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A B S T R A C T   

Study region: The Kaidu River Basin (KRB) is located on the central southern slope of the Tianshan 
Mountain in Northwest China. 
Study focus: This work aimed to assess changes and main drivers of snowmelt-driven runoff in 
KRB associated with three future climate scenarios. Six versions of the "Cemaneige" snowmelt 
module embedded in the hydrological model "GR4J" were calibrated and evaluated. The bias- 
corrected climate datasets from CMIP5 Models were used to drive the optimal snowmelt- 
hydrological model for runoff prediction. The factors that lead to runoff variations were also 
assessed. 
New hydrological insights: The significant declining trends of runoff were only predicted in the 
RCP4.5 and RCP8.5 scenarios. The declining trends of runoff were found in all the seasons. For 
the annual and summer runoff, compared to the historical period, both the RCP2.6 and RCP 4.5 
periods showed a decline in the mid-century and a rise in the end-century; however, RCP8.5 
showed a continuous decline during this period. Precipitation and evapotranspiration were 
ranked as the two most important factors regulating future runoff variations in all RCPs. In 
contrast, snowmelt timing is the second factor in the historical period, and its importance de-
creases in the warmer RCP scenarios. These results highlighted that the importance of snowmelt 
and snowmelt timing to the future runoff depends on the runoff responses to the trajectory of 
future changes in temperature and precipitation.   

1. Introduction 

Climate change may affect the atmospheric and surface radiation budget and thus alter variabilities of the global hydrological 
cycle, potentially increasing the risk of hydrological hazards (Pachauri et al., 2014; Alfieri et al., 2015). In addition, continuous global 
warming will likely redistribute precipitation and water resources between regions according to climate, topography, land cover type, 
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and human management of water resources (Chen (2014). As an essential component in the hydrological cycle, runoff may respond to 
climate change via its impact on water resource availability and distribution (Yuan et al., 2015; Azmat et al., 2018; 
Jahandideh-Tehrani et al., 2019). Experimental data-based evidence has demonstrated that global warming may intensify the global 
hydrological cycle, leading to an increase in global continental runoff (Labat et al., 2004). Floods in many tributary regions, like the 
Tarim River Basin, were found amplified at annual and seasonal scales after the 1980s, and their amplification was associated with the 
occurrence of rainstorms, glacier- and snowmelt, and climatic warming (Zhang et al., 2016a, 2016b; Gu et al., 2016, 2017; Sun et al., 
2016). Therefore, the assessment of seasonal and inter-annual variations of runoff under climate change is vital for water resources 
provision that sustains ecosystem function and services and human social-economic developments (Deng et al., 2015; Zhu et al., 2017; 
Pradhanang et al., 2013). 

Snowmelt is one of the primary sources of river runoff in the alpine regions. A robust estimate of snowmelt-driven runoff is critical 
to alpine flood forecasting, drought control, and other aspects associated with water resource planning (Zhang et al., 2006; Coppola 
et al., 2018). As warmer spring may lead to earlier snowmelt, a combination of snowmelt and extreme precipitation can easily cause 
flooding (Sun et al., 2018; Zhang et al., 2006). Therefore, snowmelt-driven runoff is particularly sensitive to climate change (Kund-
zewicz et al., 2015; Zhang et al., 2014a, 2014b). The challenge in predicting snowmelt-driven runoff is to understand the underlying 
causes of snowmelt and its relationship with the catchment water balance (Mccabe and Clark, 2005; Zampieri et al., 2015). Dahri et al. 
(2021) employed the Variable Infiltration Capacity (VIC) macroscale Hydrologic Model to simulate runoff based on snowmelt and 
precipitation in the high-altitude Indus River Basin. They pointed out that the improvement of input temperature and precipitation 
data is critical to obtaining robust simulations. As temperature is one of the controlling factors that determine the timing and 
magnitude of snowmelt and runoff (Zhang et al., 2006; Zhang et al., 2016; Fang et al., 2018), the degree-day model based on the 
temperature threshold, degree-day factor, and radiation coefficient could get comparable accuracies as energy balance models for 
simulating snowmelt but with less demand of input data (Liu et al., 2017; Troin et al., 2018). The GR4J model, a daily lumped 
rainfall-runoff model, has been widely applied to simulate catchment hydrology due to its simple four-parameter structure. Compared 
to the GR3J model, the GR4J model showed improved performance, particularly in simulating low flows (Edijatno et al. 1999; Perrin 
et al. 2003). Valéry et al. (2014a, 2014b) presented a comparison of six snowmelt models associated with two hydrological models, 
GR4J and HBV, and concluded that the most complex model did not yield the best performance in simulating runoff. Many snowmelt 
models, such as Cemaneige (Valéry et al., 2010), MOHYSE (Fortin and Turcotte, 2007), HYDROTEL (Turcotte et al., 2007), etc., have 
been developed to explore the relationship between snowmelt and runoff. 

Climate change may cause significant impacts on water flow and water resources in the arid and semi-arid regions in Northwest 
China (Sun et al., 2015; Bao et al., 2017; Santos et al., 2019). The Tianshan Mountain, known as the water tower of Central Asia, is an 
important freshwater resource in China and a major source of rivers in Northwest China (Chen et al., 2016; Sorg et al., 2012; Wang 
et al., 2019). The Kaidu River Basin, one of four headwaters of the Tarim River Basin, is located on the southern slope of Tianshan 
Mountain and connects the Bayanbulak Swan Lake and finally flows into the Bosten Lake. The Kaidu River bears the important task of 
water transport to the lower reaches of the Tarim River (Chen et al., 2017). However, runoff of the four river basins that are situated in 
the south of Tianshan Mountain showed distinct responses to precipitation and temperature. Runoff in the Kaidu River Basin and the 
Huangshuigou Basin was co-regulated by both precipitation and temperature, which, however, were the dominant factor for regulating 
runoff in the Toxkon Basin and Kunmalik Basin, respectively. Shen et al. (2018) and Luo et al. (2017) have found that river streamflow 
was more sensitive to temperature change than precipitation change in Hotan River Basin, and the model structure strongly affected 
the hydrological response of climate change. 

Robust projection of hydrological responses can help achieve sustainable social-economic development. An effective climate 
change adaptation strategy can be discovered by predicting runoff under future climate warming scenarios associated with different 
Representative Concentration Pathways (RCPs). Climate scenario projections are often used to drive hydrological models to quantify 
the future climate change impact on the watershed runoff. In this study, we aim to estimate future changes in seasonal and inter-annual 
runoff under the 21st century RCP scenarios and investigate the principal climate factors that regulate the trends and variability of 
runoff based on an optimized snowmelt-streamflow model. Four climate models from Phase 2b of The Inter-Sectoral Impact Model 
Intercomparison Project (ISIMIP2b; Frieler et al., 2017) were selected, and these climate projections have been bias-corrected using 
historical observational datasets. We chose three RCP scenarios to predict future runoff: RCP2.6, controlling global average tem-
perature rise below 2 ℃; RCP4.5, forcing the climate system with steady radiation artificially; and RCP8.5, which has no climate 
change policy (van Vuuren et al., 2011; Thomson et al., 2011; Riahi et al., 2011). Accordingly, this study mainly addresses the 
following research questions: (a) How can we improve a combined snowmelt and streamflow model to simulate runoff of the Kaidu 
River Basin? (b) What are the impacts of three RCP scenarios on inter-annual and seasonal variations of runoff? (c) What are the major 
climate-related factors that control the trend and variability of future runoff, and how does their relative importance vary across 
different RCP scenarios? 

2. Materials and methods 

2.1. Study Area 

The Kaidu River Basin is situated on the central southern slope of the Tianshan Mountain in Northwest China, bordering the Tarim 
Basin in the south. The entire river basin is enclosed between a longitude of 82◦58′ − 86◦05′E and a latitude of 42◦14′− 43◦21′N, 
comprising an area of 19,012 km2 above the Dashankou Hydrological Station (Fig. 1). The elevation for the bottom of the basin ranges 
from 2304 to 2565 m above sea level. The terrain is flat, surrounded by mountains with an altitude of 3928–4794 m. As the basin is 
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located in the hinterland of The Eurasian continent, far from the sea, close to the Taklamakan Desert, its climate type is continental 
temperate arid. However, due to its topographical characteristics, compared with the surrounding areas, the temperature is lower, and 
the precipitation is higher in the basin. The annual mean temperature is − 1.82 ± 0.61 ℃, and the annual total precipitation is 328.8 ±
31 mm during 1961–2005. Precipitation shows a distinct seasonal pattern with spring of 44.7 mm and summer of 127.1 mm. The 
runoff of the Kaidu River comes from snow- and icemelt and rainfall. The accumulation of snow begins in November and ends in March 
of the following year. With the increase of temperature in April and May, seasonal snowmelt supplies rivers. The snowmelt-induced 
floods are commonly found in this region, such as the spring flood on April 24, 2011, exceeding the summer flood. In summer, the 
mountain snowmelt and rainfall are the main sources of the river. 

2.2. Data sources 

2.2.1. Meteorological and hydrological data sets for model calibration 
To calibrate the hydrological model, the meteorological and hydrological observation data sets were used. The daily precipitation 

and temperature observations during 1961–2011 used the CN05.1 gridded observation data set with a resolution of 0.25◦ × 0.25◦. This 
dataset was generated by interpolating the field data at more than 2400 stations across China using the approaches of ANUSPLIN (the 
Australian National University Spline) and ADW (Angular Distance Weighting), respectively (Wu and Gao, 2013). Because the basin 
was divided into three sub-basins through Archydro Tools in ArcGIS and two meteorological stations in the basin could not meet the 
data needs of the three sub-basins, we decided to use the CN05.1 gridded data set as the model climate input. The daily radiation used 
the net radiation data set from the NASA Global Land Data Assessment System (GLADS)− 2.0 dataset (https://disc.gsfc.nasa.gov), 
which was estimated from cloud and snow product combined with the algorithm by the Air Force Weather Agency AGRicultural 
METeorological modeling system (AGRMET). The hydrological data used the daily observed runoff data of the Dashankou Hydro-
logical Station from 2005 to 2011, located at the outlet of the basin (Fig. 1). 

2.2.2. Climate scenario data sets 
Historical (1961–2005) and future (2006–2099) climate scenario data sets at daily temporal and 0.5◦ horizontal resolution from the 

Inter-Sectoral Impact Model Intercomparison Project project (ISIMIP2b) (Frieler et al., 2017) were used to run scenario simulations 
based on the optimized model. These climate scenario data sets consist of the Coupled Model Intercomparison Project (CMIP-5; Taylor 

Fig. 1. Location of the Kaidu River Basin in Xinjiang, China. The black dots show the grid point extracted from the climate observation dataset 
(CN05.1; Wu and Gao, 2013), and the green dot indicates the Dashankou hydrological station. 
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et al., 2012) outputs from four Global Climate Models (GDFL-ESM2M, HADGEM2-ES, IPSL-CM5A-LR, MIROC5, shortened as GDFL, 
HADGEM2, IPSL, MIROC5) for low-to-high warming scenarios, i.e., the Representative Concentration Pathway (RCP) 2.6, RCP4.5, and 
RCP8.5 (Moss et al., 2010). Even though only four GCMSs may not be sufficient to represent the entire spread of regional climate 
change projected by the CMIP5 ensemble, we still note that for the China region, only one CMIP5 model projection is out of the range 
spanning across the four GCMs we selected (Frieler et al., 2017). To ensure the ISIMIP2b historical climate data sets consistent with the 
CN05.1 data set in the trends and variabilities of temperature and precipitation, a bias correction (see Section 2.4) for temperature and 
precipitation based on the CN05.1 data set was done for the ISIMIP2b historical climate datasets for the study area. 

2.3. Runoff simulation 

The hydrological model GR4J and the snowmelt module Cemaneige have been successfully applied to simulate runoff in moun-
tainous areas, which can meet the needs of our study (Valéry et al., (2010; Troin et al., 2018; Arsenault et al. (2018. A brief description 
of the snowmelt module Cemaneige and the hydrological model GR4J model are given below. 

2.3.1. Snowmelt module 
The Cemaneige module simulates snow accumulation and melts using a snowpack to represent snow storage (snow water 

equivalent) and the thermal state of the snow. The snow storage can be added with the solid fraction of the precipitation. The thermal 
state of the snowpack determines the onset of the snowmelt. After calculation of the snow storage and thermal state, the potential 
snowmelt can be determined using the degree-day method. Finally, the actual snowmelt is the multiplication of the areal fraction of 
snow cover and the potential snowmelt. 

Two critical hydrological processes related to snowmelt, rain/snow division, and snowmelt computation, were tested in this study 
to get a robust simulation of snowmelt runoff. As there are two different functions of rain/snow division and three different methods of 
snowmelt computation available in the Cemaneige module, six combinations of these functions (Table 1) had been coupled into the 
hydrological model to identify the optimized model, which was used in the future projection of snowmelt runoff. 

2.3.1.1. Rain/snow division functions. Both single temperature threshold (Yang et al., 1997) and double temperature threshold 
(Wigmosta et al. (1994; Fuchs et al., 2001) functions are considered. The equations for these functions are as follows:  

a) Single threshold function(STT) 

Sp =

{
1 Tmean ≤ T0
0 T0 ≤ Tmean

}

(1)  

where Sp is the percentage of solids in precipitation, T0 is a threshold temperature value (◦C), and Tmean is the mean air temperature 
(◦C).  

b) Double threshold function(DTT) 

Sp =

⎧
⎨

⎩

1 Tmean ≤ Tsnow
(Tmean-Tsnow)/(Train-Tsnow) Tsnow ≤ Tmean ≤ Train

0 Train ≤ Tmean

⎫
⎬

⎭
(2)  

where Tsnow is the lower threshold temperature value (◦C), and Train is the higher threshold temperature value (◦C). 

2.3.1.2. Snow accumulation 
G = G+P × Sp (3)  

eTG = CTg × eTG +(1 − CTg) × Tmean (4) 

where G is the snow accumulation (mm); CTg is the thermal state factor for snow cover; P is precipitation (mm) and eTG is the 
thermal state of the snowpack (◦C). 

Table 1 
Differences in methods and climate input in six versions of the Cemaneige module.  

Version of Cemaneige Rain/snow deviation Snowmelt computation Input variablesa 

M1 Double threshold function Temperature exponential function T,P 
M2 Double threshold function Seasonal snow melting factor T,P 
M3 Double threshold function Temperature & radiation function T,P,R 
M4 Single threshold function Temperature exponential function T,P 
M5 Single threshold function Seasonal snow melting factor T,P 
M6 Single threshold function Temperature & radiation function T,P,R  

a T – temperature, P – Precipitation and R – net Radiation 
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2.3.1.3. Snowmelt computation methods. Three snowmelt computation methods, temperature exponential function (Valéry et al., 
2014b), seasonal snow melting factor (Wang and Melesse, 2005), and temperature & radiation function, were employed for snowmelt 
computation.  

a) Temperature exponential function 

PSNOWMELT = θG1 × Tmean if eTG = 0 and Tmean > 0  

SNOWMELT = 0 otherwise (5)  

where PSNOWMELT is the potential snowmelt (mm⋅d− 1).  
b) Seasonal snow melting factor 

θG1 =
SMFMX + SMFMN

2
+

SMFMX-SMFMN
2

× sin
[

2Π
365

(doy-106)
]

(6)  

PSNOWMELT = θG1 × Tmean if eTG = 0 and Tmean > 0  

PSNOWMELT = 0 otherwise (7)  

where SMFMX represents the maximum snow melting factors (mm⋅d− 1⋅℃− 1) on July 16; SMFMN represents the minimum snow 
melting factors (mm⋅d− 1⋅℃− 1) on January 15 and doy is the ordinal number of days in a year.  

c) Temperature & radiation function 

PSNOWMELT = θG1 × Tmean + RF × NetRad if eTG = 0 and Tmean > 0  

PSNOWMELT = 0 otherwise (8)  

where RF is the radiation factor (m2⋅W− 1⋅d− 1⋅℃− 1) and NetRad represent the net radiation(W⋅m− 2). 

2.3.1.4. Snow-cover accumulation 

Snow covered area =
G

Gthreshold
if G < Gthreshold  

Snow covered area = 1 otherwise (9) 

where Snow covered area is the percentage of the snow cover and Gthreshold is the maximum of the snow accumulation. 
More details (e.g., actual snowmelt computation and snowpack updating) of CemaNeige snowmelt modules can be referred to 

Valéry et al. (2014a, b). In this study, we only focus on the description of six versions of the Cemaneigh modules. 

2.3.2. Potential evapotranspiration method 
The potential evapotranspiration was estimated using the Oudin formulas based on extraterrestrial radiation (Oudin et al., 2005). 

The Oudin formula is expressed as 

ETP =
Re × (Tmean + 5)

λ × ρ × 100
if Tmean + 5 > 0  

ETP = 0 otherwise (10)  

where ETP is the potential evapotranspiration (mm⋅d− 1), Re is the extraterrestrial radiation (MJ⋅m− 2) calculated in detail by Morton 
(1983), λ is the latent heat flux (MJ⋅m− 2), and ρ is the water density (kg⋅m− 3). 

2.3.3. Hydrological model 
The modèle du Génie Ruralà 4 paramètres Journalier (GR4J) is a daily-scaled, lumped, conceptual rainfall-runoff model with four 

parameters (Perrin et al., 2003). In this study, it has been amended to a semi-distributed model to cooperate with the snowmelt model. 
The GR4J model employs a production store and a routing store to calculate the daily streamflow generated by precipitation. Model 
input requires precipitation data and temperature data. The GR4J model cooperates with the Cemaneige model and performs pretty 
well in the daily streamflow simulation over many watersheds (Poissant et al., 2017; Troin et al., 2015; Velázquez et al., 2015; Zeng 
et al., 2019). Several hydrological model parameters are listed in Table 2, including GR4J and six versions of Cemaneige parameters. 

2.4. Model calibration 

The Shuffled Complex Evolution (SCE-UA) algorithm was applied to constrain the model parameters (Duan et al., 1994; Duan, 
2021). The SCE-UA algorithm has been widely used in hydrological modeling for global optimization of parameters, and it has 
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integrated deterministic search strategies and random element sampling approaches (Rahnamay Naeini et al., 2019). We carried out a 
10,000 multi-run and set the runoff as the single objective variable in our application. The simulation with the highest King-Gupta 
Efficiency (KGE) value in the multi-runs was used to identify the optimal parameterization in each model. We have put 2005–2008 
as the calibration period and 2009–2011 as the validation period. The performance of each optimized model in simulating runoff for 
2005–2008 is shown in Fig. S1. 

To validate the model, we selected three metrics to evaluate the performance of the six optimized models identified in the model 
calibration. These metrics include KGE, Percentage Bias (PBIAS), Nash-Sutcliff Efficiency (NSE). The KGE metric with statistical nature 
comprehensively measure model performance from three aspects (i.e., correlation, variability bias, and mean bias). The correlation 
component represents the hydrological aspects of the model, such as peak flow times. The closer KGE is to 1, the better the model 
performance is obtained (Gupta et al.,2009; Knoben et al.,2019). PBIAS measures the average of simulated sequences (Moriasi et al., 
2007). PBIAS= 0 indicates no bias, and the value below/above 0 ℃ indicates an underestimation/overestimation of the model. NSE 
matric reflects the similarity between observed and simulated runoff (Nash and Sutcliffe, 1970). NSE= 0 indicates the simulation 
corresponds to the observed mean runoff, and NSE= 1 indicates the simulated runoff has perfect performance. 

The formulas for the calculation of KGE, PBIAS, and NSE are listed as follows: 

KGE = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(
r
(
Qobs,Qsim

)
− 1

)2
+

(
μ
(
Qobs

)

μ
(
Qsim

) − 1

)2

+

(
σ
(
Qobs

)

σ
(
Qsim

) − 1

)2
√
√
√
√ (11)  

PBIAS =

∑T
t=1Qsim

t
∑T

t=1Qobs
t

− 1 (12)  

NSE = 1 −
∑T

t=1

(
Qobs

t − Qsim
t

)2

∑T
t=1

(
Qobs

t − Qobs
avg

)2 (13) 

In Eq. (11), Qobs and Qsim are the observed and simulated runoff series, r
(
Qobs,Qsim

)
is the Person correlation coefficient between the 

observed and simulated runoff series, μ
(
Qobs

)
and μ

(
Qsim

)
are the average of the observed and simulated runoff series, σ

(
Qobs

)
and 

σ
(
Qsim

)
are the standard deviation of the observed and simulated runoff series; In Eqs. (12) and (13), Qsim

t and Qobs
t are the observed and 

simulated runoff at time t, T is the number of runoff samples. 

2.5. climate bias-correction 

To make historical baseline conditions of GCM data be in line with the observation data sets, a linear-scaling approach with 
multiplication and addition (Lenderink et al., 2007) was applied to precipitation and temperature, respectively, for their time series of 
1961–2005. The linear-scaling approach is formulated as follows: 

Padj
t = Pori

t ×
Pobs

avg

Pori
avg

(14)  

Tadj
t = Tori

t +(Tobs
avg − Tori

avg) (15)  

where Padj
t and Pori

t are the adjusted and original precipitation series of GCM data, Tadj
t and Tori

t are the adjusted and original tem-
perature series of GCM data. 

To evaluate how well the GCM dataset have been bias-corrected, another three indices (i.e., coefficient of determination (R2), root 
mean square deviation (RMSD), and bias) were calculated based on the individual GCM dataset or mean of the multi-model ensemble 
(MME) and the CN05.1 data for the historical period (1961–2005). R2 reflects the fitting degree between the GCM dataset and 

Table 2 
Description of model parameters in the hydrological model.  

Parameters Description Unit Sampling range 

Lower bound Upper bound 

x1 The capacity of production storage mm  1  750 
x2 Groundwater exchange coefficient mm/d  -10  10 
x3 The capacity of routing storage mm  1  400 
x4 Routing time of unit hydrograph Days  0.5  10 
θG1 Degree factor for snowmelt mm⋅d− 1⋅◦C− 1  0  10 
CTg Thermal state factor for snow cover non-dimensional  0  1 
SMFMX Maximum snow melting factors mm⋅d− 1⋅◦C− 1  0  10 
SMFMN Minimum snow melting factors mm⋅d− 1⋅◦C− 1  0  10 
RF Radiation factor m2⋅mm⋅W− 1⋅d− 1⋅◦C-1  0  1  
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observations; RMSD quantifies the dispersion between the GCM dataset and observations; Bias reflects the GCM dataset overestimation 
and underestimation relative to observations. These indices are formulated as follows: 

R2 = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Mi − Oi)
2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
Oi − Oavg

)2
√ (16)  

RMSD =

[
1
n

∑n

i=1
(Mi − Oi)

2

]1
2

(17)  

Bias = Mavg − Oavg (18) 

In Eqs. (16) - (18), Mi and Oi are the GCM dataset and observation respectively，Mavg and Oavg are the average of the GCM dataset 
and observation, respectively, and n is the number of samples. 

2.6. Center of mass date for snowmelt 

The center of mass date (CMD) was used to estimate the impact of climate change on the timing of snowmelt when 50% of the total 
annual snowmelt occurred. This method was used in previous studies to calculate the time center of snowmelt runoff. The annual 
snowmelt centers are calculated as follows: 

CMD =

∑T
i=1(SMiti)
∑T

i=1ti
(19)  

where ti represents the number of days in a year and SMi represents the snowmelt on the corresponding date. 

2.7. Relative importance of dominant factors 

To identify the dominant factors that regulate the inter-annual variations of runoff in the future plausible climate change scenarios, 
we used a random forest algorithm from the Statistics and Machine Learning Toolbox of Matlab (Loh, 2002) to assess the relative 
importance of predictive factors that can explain the variance of runoff. This analysis selected temperature, precipitation, evapo-
transpiration, snowmelt, and snowmelt timing as the predictive factors. The daily streamflow was the response factor. The tree-based 
methods construct hierarchical binary decision trees, which can avoid model over-fitting. Predictor importance is estimated by 
computing the out-of-bag accuracy before and after permutation, and the accuracy differences mean the influence of a predictor 
variable on the response variable (Nicodemus et al., 2010). The average of accuracy changes of all trees represents the final importance 
scores—the importance of the variable increases with the value of this measure. The split predictor at each node is specified using an 
interaction-curvature test to grow unbiased trees, and the total dataset was used to train a regression tree. The workflows of the entire 
study are illustrated in the schematic diagram (Fig. 2). 

Fig. 2. A diagram to illustrate the analysis workflow for this study.  
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3. Results 

3.1. Validation of daily runoff simulation 

The performances of the hydrological model with six different snowmelt modules in simulating runoff were validated based on 
three indices (i.e., KGE, PBIAS, and NSE) during the period (2009–2011) (Fig. 3). For KGE values, all six models showed reasonable 
simulations with the values of KGE ranging from 0.62 to 0.73. However, both M1 (the version with single threshold function and 
temperature exponential function, as shown in Table 1) and M5 (the version with Double threshold function and Seasonal variation 
degree factor, as shown in Table 1) showed relatively lower PBIAS values: 2.64% (M1) and 4.96% (M5). Besides, M5 also had the 
highest NSE value (NSE=0.58) and thus was selected to project runoff in the future. 

The seasonal variations of daily runoff for the model simulations and observations during 2009–2011 were illustrated (Fig. 4). The 
calibrated models can generally capture seasonal variations of the runoff, particularly for the hydrological responses to summer and 
autumn rainfall. However, the models also showed larger deviations from the observed runoff during the early snowmelt period. The 
snowmelt period in the Kaidu River Basin often starts from April to May. As temperature rises, snowmelt runoff increases, and spring 
floods may occur. The discrepancy between simulations and observations was more evident in 2010 and 2011, during which the larger 
snowmelt-induced peaks were observed than that in previous years. For the timing of spring flood arrivals, the model with either the 
STT or DTT method can efficiently simulate it. However, when it comes to the larger spring floods, like 2010 and 2011, all the 
snowmelt models showed less efficiency in capturing the magnitude of floods than their performance in the calibration period (Fig. S1 
and Fig. 4). 

Among the six models, the M5 snowmelt model simulated a relatively better variation of spring runoff than other models in 2010. 
However, it also overestimated the magnitude of the first runoff peak as many other models. As the M5 snowmelt model used a degree- 
day factor accounting for the day number of the year, it can better represent the effects of seasonal variations in the solar radiation on 
snowmelt. The albedo of the snow also has a seasonal variation because fresh snow is commonly found in the mid-winter, and aged 
snow is found in the late winter and spring. 

The possible reasons to explain the model’s inefficiency in capturing the magnitude of spring runoff peaks can be (1) the reliabilities 
of snowfall measurements; (2) large variabilities of spring temperature, which may cause several rapid snow melting or refreezing 
events; (3) the spatial effects (for instance, the topography of catchment and alpine snow distribution) on the catchment snowmelt 
during the occurrence of larger spring floods, which can be a major challenge for these temperature index-based models to simulate the 
magnitude of spring floods. 

3.2. Bias-correction evaluation for precipitation and temperature 

Before running scenario simulations with the optimal hydrological model, four GCMs data were bias-corrected based on the 
observational data set. Three indices were used to assess the bias-corrected precipitation and temperature in each GCM dataset and 
MME against the CN05.1 dataset for the historical period (1961–2005) (Table 3). The mean bias between simulated precipitation and 
temperature and observed data was basically eliminated through the linear-scaling approach. It is evident that the bias correction 
improved both R2 and RMSD. After correction, the R2 and RMSE value of MME is 0.60, 0.56 for precipitation while 0.94, 3.27 for 
temperature, respectively. Moreover, MME showed better performance than individual GCM in Table 3, with the results of the 

Fig. 3. Parameter results of six versions during validation. The angle represents KGE, and radius represents NSE; marker size reflects PBIAS.  
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correction analysis shown in Fig. S2. 
The inter-annual variations also indicated that the adjusted data of four GCMs could capture the magnitude and variabilities of 

precipitation and temperature in the study area. In contrast, MME had better performance than the individual model during the 
historical period (1961–2005) (Fig. 5). 

3.3. Snowmelt-driven Runoff under climate change 

The results of hydrological simulation under three different RCPs (RCP2.6, RCP4.5, and RCP8.5) with input data from four GCMs 
were studied in order to explore the variations of runoff in the future periods. We mainly focused on the results based on the ensemble 
mean of simulations. The changes in future runoff were analyzed during mid-century (2036–2065) and the end-century (2070–2099) 

Fig. 4. Runoff simulated by the hydrological model with six versions of snowmelt modules (M1-M6) for the Kaidu River Basin during the calibration 
period (2009–2011). The two sub-graphs represent different solid-liquid separations: (a) double threshold and (b) single threshold. Rain_STT and 
Snow_STT represent the rain and snow calculated by STT. Rain_DTT and Snow_DTT represent the rain and snow calculated by DTT. 

Table 3 
Statistics of precipitation and temperature in four GCMs during the historical period (1961–2005).    

R2 RMSD (mm/℃) Bias (mm/℃) 

original adjusted original adjusted original adjusted 

Precipitation GFDL  -0.54  -2.56  1.10  1.67  -0.64  0.00 
HadGEM2  0.59  0.64  0.57  0.53  -0.39  0.00 
IPSL  0.23  -0.19  0.77  0.96  -0.40  0.00 
MIROC5  0.48  0.46  0.64  0.65  -0.42  0.00 
MME  0.46  0.60  0.65  0.56  -0.40  0.00 

Temperature GFDL  0.89  0.93  4.44  3.55  -2.66  0.00 
HadGEM2  0.89  0.93  4.45  3.54  2.69  0.00 
IPSL  0.88  0.92  4.57  3.78  2.58  0.00 
MIROC5  0.89  0.93  4.30  3.41  2.61  0.00 
MME  0.90  0.94  4.20  3.27  2.63  0.00  
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relative to the baseline period (1976–2005) under RCP2.6, RCP4.5, and RCP8.5 (Fig. 6). For mid-century, there was little difference in 
the proportion of runoff reduction among the three RCPs. Compared with the reference period, decreases in the mean annual runoff for 
the mid-century period were 12.81% (− 25.44 m3⋅s− 1), 17.19% (− 34.14 m3⋅s− 1), and 13.50% (− 26.83 m3⋅s− 1) under three RCPs, 
respectively. However, for the end-century, the runoff of RCP8.5 had declined by about two times than that in mid-century, while the 
runoff of RCP4.5 fluctuated steadily and the runoff of RCP2.6 recovered basically to the level of the baseline period. The runoff 
simulation under RCP 2.6, RCP4.5, and RCP8.5 showed decreases of 3.38% (− 6.72 m3⋅s− 1), 15.82% (− 31.41 m3⋅s− 1), and 24.26% 
(− 48.21 m3⋅s− 1) as compared with the reference period as shown in Fig. 6. The simulated annual and seasonal (except spring) runoff 
showed declining trends (p < 0.05) under RCP4.5 and RCP8.5 (Table 4). On the other hand, the simulated evapotranspiration showed 
a significant increasing trend (p < 0.05) under different RCPs. At the same time, the precipitation and runoff illustrate an insignificant 
trend in RCP2.6 and RCP4.5, which was similar to a previous study (Li et al., 2019). The increase of water vapor in the atmosphere did 
not produce sufficient precipitation due to temperature rising in the study area, precipitation, and temperature-induced the decrease of 
runoff together. 

Besides the change of annual runoff, the variations of seasonal runoff during the whole period were projected and evaluated, as 
shown in Fig. 6. The projection of runoff values shows large variations in seasons. The runoff in summer under three RCPs shows the 
largest decrease among the four seasons (the details of the trends are shown in Table 4), followed by autumn and winter, while that in 
spring rises slowly. At the same time, the summer runoff decrease is similar to the annual runoff under three PCRs. During mid-century, 
the proportion of summer runoff in RCP 2.6, 4.5 and 8.5 decreased by 15.74% (− 64.32 m3/s), 18.87% (− 77.10 m3/s) and 15.33% 
(− 62.69 m3/s) compared with that in the baseline period, while decrease by 3.20% (− 13.08 m3/s), 19.74% (− 80.67 m3/s) and 
29.70% (− 121.46 m3/s) during end-century (as shown in Fig. 6). 

The largest variabilities were found in summer for inter-annual variabilities of annual and seasonal runoff during three periods 
(historical, mid-century, and end-century) from three RCPs (Fig. 7). In summer, compared to the historical period, both RCP2.6 and 
RCP 4.5 showed a decline in mid-century and a rise in end-century for the seasonal mean runoff; however, RCP8.5 showed a 
continuous decline from mid-to end-century. For the range of variabilities, both RCP2.6 and RCP4.5 predicted an increase from mid-to 
end-century, suggesting that the year-to-year fluctuation of summer runoff was enhanced as the climate warms; nevertheless, RCP8.5 
showed an opposite tendency of change. The spring runoff showed a general increase with time in three RCPs, especially in RCP8.5, 
indicating the future climate impact on snowmelt. Meanwhile, the inter-annual variabilities of evapotranspiration did not show a large 
shift for the range and magnitude among three RCPs, whereas the variability of precipitation decreases sharply in the larger future 
warming scenario (Fig. S3). Therefore, precipitation is inferred to be the principal factor that causes changes in the runoff variability. 

Fig. 5. Inter-annual variations (a, c) and periodical variabilities (b, d) of temperature and precipitation for CN05.1 and ISIMIP2b climate data sets 
during the historical period (1961–2005). The boxes represent the 25th and 75th percentiles, red lines represent the 50th percentiles, and whiskers 
represent the maximum and minimum except outliers. 
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4. Discussions 

4.1. Runoff responses to climate change 

This study studies the future change of runoff for the Kaidu River Basin under plausible future warming scenarios and provides new 
insights on understanding the hydrological responses to climate change. The causes of runoff changes are largely associated with 
different hydrological processes under climate change. Evapotranspiration is a vital hydrological process for the water cycle (Yang 
et al., 2021). Previous studies show that there is inconformity between the simulated runoff and evapotranspiration. Based on the 
simulations using the SWAT model forced by RCMS/GCMS under different concentration scenarios, some researchers concluded that 
the main factor leading to decreased runoff in the future is increased evapotranspiration (Ba et al., 2018; Fang et al., 2018). However, 
we also observed that future precipitation and temperature trends might differ between GCMs in this study area. As the precipitation 
varies largely among different climate models and these differences may affect the accuracy of runoff simulation in this area (Zhang 
et al., 2006; Tian et al., 2017), precipitation may introduce large uncertainty in the projection of runoff and complicate the under-
standing of underlying drivers of hydrological responses of runoff. Previous studies also showed the reliability of the gridded climate 
dataset applied for this study area (Luo et al., 2020). Similar to those studies, to bias-correct the ISIMIP2b climate trajectories based on 
the best available historical observation data (i.e. CN05.1) can improve the robustness of our predictions of future climate change 
impacts on regional hydrological processes. 

The model structure and snowmelt modules are also important factors to cause uncertainties of the runoff projection (Najafi et al., 
2011; Feng & Beighley, 2020). In the snowmelt model, the temperature index method often depends on the mean air temperature. 
However, Zhang et al. (2006) found that using the daily maximum temperature multiplied by 0.5 as one of the model inputs improved 

Fig. 6. Inter-annual variations of annual and seasonal (March-May for spring, June-August for summer, September-November for autumn, and 
December-February for winter) runoff under RCP2.6, RCP4.5, and RCP8.5 from 1976 to 2099. The results showed the ensemble mean of four GCM 
driven runs. Mid-century represents (2036–2065) and the end-century represents (2070–2099). 

Table 4 
Trends in the average of multiple patterns under three RCPs. The trends of precipitation are based on the bias-corrected data sets from ISIMIP2b.  

　 　 Annual Spring Summer Autumn Winter 

Runoff(10− 3 mm⋅d− 1) RCP2.6  0.096  0.644  -0.050  -0.178  -0.037 
RCP4.5  -0.785  0.615  -2.522  -0.826  -0.398 
RCP8.5  -2.513  0.976  -7.356  -2.848  -0.797 

Precipitation(10− 3 mm⋅d− 1) RCP2.6  0.435  1.206  0.539  0.118  -0.138 
RCP4.5  0.212  1.931  -1.892  0.542  0.270 
RCP8.5  -0.753  2.606  -6.272  -0.343  1.032 

Evapotranspiration (10− 3 mm⋅d− 1) RCP2.6  0.551  0.897  0.781  0.511  0.001 
RCP4.5  2.175  2.387  4.373  1.889  0.006 
RCP8.5  5.051  5.769  9.787  4.487  0.057 

Note: The values with the bold type indicate that the trend is statistically significant (P < 0.05). 
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snow cover mapping than the simulations with daily mean temperature as the model input. Therefore, the temperature index method 
could consider the daily maximum air temperature as one of the climatic inputs to estimate snowmelt. Thus, the optimization of the 
hydrological model offers fairness in the model choice. Using the maximized KGE values as an optimized object in the calibration stage, 
we evaluated the models’ performances by NSE and PBIAS values. We studied the effects of climate change under the assumption that 
the best set of parameters found during the calibration process in historical periods will remain valid in the future. 

The responses of runoff on climate change can imply a potential water shortage in the future. To quantify the trends of runoff, we 
adopted a 30-year moving average to smooth the runoff fluctuations and detect how the change in the trends of runoff is in response to 
climate warming (Fig. 8). In general, the annual runoff showed different tendencies of changes in the three RCPs. The inter-annual 
patterns of these changes were mostly dependent on summer-time runoff. We found the trends with a strong fluctuation in RCP2.6, 
a slow increase in RCP4.5, and both of them end with a small positive trend. However, RCP8.5 runoff trends went up generally before 
2057 but then dropped rapidly to − 0.79 m3s− 1a− 1 in 2099. Meanwhile, the runoff trend in autumn was consistent with each other 
among three RCPs before 2050, while that of RCP2.6 and RCP4.5 both turned positive and reach 0.39 m3s− 1a− 1 and 0.69 m3s− 1a− 1 

respectively in 2099, similar to that in winter, which reached 0.10 m3s− 1a− 1 and 0.12 m3s− 1a− 1 respectively. The spring runoff trend 
distinguished obviously from the other three seasons, and it showed lasting positive under RCP8.5, whereas dramatic fluctuation under 
RCP2.6 and RCP4.5, by the time, almost disappeared at the end of the 21st century. The absolute value of the trend under RCP8.5 was 
larger than that under other scenarios for both annual and seasonal runoff. 

4.2. Timing of snowmelt 

Another issue related to the snowmelt runoff simulation is the timing of the snowmelt. Compared to studies in other countries, like 
the United States, Canada, Japan, etc., the timing of snowmelt in China is less studied (McCabe and Clark, 2004; Dyer, 2008). We used 
snowmelt CMD to describe the variations in the snowmelt’s timing and fitted the CMD trends using the least square method. The 
general trend for CMD was a linear decline over the historical period but continued with different directions of polynomial trends 
under three RCPs, suggesting how early snowmelt advances depended on the level of future warming. The changes in snowmelt time 
was significantly different under different scenarios, and the fitting curve formula is shown in Fig. 9. Compared with the historical 
period (1976–2005), the CMD decline trend of the three RCP scenarios before the mid-century was similar to that of the historical 

Fig. 7. The inter-annual variabilities of annual and seasonal runoff for historical, mid-and end-century under (a) RCP2.6, (b) RCP4.5, and (c) 
RCP8.5 scenarios. The boxes represent the 25th and 75th percentiles, the middle lines represent the 50th percentiles, and whiskers represent the 
maximum and minimum. 
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period. However, after the mid-century, the RCP8.5 CMD continued the trend in the historical period, and the RCP4.5 CMD slowed 
down significantly while the trend of CMD under RCP2.6 showed the snowmelt time started to recover gradually after 2055. Compared 
with the historical period (1976–2005), the timing of snowmelt under three warming scenarios at the end of this century (2070–2099) 
was 8.2, 13.9, and 25.5 days earlier, respectively. This suggests that the effects of different anthropogenic warming scenarios on 
snowmelt CMD have similar effects in the short-term and distinct effects in the long term. 

4.3. Relative importance of climate-related drivers on future runoff 

The relative importance of predictive factors (i.e., precipitation, temperature, evapotranspiration, snowmelt timing and, snowmelt) 
to the response variable (runoff) was explored based on a random forest model and the historical and three RCP simulation data sets 
(Fig. 10 and Fig. S4). To better compare the relative importance of drivers in different scenario runs, we rescale the importance of 
individual drivers by dividing it with the total importance, the sum of the importance of all individual factors. Precipitation was the 
predominant factor for the spring-to-autumn runoff, and evapotranspiration was the second important factor in all three RCP scenarios 
(Fig. 10). However, during the historical period, snowmelt timing was the second important factor. The importance of snowmelt timing 
declined in the warmer RCP scenarios, indicating that earlier advance of snowmelt may reduce its contribution to the total runoff from 
spring to autumn. 

On the contrary, the importance of temperature and precipitation increased in a warmer RCP scenario. However, for the spring 
runoff, snowmelt is the second important factor in the historical and RCP2.6 scenario (Fig. S4). The effects of evapotranspiration in 

Fig. 8. Changes in the trend based on 30-year moving-average of annual runoff in three decades.  
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spring runoff are less important than its effects on summer and autumn runoff. In the meantime, with the increase of concentration 
scenarios, the importance of snowmelt timing strengthens relatively, but snowmelt reduces its importance, while temperature 
importance basically was equivalent to evapotranspiration importance in the higher RCP scenarios. 

Our results partly agree with the conclusion of previous studies, for instance, Chen et al. (2014, 2015), which suggest that pre-
cipitation and temperature are the main factors regulating the runoff variations in the Kaidu River Basin. Unlike other alpine river 
basins (e.g., the Kunmalik and Hotan River Basins), the major influential factor of the runoff variation is the temperature (Shen et al., 
2018; Luo et al.,2017). Chen et al. (2017) has highlighted the importance of including glacier melt in the hydrological modeling of the 
glacierized catchments, which can be a critical perspective that should be accounted for in the study of hydrological responses to future 
climate change. Higher climatic warming may enhance glacier melt and increase the contribution of headwater to streamflow, 
compensating for the negative response of runoff to warming. We speculate that if our model considers the effects of the glacier- or ice 
melt, they will become more important factors to determine runoff, similar to what our historical simulation has indicated. 

4.4. Future study 

Although the regional coverage of the Kaidu River Basin is mostly in mountainous areas, vegetation types can still be an important 
factor to affect the change of runoff. Some studies (e.g., Mamat et al., 2021; Wang et al., 2021) have shown that the response of 
vegetation to climate change may substantially impact the soil moisture in the ecosystem and total evapotranspiration. Moreover, 
human activities can be another important factor to be considered in the projection of future runoff. Chen et al. (2013) found that 
during 1994–2009, despite that runoff in Kaidu River Basin is more sensitive to climate variability than human activities, which had 
already contributed 9.5% of the increase in runoff. Therefore, accounting for future changes in the potential natural vegetation dis-
tribution, land use and land cover change, human activities, topographical features associated with snow distribution, and glacier 
melt, the importance of dominant climatic drivers of runoff in the Kaidu River Basin can be more explicitly represented. 

5. Conclusions 

This study evaluated the simulations of outlet-observed runoff under the observed gridded climate data sets based on a hydrological 
model with six versions of the Cemaneige snowmelt module. First, after bias-correction of future climate data sets, how runoff was in 
response to climate change under three RCP scenarios was quantified. Then, the 30-year moving average runoff was used to analyze 
the trend change every 30 years, and the CMD was used to indicate the timing of the snowmelt. Finally, we analyzed the importance of 
variables that determine the trend and variations of runoff in summer using the random forest algorithm. 

Through KGE calibration and PBIAS and NSE evaluation, the M5 combined by single threshold function and seasonal snowmelt 
factor was more suitable for runoff simulation in the study area with three index values are 0.73, 4.96%, and 0.58, respectively. 
Therefore, the difference of simulation and observation sequence during the calibrated period was particularly manifest in the early 
stage of snowmelt. 

Under the RCP scenarios, annual runoff responded to global warming trends with about a 15% reduction during the mid-century. 
For the end-century, RCP8.5 runoff declined by about two times that in mid-century, while RCP4.5 fluctuated steadily and RCP2.6 
recovered basically to that in the baseline period, which is mainly determined by summer runoff. Meanwhile, the magnitude of the 
trend under RCP8.5 is more significant than that of other RCPs for both annual and seasonal runoff. The timing of the snowmelt in the 

Fig. 9. A scatter diagram of snowmelt center of mass date (CMD) under historical and RCP periods (1976–2099).  
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future showed a distinct pattern of temporal change in three RCPs, suggesting that the timing of the snowmelt was also associated with 
the extent of warming. Precipitation and evapotranspiration were the two most important factors contributing to future runoff from 
spring to autumn, which partly agrees with previous studies. But with the increase of warming, the timing of snowmelt turned to be less 
important, while the importance of precipitation increased relatively. 

Overall, our results have revealed the potentially important drivers in controlling future trends of runoff in the Kaidu River Basin 
and also highlighted that the runoff prediction in this region should not only account for the processes related to snowmelt but also 
other factors, like glacier melt, land use, and land cover change and human activities, which will be included in our future hydrological 
modeling study. 
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