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A B S T R A C T   

Many empirical models based on hyperspectral indices (HIs) have been developed to estimate nitrogen (N) status 
of crops. However, most of the researches by far focused on the identification of sensitive bands of HIs, and have 
not identified the importance of formula formats to achieve their best performance. The current study aimed to 
investigate the response of band optimization and formula formats to canopy N concentration (CNC) of potato 
(Solanum tuberosum L.) plants, and to verify the performance of HIs through optimized algorithms based on a 
multi-site and -year study. Three field experiments involving different potato cultivars with 3–6 N rates were 
conducted from 2014 to 2016 in Inner Mongolia, China. The band optimization HIs were first tested using a 
simulated dataset by the PROSAIL model and validation dataset from farmers’ fields. Results showed that the 
optimized HIs generally had more robust performances for CNC prediction than the published indices. The 
optimized HIs explained 56%–74% of the variations in potato CNC in contrast with 3%–53% variation of the 
published HIs. Compared with published HIs, band optimization could significantly improve the performance of 
HIs by 16%–71%. The choice of the formula formats affected the explanatory power of the optimized HIs by 3%– 
18%. Our study found that both the performance of HIs and the position of the sensitive bands were greatly 
influenced by formula formats. The results from the evaluation of noise equivalent that independent from 
farmers’ field and PROSAIL model showed that the best performance was from Opt-CCCI. The central sensitive 
bands of Opt-CCCI were found at 600, 582, 650 nm. Opt-mRER also exhibited well in noise equivalent and 
independent validation from farmers’ field, while they could not be verified with the PROSAIL model because of 
the absence of the wavebands from 340 to 400 nm. Optimization for HIs indicates that there will be a great 
potential to improve the use of hyperspectral sensing for the estimation of field croṕs CNC.   

1. Introduction 

Potato is the fourth most important crop in the world in terms of 
global production quantity (Wang et al., 2018, 2019). China is the 
largest potato producing country globally in terms of area and produc
tion (FAO, 2019). Therefore, potato yield plays a critical role in food 
security in China. In order to enhance potato yield, excessive nitrogen 
(N) fertilization often occurs in potato growing regions (Tang et al., 
2021). However, because potato (Solanum tuberosum L.) crops are 
characterized with a shallower root system, N fertilizer is needed to 
apply several times to meet the N demands during their growing season 
(Goffart et al., 2008). Furthermore, excessive N fertilization results in 

negative environmental impacts (Tang et al., 2021), and thus optimizing 
N management is important to maintain a high potato yield and sus
tainable environment in China. 

Optimizing N fertilization management requires timely and accurate 
monitoring N status of field crops (Zhao et al., 2012). Currently, many 
hyperspectral indices (HIs) based on canopy or leaf reflectance spectra 
have been proposed, and widely used to predict crop canopy N status (Li 
et al., 2010). This is because HIs enhance spectral features sensitive to 
vegetation biochemical or biophysical properties, while reducing 
disturbance by using specific formula formats that consist of several 
sensitive bands (Glenn et al., 2008). Although waveband combinations 
and formula formats are able to improve the performance of HIs for 
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estimating crop N status, their performances are influenced by sites, 
years, crop growth stages and cultivars (Zhang et al., 2020). Conse
quently, a large number of new band combinations and formula formats 

Table 1 
Algorithms corresponding to the hyperspectral indices used in this work.  

Spectral 
indices 

Abbreviation Formulas References Algorithms 

Two-band 
spectral 
indices     

Ratio 
vegetation 
index 

RVI R800/R670 Jordan, 
1969 

Rλ1/Rλ2 

Normalized 
difference 
vegetation 
index 

NDVI (R800-R680)/ 
(R800 +

R680) 

Rouse et al., 
1974 

(Rλ1-Rλ2)/ 
(Rλ1 + Rλ2) 

Different 
vegetation 
index 

DVI R800-R680 Tucker, 
1979 

Rλ1-Rλ2 

Soil adjusted 
vegetation 
index 

SAVI 1.5×(R800- 
R670)/(R800 

+ R670 +

0.5) 

Huete, 1988 1.5×(Rλ1- 
Rλ2)/(Rλ1 +

Rλ2 + 0.5) 

Modified soil- 
adjusted 
vegetation 
index 

MSAVI 0.5×(2 ×
R810 + 1-((2 
× R810 +

1)2-8×(R810- 
R670))0.5) 

Qi et al., 
1994 

0.5×(2 × Rλ1 

+ 1-((2 ×
Rλ1 + 1)2-8×
(Rλ1-Rλ2))0.5 

The 
renormalized 
difference 
vegetation 
index 

RDVI (R800-R670)/ 
sqrt(R800 +

R670) 

Roujean and 
Breon, 1995 

(Rλ1-Rλ2)/ 
sqrt(Rλ1 +

Rλ2) 

Optimized soil- 
adjusted 
vegetation 
index 

OSAVI (R800-R670) 
(1 + 0.16)/ 
(R800 + R670 

+ 0.16) 

Rondeaux 
et al., 1996 

1.16×(Rλ1- 
Rλ2)/(Rλ1 +

Rλ2 + 0.16) 

Red edge 
chlorophyll 
index 

CIred-edge (R780-R710)/ 
R710 

Gitelson 
et al., 2003 

(Rλ1 + Rλ2)/ 
Rλ2 

Optimal 
vegetation 
index* 

Vlopt (1 + 0.45)×
((R800)2 +

1)/(R670 +

0.45) 

Reyniers 
et al., 2006 

(1 + 0.45)×
((Rλ1)2 + 1)/ 
(Rλ2 + 0.45) 

Three-band 
spectral 
indices     

Three-band 
ratio spectral 
index ( 

TRSI R675/(R700 

× R650) 
Chappelle 
et al.,1992 

Rλ1/(Rλ2 ×

Rλ3) 

Structural 
insensitive 
pigment 
index 

SIPI (R800-R445)/ 
(R800-R680) 

Peñuelas 
et al., 1995 

(Rλ1-Rλ2)/ 
(Rλ1-Rλ3) 

Modified 
chlorophyll 
absorption 
reflectance 
index 

MCARI [(R700-R670)- 
0.2×(R700- 
R550)]×
(R700/R670) 

Daughtry 
et al., 2000 

[(Rλ1-Rλ2)- 
0.2×(Rλ1- 
Rλ3)]×(Rλ1/ 
Rλ2) 

Triangle 
vegetation 
index 

TVI 0.5×(120×
(R750-R550)- 
200×(R670- 
R550)) 

Broge and 
leblanc, 
2001 

0.5×(120×
(Rλ1-Rλ2)- 
200×(Rλ3- 
Rλ2)) 

Transformed 
chlorophyll 
absorption 
reflectance 
index 

TCARI 3 × [(R700- 
R670)-0.2×
(R700-R550)×
(R700/R670)] 

Haboudane 
et al., 2002 

3 × [(Rλ1- 
Rλ2)-0.2×
(Rλ1-Rλ3)×
(Rλ1/Rλ2)] 

Plant 
senescence 
reflectance 
index 

PSRI (R680-R500)/ 
R750 

Merzlyak 
et al., 1999 

(Rλ1-Rλ2)/Rλ3 

Modified Red- 
edge Ratio 

mSR705 (R750-R445)/ 
(R705-R445) 

Sims and 
Gamon, 
2002 

(Rλ1-Rλ2)/ 
(Rλ3-Rλ2) 

Modified red- 
edge 
normalized 
difference 

mND705 (R750-R705)/ 
(R750 + R705- 
2 × R445) 

Sims and 
Gamon, 
2002 

(Rλ1-Rλ2)/ 
(Rλ1 + Rλ2-2 
× Rλ3)  

Table 1 (continued ) 

Spectral 
indices 

Abbreviation Formulas References Algorithms 

vegetation 
index 

The MERIS 
terrestrial 
chlorophyll 
index 

MTCI (R750-R710)/ 
(R710-R680) 

Dash and 
Curran, 
2004 

(Rλ1-Rλ2)/ 
(Rλ2-Rλ3) 

Modified 
triangular 
vegetation 
index 1 

MTVI1 1.2 × [1.2×
(R800-R550)- 
2.5×(R670- 
R550)] 

Haboudane 
et al., 2004 

1.2 × [1.2×
(Rλ1-Rλ2)- 
2.5×(Rλ3- 
Rλ2)] 

Double-peak 
canopy 
nitrogen 
index 

DCNI (R720-R700)/ 
(R700-R670)/ 
(R720-R670 +

0.03) 

Chen et al., 
2010 

(Rλ1-Rλ2)/ 
(Rλ2-Rλ3)/ 
(Rλ1-Rλ3 +

0.03) 
Blue nitrogen 

index 1 
BNI1 R434/(R496 

+ R401) 
Tian et al., 
2011 

Rλ1/(Rλ2 +

Rλ3) 
Blue nitrogen 

index 2 
BNI2 (R498 +

R413)/R442 

Tian et al., 
2011 

(Rλ1 + Rλ2)/ 
Rλ3 

Modified 
normalized 
difference 
vegetation 
index 

mNDVIblue (R924-R703 +

2 × R423)/ 
(R924 + R703- 
2 × R423) 

Wang et al., 
2012 

(Rλ1-Rλ2 + 2 
× Rλ3)/(Rλ1 

+ Rλ2-2 ×
Rλ3) 

Double-peak 
nitrogen 
index 

NDDA (R755 + R680- 
2 × R705)/ 
(R755-R680) 

Feng et al., 
2014 

(Rλ1 + Rλ2-2 
× Rλ3)/(Rλ1- 
Rλ2) 

Modified red- 
edge ratio 

mRER (R759-1.8 ×
R419)/(R742- 
1.8 × R419) 

Feng et al., 
2015 

(Rλ1-1.8 ×
Rλ2)/(Rλ3- 
1.8 × Rλ2) 

Combined 
spectral 
indices     

Canopy 
chlorophyll 
content index 

CCCI (NDRE- 
NDREMIN)/ 
(NDREMAX- 
NDREMIN) 

Fitzgerald 
et al., 2010 

(NDRE- 
NDREMIN)/ 
(NDREMAX- 
NDREMIN) 

Nitrogen 
planar 
domain 
index 

NPDI (CIred edge- 
CIred edge 

MIN)/(CIred 

edge MAX- 
CIred edge 

MIN) 

Li et al., 
2012 

(CIred edge- 
CIred edge 

MIN)/(CIred 

edge MAX-CIred 

edge MIN) 

MCARI/OSAVI MCARI/ 
OSAVI 

MCARI/ 
OSAVI 

Zarco- 
Tejada et al., 
2004 

MCARI/ 
OSAVI 

Canopy 
Chlorophyll 
Inversion 
Index 

CCII TCARI/ 
OSAVI 

Haboudane 
et al., 2002 

TCARI/ 
OSAVI 

The R was the abbreviation of reference in formulas and algorithms; * The VLopt 
was defined the optimized vegetative index in the previous study, we adopt the 
abbreviation of VLopt, but in the current study, the combination of bands was 
further optimized form 340–1050 nm. 

Table 2 
The ranges of the input parameters for the PROSAIL model.  

Parameter Min. Max. 

Leaf structure parameter 1 2 
Equivalent water thickness (cm) 0.005 0.03 
Leaf mass per area (g/cm2) 0.004 0.01 
leaf area index (m2/m2) 1 6 
Average leaf angle (deg) 30 70 
Soil moisture parameter 0 1 
Hot spot size parameter (deg) 0.05 1 
Solar zenith angle (deg) 30 60 
view zenith angle (deg) 0 0 
View azimuth angle (deg) 0 0  

H. Yang et al.                                                                                                                                                                                                                                    



International Journal of Applied Earth Observation and Geoinformation 102 (2021) 102416

3

Fig. 1. Temporal variation of the canopy nitrogen (N) concentration at (a) experimental field and (b) farmers’ field. The distribution is characterized by box-and- 
whisker plots, where the boxes show the 25th and 75th percentiles and the whiskers the 10th and the 90th percentiles. The median is represented by the line in the 
box and is provided as a number above the box plot. BBCH code is a scale used to identify the phenological development stages of a plant (Lancashire, 1991). 

Fig. 2. Description of published spectral indices bands and the relationships between published spectral indices and potato canopy nitrogen concentration.  
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have been developed to increase HIs performance and universality. In 
particular, the rapid development of hyperspectral remote sensing 
technology with high- resolution hyperspectral instrumentations pro
vides more potential wavebands for optimizing the published HIs (Adão 
et al., 2017). Therefore, identifying the response of sensitive bands and 
formula formats for the optimized indices allows to further improve the 
feasibility, to develop more robust and accurate HIs for estimation of the 
crop N status. 

Simple ratio- and normalized difference-based HIs are the basic 
formula formats of HIs (Rouse et al., 1974; Jordan, 1969), and are 
commonly used to derive the vegetative characteristics. However, many 
studies have shown that the degree of dispersion of biomass prediction 
models increases under the low coverage conditions (Daughtry et al., 
2000) and/or that models lose sensitivity to moderate-to-high of leaf 
area index (Erdle et al., 2011), CNC (Prey et al., 2019) and leaf chlo
rophyll content (Yu et al., 2014). In order to overcome these problems, a 
number of formula formats of HIs have been developed to enhance the 
robustness of HIs in predicting vegetation properties. Huete et al. (1988) 
introduced a constant (L) based on soil reflectance and proposed a soil- 
adjusted vegetation index, which nearly eliminates soil-induced varia
tions in NDVI. Subsequently, after the formula of the SAVI was further 
modified, the new modified soil adjusted vegetation index (MSAVI) and 
optimized soil-adjusted vegetation index (OSAVI) have been constructed 
(Qi et al., 1994; Rondeaux et al., 1996). In order to overcome the 
saturation problem of HIs, Gitelson et al. (2004) modified the NDVI with 
a weighting coefficient that increased the sensitivity of the NDVI to a 

high leaf area index (LAI). Furthermore, Sims and Gamon (2002) 
modified the NDVI and RVI by adding a reference waveband (R445), i.e., 
the new three-band HIs mSR705 and mND705 that significantly improve 
the sensitivity of NDVI and RVI at higher chlorophyll levels. Based on 
the concept of “Planar domain index” as proposed by Clarke et al. 
(2001), the Canopy Chlorophyll Content Index (CCCI) and the Nitrogen 
Planar Domain Index (NPDI) was derived by using two indices: NDRE/ 
CIred edge sensitive to the desired quality of canopy N and NDVI sensitive 
to the relative proportion to the whole canopy cover. The combined HIs 
overcome the effects of canopy structure and coverage on HIs perfor
mance (Li et al., 2014c; Fitzgerald et al., 2010). 

With the development of high resolutions for spectral in
strumentations, the number of bands obtained by remote sensing is 
increasing, and the bandwidth is getting narrower (Honkavaara et al., 
2013). However, the problem is how to identify the best band combi
nations in a given special formula format of HIs. A popular solution is to 
calculate all possible band combination according to established HIs 
formula formats (Verrelst et al., 2019). Thenkabail et al. (2000) 
analyzed all band combinations for NDVI from 350 nm to 1050 nm and 
the optimized NDVI could explain 64% to 88% variability in different 
crop biophysical variables. Subsequently, the band-optimized HIs have 
been widely reported. Numerous studies on maize, wheat, rice, cotton 
and barley have demonstrated that compared with the published HIs, 
the band optimized HIs could increase the explanatory power of canopy 
N concentration by 19%–43% (Kasim et al., 2018; Li et al., 2010, 2014a, 
2014c; Yu et al., 2013; Stroppiana et al., 2009). Therefore, optimizing 

Fig. 3. Relationships between the canopy nitrogen (N) concentration and published HIs (a) NDVI, (b) VIopt, (c) CIred-edge, (d) SIPI, (e) DCNI, (f) mNDVIblue, (g) CCII, 
(h) NPDI and (i) CCCI. 
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the bands for HIs is an essential step of ensuring the estimation accuracy. 
To date, CNC is an effective indicator for reflecting crop N nutrient 

status, especially when N nutrition index (NNI) is used to determine 
whether a crop suffers from N deficiency or sufficiency (Le Maire et al., 
2008). Remotely and accurately quantifying the CNC in crops is essential 
for crop nitrogen management (Chen et al., 2010). However, many 
studies focus on comparing the performance between different pub
lished HIs and developed new band optimized HIs. To some extent, the 
influence of HIs formula formats on the estimation accuracy has been 
ignored. Therefore, the objectives of the present study were: (1) to 
identify the contribution of band optimization and formula formats in 
estimation potato CNC, (2) to assess the performances of optimized HIs, 
and (3) to develop the feasible and robust HIs for estimating CNC in 
potato plants. 

2. Material and methods 

2.1. Study sites 

The experiments were conducted in Wuchuan (41̊5′47′′ N, 111̊27′4′′

E) and Siziwangqi Country (41̊31′59′′ N, 111̊42′24′′ E) in Inner 
Mongolia, China. The climate is middle temperate arid and semi-arid 
continental monsoon, i.e., with cold winters and cool summers. The 
main crops in this area are potato, sunflower (Helianthus annuus L.) and 
oats (Avena sativa L.). The precipitation and temperature in potato 
growing season varied with a range of 350–370 nm and 10–26 ℃, 
respectively, from 2014 to 2016. 

2.2. Experimental design 

There were three calibration experiments with different N levels to 
establish the relationships between HIs and the canopy N concentration. 
Experiment 1 including 6 N rates (0, 83, 135, 165, 180 and 250 kg N 
ha− 1) and potato cultivar Kexin1 and Experiment 2 including 6 N rates 
(0, 90, 144, 180 and 270 kg N ha− 1) and cultivar Xiapodi was carried out 
in Wuchuan County in 2014 and 2015, respectively. In 2016, 

Experiment 3 including 3 N rates, i.e., the control (no N applied), opti
mum N rate based on the residual soil mineral N previous assessed using 
a quick-test method (Schmidhalter, 2005) and conventional N rate from 
farmers’ practices, and Holland 14 potato cultivar was conducted in 
Siziwangqi. Nitrogen fertilizer as fertigation was applied at five growth 
stages. The plot size was 9 × 9 m for Exp. 1 and Exp. 2, and 9 × 12 m for 
Exp. 3. There was a completely random block design with four replicates 
in all experimental plots. 

Validation experiments were undertaken to test the stability and 
robustness of the optimized HIs for estimating the CNC in different 
farmers’ fields near the sites of Exp. 1, 2 and 3 from 2014 to 2016. Local 
cultivars were used, and the fields were managed by the farmers. The 
different farmers’ fields were used as replications. 

2.3. Data collection 

2.3.1. Spectral measurements 
The canopy reflectance of potato was measured with a handheld 

spectrometer (Handy-Spec, tec5 AG, Germany) under a clear day con
ditions between 10:00 a.m. and 2:00 p.m. in the critical growing season 
from mid-July to the end of August, which corresponded to the BBCH 
code 31–79 (Lancashire et al., 1991). The sensor measures at 256 bands 
within a spectral range of 300–1150 nm, and it has a bandwidth of 3.3 
nm. Canopy reflectance data were collected by holding the sensor in a 
nadir position approximately 0.5–0.8 m above the canopy and walking a 
distance of 4–6 m with a constant speed along the potato ridges across 
each plot. 

2.3.2. Plant sampling and measurements 
The above-ground plants in two 1-m consecutive rows of potato in 

the spectrometer-scanned locations of each plot were sampled. Chop
ping samples and then mixing them to take 400–600 g sub-samples. All 
sub-samples were oven-dried at 70 ℃  to constant weight, and then 
weighted and ground for chemical analysis later. The CNC was deter
mined by the Kjeldahl-N analysis. A total of 267 valid data were 
collected as the calibration dataset in the experimental fields from 2014 

Fig. 4. The contour diagram showing the R2 for the relationships between the canopy nitrogen concentration and narrow band (a) DVI, (b) MSAVI, (c) RDVI and (d) 
VLopt that were calculated from all possible two band combinations in the range of 340–1050 nm. 
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to 2016, and 178 independent validation data from the farmers’ fields 
were used to validate the performance of different HIs. 

2.4. Hyperspectral indices 

Spectral indices were by far the classical and commonly used method 
of variable estimation parameters. In order to investigate the influence 
of different types of HIs algorithms on estimating CNC of potato, 29 

published HIs were chosen in this work (Table 1). To improve the per
formance of the published HIs, the band combinations of published HIs 
were optimized by considering all possible combinations of two and 
three wavelengths from 340 to 1050 nm under the specific formula 
formats. The two- and three-dimensional contour and slice maps of the 
coefficients of determination were constructed between optimized HIs 
and CNC using MATLAB 7.0. 

Fig. 5. Slice maps showing of R2 for relationships between the canopy nitrogen concentration (CNC) and the single three-band spectral indices (a) SIPI, (b) MCARI 
(c) DCNI and combined spectral indices (d) Opt-CCII (e) Opt-NPDI that were calculated for all possible three-band combination in the range of 340–1050 nm in the 
entire growth stage (1: horizontal slice map, 2: vertical slice map and 3: optimum slice map). 

H. Yang et al.                                                                                                                                                                                                                                    
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2.5. Evaluation of optimized HIs 

2.5.1. Sensitive evaluation 
The linear empirical models between optimized HIs and CNC were 

constructed according to the optimal sensitive bands. The sensitivity of 
the different optimized HIs in deriving CNC of potato was tested using 
the Noise Equivalent (NE) method (Vin and Gitelson, 2005) based on 
following equation: 

Fig. 6. Description of optimal bands and the relationships between optimized spectral indices and potato canopy nitrogen concentration.  

Fig. 7. Frequency of sensitive bands with (a) two-band HIs, (b) three-band HIs, (c) combined HIs and (ultraviolet radiation (UV) range: 340–400 nm, blue light (B) 
range: 450–520 nm, green light (G) range: 520–600 nm, red light (R) range: 600–690 nm, red edge radiation (RE): 690–750 nm, near infrared radiation (NIR) range: 
750–1050 nm). 
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NE =
RMSE{HIsvs.CNC}
[d(HIs)/d(CNC)]

where d(HIs)/d(CNC) is the first derivative of the best-fit function of the 
relationship “HIs vs. CNC”; RMSE is the root mean square error of the 
best-fit function of this relationship; The lower of the NE indicates the 
higher of the sensitivity for HIs to CNC of potato. 

2.5.2. Stability analysis 
The stability of the model is an important reference to evaluate the 

application potential of the model. In the current study, locations, leaf 
chlorophyll content and LAI were considered to evaluate the stability of 
optimized HIs for estimation of potato CNC. 

Previous studies have demonstrated that the chlorophyll content is 
strongly related to crop N status (Croft et al., 2019; Berger et al., 2018). 
To examine the linearity of different optimized HIs to CNC, the simu
lated dataset was obtained using the PROSAIL model under the specific 
conditions, i.e., the chlorophyll content from 10 to 60 µg cm− 2 at a step 
of 10 µg cm− 2 and the other parameters according to the previous 
studies listed in Table 2 (Kooistra et al., 2016; Duan et al., 2014). Seven 
thousand valid spectral reflectance were simulated using the PROSAIL 
model. The Coefficient of Variation (CV) of different optimized HIs and 
the R2 of the optimized HIs and chlorophyll content was compared using 
simulated spectrum to investigate the influence of CNC and LAI 

variation on the performance of HIs. A larger R2 and the lower CV 
suggests that the optimized HIs have the greater stability in estimating 
CNC: 

CV(%) = O
́

μ × 100  

where Ó is the standard deviation of optimized HIs value, and µ was the 
mean of optimized HIs value (or its absolute value of µ). 

2.5.3. Accuracy analysis 
The optimized HIs were evaluated using the independent dataset of 

farmers’ fields by comparing the R2, RMSE and relative error (RE, %) of 
prediction. A larger R2 and the lower RMSE and RE suggested the greater 
accuracy and stability of the model to predict CNC. The RMSE and RE 
according to the following equations: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(yi − ŷi)

2

√

RE(%) =
RMSE

y
*100  

where y, ŷi and y are the measured, predicted and mean values of CNC, 

Fig. 8. Relationships between canopy nitrogen (N) concentration and (a) Opt-NDVI, (b) Opt-VIopt, (c) Opt-CIred edge, (d) Opt-SIPI, (e) Opt-DCNI, (f) Opt-mNDVIblue, 
(g) Opt-CCII, (h) Opt-NPDI and (i) Opt-CCCI. 
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respectively, and n is the number of samples. 

3. Results 

3.1. The relationships between published HIs and CNC 

The CNC decreased with the growth stages due to the dilution effect 
in the calibration and validation datasets (Fig. 1). The results in Figs. 2 
and 3 showed that the published HIs explained 2%–53% variation of 
potato and lost the sensitivity when CNC more than 3.0%. 

3.2. Identifying the central bands of optimized HIs 

Figs. 4 and 5 illustrate the two-dimension contour and three- 
dimension slice maps for optimizing two-, three-band and combined 
HIs. The R2 changed with different band combinations. The highest R2 

for the best performed HIs and CNC and their sensitive bands were 
determined based on contour and slice maps. As illustrated in Fig. 6, the 
Optimized HIs explained 56%-74% variation of potato CNC. The ultra
violet (UV, 300–400 nm) and blue light (B, 450–500 nm) were the main 
sensitive bands for the two-band HIs in deriving CNC of potato (Fig. 7a), 
whereas for the three-band HIs, the central sensitive bands were almost 
located in the UV and green light (G, 520–600 nm) (Fig. 7b). In contrast, 
the sensitive bands for the combined HIs were mainly found in green 
wavelengths (Fig. 7c). 

3.3. Relationships between optimized hyperspectral indices and CNC 

The linear regression models between the best performing optimized 
HIs and CNC are shown in Figs. 8 and 9. The sensitivity of HIs was 
greatly increased by band optimum and reduced with the degree of 
dispersion and location impacts, although the saturation effect for 
several optimized indices like Opt-NDVI, Opt-CI and Opt-CCII occurred 
(Figs 3 and 8). The best performing HIs were Opt-mRER and Opt-NPDI 
with an R2 of 0.74. Overall, the estimation ability of two-band HIs was 
inferior to that of three-band and combined HIs. 

3.4. Comparison of optimized hyperspectral indices with published indices 

The band optimum remarkably increased the performance of HIs in 
estimating potato CNC (Fig. 10). The R2 increased by 16%-71% 
compared to the published HIs. The optimized HIs exhibited different 
performances even though a similar band optimum algorithm was 
implemented. In addition to the influence of band selection, the formula 
formats improved the performance by 3%-18% compared to the worst 
performed formula formats like RDVI (R2 = 0.56) across years, cultivars 
and growth stages (Fig. 6). 

3.5. Evaluation and validation of optimized hyperspectral indices 

The NE increased with the increment of CNC, especially when CNC 

Fig. 9. Relationships between canopy nitrogen (N) concentration and (a) Opt-BNI2, (b) Opt-BNI1, (c) Opt-PSRI (d) Opt-NDDA, (e) Opt-mSR705, (f) Opt- mND705, 
(g) Opt-MTCI, (h) Opt-TCARI/OSAVI and (i) Opt-MTVI1. 
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was >3.0% (Fig. 11). The NE of most optimized three-band and com
bined HIs were lower than that of two-band optimized HIs for all the 
Optimized HIs. The CV varied greatly with the increase in chlorophyll 
content for most of the Optimized HIs except the Opt-RVI, Opt-NDDA 
and Opt-CCCI (Table 3). The combined HIs Opt-CCII and Opt-CCCI for 
LAI from 1 to 6 were relatively stable compared to the optimized two- 
and three-band HIs. The R2 between optimized HIs and chlorophyll 

content for LAI from 1 to 2 was the lowest for all tested optimized HIs. 
With the higher LAI from 2 to 4 and 4–6, the optimized HIs showed 
strong relationships with chlorophyll content (Fig. 12). 

The results of independent validation showed that the R2, RMSE and 
RE for the relationships between estimated and observed values varied 
in a range of 0.44–0.72, 0.35%–0.49%, 8.42%–11.63%, respectively 
(Fig. 13). The predictive power of Optimized HIs depended not only on 

Fig. 10. Comparison of coefficient of determination (R2) between published hyperspectral indices and optimized hyperspectral indices.  

Fig. 11. Nose equivalent of canopy nitrogen (N) concentration estimation by (a) optimized two-band hyperspectral indices, (b) optimized three-band hyperspectral 
indices and (c) optimized combined hyperspectral indices. 

Table 3 
The coefficient of variation (CV) of optimized spectral indices for different chlorophyll content.  

Chl (µg/ 
cm2) 

Opt- 
RVI 

Opt-CIred- 

edge 

Opt- 
NDVI 

Opt- 
SAVI 

Opt- 
OSAVI 

Opt- 
NDDA 

Opt- 
mSR705 

Opt- 
mND705 

Opt- 
MTCI 

Opt- 
SIPI 

Opt- 
CCCI 

Opt-MCARI/ 
OSAVI 

Opt- 
CCII 

10  0.48  15.00  15.18  14.44  14.93  0.20  2.85  2.80  2.85  2.85  1.80  35.24  13.72 
20  0.51  18.31  18.51  17.63  18.21  0.19  2.34  2.29  2.34  2.34  2.57  43.07  16.01 
30  0.44  20.97  21.17  20.34  20.87  0.40  4.44  4.33  4.44  4.44  5.02  50.67  30.07 
40  0.37  26.79  26.97  26.29  26.73  0.96  9.51  9.14  9.51  9.51  7.31  76.67  866.03 
50  0.31  40.35  40.48  40.43  40.45  1.36  11.61  11.16  11.61  11.61  10.59  154.28  117.84 
60  0.30  100.05  100.02  99.80  99.93  3.06  22.47  21.20  22.47  22.47  17.25  302.88  86.76 

Chl, leaf chlorophyll content. 
CV of the three column values bolded were relative lower in the compared hyperspectral indices. 
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the optimum band combinations, but also on the formula formats of the 
HIs. The best performing Optimized HIs were Opt-NDDA, Opt-MTCI, 
Opt-SIPI, Opt-mSR705, Opt-mND705 with R2 at 0.72, RMSE at 0.35% 
and RE at 8.46%. The second were Opt-MCARI/OSAVI, Opt-CCCI, Opt- 
CCII, with R2 RMSE and RE were 0.66–0.70, 0.35%–0.37%, 8.42–8.78%, 
respectively (Fig. 14). Overall, the estimated accuracy of the three-band 
optimized HIs and combined optimized HIs outperformed the two-band 
Optimized HIs (Figs. 13–15). 

4. Discussion 

4.1. Variation in sensitive bands of HIs 

In the current studies, the sensitive bands to potato CNC mainly 
located at ultraviolet (340–400 nm) and visible light in blue and green 
regions (520–600 nm) (Fig. 7). Similarly, the findings for the rice 
(Stroppiana et al 2009) showed that the optimized index NDIopt (R503 
nm and R483 nm) was the highest sensitivity to CNC from tillering to 

Fig. 12. The effect of leaf area index (LAI) on the relationships between leaf chlorophyll content and the optimized spectral indices.  
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Fig. 13. Comparison of potato canopy nitrogen concentration predictive ability of optimized spectral indices models from farmers’ field.  

Fig. 14. Relationship between estimated and observed canopy nitrogen concentration (CNC) for the data from farmer’s fields (a, b, c, d, e, f, g, h and i stand for Opt- 
SIPI, Opt-mSR705, Opt-mND705, Opt-MTCI, Opt-NDDA, Opt-CCCI, Opt-MCARI/OSAVII, Opt-CCII and Opt-mRER. 
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booting stages. HIs photochemical reflectance index (PRI, 531 nm and 
570 nm), SR (462 nm and 580 nm) and NDI (478 nm and 506 nm) 
performed consistently well across all growth stages of rice (Zheng et al., 
2018; Yu et al., 2013). In wheat, the ultraviolet, violet and blue were 
more sensitive bands for CNC based on a common on-farm dataset across 
site-years, cultivars and growth stages (Li et al., 2010). In contrast, many 
studies have suggested that the red edge (RE) and near-infrared (NIR) 
bands play an important role in estimating CNC of wheat (Cheng et al., 
2019; Li et al., c, 2014b; Chen et al., 2010), maize (Liu et al., 2019; Li 
et al., 2014a; Chen et al., 2010) and rice (Yu et al., 2013; Cao et al., 
2013; Tian et al., 2011). The red edge based simple ratio and combined 
HIs performed the best in detecting CNC for rice and winter wheat after 
the heading stage (Li et al., 2012, 2014c; Yu et al., 2013), and summer 
maize at the V6, V7 and V10-V12 growth stages (Li et al., 2014a). 
Overall, Red-edge has been proved to be the best performing bands in 
single growth stages and the productive stage of the crops, whereas the 
violet and blue light may perform better in estimating CNC in a variable 
canopy structure (Fig. 7). These results suggest that the canopy structure 
and spectral index algorithms greatly influence the selection of sensitive 
bands. Our results from current and previous studies demonstrated that 
the CNC-sensitive bands of HIs moved to the short-wavebands due to 
great changes in canopy structure. 

4.2. The influence of HIs optimization algorithm on their performance of 
CNC estimation 

This study showed that identifying optimized band combinations for 
HIs can significantly improve the performances in deriving potato CNC, 
which is in agreement with the previous studies in wheat (Li et al., 
2014b, c) and rice (Yu et al., 2013, Tian et al., 2011). However, there is a 
need to evaluate the influence of the HIs algorithms on the estimation 
performance independent of band position. Therefore, the contribution 
of the formula formats to the estimation capability through band opti
mization was compared in this study as well (Figs. 4–6). The results in 
Figs. 4–6 indicate that the band optimization compensated the formula 
formats effect for some HIs, e.g., Opt-NDDA, Opt-SIPI, Opt-mSR705 Opt- 
mND705, Opt-MTVI. Hyperspectral indices formula formats were able 
to further improve the performance of HIs in extracting CNC of potato by 
3%–18% (Fig. 6). 

Previous studies have also shown that the three-band HIs are more 
robust in estimating N nutrient parameters of crops compared to the 
two-band index (Wang et al., 2012, Li et al., 2014c). Similarly, the three- 
band spectral indices can overcome the saturation effect and degree of 
dispersion in estimating CNC of potato plants in the present study 
(Figs. 8 and 9). In agreement with the findings of Tian et al. (2011), the 
current studies indicate that introducing a third band (λ3) in the two- 
band Rλ1/Rλ2 and (Rλ1-Rλ2)/(Rλ1 + Rλ2), i.e., Rλ1/(Rλ2 + Rλ3), 
(Rλ1-Rλ2)/Rλ3, (Rλ1-Rλ2)/(Rλ3-Rλ2) and (Rλ1-Rλ2)/(Rλ1 + Rλ2-2 ×

Fig. 15. Relationship between estimated and observed canopy nitrogen concentration (CNC) for the data from farmer’s fields (a, b, c, d, e, f, g, h and I stand for Opt- 
RVI, Opt-NDVI, Opt-DVI, Opt-SAVI, Opt-MSAVI, Opt-RDVI, Opt-OSAVI, Opt-CIred-edge and Opt-VLopt). 
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Rλ3), could significantly increase the predicting ability of HIs. In 
contrast, adding a third band (λ3) in Rλ1/(Rλ2 × Rλ3) decreased the 
estimating ability compared to Rλ1/Rλ2, further suggesting that formula 
formats have a great influence on the performance of HIs in the esti
mation of crop CNC. 

4.3. Evaluation of optimized HIs 

Evaluating the performance of HIs is an essential process to judge 
their practicability. In addition to the R2 as a statistical characteristic for 
the established model, the NE analysis in this study was performed to 
evaluate the performance of Optimized HIs in estimating potato CNC. 
The NE of HIs such as Opt-mRER, Opt-NPDI, Opt-BNI1, Opt-BNI2 and 
Opt-CCCI in CNC were relatively low among 29 optimized HIs (NE: 
0.36–0.47) (Fig. 11). Similar to the findings of Li et al. (2012), NPDI and 
CCCI had lower NE for winter wheat CNC estimation (Fig. 11). The 
relatively low NE appeared in winter wheat CNC was < 2% (Li et al, 
2012), while potato CNC appeared to be < 3% in this study. Similar 
results have been observed in estimating maize canopy N content 
(Schlemmer et al., 2013), soybeans fractional vegetation cover (Gitel
son, 2013) and plant N uptake for wheat and maize (Hasituya et al., 
2020; Li et al., 2014a). Thus, our study confirms that the sensitivity of 
regression models is affected by both HIs and crop species. 

PROSPECT and PROSAIL models are efficient tools to evaluate the 
performance of HIs (Berger et al., 2018). Le Maire et al. (2004) evalu
ated the HIs using the PROSPECT model by testing the published HIs 
from 1973 to 2002, they found the mND705 was a potential spectral 
index in deriving crop N nutrition index (Li et al., 2018, Xiao et al., 
2013). In the current study, the Opt-mSR705 and Opt-mND705 
demonstrated better performances for the estimation of potato CNC 
and chlorophyll content (Figs. 6 and 12). However, the performances of 
HIs were influenced by LAI. The Opt-NDDA, Opt-mSR705, Opt- 
mND705, Opt-MTCI and Opt-SIPI showed a better performance 
compared to other HIs at the late growth period when LAI exceeded the 
2 m2/m2, while there was a wide range of CV (Fig. 12 and Table 3), 
suggesting that they were very sensitive for the variation of external 
parameters, e.g., LAI, leaf structure parameter and leaf angle. Compared 
with other optimized HIs, the Opt-CCCI had relative stability in different 
LAI and leaf chlorophyll content. However, since the absence of the 
340–400 nm bands in the simulated dataset does not allow for evalu
ating the stability of the optimized HIs based on the 340–400 nm bands, 
e.g., Opt-NPDI, Opt-mRER and Opt-BNI1, therefore, more independent 
datasets for validation will be needed. 

Across-validation dataset from the experiment field was the most 
commonly used means to evaluate the accuracy of spectral indices in 
estimating crop parameters (Cummings et al., 2021; Loozen et al., 
2020). However, the models always were validated using data used to 
develop the model. Unlike across-validation, the estimation models 
based on Optimized HIs were validated using independent datasets ac
quired from different environmental and management conditions 
(fields, planting date, growth stages, and N applications, etc.).This study 
showed that the Opt-NDDA, Opt-mSR705, Opt-mND705, Opt-MTCI and 
Opt-SIPI had the lowest RMSE and RE% and the RMSE and RE% had a 
slight increase for Opt-CCCI, Opt-CCII and Opt-MCARI/OSAVI (Figs. 14 
and 15). The optimized mRER and NPDI with high R2 values did not 
illustrate the best validation, indicating that it is necessary to use an 
independent dataset for identifying the best performing HIs. 

In the current study, a comprehensive evaluation of HIs was 
employed to develop robust HIs (Figs. 11–15). The new developed HIs 
can help farmers to effectively perform N management in potatoes at the 
right rate and at the right time. Another important application of this 
study is that the results of the optimized HIs in estimating potato CNC 
provide a theoretical basis for the application of spectral index in 
hyperspectral satellite images, e.g., the existing EO-1 Hyperion and 
forthcoming EnMAP. Also, more data from different ecological regions 
and hyperspectral satellite images should be tested to verify the 

robustness, accuracy and application ability of the method. 

5. Conclusions 

To explore the performance of HI optimization algorithm for 
deriving CNC of potato plants, 29 formula formats of HIs were selected, 
and their sensitive center bands were identified across years, N rates, 
growth stages and cultivars of potato. This study found that the per
formance of HIs in the estimation of potato CNC was greatly influenced 
by formula formats and bands optimization, and the sensitive bands for 
the estimation of potato CNC were from ultraviolet (340–400 nm) to 
visible light with blue (450–520 nm), and from green (520–600 nm) to 
red (600–690 nm). The band optimization indices improved the per
formance by 16%–71%, and could explain 56%–74% of the variations in 
potato CNC. Based on band optimum, the formula formats resulted in a 
3%–18% difference of estimation in CNC among optimized HIs. Opti
mized HIs Opt-CCCI (600, 582, 650 nm) and Opt-mRER (352, 536, 562 
nm) showed the best HIs in estimating potato CNC. In particular, the HI 
Opt-CCCI showed the best performance on sensibility, accuracy and 
stability during the estimation of potato CNC across sites, years, N rates, 
growth stages and cultivars. These findings may be useful for identifying 
unified HIs to accurately estimate CNC of crops on a large on-farm scale 
and to provide a basic guideline for the precise management of potato N 
fertilizer in the future. 
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