
SoftwareX 16 (2021) 100807

B
a

b

c

g
p
c
s
e
h
m
w
l

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

FEniCS–preCICE: Coupling FEniCS to other simulation software
Benjamin Rodenberg a,∗, Ishaan Desai b, Richard Hertrich a, Alexander Jaust c,
enjamin Uekermann b

Scientific Computing in Computer Science, Department of Informatics, Technical University of Munich, Germany
Usability and Sustainability of Simulation Software, Institute for Parallel and Distributed Systems, University of Stuttgart, Germany
Simulation of Large Systems, Institute for Parallel and Distributed Systems, University of Stuttgart, Germany

a r t i c l e i n f o

Article history:
Received 20 March 2021
Received in revised form 23 July 2021
Accepted 8 September 2021

Keywords:
FEniCS
Fluid–structure interaction
Conjugate heat transfer
Multiphysics
Coupled problems
Finite element method
preCICE

a b s t r a c t

The new software FEniCS–preCICE is a middle software layer, sitting in between the existing finite-
element library FEniCS and the coupling library preCICE. The middle layer simplifies coupling (existing)
FEniCS application codes to other simulation software via preCICE. To this end, FEniCS–preCICE
converts between FEniCS and preCICE mesh and data structures, provides easy-to-use coupling
conditions, and manages data checkpointing for implicit coupling. The new software is a library itself
and follows a FEniCS-native style. Only a few lines of additional code are necessary to prepare a FEniCS
application code for coupling. We illustrate the functionality of FEniCS–preCICE by two examples: a
FEniCS heat conduction code coupled to OpenFOAM and a FEniCS linear elasticity code coupled to SU2.
The results of both scenarios are compared with other simulation software showing good agreement.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
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1. Motivation and significance

Enabling simulations to play a significant role in answering the
reat research challenges of our time – let it be nuclear fusion,
ersonalized medicine, or climate prediction – requires the effi-
ient interplay of diverse simulation software [1]. Ideally, single
imulation components may be treated as black boxes and may
asily be plugged together or exchanged. The software preCICE [2]
elps to do exactly that: It can be used to glue together arbitrarily
any of such black-box simulation components. In the following,
e refer to these components as participants of a coupled simu-

ation. preCICE focuses mainly on mesh-based discretizations of

∗ Corresponding author.
E-mail address: benjamin.rodenberg@in.tum.de (Benjamin Rodenberg).

PDE models as participants. The finite element software FEniCS [3,
4] is a popular choice to solve such PDE models in rather compact
Python scripts. We call such a Python script a FEniCS application
code. In this paper, we develop and document a new software
called FEniCS–preCICE adapter, which allows researchers to easily
couple FEniCS application codes to other simulation software by
using preCICE.

preCICE itself is a library. Thus, for coupling, a participant
needs to call the API of preCICE in its source code. Due to the high
abstraction level of the preCICE API, the necessary changes to a
participant’s source code are minimally invasive. These changes
are typically realized in a so-called adapter – an additional class,
module, or callback library of the participant’s source code. An
adapter defines the coupling meshes, handles coupling bound-
ary conditions, and realizes the steering of the coupling. Till
ttps://doi.org/10.1016/j.softx.2021.100807
352-7110/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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round 2016, preCICE users had to write their own adapters for
odes they wanted to couple. As many users coupled the same
odes, they had to solve the same problems, and continuously
einvented the wheel. Therefore, official, stand-alone, general-
urpose adapters for widely used software (e.g. for OpenFOAM [5,
] or SU2 [7]) were first introduced in [8] to end the waste
f precious human development resources. These developments
ave significantly contributed to the usability and popularity of
reCICE and, thus, to the process of scientific discovery.
In this paper, we follow the same lines of argument and

ntroduce a stand-alone, general-purpose adapter for FEniCS. We
ollow a FEniCS-native style, which makes the entry barrier for
sers of FEniCS as low as possible. The adapter can be easily
ntegrated into existing FEniCS codes. The distributed-memory
arallelization of FEniCS is supported out of the box. FEniCS
tself is not a single simulation code, but a library as well. This
akes a general-purpose adapter a challenging task. We, there-

ore, restrict the generality: we focus on 2D problems and study
ime-dependent fluid–structure interaction (FSI) and conjugate
eat transfer (CHT) as examples. The adapter can also be applied
o volume-coupled problems,1 on the one hand, and can easily be
xtended to 3D problems,2 on the other hand.
FEniCS has already been used to solve FSI, or more gen-

eral multi-physics problems in a monolithic fashion [9–11]. To
this end, the library multiphenics provides FEniCS-tools to solve
multi-physics problems.3 The interaction of the different physical
phenomena is modelled through a large coupled equation system
that is solved using FEniCS. Very often conforming meshes are re-
quired across the different physical domains. We, however, follow
a partitioned approach, which allows to combine several spe-
cialized single-physics participants to solve overall multi-physics
problems. FEniCS has already been coupled in a partitioned fash-
ion to reaktoro [12] to simulate reactive transport or to other in-
stances of FEniCS to allow for non-conforming meshes in FSI [13].
Recently, the generic coupling software MUI [14] has been used
to realize an FSI coupling between OpenFOAM and FEniCS [15].
A review of other generic coupling software can, for example, be
found in [2]. In this paper, we present a software for coupling of
FEniCS-based applications to arbitrary other simulation software
via preCICE.

This paper follows the suggested structure of SoftwareX: We
describe the software in detail in Section 2. This includes an
overview of the software architecture, a detailed description of
the functionality of the software, an usage example for its API, and
a brief overview of used testing approaches. We give two illustra-
tive use cases of the FEniCS–preCICE adapter in Section 3: a con-
jugate heat transfer simulation with FEniCS and OpenFOAM and a
fluid–structure interaction with FEniCS and SU2. Afterwards, we
discuss the impact of the new software in Section 4.

2. Software description

The FEniCS–preCICE adapter might be considered an unusual
research software. It is neither a stand-alone single program, nor
a library that can be used in such a program. Instead, it is a
middle–layer software between two large software packages: the
finite element library FEniCS and the coupling library preCICE.

1 A volume-coupled FEniCS example is available here: https://github.com/
recice/tutorials/pull/219.
2 A working prototype of the adapter extended to 3D scenarios can be found

n a pull request (github.com/precice/fenics-adapter/pull/133). In this prototype
very function which involves handling of vector data is now modified to handle
ither 2D or 3D data depending on the dimension of the problem. This prototype
as been tested for a 3D serial FSI scenario (see github.com/precice/tutorials/
ull/222).
3 https://mathlab.sissa.it/multiphenics.

Furthermore, a coupled simulation, by definition, consists of mul-
tiple participants, which brings even more software packages
to the table. When describing the FEniCS–preCICE adapter, it is,
therefore, essential to describe how the new software interfaces
with these other software packages. In Section 2.1, we give an
overview of the overall software architecture alongside a brief
introduction to the individual packages: preCICE, FEniCS, and the
FEniCS–preCICE adapter. Afterwards, in Section 2.2, we give de-
tailed information on the API of the FEniCS–preCICE adapter and
its functionality. A short example code in Section 2.3 completes
the software description. Last, in Section 2.4, we explain how the
new software is tested.

2.1. Software architecture

Fig. 1 gives an overview on how all software layers play to-
gether in a coupled simulation using the FEniCS–preCICE adapter.
The user provides a FEniCS application code (solver.py), which
uses FEniCS (import fenics) for solving a certain PDE model
with a finite element method. Additionally, the application code
imports the FEniCS–preCICE adapter (import fenicsprecice),
which is a Python package itself, for coupling to other simula-
tion software. The adapter imports preCICE (import precice) –
more specifically the Python bindings of preCICE. Finally, preCICE
handles the coupling to other simulation software, for example
OpenFOAM or SU2. Let us have a closer look at the individual
packages.

preCICE provides three building blocks for coupling mesh-
based PDE solvers: (1) Methods for data mapping between non-
matching meshes. (2) Fixed-point acceleration methods to sta-
bilize coupled equation systems. (3) Communication between
participants, which are separate executables, potentially running
on different nodes in a heterogeneous compute cluster. preCICE is
a library and follows a peer-to-peer coupling concept — no central
server-like entity is required. The library is written in C++, but
also offers bindings in Python generated from the C++ API with
Cython [16]. As input and output arguments, the Python bindings
use primitive Python data types as well as NumPy arrays [17].
preCICE is configured at run time through an xml file describing
a complete coupled simulation setup.4

FEniCS is a finite element Python package with an extensive
C++ implementation, which is named DOLFIN, under the hood. Its
API uses a high abstraction level. FEniCS provides functionality
and data structures for generating and managing meshes. On
top of meshes, various finite element spaces can be created.
Weak forms of arbitrary PDEs can then be defined in a very
compact notation. In Section 2.3, we give a brief code example,
which illustrates the FEniCS API. The FEniCS–preCICE adapter
has been tested and developed using FEniCS 2019.1.0. For more
information on FEniCS, we refer the reader to [4].

FEniCS–preCICE provides an API for coupling a FEniCS appli-
cation code using preCICE. This means that the FEniCS applica-
tion code calls the FEniCS–preCICE adapter, which in turn calls
preCICE. Some of the API calls of the FEniCS–preCICE adapter
are simply redirected to preCICE. For other API calls, the adapter
provides substantial functionality, for example for conversion of
data structures. We give a detailed explanation of the API of the
adapter in Section 2.2. The adapter is configured through a json
file, which describes what data is written and read by the adapter.
For simplification, currently only one read and one write data
field on a single coupling mesh is technically supported by the
adapter, whereas the preCICE API offers more flexibility. An ex-
tension in this direction is planned. Furthermore, FEniCS–preCICE

4 See https://www.precice.org/configuration-overview.html for details on
configuration of preCICE.
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Fig. 1. Overview of the software architecture. From left to right: preCICE, FEniCS–preCICE adapter, application code solver.py, and FEniCS.

as only tested with continuous Galerkin first– and second–order
inite elements, while FEniCS provides a broad range of available
inite element spaces, including higher order and discontinuous
alerkin.

.2. Software functionalities

The FEniCS–preCICE adapter uses a central Adapter object as
andle to its API. We list the important parts of the API in Fig. 2
nd describe individual member functions of Adapter step by
tep in the following. To follow all implementation details of this
ection requires some previous knowledge of FEniCS.

dapter initialization (lines 4–13). The constructor of Adapter
reates and configures the adapter object. The object is initialized
y calling initialize, where the coupling_subdomain argu-
ent is the domain boundary where data
hould be coupled. Two optional arguments exist to configure the
oupling: For one-way coupling, either a read_function_space
r a write_object must be provided — depending on whether

the participant reads or writes data. For two-way coupling, both
arguments are required.

A FEniCS FunctionSpace is provided for the
read_function_space and the write_object to provide the
coupling mesh as well as the type of function (scalar/vector,
order) to the adapter. If the user wants to provide initial write
data, a FEniCS Function can be provided as write_object.

Data access (line 15–20). The user can call write_data and
read_data to write data to or read data from preCICE,
respectively. The argument write_function provided to
write_data is a FEniCS Function, which the adapter samples
at the coupling mesh. Calling read_data returns a dict data that
contains coupling mesh points and associated data. It can be used
to directly update coupling expressions or point sources.

Coupling consistent quantities via expressions (lines 22–28). To
enforce coupling boundary conditions, we need to distinguish
two types of coupling data: quantities that require consistent
data mapping (e.g. temperature, heat flux, or force per unit vol-
ume) and quantities that require conservative data mapping (e.g.
forces). Let us first consider boundary conditions for consistent
quantities. For this case, FEniCS’ Expression has proven to be
the right tool. This object is very flexible and can be used in many
different ways — not only for boundary conditions. The FEniCS
book [4] gives many examples how to use an expression for
both, Dirichlet and Neumann boundary conditions. An essential
Dirichlet boundary condition, for instance, can be defined by

FEniCS’ DirichletBC. However, expressions can also be used
directly in the weak form, for instance for Neumann bound-
ary conditions (... + expr * v * ds) or for volume terms
(... + expr * v * dx). Here, expr is an Expression, v the
test function, and ds and dx are surface and volume integration
elements. Normally, for boundary conditions, expressions are
explicitly given as symbolic expressions.5 For coupling
boundaries, however, such a continuous representation needs
to be constructed from the nodal values given by preCICE. To
this end, the adapter provides a CouplingExpression which
inherits from FEniCS’ UserExpression. The continuous rep-
resentation is constructed using an interpolation routine fol-
lowing the approach suggested in [18], where first a polyno-
mial least-squares fit is constructed followed by a radial-basis
function interpolation. For the radial-basis function interpola-
tion, we use routines from SciPy [19]. This interpolation is not
to be confused with the data mapping that preCICE uses. An
uninitialized CouplingExpression is created and returned by
create_coupling_expression. It is initialized or updated by
calling update_coupling_expression and providing the dict
data obtained from read_data.

Coupling conservative quantities via point sources (lines 30–32).
Boundary conditions for conservative quantities can be realized
by point-wise boundary conditions [20]. To this end, FEniCS of-
fers PointSource(V, p, magnitude), which can be applied
to the equation system by PointSource.apply(rhs). Here, V
is a function space, p the coordinates where the point source
is applied, and magnitude the magnitude of the point source.
get_point_sources allows the user to obtain point sources
at the individual coupling mesh points; again, by providing the
dict data obtained from read_data. Please note that, contrary
to a CouplingExpression, which is created once and then
updated via a pointer-like access pattern, a PointSource is just
overwritten.

Checkpointing (lines 34–40). For implicit coupling (also known
as strong or tight coupling), each time step (or even multi-
ple time steps within a so-called time window) needs to be
repeated iteratively until the coupling residual drops below a
defined threshold. preCICE handles the convergence measure-
ment, the iteration control, and the acceleration of the implicit
coupling loop. The responsibility of the adapter is to provide a
mechanism to go backwards in time. This is realized by stor-
ing and retrieving checkpoints of the complete solver state. To

5 e.g., Expression(‘sin(x[0]) + cos(x[1])’)
3
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Fig. 2. API of the FEniCS-preCICE adapter (excerpt). The actual implementation is sketched, whenever it is short enough.

his end, the adapter offers methods store_checkpoint and
etrieve_checkpoint, which are designed such that a user
annot accidentally destroy or overwrite checkpoints.

teering (lines 42–43). Steering methods, which allow to control
he time and the coupling loop (advance and several others), are
ll directly forwarded to preCICE. We refer to the documentation
f the Python bindings of preCICE for details.6

arallelization. FEniCS supports distributed-memory paralleliza-
ion based on MPI:

The FEniCS–preCICE adapter directly supports this paralleliza-
ion. We want to note a few necessary implementation details. In
ost cases, the domain decomposition of FEniCS does not yield
situation where all parallel ranks are located at the coupling
oundary. Nevertheless, to allow for a single implementation
or serial and parallel cases, the adapter object is created and
nitialized on all ranks. If the domain of a rank is not connected
o the coupling boundary, the rank is considered as an inactive

6 https://github.com/precice/python-bindings.

rank from the perspective of the adapter. A further technical
challenge results from the ghost communication layers in FEniCS.
As standard for the finite element method, vertices at the domain
boundaries are duplicated on all connected ranks. However, only
one rank has the ownership of a specific vertex. At the coupling
boundary, only the rank which owns a vertex defines it as part
of the coupling mesh for preCICE. Thus, in the adapter, each rank
can only read new values from preCICE on the vertices it owns.
The reconstruction of the coupling boundary condition, however,
requires values also at non-owned vertices. To exchange these
values between ranks, the adapter uses its own communication
step after reading values from preCICE. The MPI wrapper shipped
with FEniCS cannot be used here because the communication
needs to take place after data is read from preCICE and before it
is updated in FEniCS. The current parallel implementation, how-
ever, only supports boundary conditions defined in the form of
expressions. Generating point source objects in parallel cannot be
supported due to a known problem in FEniCS.7 Additionally, the
parallelization currently only supports 2D cases. For 3D parallel
cases, nodes on the coupling interface may generally be shared
by more than two processes, which requires an extension of our
current treatment of ghost communication layers.

7 https://fenicsproject.discourse.group/t/4729.
4
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Fig. 3. Strong scaling of the example test case described in Section 2.3 with a mesh resolution of 3000 × 3000 for each participant and 10 computed time steps.
he time for the Dirichlet participant is shown on the left and the time for the Neumann participant on the right. Each participant uses #compute nodes with 28
rocesses each. The total runtime is split up into the contributions of each preCICE, FEniCS–preCICE, and FEniCS. For FEniCS–preCICE and FEniCS, we show time
pent for initialization (init) and time inside the time loop. For preCICE, however, a proper differentiation is challenging [21]. We show instead the total runtime,
hich is affected by intra-participant load imbalances of FEniCS and inter-participant load imbalances of the coupled setup. In fact, the Dirichlet participant requires
ore time per time step due to the additional computation of the heat flux. For a proper study of the performance and scalability of preCICE, we refer to the

iterature [21,22]. We observe that, while the scalability of FEniCS suffers from the still relatively small amount of unknowns, the time spent in the adapter scales
ell for both initialization and per time step and is negligible compared to FEniCS and preCICE.

Due to the pure peer-to-peer concept and fully–parallel imple-
entations of data mapping and fixed-point acceleration, preCICE

s capable of efficiently supporting parallel coupled simulations
n ten thousands of MPI ranks [21,22]. To investigate whether
he new middle layer FEniCS–preCICE introduces any detrimental
verhead, we perform a strong scaling study, shown in Fig. 3. We
bserve that the time spent in the adapter shows good scalability
nd is negligible compared to the amount of time spent in the
olver.

.3. Example: A simple coupled heat transfer solver

To complete the explanation of the software architecture and
he API in the last sections, we now show a simple but almost
omplete example application code solver.py. The example we
tudy is the time-dependent heat equation and is borrowed from
he FEniCS tutorials [23].

We define one edge of the squared domain as a Dirichlet cou-
ling boundary. Through this boundary, our example code could
e coupled to another FEniCS application code solving the time-
ependent heat equation as well, which would render the overall
roblem into a simple partitioned heat equation. Alternatively,
he coupling partner could also be a fluid solver, which would
esult in a conjugate heat transfer scenario. We show the results
f such an example in Section 3.1. The setup is illustrated in Fig. 4.
n the following, we first look briefly at the adapter configuration
nd, afterwards, we discuss the application code.

.3.1. Configuration of the adapter
Fig. 5 shows the configuration file of our example. The cou-

ling participant is named FEniCS and the associated coupling
esh FEniCSMesh. The participant reads temperature values

rom preCICE and uses them to construct a Dirichlet boundary
ondition at the coupling boundary. Finally, the participant writes
eat flux values to preCICE, which are explicitly computed as
radients of the temperature field.

.3.2. Application code

Fig. 6 shows the almost complete application code of our
xample. Let us first have a look at the FEniCS code parts. Lines
and 6 define the geometry and mesh. Afterwards, lines 9 and
0 define the (quadratic) function space as well as trial and test
unctions, which are then used in line 25 to define the weak form
f the time-dependent heat equation. For time integration, an
mplicit Euler scheme is used. Furthermore, lines 12 and 13 define

Dirichlet boundary conditions at the non-coupling boundary. The
discretized linear system is solved in every time step in line 35.

The highlighted lines show the code related to the coupling.
We import FEniCS–preCICE in line 2. Line 7 defines a subdomain
as coupling boundary. Then, lines 15 to 18 create the handle to
the adapter, initialize it with a read and write function space
used for two-way coupling, and create the Dirichlet coupling
boundary condition. In line 28, the time loop control is handed
over to preCICE. If required, data checkpoints are written in
lines 29 and 30 and read in lines 40 to 43. Temperature val-
ues are read from preCICE in line 32 and used to update the
coupling boundary condition in line 33. After solving the linear
system, heat fluxes are extracted from the new solution (using
the VectorFunctionSpace from line 11) and written to preCICE
in lines 36 and 37. Then, finally, the actual coupling is advanced.
Here, preCICE returns an upper limit for the next time step size,
which is enforced in line 34.

2.4. Testing

The complex software architecture of the FEniCS–preCICE
adapter, as introduced in Section 2.1, makes testing the software
more involved than testing most other research software. First,
the FEniCS–preCICE adapter is a middle software layer — it is
called by a FEniCS application code and calls in turn preCICE
(via its Python bindings). Second, a coupled simulation needs
at least two participants, thus at least two layered software
stacks, of which the FEniCS–preCICE adapter could be part of
one or both. Both concepts are not unusual in software engi-
neering in general. Thus, there are known techniques for testing,
such as mocking [24]. The concepts are, however, uncommon
for research codes, which typically only consist of stand-alone
executables or libraries. We apply two different approaches to
test the FEniCS–preCICE adapter.

The first approach tests the software in a complete coupled
setup. We couple two FEniCS application codes to keep the num-
ber of dependencies small. We take the example we just intro-
duced in the previous section and couple it with its counterpart
– a time-dependent heat equation with a Neumann coupling
boundary condition. We could then compare the results of this
partitioned heat equation with those of a single-domain heat
equation in FEniCS. We follow, however, an even simpler ap-
proach (similar to the FEniCS tutorials [23]): We construct a man-
ufactured solution with linear dependency in time and quadratic
dependency in space. As we use P2 finite elements and first-order
time integration, the discretization can recover the exact solu-
tion for arbitrary (coarse) space and time resolutions.8 The only

8 Refer to [25, Section 4.1] for details on the discretization.
5
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Fig. 4. Unit square Ω , where heat equation is solved by the FEniCS participant. Dirichlet boundary conditions are applied on Γ . Coupling happens on ΓC , where
another Dirichlet boundary condition is applied and heat flux is sampled to establish the coupling.

Fig. 5. Adapter configuration file precice-adapter-config.json.

emaining error component is the coupling error, which can be
ontrolled by the coupling convergence measures in every time
tep. Tightening the thresholds reduces the error until reaching
achine precision.9 In preCICE nomenclature, we call such a test,
here multiple participants and preCICE are a dependency, a
ystem test.
The second approach to test the FEniCS–preCICE adapter re-

ards the software as an isolated unit — independent of any other
oupled participant and even independent of preCICE itself. To
his end, we use a mocked up version of the Python bindings of
reCICE. This allows us to test individual functions of the adapter,
hich then call the mocked up dummy implementation instead
f preCICE itself. To illustrate the concept, Fig. 7 gives an example
n how to test the adapter function read_data. Line 2 imports
he mock object MockedPrecice. In line 4, we use patch from
nittest.mock10 to replace the real implementation of preCICE
ith the mock object. This means that in line 8 and indirectly

n line 9, not the real preCICE, but the mock object is imported.
he test can be run without preCICE being installed on the test
ystem. In line 13, we use MagicMock to define the behaviour
f the mocked preCICE function read_block_scalar_data. We
hen can test whether read_data converts to and returns the
orrect data in line 22. MagicMock also allows us to record
he arguments a mocked function receives. We, finally, use this
unctionality in line 28 to also test whether preCICE receives the
orrect input arguments from the adapter.

9 Case is provided under https://github.com/precice/tutorials/tree/v202104.1.
/partitioned-heat-conduction.
10 https://docs.python.org/3/library/unittest.mock.html.

3. Illustrative examples

We give two examples to showcase how the FEniCS–preCICE
adapter can be used in practice. First, in Section 3.1, a heat con-
duction solver in FEniCS is coupled to an OpenFOAM fluid solver
for conjugate heat transfer (CHT). Afterwards, in Section 3.2, a
linear elasticity solver in FEniCS is coupled to an SU2 fluid solver
for fluid–structure interaction (FSI). We deliberately pick two
different applications of FEniCS (heat transfer and structural me-
chanics) and two different coupling partners (OpenFOAM, SU2) to
show the wide applicability of the new adapter. For both setups,
we use simple geometries. These geometrical setups are offered
as preCICE tutorials for many different participant combinations
(FEniCS, OpenFOAM, SU2, deal.II, Nutils, code_aster, CalculiX).
FEniCS–preCICE adapter release v1.2.011 with preCICE release
v2.2.012 and the Python bindings release v2.2.0.213 is used in
these examples. All software that is needed for the examples
presented below is part of the preCICE distribution v202104.1.014
– except the FEniCS–preCICE adapter v1.2.0.

3.1. Conjugate heat transfer with FEniCS and OpenFOAM

As a simple CHT test case, we consider a flow over a heated
plate15 inspired by [26]. Fig. 8(a) sketches the domain and lists

11 https://github.com/precice/fenics-adapter/releases/tag/v1.2.0
12 https://github.com/precice/precice/releases/tag/v2.2.0
13 https://github.com/precice/python-bindings/releases/tag/v2.2.0.2
14 https://github.com/precice/vm/releases/tag/v202104.1.0
15 https://github.com/precice/tutorials/tree/v202104.1.1/flow-over-heated-
plate.
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O
a

Fig. 6. Coupled heat equation FEniCS application code. The calls to FEniCS–preCICE are highlighted, while the remaining lines represent a simplified version of the
original heat equation example from the FEniCS tutorials [23].

all physical parameters. Heat conduction in the plate in the
lower part of the domain is simulated with FEniCS, using a very
similar application code as already explained in Section 2.3. On
top of the plate, we simulate a fluid flow from left to right
with the OpenFOAM [5,6] solver buoyantPimpleFoam. To couple
penFOAM, we make use of the OpenFOAM-preCICE
dapter16 [27]. We use a Dirichlet–Neumann coupling: The solid

participant (FEniCS) receives temperature values from the fluid
participant and uses them as Dirichlet boundary condition at
the coupling interface. The fluid participant (OpenFOAM) receives
heat flux values from the solid participant and uses them as
Neumann boundary condition. For the Dirichlet boundary con-
dition in FEniCS, we use a FEniCS expression as described in
Section 2.2. To map coupling data between non-matching meshes
at the coupling interface, we use a nearest-neighbour mapping
(in preCICE). Fig. 8(b) shows the temperature distribution of the
coupled simulation after approaching steady-state. To verify our

16 https://github.com/precice/openfoam-adapter/releases/tag/v1.0.0.

results, we compare the OpenFOAM-FEniCS coupling to an al-
ready existing OpenFOAM-OpenFOAM coupling. For comparable
mesh resolutions, the results match very well, see Fig. 8(c).

3.2. Fluid–structure interaction with FEniCS and SU2

As a simple FSI test case, we consider a wall-mounted elastic
flap in a channel flow.17 Fig. 9(a) sketches the domain and lists
all physical parameters. To simulate the elastic flap, we use a
linear elasticity code in FEniCS, which was developed in the
Bachelor’s thesis of Richard Hertrich [20] following an example
from [28]. In the fluid domain, we use the compressible Euler
solver of SU2 [7]. To couple SU2, we make use of the SU2-preCICE
adapter18 [29]. We again use a Dirichlet–Neumann coupling: The
fluid participant (SU2) receives displacement values from the
solid participant, computes velocity values from the displacement

17 https://github.com/precice/tutorials/tree/v202104.1.1/perpendicular-flap.
18 https://github.com/precice/su2-adapter/tree/ab84387.
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Fig. 7. Testing the individual function read_data of the FEniCS–preCICE adapter with a mocked preCICE implementation.

alues, and uses the velocity values as Dirichlet boundary con-
ition at the coupling interface. The solid participant (FEniCS)
eceives force values from the fluid participant and uses them
s Neumann boundary condition. For the Neumann boundary
ondition in FEniCS, we now use point sources, as described in
ection 2.2. To map coupling data between non-matching meshes
t the coupling interface, we again use a nearest-neighbour map-
ing (in preCICE). Fig. 9(b) shows the fluid velocity at maximum
eformation of the beam. To verify our results, we compare the
U2-FEniCS coupling to an already existing SU2-deal.II coupling.
e use deal.II v9.2 [30] and the preCICE-deal.II adapter.19 For

omparable mesh resolutions, the results match once again very
ell, see Fig. 9(c).

. Impact

The FEniCS–preCICE adapter enables the coupling of existing
EniCS application codes to other simulation software in only a
ew lines of code. In particular, this holds for simulation software
or which preCICE adapters already exist such as OpenFOAM, SU2,
r deal.II. Application scientists can now focus on coupled prob-
ems from the physical perspective and let the FEniCS–preCICE
dapter handle the technical aspects: converting mesh and data
tructures, handling coupling conditions, or checkpointing for
mplicit coupling.

The increase in opportunities works in both directions: Not
nly existing FEniCS users can now easily connect to the preCICE
ommunity and other simulation software, but also other com-
unities (e.g., the large OpenFOAM community) can now directly
enefit from FEniCS.
We want to illustrate the range of opportunities with three

xamples:

• Within the collaborative research centre 1313 at University
of Stuttgart [31] several porous media applications are
studied, such as the hydromechanical coupling of fractures

19 https://github.com/precice/dealii-adapter/tree/685508e.

and porous media. The current implementation is based
on FEniCS and preCICE [32], as it lowers the implementa-
tion hurdles compared to previous implementations based
on DUNE [33]. Furthermore, basing the implementation on
FEniCS and preCICE immediately enables parallel comput-
ing capabilities. The current realization, however, uses the
preCICE API directly from the application code. Using the
new FEniCS–preCICE adapter instead will lead to a more
idiomatic incorporation of preCICE into the coupled FEniCS
codes, allowing the researchers to rather focus on the imple-
mentation and evaluation of their models than the coupling
itself. Some extensions of the adapter will be necessary,
however, to tackle mixed-dimensional problems as they
appear in hydromechanical coupling simulations.

• Together with researchers from Helmholtz-Zentrum
Geesthacht and HSU Hamburg, we are currently investi-
gating the coupling of electro-chemistry models to fracture
mechanics to simulate corrosion.20 For both fields, promis-
ing models [34] or codes in FEniCS [35] exist. In contrast to
both examples in Section 3, a volume coupling will be neces-
sary. However, since the adapter treats coupling conditions
as general FEniCS Expressions volume coupling is already
supported by the adapter.

• The layered design created by the FEniCS–preCICE adapter
makes it also possible to easily prototype and test new
numerical coupling algorithms, such as quasi-Newton wave-
form iteration in [25]. Here, an additional layer between
the adapter and preCICE was used to implement and test
a waveform data structure separately.

In view of the rapid growth of the preCICE community and
the popularity of FEniCS, we expect significant interest in the
adapter in the next years. At this point in time (September 2021),
preCICE is used by more than 100 research groups,21 spread over
academia, non-academic research centres, and industry.

20 A prototype implementation is available at https://github.com/uekerman/
Coupled-Brittle-Fracture.
21 Some preCICE users wrote testimonials on https://www.precice.org.
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Fig. 8. Conjugate heat transfer testcase.

. Conclusions

The new software FEniCS–preCICE allows the coupling of
EniCS application codes to other simulation software via preCICE.
ur motivation was to make such external coupling as easy as
ossible for existing FEniCS users. To this end, we hid techni-
al coupling complexity, such as parallel data structures, data
onversion, or checkpointing, within the new middle software
ayer. We were able to implement FEniCS–preCICE as a library
nd to follow a FEniCS-native style. This allows users of FEniCS
o couple existing FEniCS application codes to other simulation
oftware by only adding a few easy-to-understand lines of code.
e illustrated the potential by coupling 2D FEniCS application

odes to OpenFOAM and SU2 to simulate conjugate heat transfer
nd fluid–structure interaction problems. The design of the new
oftware already envisions future extensions to other coupled
roblems. Current work in preCICE itself targets mesh-particle
oupling. The current version of FEniCS–preCICE should already
llow us to carry this functionality over to FEniCS once released
n preCICE. The impact of the new software should be significant.
e already mentioned two projects that plan to use the software

n the future: coupling fracture mechanics to porous media flow
nd coupling fracture mechanics to electro-chemistry models.
EniCS itself is currently undergoing a major redesign named
OLFIN-X. Initial investigation showed that it should be possible
o easily port FEniCS–preCICE to DOLFIN-X, which we want to
ealize in future work.
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