Memory consumption

Figure 7.1 shows the average memory requirements per tile. The average memory requirement has
a maximum value of about two MiB* per tile for the highest resolution. The memory consumption
grows exponentially to the depth of the octree, which is to be expected due to its structure.

7.1.2 Membership function

Figure 7.2 shows the plots of the average error measures of the linear and logistic membership
function. The error is plotted against spatial resolution, not octree depth, since only this properly
re�ects the nonlinear relationship. The various octree resolution levels are marked by dotted
vertical lines, the average error measures are speci�ed by points.

The error of both functions is close to zero for the maximum resolution of 20 cm. This is as
expected since the resolution is exactly the maximum resolution of the ground truth incorporated
into the representation (cf. Section 6.3.4). The average errors for the coarser resolution levels
show clearly evident di�erences. The linear function's error increases abruptly and then settles
at a relatively high level, showing a logistic growth. The logistic membership function's error
increases less abruptly. A peak forms at a spatial resolution of 0.4m, but quickly �attens out for
higher resolution levels. Apart from said peak, an approximately linear growth can be seen here.

The histograms shown in Figure 7.3 illustrate the distributions of the number of samples as
well as the memberships for the evidence obtained by applying the linear and logistic membership
function. They were generated exemplarily on the basis of the class vehicles for a resolution of
40 cm, the data was averaged over all voxels. As can be seen in Figure 7.3a and Figure 7.3b, the
distribution of the samples strongly resembles the distribution resulting from the linear member-
ship. All values along the x-axis are �nely graduated and use the full range of values speci�ed
by the samples. The distribution of membership values generated by the logistic function shown
in Figure 7.3c shows a di�erent behavior. A large part of the evidence mass is allocated to the

*The notation used here for memory requirements corresponds to the international standard ISO 80000-13.
This means that statements referring to memory are made on the basis of powers of 2, not on the basis of powers
of 10.
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Figure 7.1: Memory consumption in relation to spatial resolution.

extreme values 0 and 1 at each end of the interval. Negligible to no amounts of evidence are
distributed on the values in between. Instead of soft intermediates, hard values are enforced.

7.1.3 Reproducibility before defuzzi�cation

In order to determine the cause of the peak in the error measure visible in Figure 7.2, both the
�rst local maximum at 0.4m as well as the following local minimum at 1.6m were examined in
more detail. The overlap with other classes was examined, since a lower overlap can be a possible
explanation for a lower error. For the spatial resolution of 0.4m, 12.99% of all voxels containing
a ground truth point have an overlap with another class. In contrast, at the spatial resolution of
1.6m, 56.23% do. The coarser the resolution, the more voxels have a collision with another class.
This implies that the reason for said peak is not a higher overlap, but that the average deviation
between representation and ground truth is much lower in total at the coarser resolution of 1.6m.

Figure 7.4 shows the histograms of the certainty for class A and Ā and the error measure for
the aforementioned resolutions. It can be seen that the certainty of class A for the 0.4m resolution
comprised the entire spectrum (cf. Figure 7.4a). In other words, the certainty distribution is not
particularly clearly pronounced, as there are many intermediate levels. On the other hand, at
the 1.6m resolution, the distribution has fewer intermediate levels and is therefore more clearly
pronounced (cf. Figure 7.4d). The certainties for class Ā of both resolutions are essentially com-
parable and therefore do not play a major role in terms of the e�ect under discussion (cf. Figure
7.4b and Figure 7.4e). The errors behave as shown in Figure 7.4c and Figure 7.4f. For the 0.4m
resolution, there are many errors of small and intermediate size. These errors can be thought of
as noise superimposed on the signal. At 1.6m resolution, the signal-to-noise ratio is better, with
fewer small and medium errors but more large errors.

Also to be noted in Figure 7.2 is the visible change in the slope of the error measure that occurs
between 3.2m and 6.4m. This is a clear indication that the ground truth can still be reproduced
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Figure 7.2: Average error resulting from applying the linear (red) and logistic (blue) membership functions.
The average error of both functions is di�erent, because the logistic function is biased towards the extreme
values, while the linear function is a direct, unbiased mapping.

(a) (b) (c)

Figure 7.3: Histograms of samples and membership for the linear and logistic membership function. a)
The distribution of samples for all voxels for the vehicle class at a 0.4m resolution, b) the membership
computed by the linear membership function, c) the membership computed by the logistic membership
function.

su�ciently well at a resolution of 3.2m, but no longer at the next higher resolution. This may
have to do with the fact that, except for the few areas where class instances are located close to
each other, there is a large free space area between them. When the resolution is reduced, at some
point several class instances previously separated by free space overlap. This point seems to be
located somewhere between the spatial resolution levels of 3.2m and 6.4m.

Figure 7.5 illustrates the average error per object class as a function of the spatial resolution.
It shows that although each class has its own characteristics, the general behavior is largely
identical. The error is close to zero at the 0.2m resolution for all classes, because this corresponds
to the resolution of the input data. The peak for the classes high vegetation, building facades and
manmade terrain is only slightly pronounced. All three classes were prominently located within
the �eld of view of the LiDAR sensors during the recording. The class low vegetation and building

interior have a very low error across all resolutions. Both occur in a very isolated fashion and
have few points of contact with other classes. Two-thirds of the low vegetation class do not have
any ground recorded nearby due to the recording angle of the LiDAR sensors and building interior

has no contacts to other classes except for the building facade class. The error in the scanning
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(a) (b) (c)

(d) (e) (f)

Figure 7.4: Histograms for examining the peak in the error measure. a-c) Histograms for a resolution of
0.4m, d-f) histograms for a resolution of 1.6m. From left to right, histograms of the certainty for class A,
the certainty for class Ā and the error measure are shown. Note the di�erence of an order of magnitude in
the y-axis.

Figure 7.5: Average error per object class.

artifacts class is particularly pronounced, as this class contains small, mostly elongated structures
with many points of contact with other classes.

7.1.4 Reproducibility after defuzzi�cation

Figure 7.6 illustrates the F1-scores for all object classes. As with the error measure in the last
section, the F1-score is optimal for the �nest resolution, i.e. it has a value close to one, since the
resolution of ground truth and octree are identical. However, the plot is missing the peak-like
anomaly discussed in the previous section. Instead, a steadily decline of all scores can be observed
for decreasing resolution, albeit with one minor exception.
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Figure 7.6: F1-score per object class calculated after applying defuzzi�cation.

Examining the F1-score shows that some classes can be better represented than others. Based
on Figure 7.6, two groups of classes can be identi�ed. The �rst group, with a rather high average
F1-score, includes the classes manmade terrain, building facade, high vegetation, and building

interior. These classes were already mentioned during the investigation of the average error.
They have in common that they are prominently observed, are large in scale and have a small
overlap with other classes. The second group with the rather low average F1-score includes the
remaining classes natural terrain, vehicles, scanning artifacts, hardscape and low vegetation. These
classes have a large overlap with other classes, contain relatively few samples, especially the low
vegetation class, or are unfavorably shaped, as it is the case with the scanning artefacts class. It
is also noticeable that the �rst group is represented with far more samples than the second group,
up to two orders of magnitude (cf. Figure 6.13). The class building interior is an exception, since
it has approximately as many samples as the class natural terrain. However, the former has a
higher F1-score, since it is very isolated.

The precision/recall diagrams created from the confusion matrix are shown in Figure 7.7. The
data points of all object classes for each resolution are above the respective no-skill line. This
implies that even at the most coarse resolution, every representation is better than a classi�er that
is not able to discriminate between the classes, e.g. a classi�er that makes random decisions. In
addition, the two groups described in context of the F1-score can be clearly distinguished from one
another. For manmade terrain, building facade and high vegetation a consistently high precision
and recall can be seen. This means that, on one hand, the majority of all predictions is correct and,
on the other hand, most of the ground truth is correctly predicted. The class building interior is
an exception, although not quite as extreme as the classes in the second group. The object classes
of the second group, i.e. the classes natural terrain, vehicles, scanning artifacts, hardscape and low

vegetation consistently show a high recall, but a strongly varying precision. This means that a
large part of the ground truth is correctly classi�ed, but in addition, many labels of other classes
have also falsely been classi�ed as belonging to the class.

7.1.5 Discretization errors

A false positive occurs whenever a voxel has strong evidence that it belongs to one class, but
then a sample of a di�erent class falls within said voxel. False positives are examined based on
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.7: Precision/recall diagrams for all object classes. The plots are generated from the confusion
matrix resulting from the comparison of object class labels and the corresponding fuzzy representations.
The parameter under consideration is the spatial resolution.

confusions between object classes, which have been recorded during the generation of the confusion
matrix. Figure 7.8 illustrates these in form of a bar chart. Looking at the relationship between
false positives and resolution, it can be seen that the former are either consistently low, if there
are hardly any points of contact with other classes, or decrease with increasing �neness of the
resolution. Occasionally a local maximum for one of the medium resolutions can be seen, as it
is the case with building facade in the class building interior. However, this only implies that
the evidence for said classes is particularly pronounced for the respective resolution levels. The
proportion of false positives to the amount of ground truth varies between classes. For some of
them, it is about 4-5% for the coarse resolution levels, and below about 0.5% for others. For �ne
resolutions, the percentage of false positives tends towards zero. Thus, it can be highlighted that
even at the most coarse resolution of 25.6m, only a very small percentage of false positives occur.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 7.8: Bar chart of the confusion between object classes for di�erent resolution levels. The y-axis
corresponds to the percentage of all points that were interpreted incorrectly.
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Figure 7.9: The percentage of false negatives, broken down by object class. The percentage refers to the
number of all samples.

A false negative occurs whenever a class is not recognized as such, i.e. when the evidences
in a voxel are too weak to counter the preponderance of evidences of other classes. This occurs
especially in areas where many classes interface. In other words, if a sample of a class is classi�ed
as not belonging to said class, this leads to a false negative. False negatives are examined by
visualizing their percentage of the number of all samples, broken down by object class. The
percentage of false negatives out of the number of all samples can be seen in Figure 7.9. As with
the false positives, the two groups manmade terrain, building facade, high vegetation and building

interior as well as natural terrain, vehicles, scanning artifacts, hardscape and low vegetation can
be distinguished.

7.2 Change detection results

This section summarizes the results of all experiments used to evaluate the change detection
method. The results of the �rst stage are presented, which were used to decide on the free
parameters of the procedure. Subsequently, the results of the change detection are presented,
which are based on said parameters.

7.2.1 Membership function and computation mode

In this section, the results of the experiments to identify the best membership function required to
create occupancy grids are presented. This is part of the �rst stage of experiments to determine
the free process parameters. The results of the comparison of the linear, logistic and occupancy
membership function can be seen in Figure 7.10. All three functions produce satisfactory results.
This means that the underlying geometry can be accurately recognized in the occupancy grid
and the associated certainties can be considered su�ciently high. As the color coding in Figure
7.10a shows, the linear function produces the results with the least certainty. This can be seen
from the fact that the fewest red voxels are present here, which imply a certainty close to the
value 1. Instead, green voxels predominate, which mean a certainty in the range of around 0.5.
The certainties generated by the logistic function are more pronounced, especially in the area
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containing �ne structures. This can be recognized by the higher number of red voxels. The
occupancy membership function produces the results with the highest certainty.

(a) (b) (c)

(d) (e) (f)

Figure 7.10: Occupancy representations generated with di�erent membership functions and computational
modes. a) Linear membership function, b) sigmoid membership function, c) occupancy membership func-
tion, d) tile-based computation mode, e) sliding-window computation mode, f) �xed-window computation
mode. The occupancy membership function with the tile-based computation mode leads to the best result.
The color encodes the degree of certainty: blue=low, green=medium, red=high.

The comparison of the computation modes was carried out based on the membership function
selected beforehand. The global mode was not examined because it proved to be too computation-
ally intensive. The results of the application of the tile-based, �xed-window and sliding-window

can be seen in Figures 7.10d, 7.10e and 7.10f. The tile-based computation mode produces the
results with the highest certainty. The other two modes result in a signi�cantly lower certainty in
the area containing �ne structures, but otherwise produce comparable results.

7.2.2 Max-pooling neighborhood and defuzzi�cation

This section presents the results of the experiments conducted to determine the max-pooling
neighborhood and to decide whether to use defuzzi�cation. This is part of the �rst stage of
experiments to determine the free process parameters. In total, six experiments were performed
to test the max-pooling neighborhoods of 0 − 2 voxels once with, once without defuzzi�cation.
The precision/recall diagrams constructed from the corresponding fuzzy confusion matrix of each
experiment can be seen in Figure 7.11. The plots show that defuzzi�cation leads to a better result,
which, however, is only visible when max-pooling is applied. The application of max-pooling leads
to an increase in recall for both con�rmed and changed geometry. In addition, the precision for
changed geometry is also increased. The numerical results for the experiments with defuzzi�cation
are shown in Table 7.1. They coincide with the bottom row in Figure 7.11. The table shows that
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No max-pooling max-pooling (n=1) max-pooling (n=2)

Case Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Con�rmed (A) 0.96 0.65 0.78 0.94 0.92 0.93 0.91 0.97 0.94

Con�rmed (B) 0.93 0.57 0.71 0.89 0.82 0.85 0.87 0.84 0.86

Disappeared 0.78 0.66 0.71 0.95 0.81 0.88 0.98 0.81 0.89

Table 7.1: Results of the change detection on the Alte Pinakothek subset. The results achieved with the
�nal con�guration of the method are marked in bold.

not applying max-pooling leads to high precision but only mediocre recall. The recall improves
signi�cantly as soon as max-pooling with a neighborhood of one voxel is applied. While the
precision of con�rmed geometry remains largely unchanged, a signi�cantly increase can be seen
with changed geometry. Increasing the max-pooling neighborhood to two voxels slightly improves
the F1-score, which leads to an improvement in recall and in some cases to a slight reduction in
precision.

(a) (b) (c)

(d) (e) (f)

Figure 7.11: Change detection results for di�erent max-pooling neighborhoods and defuzzi�cation methods.
a,d) Results without max-pooling, b,e) results with a max-pooling neighborhood of one voxel, c,f) results
with a max-pooling neighborhood of two voxels. No defuzzi�cation has been applied in the top row, the
bottom row has been defuzzi�ed with pro/contra �ltering.

Figure 7.12 shows the evidence grid containing the disappeared geometry for all max-pooling
neighborhoods surveyed. Although the increase in F1-score is minimal, it can be seen from the
�gures that max-pooling has a noticeable positive impact. It can also be observed that, contrary
to the implications of the F1-score, the size of the neighborhood has a signi�cant impact on the
quality of the result. This can be justi�ed by the fact that with a neighborhood of only one voxel,
there is a signi�cant amount of clutter in the representation. With a neighborhood of two voxels,
on the other hand, this clutter is almost non-existent and the representation is very similar to the
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(a)

(b) (c)

(d) (e)

Figure 7.12: In�uence of max-pooling neighborhoods on the results of the change detection. a) Cam-
era image of the scene, b) fuzzy representation of the ground truth, c) change detection results without
max-pooling, d) results with a max-pooling neighborhood of one voxel, e) results with a max-pooling neigh-
borhood of two voxels. The color encodes the degree of certainty: blue=low, green=medium, red=high.

ground truth. The evidence grids for con�rmed geometry do not show any clutter, so the e�ect
observed here seems to be present only in case of changes.

7.2.3 Qualitative change detection results

This section presents the qualitative results of the change detection method, which are based on
the free parameters determined in the �rst stage. The change detection results were transferred to
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A

B
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a b c

Figure 7.13: Selected changes in the TUM-MLS data set. A) Flagpoles erected on the TUM campus,
B) Christmas tree in the window of a residential building, C) a removed tree and container. a) Point
cloud of the �rst epoch, b) point clouds of the second epoch, c) overview of all changes and unseen areas
(green=con�rmed, red=disappeared, yellow=appeared).

an accumulated point cloud for closer examination. A few selected examples are explained in more
detail. The Alte Pinakothek shown in Figure 7.16 shows a number of changes concerning various
objects related to the street space. This is mainly due to the construction site, which was located
there in the �rst epoch due to renovation work on the building. When the construction site was
closed, all related objects such as sca�olding and fences were removed. The facade of the building,
which was covered by a construction fence in the �rst epoch, was correctly marked as unseen in
the second epoch, not as changed. The same e�ect can be seen wherever the wall was covered by
the walkways of the sca�olding. Both areas are marked in blue. The chosen example also shows
that even inconspicuous changes can be recognized. For example, the curtains in the windows on
the lowest �oor of the Pinakothek were closed in the second epoch, which is why they are correctly
marked as appeared. Furthermore, right in front of the site fence, there are two areas in which the
ground was leveled, i.e. material was added to mend holes in the ground that probably originated
from the construction work. Small and large changes can be seen in the vegetation in the right-
hand area of the �gure. Here it can be seen that the tree has lost its foliage due to the di�erent
seasons. Entire branches have been removed in the lower area, probably due to tree maintenance
work. Changes also include larger objects like construction fences, containers, material stacks
and a �atbed truck. Changes related to the vehicles object class can be found in the lower area
of the �gure. In roadside parking lots, there are some vehicles that have either changed type,
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(a) (b) (c)

Figure 7.14: Changes in a street environment in the Arcisstrasse in Munich. a) Point cloud of the �rst
epoch, b) point clouds of the second epoch, c) overview of all changes and unseen areas (green=con�rmed,
red=disappeared, yellow=appeared).

(a) (b) (c)

Figure 7.15: Changes due to construction work in the Gabelsbergerstrasse in Munich. a) Point cloud
of the �rst epoch, b) point clouds of the second epoch, c) overview of all changes and unseen areas
(green=con�rmed, red=disappeared, yellow=appeared, blue=unseen in other epoch).

been moved, or completely replaced with another vehicle. Some changes are more pronounced
than others because the shape or position of the associated vehicles changed signi�cantly between
epochs.

The Arcisstrasse in Figure 7.14 shows how the parking situation has changed between the two
epochs. In the second epoch there were many more vehicles parked along the road. The parking
situation is so tense that even disabled parking spaces are being used and one driveway is blocked.
In addition, changes in the foliage can be recognized due to the di�erent seasons, namely spring
and winter. Foliage is much less pronounced in the second epoch, which is recognized as a change.

Figure 7.15 shows a construction site in the Gabelsbergerstrasse that has an e�ect on the
street environment. Here, too, the change detection provides a number of relevant changes that
are helpful for the interpretation of the scene. In the �rst epoch, sca�olding surrounds the house.
In addition, one lane of the road is occupied by a large concrete silo and separated from the rest
of the street by a construction fence. Since this is an obstacle directly within the street space,
tra�c was forced to evade and coordinate with oncoming vehicles.

Figure 7.13 shows a selection of changes that were discovered and are worth mentioning. Row
7.13A shows a number of �ags on the TUM campus. These appeared in the second epoch and
illustrate one of the many challenges of change detection. A �ag is a deformable object, and even
if the actual �ag does not change, the wind can still cause a change to be detected here. Row
7.13B shows an appeared Christmas tree in a window. This change was chosen because it is easy
to overlook. 7.13C shows a tree and a container that both disappeared, whereby the former was
most likely transferred piece by piece to the latter. This can be deduced from the fact that in the
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Con�rmed (A & B) Appeared Disappeared

Subset Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Full data set 0.98/0.97 0.28/0.34 0.43/0.50 0.65 0.27 0.38 0.74 0.50 0.60

Alte Pinakothek subset 0.94/0.89 0.92/0.82 0.93/0.85 0.85 0.19 0.30 0.98 0.81 0.89

Natural terrain 0.96/0.87 0.89/0.75 0.93/0.81 0.24 0.68 0.36 - - -

Building facade 0.96/0.90 0.93/0.82 0.94/0.86 - - - 0.98 0.75 0.85

Hardscape 0.25/0.98 0.31/0.87 0.28/0.92 0.31 0.41 0.35 0.97 0.88 0.92

Scanning artifacts 0.89/0.86 0.87/0.91 0.88/0.89 0.75 0.13 0.22 0.95 0.71 0.81

Vehicles - - - 0.95 0.14 0.25 0.95 0.42 0.58

Table 7.2: Change detection results for the full data set and the Alte Pinakothek subset, subdivided by
object classes.

second epoch the tree was replaced by a new one. It also shows a person leaning against the wall
in the house entrance in the right center of the image, which was also initially overlooked when
the annotation was created.

7.2.4 Quantitative change detection results

This section presents the quantitative results of the change detection method, which are based
on the free parameters determined in the �rst stage. These include applying the occupancy mem-

bership function with tile-based computation mode. A max-pooling neighborhood of one voxel for
con�rmed geometry and two voxels for modi�ed geometry was used. The results were defuzzi�ed
before evaluation.

Results for the full data set and subset

Table 7.2 shows the change detection results for both the full data set and the Alte Pinakothek

subset. The results for the entire data set show that the two cases con�rmed and disappeared

are roughly comparable, with F1 values of 0.50 and 0.60, respectively. The case appeared has a
signi�cantly lower F1-score of 0.38. In all three cases, the results have a low recall, which in turn
leads to a low F1-score. A point cloud of the results shows that there is a lot of con�rmed and
disappeared geometry in the data set, but hardly any appeared geometry. A correlation is therefore
present between the number of samples per case and the F1-score.

The Alte Pinakothek data set was chosen to contain most of the changes in the data set. The
same correlation between disappeared, appeared and con�rmed geometry and the associated F1-
scores is evident here. The F1-scores for con�rmed are 0.93 and 0.85, the F1-score for disappeared
is 0.89. Appeared has a low recall of 0.19, which is re�ected in the also low F1-score of 0.30. As
with the complete data set, there is much less appeared geometry than con�rmed and disappeared

geometry.

Results subdivided by object classes

Table 7.2 shows the results of the Alte Pinakothek subset, divided by object class. Since vegetation
has been removed and there are no changes for building interior and manmade terrain, these are
not listed in the table. Furthermore, for some classes there is no con�rmed, appeared or con�rmed
geometry. The disappeared geometry in the subset includes:

q Hardscape: street signs, construction fence around the Pinakothek

q Building facade: sca�olding

q Vehicles: construction vehicle, vehicles on the road
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q Scanning artefacts: container, street sign

The appeared geometry includes:

q Scanning artefacts: street signs

q Building facade: curtains in the windows

q Natural terrain: �lled ground in front of the Pinakothek

The above changes are also illustrated in Figure 7.16. Some of the changes are large in area and
therefore represented by more samples than smaller changes. This is re�ected in the corresponding
F1-scores in Table 7.2. Building facade has a high F1-score of 0.85 for disappeared because a large
sca�olding along the facade of the Pinakothek has disappeared. A similar behavior can be observed
for hardscape, where a large construction fence disappeared and the F1-score is 0.92. In the case of
smaller changes, as it is the case with appeared geometry in natural terrain and scanning artefacts,
correspondingly lower F1-scores of 0.36 and 0.22 are observed. The values for precision and recall
for the vehicle class can be explained by the fact that each vehicle that was moved or replaced by
another was annotated in its entirety. Con�rmed geometry does not occur for vehicles because
every vehicle in the data set was subject to change in the two years between the recording of the
epochs.
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(a) (b)

(c) (d)

(e)

Figure 7.16: Changes caused by renovation work on the Alte Pinakothek in Munich. a,b) Point clouds of
both epochs, c,d) disappeared and appeared elements, e) overview of changes and unseen areas of both
epochs (green=con�rmed, red=disappeared, yellow=appeared, blue=unseen in other epoch).



95

8 Discussion

In this chapter, the three research questions are addressed and discussed in light of the results. The
main points are the capability of fuzzy representations to represent information, the suitability of
fuzzy spatial reasoning for change detection and the assessment of the metrics used for evaluation.

8.1 Discussion of the fuzzy spatial representation

The results of the experiments in Section 7.1 demonstrate that the fuzzy spatial representation
presented in this work can successfully be applied to represent an urban street space scene. The
individual factors in�uencing representability are discussed in detail in the following sections.

8.1.1 Membership function

The results presented in Section 7.1.2 show that the linear membership function makes better
use of the entire range of possible membership values. This implies that it introduces little to
no additional prior knowledge, since it has no visible bias towards a particular range of values.
The identical shape of the sample and membership histograms in Figure 7.3 illustrates this. The
logistic function, on the other hand, does not use the complete bandwidth of the interval, almost
only the part of the interval close to the two extreme values. Compared to the linear function,
additional prior knowledge is introduced here. The approximately linear shape of the plot of
the logistic membership function indicates that the error grows logistically with resolution and
is compensated for by the use of said membership function. It can be argued that by favoring
extreme values, noise is reduced without sacri�cing possible intermediate values.

This focus on extreme values can also be seen as the reason for the peak that appeared in
Figure 7.2, which is discussed in detail in Section 8.1.4. The comparison of the membership
functions leads to the conclusion that the logistic function is to be preferred over the linear one.
The main reason for this is that applying the logistic function leads to a lower average error per
voxel. The extreme values preferred by the function reduce the work of defuzz�cation, as this
leads to a higher contrast between classes and thus reduces noise. The linear function, on the
other hand, has a higher average error, which is due to the many intermediate steps. The logistic
function introduces additional knowledge through which the information can be presented with
greater contrast, but without having to give up the aspect of fuzziness.

8.1.2 Memory consumption and recommended resolution

The �ner the resolution of the spatial representation, the higher the required memory consumption.
Each resolution level that is omitted leads to a large reduction in the required memory. However,
the total memory consumption is negligible, averaging around 2MiB per tile. The main advantage
of omitting one resolution level is the reduction of the overall computing time, since creating an
occupancy grid is an extremely computationally intensive operation due to the traversion of free
space.
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The choice of resolution levels depends on whether a defuzzi�cation is intended. If this is
the case, any resolution level that can ful�ll the task at hand can be selected. Sharpening the
data removes noise and e�ects such as the aforementioned peak, of course blurring e�ects due to
discretization errors remain. If no defuzzi�cation is intended, then it is recommended to consider
the error measure when choosing the resolution level. However, it is important to consider how
representation and ground truth interact. For the present data set of an urban street space, the
maximum resolution of 0.2m is equal to the ground truth resolution. This creates the impres-
sion that said resolution level allows an almost �awless representation, because only one ground
truth sample coincides with one voxel each. In fact, however, the error measure has only limited
signi�cance here due to the circumstances mentioned.

A resolution level cannot be recommended in general. A voxel must be large enough to enclose
several measurement points and thus make the evidence statistically signi�cant. At the same time,
however, it should be small enough so that not too much geometry is combined. It depends on the
structure of the environment, the application and, of course, the resolution of the sensor system.
If memory or computational e�ort is to be saved, a rule of thumb is to select the appropriate
resolution using the precision/recall curves. This includes analyzing all plots and then selecting
the resolution for which all plots have an acceptable precision. For the plots presented here, good
results are obtained for a resolution of 0.8m. Results that are still acceptable are obtained for a
resolution of 1.6m. The highest resolution studied was 0.2m, which is a good compromise between
spatial resolution and runtime for an urban environment.

8.1.3 Properties favorable to representability

The quality of the representation of a spatial information depends on several factors. It is best
if the corresponding class has been well observed, i.e. the recorded samples have a high spatial
density. It is also advantageous if a class is isolated from other classes and has few if any interfaces
with them. The quality of representation is worst if a class has been poorly observed, i.e. only
a few samples have been recorded for it and they are widely distributed spatially. This occurs
especially with elongated or narrow objects. Many interfaces to other classes are also unfavorable.
All these factors lead to the conclusion that discretization errors have a high in�uence, which
negatively a�ect the quality of representation.

The above mentioned conclusions have been con�rmed experimentally, e.g. by the two groups
identi�ed in Figure 7.6. The histograms of the certainty and error distributions in Figure 7.4
and the average errors of the individual object class in Figure 7.5 also support that hypothesis.
Despite many points of contact the object classes high vegetation, building facades and manmade

terrain have only a small peak in the error measure, which supports the hypothesis that there is
a connection between high point density and strong evidence. The object classes low vegetation

and building interior show a very low error, although they are represented by only a few samples.
However, they have little contact with other classes. This supports the hypothesis that spatial
distance between classes is conducive to representation.

It can be summarized that the quality of the representation is best whenever there is a low
overlap between the represented information as well as a high amount of samples. If this is not
the case, a moderate or even high overlap can be tolerated if the class is represented by enough

samples. On the other hand, if the overlap is high and the number of samples is insu�cient, the
information is only poorly represented.
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8.1.4 Expressiveness of the fuzzy representation

The peak in the error measure in Figure 7.2 indicates a possible limitation in the ability of the
representation to describe information. However, since Figure 7.6 no longer shows such an e�ect
after defuzzi�cation, it can be concluded that it does not represent a signi�cant limitation of
the representation's descriptiveness. The peak can be explained by the fact that large voxels are
more likely to get a signi�cant number of measurements. This results in enough measurements
to completely �ll the interval within the evidence distribution. This is shown by the histograms
in Figure 7.4. For smaller voxels, the probability is correspondingly smaller and not enough
measurements end up in a voxel, which means that the interval of the evidence distribution is less
�lled. The e�ect is therefore caused by the law of large numbers. This e�ect is counteracted by
the e�ect of blurring, that is, the aggregation of information due to the decreasing voxel size. This
explains the subsequent increase in the error curve. It can be assumed that the e�ects shown in
Figure 7.2 are not speci�c to the data set, but also occurs in other scenarios, since it is essentially
caused by the discretization of space.

The precision/recall curves show that even for the coarsest resolution level there is still a clear
di�erence to random guessing. This can be attributed to the fact that all data points are above
the no-skill line. This implies that the evidence distribution represents the signal clearly enough
so that it can still be distinguished from noise even at the coarsest resolution level. This �nding
underscores the value of the fuzzy evidence representation. From an application perspective, this
allows coarser resolution levels to be used as indicators. A coarse resolution level can be computed
many times faster than the investigated maximum resolution of 0.2m, but is still expressive enough
to give indications of e.g. changes in the represented volume of space.

In Figure 7.8, a trend can be seen that the proportion of false positives decreases with increasing
resolution. This shows that the data is approximated better with increasing resolution. This trend
is not always clearly pronounced, but this only shows that the spatial resolution is not the only
relevant factor for the representation of the data. This is further supported by the false negatives
shown in Figure 7.9 and the fact that all precision/recall curves are above the no-skill line.

Given the above conclusions, it is deducted that the fuzzy representation can be used not only
in the general case for the representation of spatial information, but also for the special case of an
urban environment.

8.1.5 E�ects and necessity of defuzzi�cation

Fuzzy gradation of information is relevant, since it takes into account the vagueness of information.
However, decision-making requires sharp information, which in turn is generated by applying a
defuzzi�cation method to the fuzzy information. As Figure 7.2 demonstrates, a direct evaluation
of the fuzzy information for high resolution levels leads to a higher error than for some of the
coarser resolution, which is expressed by a peak in the average error measure. Since the peak in
the F1-score in Figure 7.6 is not present after defuzzi�cation, this suggests that the defuzzi�cation
was able to compensate for the noise in the certainty responsible for the peak.

The hard distinction made by the pro/contra �lter, i.e.m(A) > m(Ā), ensures that the decision
is no longer made based on the quantity of the evidence, as in the case with the error measure, but
on the ratio instead. This allows for more reliable result in poorly observed areas. In general, a
defuzzi�ed representation has the advantage over the fuzzy one that only the geometric di�erences
between it and the ground truth remain. Defuzzi�cation thus suppresses the noise and brings out
the actual result more clearly.
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8.1.6 E�ects of discretization errors

Discretization errors are negligible for su�ciently �ne resolution levels. As mentioned above,
classes with few measurements, classes with a small expansion or a coarse resolution are prob-
lematic. Regarding false positives it can be noted that their number decreases with increasing
resolution. Also, their characteristics depend on the represented object class. If there are enough
samples for a class, little to none false positives occur in the classes marginal areas. However,
this means more errors with other classes. The class to be represented should therefore always be
supported with many samples and therefore measured prominently. Both false positives and false

negatives do not occur for correspondingly �ne resolutions and are therefore negligible.

8.1.7 Inferability of scene knowledge from false positives

Although not directly relevant to the present evaluation, it should be mentioned that the confusion
of classes illustrated in Figure 7.8 can be used for a data-driven semantic interpretation of the
scene. The extent of the false positives can be considered as a measure of the overlap between
classes and therefore re�ects where such classes are spatially close to each other. These statistical
correlations represent possible semantic relationships between classes. The ones discovered during
the evaluation re�ect the typical correlations for an urban environment. For example, the class
building facade is in relation with the classes building interior and manmade terrain. Also, the
classes vehicles and scanning artifacts are related to manmade terrain, which is not surprising
since vehicles and road signs occur in the context of roads. As can be clearly seen, this accurately
describes the semantic relationships between object classes that occur in an urban environment.

8.2 Discussion of fuzzy reasoning and change detection

The results of the experiments in Section 7.2 demonstrate that geometric changes can be detected,
provided that a max-pooled variant of the fuzzy occupancy grids is used to compensate for any
remaining residual errors of the measurements. The �ndings are discussed in more detail in the
following sections.

8.2.1 Membership function and computation mode

As noted in Section 8.1.1, the logistic membership function is more suitable than the linear member-
ship function. However, Figure 7.10 shows that the results of the occupancy membership function

developed speci�cally for generating occupancy grids are better than those of the logistic member-
ship function. This is due to the deliberate suppression of the evidence for free space in presence
of evidence for occupied space.

Figure 7.10 leads to the conclusion that a tile-based computation mode creates the best results.
Using the other two modes results in a higher uncertainty. The reason for the poor performance of
said modes is that the median is determined only on a very small sample size and therefore each
value is close to the median. As a result, the con�dence of the resulting occupancy grid is located
around the middle of the interval. Also, it is far less stable from a statistical point of view. As a
result, the occupancy membership function and the tile-based computation mode are recommended
to create the occupancy grids that are needed for change detection.

8.2.2 In�uence of defuzzi�cation

The results of the defuzzi�cation experiment illustrated in Figure 7.11 imply that defuzzi�cation
improves the change detection results. This is consistent with the �ndings in Section 8.1.5. The
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fuzziness of the data can be seen as the main reason for the discrepancy between the results and
ground truth. An inspection of the evidence grids reveals that the crisp ground truth uses a much
narrower interval than the fuzzy change detection results. The defuzzi�cation of the results leads
to the fact that results and ground truth both are in identical sections of the interval. This means
that all remaining errors are no longer due to a di�erent expression of the evidences, but rather
to geometric deviations, i.e. real di�erences between results and ground truth. In terms of change
detection, the deviations in the evidence mass are irrelevant, only the actual di�erences from the
ground truth are meaningful. From this point of view, defuzzi�cation helps to limit the result to
the relevant parts, i.e. to separate signal from noise.

8.2.3 Determination of the max-pooling neighborhood

The experimental results for determining the max-pooling neighborhood illustrated in Figure 7.11
and Table 7.1 demonstrate that applying max-pooling leads to an increase in the quality of the
change detection results. The visualizations of the associated evidence grids in Figure 7.12 con�rms
this. Using only the F1-score as an evaluation criterion, one can conclude that the actual number of
neighbors of the max-pooling operation does not seem to matter, since the results do not improve
signi�cantly with a larger neighborhood. Furthermore, one can conclude that a neighborhood of
one voxel is preferable due to the lower computational e�ort. A neighborhood of two voxels is
more expensive and only leads to comparatively similar results.

However, the above-mentioned visualization of the evidence grid in Figure 7.12 clearly shows
that a higher number of neighbors results in less clutter. This means there are fewer geometric
errors in the form of false positives. Two conclusions can be drawn from this. First, a max-pooling
neighborhood of two voxels is preferable, since the changes found by the method are more likely to
correspond to the actual changes. This does not apply to con�rmed geometry, since a max-pooling
proximity of one voxel seems to be su�cient here. The second conclusion is that the confusion
matrix has limited usefulness as a tool for evaluation. This is discussed comprehensively in Section
8.3.2.

Note that the size of the max-pooling neighborhood is related to the residual registration errors.
The reason why the neighborhoods were determined to the above extent is that the remaining
residual errors are in the range of one to two voxels. Thus, the statement made here about the
size of the neighborhood cannot be generalized to arbitrary other data sets.

8.2.4 Precision-recall trade-o�

The main factor in�uencing the quality of the results is the neighborhood size of the max-pooling.
It determines how much the representation is blurred. Figure 7.11 shows a trend related to the size
of the neighborhood. If it increases, the representation becomes more blurred, which decreases
the precision, but increases the recall. In the case of precision, this can be explained by the
fact that the number of false positives increases with the increase of the occupied volumes. This
prevents the negative e�ect of minor registration errors. In case of recall, the number of false
negatives decreases. This also is an e�ect of the increase in occupied volume. This e�ect is here
referred to as the trade-o� between precision and recall and depends on the size of the max-pooling-
neighborhood. It allows �ne-tuning in terms of the sensitivity of the approach and the reliability
of the changes detected.

8.2.5 Discussion of qualitative change detection results

A demonstration of how change detection can be used to detect tra�c situations a�ecting the road
space is shown in Figure 7.14. This shows an example of parking behavior in the Arcisstrasse.
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Based on the changes, it is possible to see how the demand for parking spaces increased between
the �rst and second epoch. In the second epoch, there are far more vehicles, which even block a
driveway and a handicapped parking space. The �gure also shows the ability of the approach to
determine changes in vegetation. The changes in foliage, which can be explained by the di�erence
between winter and summer, are clearly visible.

Another situation, which has a direct impact on the street space, can be found in the Gabels-
bergerstrasse example in Figure 7.15. Based on the changes, a construction site present there
in the �rst epoch can be identi�ed. Since this is an obstacle directly in the street space, tra�c
is forced to evade and coordinate with oncoming vehicles. Information like this can form the
foundation for other applications, such as evaluating the passability of a road for heavy transport.

Speci�c properties of the change detection approach presented here can be illustrated by the
changes shown in Figure 7.13. The Christmas tree can be used to demonstrate that small and
inconspicuous changes can easily be overlooked. Even if such changes are detected by a human
observer, there is still the possibility that they will be subconsciously discarded as irrelevant. For
similar reasons, the scenario in row 7.13C was chosen. In the right part of the picture a person
is leaning against the wall in a house entrance. This is di�cult to see in the point cloud and
therefore was not detected during annotation. This is an informative example of how LiDAR data
cannot always be reliably interpreted by a human annotator.

8.2.6 Comparison of the quantitative results for full data set and subset

The correlation between the number of samples and the F1-score for the cases con�rmed, appeared,
and disappeared is evident in both the full data set and the Alte Pinakothek subset. Since the
changes found in both cases can be described as comprehensive and well-de�ned from a qualitative
point of view, this suggests that the error measure only provides meaningful results on statistically

representative data. The Alte Pinakothek subset contains much con�rmed and disappeared geom-
etry, but little appeared. Based on the above conclusion and the consideration of the qualitative
results, it can be concluded that the F1-scores for con�rmed and disappeared roughly correspond
to the actual circumstances, but the F1-score for the case appeared underestimates the actual
circumstances. The same is true for the full data set. The examination of the changes in relation
to the individual object classes has shown that object classes represented by many samples have a
higher F1-score than object classes represented by few samples. This con�rms the conclusion that
the data set must be statistically representative for the confusion matrix based metric to produce
meaningful results.

8.2.7 Systematic e�ect of the sensor data evaluation concept

A close inspection of Figure 7.16e reveals an area that does not behave as expected. The upper
part of the sca�old is marked as unseen instead of changed, although the corresponding area was
in the focus of the sensors in both epochs. This can be said with certainty, because the Alte

Pinakothek was recorded in both epochs driving by on the street directly in front of it. The
explanation for this is that the occupancy grids on which change detection operates are based
on surface measurements. This implies that the complete free space contained in the data set is
located only in the area between a surface point and the associated sensor position. Furthermore,
this means that the free space is only captured if there is a surface in the background.

Free space information is required to distinguish between changes and occlusions. A change
can only be inferred with con�dence if it is actually known whether there was free space in the
other epoch. If this is not known, an automated procedure can only mark the corresponding area
as unseen, otherwise there would be the possibility of a false positive. This is especially relevant
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(a) (b) (c)

Figure 8.1: Example to illustrate the apparently missing observations. a) An object is measured in the �rst
epoch, b) the object is gone in the second epoch, c) illustration of the resulting blind area (blue) when free
space (red) is only derived from surface measurements. Only the red part of the completely disappeared
object is recognized as a change, but not the blue part. Fields of view are marked in yellow.

in urban environments, because here the limited space is used as e�ciently as possible, resulting
in many occlusions. The e�ect caused by the fact that free space is only captured in the context
of surfaces is illustrated in Figure 8.1.

The e�ect described here is of practical relevance, since it always occurs when changed geometry
is measured against the sky or a free surface. It is possible to prevent the e�ect by storing the
direction vector for each measurement. The free space can then be extrapolated from said vector
and an assumed maximum sensor range. Unfortunately, it is not possible to subsequently apply
the solutions discussed here to the available data. The direction information of each measurement
was lost when the latter were transformed into a point cloud. For future generations of measuring
systems it is recommended to keep the direction vector. Furthermore, it is recommended to
consider the e�ect discussed here for all change detection methods that utilize free space, otherwise
relevant changes cannot be detected.

8.3 Discussion of the evaluation metrics

The results in Sections 7.1 and 7.2 provide empirical evidence about the performance of the used
metrics. This made it possible to work out their characteristics and limitations. The three metrics
examined in this work are discussed in detail in the following sections.

8.3.1 Discussion of the error measure

The error measure described in Section 5.1 was designed to determine the degree of deviation
between a non-defuzzi�ed representation and a ground truth. As Section 7.1 demonstrates, the
error measure can quantify the deviation from the ground truth with a degree of accuracy that
enabled to detect the interaction of two e�ects, which were veri�ed by the histograms in Figure
7.4. Said e�ects are explained in detail in Section 7.2.

An assessment of the error measure with the empirical data gathered during the experiments
was performed. Geometric errors and errors due to vagueness are both intermixed by the error
measure. The in�uence of defuzzi�cation determined in the last two main sections suggests that
errors due to vagueness are a notable in�uence. This leads to the conclusion that it should only
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be used when this e�ect is desired, i.e. for the comparison of a non-defuzzi�ed representation and
a ground truth, as was the case in Section 7.1.

The experiment underlying Section 7.2 has shown that the fuzziness of the information has
a visible impact on the accuracy of the represented information. This in�uence would therefore
have to be removed by means of defuzzi�cation in order to be able to use the error measure for
change detection, where only the geometric deviations are relevant. However, as argued in the
next section, the informativeness of the confusion matrix is higher than that of the error measure.

The data also shows that the error measure has limited explanatory value as soon as ground
truth and representation exist on a grid with the same resolution. This case is present in Figure 7.2
for the highest resolution level. As expected, the error here tends to zero because the representation
exactly re�ects the ground truth it is created from. However, small deviations, such as those caused
by the membership function, are lost in the noise.

8.3.2 Discussion of classical and fuzzy confusion matrix

The use of the classical confusion matrix is motivated by the fact that change detection requires
an error measure that evaluates only the crisp geometric deviations between representation and
ground truth. From a theoretical point of view, this task can also be performed by the error
measure discussed in the last section. However, as con�rmed experimentally, the confusion matrix
produces more meaningful results than the error measure. This can be inferred from Section 7.1.4.
The precision/recall diagrams (derived from a confusion matrix) shown in Figure 7.7 demonstrate
clearly that the data point for each resolution is above the no-skill line. As explained in Section
8.1.4, this suggests that even coarse resolution levels still have a good enough signal-to-noise ratio
to enable conclusions to be drawn that are better than random guessing. Such a �nding cannot
be derived from the error measure alone.

When an information is inserted into a fuzzy representation, a systematic error is incorporated
into it. This is the motivation for extending the classical confusion matrix to the fuzzy confusion

matrix. When comparing a �ne resolution level of the representation with the ground truth, this is
not particularly noticeable, however, with a coarse resolution level, it is even more so. Since said
systematic error cannot be removed, the only way to have a meaningful comparison is to apply
the same systematic error to the ground truth. This is done by inserting the latter into a fuzzy
representation. That the fuzzy confusion matrix meets the requirements can be inferred from the
values in Table 7.1, since the metric results shown there match the circumstance shown in Figure
7.16.

Both the classical and fuzzy confusion matrices have the disadvantage that the measures de-
rived from them are no longer meaningful if the underlying data is not statistically representative.
This is shown by the fact that there is a clear di�erence between the numerical results in Table 7.1
and the visualization of the corresponding scene in Figure 7.12. The F1-scores for the max-pooling
neighborhoods of one and two voxels barely di�er, but the visualization of the former shows large
patches of clutter, while the visualization of the latter doesn't. The reason for this is that qualita-
tive aspects like the above mentioned clutter are lost in the large amount of data points. A purely
quantitative error measure only identi�es an issue if it is also statistically representative. This is
a limitation, as it only permits a meaningful evaluation of changes that are represented by a large
number of samples. This is evident in Section 7.2.4, as the results on the whole data set appear
to be worse than their visualization, but on the statistically representative Alte Pinakothek data
set they match the visualization.

Thus, the explanatory power of the two metrics based on the confusion matrices is limited.
In terms of their usage, this means that they should always be applied in conjunction with a
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visualization or other metrics. After all, this is necessary to identify situations in which the
metric underestimates the actual quality of the results. One possible solution would be to include
semantic clusters to emphasize the qualitative aspect to a greater extent. However, semantics is
dependent on a speci�c application and therefore such an approach does not qualify as a generic
metric.
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9 Conclusions and outlook

The purpose of this �nal chapter is twofold - to present the most important conclusions resulting
from the work carried out within this thesis and to outline possible directions for further research
that address limitations of the presented methods. The conclusions are grouped according to
their relationships to speci�c objectives pursued within the work, as well as to the three research
questions posed in Section 1.3.

9.1 Conclusion

Research question I: To what degree can the in�uences of vagueness and contradiction

in information derived from mobile LiDAR measurement data be reduced and what

properties of method and data support this?

The �rst objective of this thesis was to develop a method for spatial representation that allows
handling vague and contradiction information, that allows to make a statement about the degree
of ignorance and provides an inference mechanism. The latter is required to perform the actual
change detection, the former to handle the e�ects of the error sources and con�icting evidence
contained within the measured data. For clarity, the answer to this question is divided into three
parts.

The �rst part of the answer deals with the extent to which the vagueness of information can
be resolved. The main sources of error in the generic evidence grid developed for change detection
are discretization errors. Experiments show that this leads to two overlapping e�ects in the fuzzy
representation. The �rst e�ect is negligible as soon as the information is defuzzi�ed, the second
e�ect is the smearing of information common for voxels. Using the latter, the in�uence of vagueness
can be determined, that is, by looking at the di�erent resolution levels, which arti�cially introduce
vagueness into the system. The vagueness can be quanti�ed via the F1-score by comparing the
object classes inserted into fuzzy representations with the original data. For all object classes,
the F1 score for a resolution of 0.4m is greater than 0.95. For a resolution of 0.8m, the F1-score
is still greater than 0.80 and even for a coarse resolution of 1.6m, it is still greater than 0.80 for
object classes represented with many samples. Furthermore, it was experimentally determined
that even for the coarsest resolution level of 25.6m, the signal-to-noise ratio is still su�ciently
good that the information contained in the representation is better than random guessing. This
is particularly true for object classes that are represented with statistical signi�cance. For less
signi�cant represented object classes, this e�ect is less pronounced, although still present. In
summary, the fuzzy evidence grid can compensate for vagueness to the extent that it is not only
su�cient for change detection, but also coarse resolution levels can be used as an indicator for
changes.

The second part of the answer deals with the extent to which the contradictions in an infor-
mation can be resolved and which characteristics of the method have an in�uence on the results.
Regarding the resolution of contradictions, it must be emphasized that they can only be resolved
where the evidence for the information actually present is predominant. By applying the logistic
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membership function, the evidence was shifted towards the extreme values, which simultaneously
reduces the possibility for a contradiction. The occupancy membership function, speci�cally de-
signed for the creation of occupancy grids, reduces the presence of contradictions by suppressing
part of the evidence responsible for it. In case of change detection, this alone greatly reduces the
possibility for contradictions. By applying defuzzi�cation, all contradictions are resolved where
the evidence for the information actually present prevails. The change detection experiments have
shown that omitting the defuzzi�cation of the data and thus resolving vagueness and inconsisten-
cies has a clearly visible impact on the derived F1-score of the results. Hence, the F1-score for
con�rmed geometry decreases from 0.94 to 0.62 and for modi�ed geometry from 0.89 to 0.71 when
defuzzi�cation is omitted. Defuzzi�cation is considered the most important in�uencing factor for
resolving both vagueness and contradictions. In summary, all contradictions are resolved when the
appropriate information is available and defuzzi�cation is applied. In practice, this means that
almost all contradictions have been resolved.

The third part of the answer explains which properties of the data have an in�uence on their
representability. The experiments conducted on the representability of individual object classes
suggest that information are well represented whenever it is supported by many samples and when
there is a clear spatial separation of areas with evidence for and against the information at hand.
In terms of object classes, this means that spatial separation from other classes is advantageous.
This is supported, among other things, by the fact that semantic scene knowledge regarding the
context of object classes can be derived from false positives. The results further suggest that it is
already su�cient if only one of the two mentioned factors is present for the information to be well
represented. However, a high number of samples, i.e. statistical signi�cance, seems to be generally
advantageous and the dominating factor.

Research question II: With what accuracy is it possible to automatically detect

changes in an urban street space based on vague, contradicting and spatially blurred

mobile mapping point clouds and does it allow the use of the method in the context

of applications such as city surveys and security applications, either supportive, or

fully automatic?

The top-level goal of this thesis was to develop a change detection algorithm capable of handling
the vagueness and contradictions that are part of the point clouds acquired by a mobile mapping
system. The characteristics of the method in terms of compensating vague and contradictory
information have already been answered in the last research question, which is why this question
is limited to the capability of the method to detect changes. Again, the answer to this research
question is divided into three parts.

The �rst part of the answer is focused on the accuracy of the change detection method. A
quantitative assessment of the results was performed using the F1-score derived from a fuzzy
confusion matrix. For con�rmed geometry, the F1-score is 0.94, and for changed geometry, the
F1-score is 0.89. The quantitative results were determined on a data subset, since the underlying
confusion matrix only reliably re�ects the situation if the changes are statistically signi�cant. It
should be noted that the quantitative evaluation outside of this test data set is limited, although
this is primarily due to the metric used. The use of max-pooling to address the challenge of
spatially blurred information increased the F1-score for con�rmed geometry from 0.78 to 0.94

and for changed geometry from 0.71 to 0.89. In terms of con�rmed geometry, this has led to a
signi�cant increase in recall; in terms of changed geometry, it has led to a signi�cant increase
in both precision and recall. Hence, the use of max-pooling has a signi�cant impact on the
improvement of the results. From this, it can also be deduced that the residual error on the data
remaining after boresight calibration and SLAM-based intra- and inter-epoch registration is less
than 0.1m.
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A qualitative review of the entire data set showed that, with few exceptions, the elements of the
environment that were considered to have changed were reliably detected. False positives occurred
in the form of noise at random locations in the data set and speci�cally at locations with signi�cant
registration mismatches. When there was a change, it was usually detected not only partially, but
almost completely. False negatives usually occur at contact points between a changed object
and a con�rmed object such as the road plane. These usually occur due to discretization errors.
Despite the occurrence of false positives, false negatives and an occasional noise, the results give
the impression of consistency. Not least because even subtle changes like drawn curtains, people
in building entrances, and back�lled holes in a construction site are detected.

The second part of the answer elaborates on the previous statement about the accuracy of
the results with respect to the classes of objects found in an urban environment. Quantitative
evaluation is not always possible here due to the aforementioned limitations of the metrics used
for evaluation, which is also the subject of the next research question. However, in addition
to qualitative statements, corresponding conclusions can also be derived from the experiments
regarding spatial representability, which in turn are supported quantitatively. It was quantitatively
con�rmed that changes and con�rmations of planar surfaces such as manmade terrain, natural
terrain, hardscape and building facade can be reliably detected. Tra�c signs are challenging
because of their small size, which is why the number of samples per voxel and thus the accumulated
evidence is rather weak. It has been experimentally con�rmed that these factors have a negative
impact on representability. However, there are not enough of such changes in the data set, which
is why no deeper quantitative statement can be made. Vehicles present a challenge because they
are movable objects. Additional semantic knowledge is required here, since a merely geometric
approach can only identify the parts that were changed when the vehicle was moved, yet this
information in itself has little value. Detected changes to vegetation appear plausible, but were
determined only qualitatively and not quantitatively because no reliable ground truth could be
generated.

The third part of the answer deals with the question of whether the quality of the process is
suitable for a supporting or fully automated application. The method is de�nitely suitable for
supporting a task, as it can reliably determine changed locations despite the prevailing uncertain-
ties and a spatial blurring of the data and a visualization of the results can be easily interpreted
by an observer. The question as to whether the results of the procedure are suitable for automatic
interpretation can generally be answered in the a�rmative, since the quality of the results permits
this despite noise. In particular, however, the answer is that it depends on the application. Since
the method was developed as a generic approach, it is not focused on a speci�c application. The
generic evidence grid and the fuzzy spatial reasoning based thereon are suitable for answering
complex questions, provided that the problem to be solved is based on spatial information and
can be formulated by a Boolean expression.

The applicability of the method is, however, limited by a characteristic of the measurement
principle used. When only the free space between the measuring point and the sensor position is
taken into account, then changes measured against the sky or an open area cannot be detected.
This limitation does not apply if the entire free space in its �eld of view is measured. For a
LiDAR system, this means that measurements without return are preserved and interpreted as
free space. This can be realized, for example, by keeping the direction vector of the measurement
and assuming a �xed maximum range. This is a limitation of the method only insofar as it depends
on the free space information to distinguish occlusions from actual changes.
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Research question III: What metrics are appropriate for evaluating the spatial

representation developed in this work and what are their limitations?

This �nal section addresses the metrics used for evaluation of the spatial representation. The
introduction of the generic evidence grid made it necessary to develop metrics to compare the
information represented by the evidence grid to a ground truth. This was required to quantitatively
evaluate the results of the change detection method, the development of which was the top-level
goal of this work. Three metrics were introduced, one for each (plausible) way to compare fuzzy
representation and ground truth. It was found that while the investigated numerical error measure
is suitable for evaluating the inner workings of the generic evidence grid, especially the degree
of vagueness of the represented information, the ability of making statements beyond that is
limited. This is because errors due to vagueness and geometric errors are intermixed. Applying
a defuzzi�cation solves this, but the resulting error measure is far less meaningful than the other
metrics examined.

The evaluation scheme based on the confusion matrix represents a more meaningful tool than
the error measure, since metrics such as precision and recall based on it allow a more detailed
statement about di�erent aspects of the method. The extension presented in this work, the fuzzy
confusion matrix, allows to compensate for the systematic discretization errors caused by the
generic evidence grid. The evaluation of the change detection results showed that from both
metrics, insights could be drawn about the inner workings of the generic evidence grid and change
detection. With respect to the generic evidence grid, properties that support the representability of
objects could be determined. It was also found that for some object classes the coarsest resolution
level is still better than random guessing. With respect to change detection, open questions could
be answered regarding the max-pooling neighborhood and the usefulness of defuzzi�cation. Such
detailed statements would not have been possible on the basis of the error measure alone. As
demonstrated, the metrics based on the confusion matrix can be considered as meaningful enough
to answer complex questions.

However, the change detection experiments have shown that the metrics based on confusion
matrices are only applicable if the results under consideration are statistically representative.
Unlike the evaluation of a classi�er, not every evaluated sample has the same signi�cance, since
a distance measurement identi�ed as changed does not necessarily correspond to a full change,
e.g., the change of a complete object. A changed object is usually represented by a large number
of distance measurements. A more signi�cant unit for the evaluation of changes would be the
semantic object, since it represents a quanti�able entity that can be recognized as either changed
or not changed. An error measure using semantic objects would be more meaningful for evaluating
the change detection results than the present one. However, this metric would be application
speci�c and could only be applied to change detection results, which contradicts the basic idea of
a generic metric for a generic evidence grid.

9.2 Outlook

The generic nature of the evidence grid developed in this work, as well as the equally generic
inference mechanism built on top of it, suggest that the theoretical framework developed here
can be applied to other topics as well. This is supported by the encouraging change detection
results. Any kind of problem which can be solved by combining di�erent geo-related information
can be considered. An example of this would be determining the area that would be shaded by a
high-rise building after its construction. For this purpose, a representation of the shadow cast by
the existing buildings at a given time of day needs to be computed. This can be done by means of
a visibility calculation from the approximate location of the sun. Applying the logical inhibition
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operation on this representation of the shadow highlights the occluded area. This example can of
course be extended to an arbitrarily complex question, such as the determination of the shadow
cast in the �eld of view of all south-facing windows of a certain building in the late afternoon, but
with a maximum distance of 100 meters from the window.

Since discretization of space is one of the main sources of error in change detection, increasing
the maximum resolution would be one of the most important ways to improve the results. However,
the central bottleneck here is the generation of the occupancy representations using raycasting.
Even if the state-of-the-art in this �eld has been widely exploited in the context of this work, the
area of highly parallel methods represents a further area of research. Another starting point to
eliminate the bottleneck would be to calculate the free space ad hoc only where necessary. Using
a spatial data structure to organize the measurement data as in Hebel et al. [2013], only those
measurement rays that are required to distinguish a change from missing measurements can be
chosen.

From the point of view of the generic evidence grid, another way to reduce discretization errors
without simultaneously increasing resolution would be to develop some sort of super resolution

enhancement. Currently, only one evidence distribution is stored per voxel. However, if several
spatially localized evidence distributions were stored per voxel, a spatially accurate smooth transi-
tion between distributions can be computed using the N nearest neighbors and linear interpolation.
With respect to the free space, which is expensive to compute, one could use existing or cheaply
computable information such as the ray intersections with the voxel to roughly determine the
a�ected areas where additional evidence distributions would need to be deposited within a voxel.
Thus, the free space could be resolved more coarsely than the occupied space without causing false
positives due to the di�erent resolution levels of free and occupied space. The extent to which
softer transitions would prevent the formation of artifacts would need to be investigated.

The work has shown that the quantitative error measures presented here are only meaningful
if the underlying evidence is statistically signi�cant. To compensate for this, the incorporation
of semantic information is proposed. The number of vehicles marked as changed is much more
meaningful than the number of measurement points recorded on the vehicle surface. This would
also �x the disadvantage that small objects contribute less to the result than large ones. The
speci�c nature of the semantics depends on the application, so this can only be done in the
context of a speci�c application.
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