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Abstract

In Ni2MnZ Heusler compounds, the atomic order of the austenite phase influences a
variety of material properties, as for example the magnetic properties and martensitic
transformations. Accessing the full potential of these materials requires a compre-
hensive understanding of the interdependence of the structural order and magnetic
properties.

This thesis deals with the correlation of the atomic microstructure and the magnetic
properties of Ni2MnZ Heusler alloys by applying neutron diffraction techniques. The
interpretation of the experimental observations is supported by theoretical models
and computer simulations. Specifically, the coarsening process of anti-phase domains
in order-disorder transitions is investigated via Monte-Carlo simulations. A general
model describing the real-space correlation function and the reciprocal-space struc-
ture factor is developed. Further, the size of the structural L21 ordered domains is
examined in Ni2MnAl0.5Ga0.5 and Ni2MnAl alloys via neutron powder diffraction
measurements. The obtained structural domain size is found to be identical with
the size of the magnetic domains, which is investigated via small-angle neutron
scattering measurements. These observations indicate the atomic domain configu-
ration to coincide with the magnetic domain configuration. Finally, the coupling
between these magnetic domains is studied as a function of temperature andmagnetic
field strength via small-angle neutron scattering measurements under external mag-
netic fields. Here, a behaviour similar to a Heisenberg anti-ferromagnet is observed,
demonstrating the magnetic domains to couple anti-ferromagnetically.



Zusammenfassung

Die atomare Ordnung der Austenit Phase in Ni2MnZ Heulser Legierungen beein-
flusst eine Vielfalt an Materialeigenschaften, wie beispielsweise die magnetischen
Eigenschaften und die martensitische Transformation. Ein umfassendes Verständnis
der wechselseitigen Abhängigkeit der strukturellen Ordnung und der magnetischen
Eigenschaften ist der Schlüssel um das volle Potential dieser Materialien nutzen zu
können.

In dieser Arbeit wird die Korrelation der strukturellen Mikrostruktur und den magne-
tischen Eigenschaften in Ni2MnZ Heusler Legierungen experimentell mit Neutronen-
diffraktionsmessungen untersucht. Die Interpretation der experimentell beobachte-
ten Ergebnissen wird durch theoretische Überlegungen und Computersimulationen
gestützt. Im Speziellen wird der Vergröberungsprozess von Antiphasendomänen,
die sich während eines strukturellen Ordnungsüberganges bilden, mittels Monte-
Carlo Simulationen untersucht und ein allgemeines Modell zur Beschreibung der
Paarkorrelationsfunktion im Realraum und des entsprechenden Strukturfaktor im
Reziprokraum entwickelt. Die Größe der Antiphasendomänen, die eine L21 Ordnung
aufweisen, wird in Ni2MnAl0.5Ga0.5 und Ni2MnAl Verbindungen mittels Neutronen-
pulverdiffraktion untersucht und mit den magnetischen Domänen, die durch Neu-
tronenkleinwinkelstreuung erforscht werden, verglichen. Hierbei wird beobachtet,
dass beide Skalen ähnlich groß sind, was auf ein Zusammenfallen der atomaren und
magnetischen Mikrostruktur hinweist. Abschießend werden Kleinwinkelmessungen
mit einem externen magnetischen Feld vorgestellt, mittels derer die magnetische
Kopplung der magnetischen Domänen als Funktion der Temperatur und der magneti-
schen Feldstärke erforscht wird. Es wird ein Verhalten ähnlich zu einem Heisenberg
Antiferromagneten beobachtet, was zeigt, dass die magnetischen Domänen antifer-
romagnetisch zueinander koppeln.
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Chapter 1

Acronyms and Glossary

Anti-phase domain (APD) Domains of the same ordered phase form during
an ordering transition in compounds, where the
lattice of a priori equivalent sites decays into sub-
lattices with preferred occupations by different ele-
ments. As the superstructures nucleate at indepen-
dent regions in the crystal, they do not necessarily
fit together.

Anti-phase domain
boundary (APB)

An interface between two domains of the same
ordered phase.

𝑫̄ The real-space scale of an anti-phase domain
(APD) determined from the diffraction-peak’s
width Δ𝑘 via the Scherrer equation

Degeneracy An energy level is degenerate if there are two or
more states which give the same energy value.

Differential Scanning
Calorimetry (DSC)

A measurement technique which determines the
specific heat of a sample undergoing a physical or
chemical change.

Energy-Dispersive X-Ray
Spectroscopy (EDS)

An analytical technique to identify and quantify
elemental compositions in any given material.
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Full-Width at Half
Maximum (FWHM)

The width of a spectrum curve at half of its maxi-
mum amplitude.

Heusler Compound (X2YZ) An intermetallic compound, where X and Y are
transition metals and Z is a main group element.
Its prototypical crystal structure is L21 order at
room temperature.

Instrumental Resolution
Function (IRF)

A function describing the peak shape of a spectrum
curve measured at a diffraction instrument. Its
parameters are determined from the calibration
measurements.

𝒌 In Chap. 3 it is defined as an independent variable
in the Fourier transformed space. In Chap. 4 and
Chap. 5 𝒌 denotes the wavevector of a particle or
wave.

𝜿 The reduced element in Fourier space, which is
defined in Chap. 3 as a function of 𝒌 in Eq. (3.13).

Microscopic Model This model is used to describe the ordering pro-
cess in binary alloys in which the order parameter
is conserved. The spin states 𝜎 are either −1 or
1. The ground state of the investigated systems is
degenerate with multiplicity 𝑞 depending on the
symmetry of the system. Hence during the order-
ing process𝑞 anti-phase domains are present in the
system with a perfectly ordered state correspond-
ing to a configuration of unlike nearest neighbour
pairs.
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𝒒,𝑸 In Chap. 3 𝒒 denotes the multiplicity of a degen-
erate ground state. In the ferromagnetic 𝑞-state
Potts model it is the number of possible spin states,
while for the microscopic model it corresponds to
the number of anti-phase domains present in the
system. In Chap. 4 and Chap. 5 𝑸 denotes the
wavevector transfer of a particle or wave in a scat-
tering event.

𝒒-state Potts Model This model is used to describe ferromagnetic do-
mains in which the order parameter is not con-
served. 𝑞 is the number of possible spin states 𝜎
present in the system with (𝑞 ∈ {2, 3, 4, . . . })
and 𝜎 ∈ {0, 1, . . . , (𝑞 − 1)}. A perfectly ordered
state would correspond to only one spin state be-
ing present in the system.

Pair-Correlation Function
𝑔′(𝑟 )

In an ordering transition with 𝑞 anti-phase do-
mains present 𝑔′(𝑟 ) denotes the radially averaged
real-space pair-correlation function of the ordered
domains. It decays from 1 at small distances to 1/𝑞
at infinity.

Rescaled Pair-Correlation
Function 𝑔(𝑟 )

The rescaled radially averaged real-space pair-
correlation function of anti-phase domains decays
from 1 at small distances to 0 at infinity. It is given
as 𝑔(𝑟 ) =

(
𝑞𝑔′(𝑟 ) − 1

)
/(𝑞 − 1).

Spatially Scaled
Pair-Correlation Function
𝑔(𝜌)

The rescaled radially averaged real-space pair-
correlation function of structurally ordered do-
mains is scaled by the time-dependent scaling fac-
tor 𝐿(𝑡). With 𝐿̃(𝑡) = 𝐿(𝑡) (𝑞 − 1)/𝑞 the spa-
tially scaled pair-correlation function is given as
𝑔(𝜌) = 𝑔

(
𝑟/𝐿̃(𝑡)

)
. It takes values from 1 at small

distances to 0 at infinity.
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𝒓 The distance between two atoms or positions in
real space.

𝝆 The reduced distance in real space given as a trans-
formed function of 𝒓 in Eq. (3.12).

Small-Angle Neutron
Scattering (SANS)

An experimental techniquewhichmeasures the co-
herent scattering and is sensitive to structures of
the mesoscopic length scale. Due to the neutron’s
magnetic moment, which couples to the local in-
ternal magnetic field from the magnetic atoms in
the sample, the contrast between local magnetic
fields can be probed and the corresponding mag-
netic microstructure can be investigated via SANS
experiments.

Structure Factor 𝑆 (𝑘) The radially averaged reciprocal-space structure
factor which corresponds to the three dimensional
Fourier transform of the pair-correlation function
𝑔(𝑟 ).

Spatially Scaled Structure
Factor 𝑆 (𝜅)

The spatially scaled structure factor with 𝑆 (𝜅) =
𝑆
(
𝑘𝐿̃(𝑡)

)
/𝐿̃(𝑡)3. The factor 1/𝐿̃(𝑡)3 is due to 𝑆 (𝜅)

being the three-dimensional Fourier transform of
𝑔(𝜌).

Time-of-Flight
Diffractometer (TOF)

An experimental technique which measures the
scattering intensity as a function of time a neutron
takes to travel from its source to the detector.
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Chapter 2

Motivation

Heusler alloys have attracted a considerable amount of attention due to their fasci-
nating functional properties such as thermoelectricity (Sakurada and Shutoh, 2005),
superconductivity (Wernick et al., 1983), the magneto-caloric effect (Hu, Shen, and
Sun, 2000; Planes, Mañosa, and Acet, 2009) as well as the ferromagnetic shape mem-
ory effect (Ullakko et al., 1996; Murray et al., 2000). Heusler compounds are defined
as intermetallic XYZ (half-Heulser) and X2YZ (full-Heusler) compounds, where X and
Y are transition metals and Z is a main group element. Friedrich Heusler (Heusler,
1903) discovered the principle Heusler compound (Cu2MnAl), while studying the in-
termetallic compound Cu2Mn. He observed that the addition of a main group element
(Al, In, Sn, Sb or Bi) led to a ferromagnetic alloy, even though none of the constituents
are ferromagnetic. Its crystal structure was studied using X-ray scattering by Bradley,
Rodgers, and Bragg (1934), and was determined to be L21 order at room temperature,
depicted in Fig. 2.1.

Upon the discovery of a new class of materials, the half-metallic ferromagnets, in the
half-Heusler alloy NiMnSb (Groot et al., 1983) and the observation of the ferromag-
netic shape memory effect in the full-Heusler alloy Ni2MnGa (Webster et al., 1984),
NiMn-based Heusler compounds have been the subject of tremendous experimental
(Planes, Mañosa, and Acet, 2009; Neibecker et al., 2014; Umetsu, Xu, and Kainuma,
2016; Neibecker et al., 2017) as well as theoretical interest (Pierre et al., 1997; Miura,
Nagao, and Shirai, 2004). Their functional properties show a strong dependence on
structural order (Neibecker et al., 2017), thus understanding the relation between
them is key to access the full potential of NiMn-Heusler compounds. Typically these
alloys undergo two phase ordering transitions when cooling from the melt to room
temperature. For Ni2MnAl the fully disordered body centred phase (A2 order) is
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A2

Ni/Mn/Z

B2

Ni
Mn/Z

L21

Z
Mn

Figure 2.1: Schematic representations of the ordering states of Ni2MnZ on the bcc
lattice: In the A2 structure all atom species are distributed randomly over the lattice
sites. B2 order can be described by two sc sublattices, with Ni atoms occupying
one sublattice while Mn and Z atoms occupy in disorder the other one. In the L21
structure further ordering occurs on the later sublattice.

transformed into a partially ordered structure (B2 order) at 1220 K (Sołtys, 1981). This
CsCl type crystal structure is depicted in the middle of Fig. 2.1 and corresponds to
two nested simple cubic (sc) lattices, with one being occupied by Ni atoms, while
the other one is occupied by a random distribution of Mn and Al atoms. At 990 K
(Sołtys, 1981) the partially ordered phase undergoes further ordering on the Mn and
Al sublattice and the full-Heusler structure (L21 order) is formed. This superstructure
on the body-centred cubic (bcc) lattice can be described by four nested face-centred
cubic (fcc) lattices, with each atom occupying one sublattice as depicted on the right
in Fig. 2.1. The order-disorder transition from B2 to L21 order is a second-order phase
transition and is accompanied by a reduction in the translational symmetry as well as
a change in the magnetic properties of the material (Neibecker et al., 2014; Neibecker
et al., 2017).

Spontaneous symmetry breaking associated with phase ordering in a compound has
a great influence on structural as well as functional properties (Stoloff, 1984; Pollock
and Tin, 2006; Neibecker et al., 2017), e.g. the yield strength or magnetism. The order-
disorder transition results in a loss of symmetry with a superstructure being formed
during the ordering process. The superstructure nucleates at independent regions
in the crystal, which do not necessarily fit together. With time this ordered phase
covers the whole crystal leading to a division of the crystal into so called APDs. The
interface is correspondingly called anti-phase domain boundary (APB). During the
transition these domains begin to coarsen in order to reduce the excess free energy of
the domain walls. Due to the formation of the superstructure a unit dislocation in the
disordered state becomes a partial dislocation in the superlattice which is attached to
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the APB (Stoloff and Davies, 1968). Moving this so-called superdislocation requires
very high stress, as it will destroy the order across its slip plane completely. Thereby
the yield strength of a compound in its ordered state is increased compared to its
disordered one (Vidoz, Lazarević, and Cahn, 1963). A prominent example for the
influence of atomic order are superalloys such as Ni3Al and Fe3Al or the lightest
intermetallic ordered compound Al3Li. In their ordered state, a L12 superstructure on
the fcc lattice, they display remarkable mechanical strength at a low density (Stoloff,
1984; Pollock and Tin, 2006). Describing the atomic ordering process as well as its
kinetics accurately is crucial for understanding the relation between structural order
and system properties.

Specifically, in the development of magnetic properties, structural order plays a
crucial role, as for example, in most ferromagnetic materials, such as iron or nickel:
While a well-ordered iron sample with a low defect concentration is a perfect example
for a soft magnet, which can easily be magnetized and demagnetized, the same sample
can become a hardmagnet when being heavily deformed. This change of themagnetic
properties is due to the pinning of the magnetic domains at local defects in the sample,
which leads to an increase of its coercivity with an increasing degree of disorder. In
Ni2MnZ Heusler compounds, the atomic order of the austenite phase plays a crucial
role in their magnetic properties. As is the case for many other compounds with a
sufficiently high concentration of Mn (Acet et al., 2002; Kwiatkowski et al., 2007), the
magnetic moments are mainly carried by the Mn atoms, whose exchange interaction
depends strongly on the distance between them. To study this interplay of structural
and magnetic order, we used neutron scattering. Via this method we can access not
only the atomic microstructure of the sample, but due to the neutron’s magnetic
moment, which couples to the local internal magnetic field from the magnetic atoms
in the sample, we can also investigate its magnetic microstructure.

The outline of this thesis is the following: In chapter 3 the coarsening of APDs in
compounds is investigated via Monte-Carlo simulations. A detailed description of the
general process is given as well as a derivation of a model to describe the real-space
correlation functions. Chapter 4 reports on the scale of structural and magnetic
domains using a combination of neutron powder diffraction and small angle neutron
scattering. In chapter 5 the coupling of magnetic domains is investigated using small
angle neutron scattering under magnetic fields as well as neutron powder diffraction
at low temperatures.





9

Chapter 3

Modeling the Coarsening Process of
Anti-Phase Domains

3.1 Introduction

The ordering process in binary alloys, which follows the quench from a disordered
state, greatly influences system properties, such as magnetism or hardness. A promi-
nent example of atomic order’s influence on functional properties is superalloys such
as Ni3Al, Fe3Al or the lightest intermetallic ordered compound Al3Li. In their ordered
state, an L12 superstructure on the fcc lattice, these alloys display remarkable mechan-
ical strength at a low density (Stoloff, 1984; Pollock and Tin, 2006). In Heusler alloys,
structural order is known to have a strong influence on the system properties, e.g.
changing the electronic band structure (Graf, Felser, and Parkin, 2011) or increasing
the magnetic transition temperature with increased chemical order (Neibecker et al.,
2014). Specifically, the transition from B2 order to the full-Heusler structure (L21

order) is accompanied by a change in the magnetic properties for Ni2MnZ compounds
(Neibecker et al., 2014; Neibecker et al., 2017). To understand this strong relation
between structural order and functional properties, it is crucial to describe the atomic
ordering process and its kinetics accurately.

The order-disorder transition results in a loss of symmetry, where the lattice of a
priori equivalent sites decays into sublattices with preferred occupations by different
elements. This superstructure nucleates in independent regions of the crystal, where
the ordered domains subsequently grow, leading to a division of the crystal in so-
called APDs. An example for the two-fold degenerate ground state, an AB alloy
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A

B

α

α

α

β

β

β

α

α

α

β

β

β

a) b)

A on α
B on β

A on β
B on α

Figure 3.1: Atomic configurationwith two anti-phase domains illustrated as a) ordered
atoms and b) atoms assigned to domains, according to A and B occupying the 𝛼 and
𝛽 or 𝛽 and 𝛼 sublattice, respectively. The anti-phase domain boundary is sketched as
a black line.

on a quadratic lattice, is sketched in Fig. 3.1. The atomic order of the crystal plane
shows that both occupations (A on the 𝛼 and B on the 𝛽 sublattice and its respective
complement) lead to an ordered structure. Assigning every site a domain according to
the occupied sublattice of each atom kind leads to the domain configuration depicted
in Fig. 3.1 b). The domains are separated by an APB, sketched as a black line in both
pictures. As time goes on, the domains begin to coarsen, as they grow to minimize
the area of the domain walls that separate the phases.

Experimentally the kinetics of an ordering transition is investigated by measuring
the size of the APDs with annealing time either by real-space methods, e.g. elec-
tron microscopy, or via diffraction methods in reciprocal space. In microscopy the
length scale of the APDs is commonly (Rogers, Flower, and Rawlings, 1975; Suzuki,
Takeyama, and Matsuo, 2002; Brenker, Müller, and Brey, 2003) determined via the
linear intercept method. Here the characteristic length scale of the APDs is defined as
the mean distance between APD intersections on a line segment of random direction
(Smith and Guttman, 1953).

In diffraction experiments, the finite correlation length of the superstructure, which
is confined by the APD size, results in the broadening of the respective Bragg peaks.
This broadening is best described by the full-width at half maximum (FWHM) or
the integral breadth 𝐵I which is defined as the quotient of the peak area to the peak
height. In the easiest approach, the APD size is inversely proportional to the peak
broadening 𝐷̄ = 2𝜋𝐾/Δ𝑘 (Scherrer, 1918). This relation is known as the Scherrer
equation, where 𝐾 is a phenomenological constant of the order of unity, the Scherrer
constant, and Δ𝑘 is a parameter to describe the broadening of the Bragg peak. In more
elaborate analysis methods, the shape function is Fourier transformed, weighted with
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the size distribution function and modelled to the powder pattern (Scardi and Leoni,
2002; Scardi and Leoni, 2005). In both evaluation methods, the shape of the domains
has to be taken into account, either in the form of the Scherrer constant or the model
for the whole powder pattern fit. Since APDs have no closed form, assumptions
made about their shape will therefore always yield an insufficient description of their
fundamental intrinsic properties. The determined length scale parameters are specific
to the analysis method and the used assumptions. Specifically, length scales obtained
via diffraction methods can commonly not be related to particular real-space features
of APDs (Sakai and Mikkola, 1971; Morris, Besag, and Smallman, 1974; Morris et al.,
1976).

In the absence of atomic disorder and discreteness, the evolution of the domain
growth with coarsening time is deterministic and driven by its interface curvature
according to the classical Allen-Cahn treatment (Allen and Cahn, 1979). In a late
stage of the coarsening process, the statistical properties of a domain configuration
𝜎1(𝑟 ) are identical to the statistical properties of a domain configuration at an earlier
ordering time 𝜎2(𝑟 ), when being scaled by a time-dependent spatial scaling factor
𝐿(𝑡). Hence, for time scales, where this scaling hypothesis (Bray, 2002) is valid, the
domain structure is in a statistical sense independent of the coarsening time when
being scaled by a single characteristic length scale 𝐿(𝑡). In the case of a curvature-
driven coarsening process of non-conserved fields (Bray, 2002), the time-dependence
of 𝐿(𝑡) can typically be described by a power-law dependence with an exponent of
𝜈 = 1/2, 𝐿(𝑡) ∝ 𝑡1/2.

There have been numerous attempts to give a general description of the statistical
properties of the domain structure, such as the pair-correlation function 𝑔(𝑟 ) or the
respective structure factor 𝑆 (𝑘), within the scaling regime (Kawasaki, Yalabik, and
Gunton, 1978; Ohta, Jasnow, and Kawasaki, 1982; Mazenko, 1990; Liu and Mazenko,
1991; Toyoki, 1992; Bray, 2002). Computer simulations prove to be an important tool
to investigate this process in detail (Phani et al., 1980; Frontera, Vives, and Planes,
1994; Simak et al., 1998; Kessler, Dieterich, and Majhofer, 2003a).

Since for Ni2MnZ compounds the development of their functional properties is
strongly dependent on the structural order process, an accurate description of the
coarsening process of the APDs as well as its kinetics is crucial to understand their
strong relation. This chapter investigates the coarsening process of anti-phase do-
mains via Monte-Carlo simulations. We consider three-dimensional systems with
up to four inequivalent domains present during the order-disorder transition. Using
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the abstract Potts as well as microscopically realistic models, we performed large-
scale simulations of APD coarsening for in total of six systems. Finally, we give a
phenomenological model to describe the statistical properties of atomic order config-
uration, such as the general form of the real-space pair-correlation function and the
reciprocal-space structure factor. The results of this chapter were partially published
in Zweck and Leitner (2021).

3.2 Systems

3.2.1 Microscopic Models

For the microscopic models, we consider the Hamiltonian given by

𝐻 = −𝐽nn
∑︁
⟨𝑖, 𝑗⟩

𝜎𝑖𝜎 𝑗 − 𝐽nnn
∑︁
⟨𝑖, 𝑗⟩′

𝜎𝑖𝜎 𝑗 . (3.1)

with 𝜎 = ±1 for A and B atoms, respectively. The summation over all nearest neigh-
bour pairs of sites is denoted by ⟨𝑖, 𝑗⟩, while the next-nearest neighbours are consid-
ered by ⟨𝑖, 𝑗⟩′. Each pair is counted once. 𝐽nn and 𝐽nnn are the nearest neighbour and
the next-nearest neighbour exchange interaction constants, respectively. Choosing
the exchange interaction constant 𝐽nn = −1 leads to a preference of a configuration
of unlike nearest neighbour pairs.

For the ordering process on the sc lattice with an equal concentration of the two
kinds of atoms we consider only the nearest neighbour exchange interactions, hence
𝐽nnn = 0. This Hamiltonian compares to the standard three-dimensional nearest
neighbour anti-ferromagnetic Ising model, which is thermodynamically equivalent
to the ferromagnetic Ising model. The ground state of this system is degenerated
with a multiplicity 𝑞 = 2 and corresponds to B1 order (NaCl), which can be described
by two nested fcc lattices, occupied by A and B atoms, respectively. It has the space
group 225 (Fm3̄m) with A and B atoms on the Wyckoff positions (4a) and (4b). Due
to the symmetry of the system as well as the equal concentration of the two atom
kinds, there are two APDs present in the system and hence there exists only one
APB. The nearest neighbour bonds between the lattice sites across the APB give
rise to a bipartite graph, as well as no segregation to the boundaries. Due to the
simplicity of this system, it is arguably the most popular to study APD structures
theoretically (Phani et al., 1980; Vetter and Baal, 1990). Note that considering the
same Hamiltonian on a bcc lattice, the corresponding grounds state is B2 order (also
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known as the CsCl structure), which is qualitatively equivalent to the B1 case. Due to
its applicability to the ordering process of intermetallic compounds such as FeAl or
NiAl (Bradley, Jay, and Bragg, 1932; Bradley, Taylor, and Bragg, 1938), this case has
been the subject of numerous experimental studies (Bradley, Jay, and Bragg, 1932;
Allen and Cahn, 1975; Pochet et al., 1995).

We study the prototypical cases of a three and four-fold ground state degeneracy on
the fcc lattice. Here we investigate the atomic ordering process of two binary alloys,
AB2 and AB3, of concentrations in accord with their stoichiometry. The four-fold
degenerate ground state on an fcc lattice is an L12 ordered structure (Cu3Au). It is
assigned to the space group 221 (Pm3̄m) with the minority atom kind A and the
majority atom kind B atoms on the Wyckoff position (1a) and (3c), respectively. The
ordered lattice can be described by four nested sc lattices, 𝛼 , 𝛽 , 𝛾 and 𝛿 , as shown
in the top panel of Fig. 3.2. The respective L12 order ground states are depicted
in the middle panel of Fig. 3.2. In contrast to the sc lattice, considering solely 𝑛𝑛
interactions leads on an fcc lattice to varying energy costs of an APB depending on the
type of neighbouring domain. Any domain can form APBs parallel to the {100} plane
families to one of the remaining domains without any additional energy cost (Sakai
and Mikkola, 1971). As a result, the APDs are faceted strongly in these directions
up to the transition temperature (𝑇c). This observation agrees with the results from
Monte Carlo simulations by Frontera et al. (1997) for the AB3 alloy. An evaluation of
the energy costs of APBs for different lattice structures is presented in section 3.3.1.1.
Since the coarsening of domains is a curvature driven process, the domain growth
is slowed down. Instead of the predicted (Allen and Cahn, 1979) and experimentally
obtained (Nagler et al., 1988) growth exponent of 𝜈 ∼ 1

2 , an effective exponent of 𝜈 ∼ 1
4

is observed by Frontera et al. (1997) and Kessler, Dieterich, and Majhofer (2003b).
For the APDs to grow isotropically on the fcc lattice it is necessary to consider
not only nearest but also next-nearest neighbour (𝐽nnn ≠ 0) exchange interactions.
We found that setting 𝐽nnn = 1 results in a suppression of this behaviour with the
configurations being practically isotropic, which agrees with Kessler, Dieterich, and
Majhofer (2003a). Experimentally, the full range from strong (Sakai and Mikkola,
1971; Morris, Besag, and Smallman, 1974) to absent (Morris et al., 1976) anisotropies
is evidenced, depending on the system.

Next, we consider the ordering of an AB2 alloy on the faces of an L12 ordered structure.
An example of this ordering process is the composition Cu2NiZn (see Simak et al.
(1998) and the references given therein). This alloy orders, when cooling it down from
the melt, first in an L12 structure (Simak et al., 1998) with Ni and Cu atoms in disorder
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Figure 3.2: An fcc lattice with its four sc sublattices 𝛼 , 𝛽 , 𝛾 and 𝛿 . The two microscopic
models as superstructures on the fcc lattice for the Cu2NiZn compound: L12 (mid)
and m-L10 (bottom). In L12 order the green minority atom can choose one of four
sublattices, corresponding to a four-fold degenerate ground-state (4 APDs, 𝑞 = 4).
Further ordering on the three remaining sublattices, occupied by Cu and Ni, forms
the m-L10 structure, which is a three-fold degenerate ground-state (3 APDs, 𝑞 = 3).

on the faces of the fcc lattice, as shown in Fig. 3.2. Its structure undergoes further
ordering on the Cu/Ni sublattices decreasing the temperature, with the Ni atoms
congregating on one of the three sublattices. The resulting structure of tetragonal
symmetry can equally be seen as a superstructure on L10. Thus it is denoted as
“modified” L10 structure (m-L10), with its three equal ground state structures being
illustrated in the bottom panel of Fig. 3.2. It has space group 123 (P4/mmm) with Zn
on Wyckoff position (1a), Ni on (1c), and Cu on (2e). At this transition, the Zn atoms
are unaffected, and in our model, we disregard the static Zn atoms. The situation for
the anisotropy of the APD boundary energy is analogous to the L12-case, and also
here, we use 𝐽nnn = 1 to get approximately isotropic interfacial energies.
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3.2.2 Abstract Models: q-State Potts Model

In the standard 𝑞-state Potts model (Potts, 1952), with 𝑞 being the number of possible
spin states (𝑞 ∈ (2, 3, 4, . . . )), the Hamiltonian is given by

𝐻 = −𝐽
∑︁
⟨𝑖, 𝑗⟩

𝛿𝜎𝑖 ,𝜎 𝑗 , (3.2)

where 𝐽 > 0 is the exchange interaction constant, 𝜎𝑖 can be a value between 0 and
𝑞 − 1 and 𝛿𝜎𝑖 ,𝜎 𝑗 corresponds to the Kronecker-Delta. Solely the nearest neighbour ex-
change interaction is considered. Generally, this model is used to study ferromagnetic
domains in which the order parameter is not conserved. We performed simulations
of the ordering process using this model by investigating the assignment of unit cells
to 𝑞 APDs, rather than the movement of atoms (as in microscopic models).

3.2.3 Implementation and Dynamics

We model the ordering process of the microscopic B1 and the Potts cases on cubic
𝑁 × 𝑁 × 𝑁 lattices. We consider 𝑁 /2 × 𝑁 /2 × 𝑁 /2 four-site conventional cubic cells
for the microscopic L12 and m-L10 instances since they are superstructures on the
fcc lattice. In all cases, 𝑁 is 1024 unless stated otherwise. Our algorithms use random
numbers generated by a permuted congruential generator (PCG) (O’Neill, 2014). If
not explicitly stated, the domain configurations are initialized from a completely
disordered random state while fixing the exact stoichiometry in the Ising case.

We investigate the ordering process in our microscopic model by applying the
Metropolis algorithm (Metropolis et al., 1953) to the diffusion of a non-interacting va-
cancy through the system. At each step of the vacancy, one of its nearest neighbours
is randomly selected. The bonds between equal and unequal atoms on the nearest
and next-to nearest neighbours are counted and used as an index for a precomputed
two-dimensional table of exchange probabilities. The exchange probabilities are
given by the usual Metropolis probability 𝑝 (Δ𝐻 )

𝑝 (Δ𝐻 ) =


1 Δ𝐻 < 0

exp
(
− Δ𝐻
𝑘B𝑇

)
Δ𝐻 ≥ 0

(3.3)

where Δ𝐻 is the difference in the system’s energy before and after the proposed
exchange. The exchange is accepted if its probability is larger than another random
number uniformly drawn between 0 and 1. In case of the L12 and m-L10 systems
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the vacancy interacts with the other atoms as if it was a majority atom. Hence a
proposed exchange between the vacancy and a majority atom will always happen.
This updating strategy avoids trapping the vacancy in a locally optimal configuration.
Additionally, it is more physically realistic and computationally efficient to consider
only the nearest neighbours of the vacancy for exchanges instead of random sites in
the lattice as in the so-called Kawasaki dynamics (Kawasaki, 1966; Bortz et al., 1974).
Due to the cache architecture of modern CPUs, the good data locality of the nearest
neighbour exchanges has a clear advantage over the random-exchange-site-update,
where the nearest as well as next-nearest neighbours of the unpredictable locations
have to be accessed in the main memory. Hence, if the efficiency is measured in
CPU cycles per attempted site occupation exchange, the latter method is significantly
slower, particularly for large systems.

In the case of the 𝑞-state Potts model, sites are updated via the heat bath algorithm
(Creutz, 1980): The chosen site is reassigned to one of 𝑞 APDs, independently of
their former value. To determine its new APD value, the domain representation in
its nearest neighbours is counted. For each kind of APD a probability 𝑝𝑖 is computed

𝑝𝑖 = exp(𝑁𝑖/𝑘B𝑇 ) (3.4)

with 𝑁𝑖 being the count of domain 𝑖 in the nearest neighbours of the chosen position
and 𝑖 ∈ [1, 𝑞]. We sum these 𝑞 probabilities and multiply the sum with a uniform
random number 𝜂 ∈ [0, 1]. We then successively subtract the probabilities 𝑝𝑖 from
the resulting value until it decreases below 0. The value of the domain 𝑖 , whose
probability 𝑝𝑖 was subtracted last, is then assigned to the position. Sequential updating
of sites leads to dynamical and, thus, potentially structural anisotropies, as the nearest
neighbour of an updated site would be updated next and hence influenced by the
new domain assignment of the updated site. Instead we can exploit the bipartite
nature of the sc lattice: We cover the system by a three-dimensional checkerboard
pattern and update the white and black sites in an alternating fashion. This approach
is valid since sites of the same colour on the checkerboard can not interact directly
with each other, as in the Potts model, exclusively nearest neighbour interactions are
considered (𝐽nnn=0).

We define the unit of time, i.e. Monte Carlo step (MCS), for the microscopic cases
as the trial of as many vacancy-atom exchanges as sites in the system. For the Potts
model, one Monte Carlos step is defined as the reassignment of 𝑁 3 positions on
an 𝑁 × 𝑁 × 𝑁 lattice, which corresponds to two checkerboard updates. During



3.2. Systems 17

the coarsening simulations, we followed the evolution of the configurations over
7500 MCS.

The simulations were performed on a workstation with four processor threads. We
exploited the possibility of parallel execution for the Potts cases by splitting our
checkerboard updates on the four threads. To this end, we divided the set of white
or black sites along one dimension into eight slices and updated the even-numbered
slices followed by the odd-numbered ones concurrently. For computing the reciprocal
space scattering functions as well as the real space correlation functions, FFTW
(Frigo and Johnson, 2005) was used. Due to the large system size, these quantities
necessitates to a large data volume. To be able to handle them still, we reduced these
three-dimensional quantities to one-dimensional radial averages on the fly during the
simulation. We performed 40 to 80 of these coarsening simulations for each system.
The correlation functions and scattering functions shown in the following sections
are the averages over these independent configurations. The reported expected values
of the derived parameters were also obtained from these averages. The estimated
errors are derived via the bootstrap method (Efron and Tibshirani, 1994), that is, by
repeatedly generating synthetic samples of configurations with the same number of
elements by samplingwith replacement from the simulations, performing the analysis
on the corresponding averaged correlation or scattering functions, and computing
the standard deviation thereof.

3.2.4 Equilibrium Properties

To confirm our implementations’ validity as well as to determine the simulation tem-
peratures of the m-L10 and L12 systems, we computed the temperature-dependent
long-range order parameter 𝑀 (𝑇 ) of our systems, determined the respective tran-
sition temperatures and compared them to well-known results of the 𝑞-state Potts
model. In the case of the microscopic model, the stoichiometric concentrations are
constant, and the long-range order parameter can be evaluated by the atom concen-
tration on the sublattices

𝑀 (𝑇 ) = 𝑐A
𝛼 − 𝑐A

𝛽
= 𝑐B

𝛽
− 𝑐B

𝛼 . (3.5)
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Figure 3.3: Temperature-dependent order parameters𝑀 (𝑘B𝑇 ) of the Potts (top) and
microscopic systems (bottom).

For the 𝑞-state Potts model 𝑀 (𝑇 ) is proportional to the proportion of the majority
domain 𝑥 in the system and is given as

𝑀 (𝑇 ) = 𝑞𝑥 − 1
𝑞 − 1 . (3.6)

Both expressions of the long-range order parameter range from 0 (total disorder) to 1
(perfect order). The thermal evolution of𝑀 (𝑇 ) is displayed in Fig. 3.3, with the upper
panel showing the simulation results of the Potts systems. In contrast, the ones of
the microscopic systems are shown in the lower panel.

First, we discuss the evolution of the order parameter for the 2-state Potts model:
Starting from a perfectly ordered state at low temperatures, we observe a continuous
decrease from unity to 0 in𝑀 (𝑇 ) with increasing temperature, indicating a second-
order transition. This thermal evolution of the equilibrium state is consistent with
the well-known behaviour of the three-dimensional ferromagnetic 𝑞 = 2 Potts case.
With the order parameter reaching zero at about 𝑘B𝑇c = 2.255(2), our transition
temperature agrees well with the currently best-known value of 𝑘B𝑇c = 2.25576163(5)
(Ferrenberg, Xu, and Landau, 2018), which was obtained by methods much more
efficient for second-order transitions than our simple local Monte Carlo updates.
The microscopic B1 case becomes thermodynamically equivalent to the 2-state Potts
system if we consider the B1 system under the conditions that the sign of the exchange
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interaction constant 𝐽 and the occupation of the sites of one colour in the three-
dimensional checkerboard decomposition was flipped. The order parameter curves
of both models coincide perfectly if a factor of 2 scales the temperature due to the
spin units in the microscopic system being −1 and 1 instead of 1 and 0 as in the 𝑞 = 2
Potts system. The corresponding transition temperature of the microscopic system
is 𝑘B𝑇c = 4.510(2) which is consistent with the Potts value.

In case of the simulations for the 3 and 4-state Potts systems, we observe a discontinu-
ous transition of the order parameter. Due to this discontinuity, simply increasing the
ordering temperature on a perfectly ordered system would lead to inaccurate values
of the transition temperature: In particular, one expects to observe the transition
at a higher temperature (where the system is overheated) because the disordered
phase has to nucleate in the ordered system first. For the opposite case, when start-
ing from a disordered state, continuously decreasing the temperature would shift
the transition to lower temperatures due to the necessary nucleation of the ordered
phase, undercooling the system. Hence we determined the transition temperature by
starting with an inhomogeneous system consisting of an ordered and a disordered
part and adjusted the simulation temperature until the two phases were seemingly in
equilibrium, which was indicated by the order parameter showing a purely stochastic
evolution with simulation time. The presented curves are derived from heating and
cooling simulations, spliced together at the critical temperature obtained as detailed
above. We observe a transition at 𝑘B𝑇c = 1.8164(1) and 1.5907(1) for the 3- and
4-state Potts model, respectively. This result reproduces their well known behaviour
(Wu, 1982) and our values of the transition temperatures are consistent with the most
precise reported values of 𝑘B𝑇c = 1.816315(20) and 1.590816(9) (Bazavov, Berg, and
Dubey, 2008).

Superficially, the evolution of the order parameters for the microscopic 𝑞 = 3 and
𝑞 = 4 cases seem to display a similar discontinuous behaviour as the respective Potts
systems. More rigorous considerations show an approximately linear decrease in the
simulations for both microscopic systems over the regions 𝑘B𝑇 ∈ (1.814, 1.830) in
case of 𝑞 = 3 and 𝑘B𝑇 ∈ (1.668, 1.680) in the 𝑞 = 4 case. This linear decrease arises
from the stoichiometric concentrations being constant in the microscopic model.
It results from the coexistence of an ordered and a disordered phase close to the
transition temperature in the cases of 𝑞 > 2. In this coexistence region, there is with
increasing temperature a gradual shift from the ordered to the disordered phase. This
coexistence represents the equilibrium behaviour of this system and is familiar from
binary alloy phase diagrams, where two-phase regions typically separate different
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phases. In the𝑞 = 2model, the symmetry of the system leads to a congruent transition
fixed at stoichiometry.

3.3 Domain Coarsening

During the disorder-order transition, ordered domains nucleate and grow, leading to
a division of the crystal in APDs. In an actual experimental sample or a simulation,
each realization of a configuration will have a different arrangement of these APDs.
However, all arrangements result from the same growth and coarsening dynamics
and therefore possess the same statistical properties, which can be discussed and
compared. A typical statistical summary for this purpose is the pair-correlation
function of the APD, 𝑔′(𝒓), which characterizes the probability of two positions
to share the same domain when they are separated by a vector 𝒓 . In the 𝑞-state
Potts model, sites are assigned to domains, allowing the direct computation of the
conventional pair-correlation function. In the microscopic model computing the
conventional pair-correlation function directly from the atomic configuration results
in an attenuated oscillation, as depicted in the panel on the right of Fig. 3.4. To
obtain the pair-correlation function of the respective domain assigned configuration,
shown in the intermediate panel of Fig. 3.4, we used the following definitions: For
the B1 case, we covered the system by a three-dimensional checkerboard pattern,
exchanged the atom value 𝜎 of the white sites by its opposite and computed the
conventional pair-correlation function. In the case of the m-L10 and L12 systems, the
crystal structures can be described by three or four interpenetrating sc sublattices.
For each sublattice the pair-correlation function of the minority atoms is considered
separately. Summing over the respective contributions gives us the pair-correlation
function of the whole system, with the smallest accessible distance corresponding to
the cubic lattice constant. A given unit cell can belong to zero, if all sites are occupied
by majority atoms, one, if only the site 𝑖 is occupied by a minority atom and all other
sites by the majority atoms, or more domains, if the specific unit cell is occupied by
more than one minority atom.

In order to be able to compare the pair-correlation functions for different 𝑞, here
we will use a rescaled version that decays from 1 at small distances to 0 at infinity.
Specifically, our rescaled correlation function 𝑔(𝒓) is defined as

𝑔(𝒓) = (𝑞𝑔′(𝒓) − 1) /(𝑞 − 1). (3.7)
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Figure 3.4: Atomic configuration of the B1 model for a system size 𝑁 = 100. The
respective domain assigned configuration is obtained by multiplying the atomic con-
figuration with the 3D-checkerboard construct. The corresponding radially averaged
pair-correlation functions are shown on the right.

3.3.1 Simulation Temperature and Exchange Interaction

To compare the microscopic and Potts systems qualitatively, independent of the
underlying crystal structure or number of APDs present in the systems, we investigate
the spherically averaged pair-correlation function. Hence the domains have to grow
isotropically in all our systems, which depends strongly on the exchange interaction
and the simulation temperature. The effects of ordering at low temperatures and
considering for the L12 case exclusively nearest neighbour interactions are discussed
in the next section, while the consequences of ordering at high temperatures are
considered in Sec. 3.3.1.2

3.3.1.1 Faceting

The curvature of the domains as well as the thickness and direction of the APB
are strongly dependent on the ordering temperature and the crystal structure. The
energetically favourable close-packed directions in the L12 system can be taken from
Fig. 3.5, with exclusively nearest neighbour interactions (𝐽nnn = 0) being considered.
As mentioned in Sec. 3.2.1, for the microscopic m-L10 and L12 cases we observed
for this exchange interaction the APDs to be strongly faceted in the {100} planes
(Frontera et al., 1997), as it is possible to build energy-free APBs between the domains.

In order to test for anisotropy in the statistical properties of the APD configurations,
we performed dedicated coarsening simulations on smaller systems (𝑁 up to 240)
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𝑘B𝑇 = 0.1 𝑇c and 0.75 𝑇c, L12 system with 𝐽nnn = 0 and 𝐽nnn = 1, all after 1500 MCS
apart from L12 system with 𝐽nnn = 0, which due to its slow coarsening was simulated
for 30 000 MCS, compared with the pair-correlation function of a cube.
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and evaluated directionally dependent correlation functions in ⟨100⟩, ⟨110⟩ and ⟨111⟩
directions as reported in Fig. 3.6.

When ordering at the low simulation temperature of 0.1𝑇c, we observe the expected
directional differences of ∼ 10 % in the correlation functions for the 𝑞 = 2 Potts case.
The initial decay of the correlation function is the steepest in the ⟨111⟩ directions,
followed by the ⟨110⟩ directions. However, ordering at 0.75𝑇c leads to visually vanish-
ing differences, i.e. the correlation functions in the ⟨100⟩, ⟨110⟩ and ⟨111⟩ directions
differing less than 3%.

The microscopic L12 case shows a strong anisotropy even at simulation temperatures
close to the transition temperature𝑇 = 0.75𝑇c, when considering only next neighbour
interactions 𝐽nnn = 0. The respective transition temperature is taken from Kessler,
Dieterich, andMajhofer (2003b). We observe the steepest decay in the ⟨111⟩ directions,
as seen before for the low-temperature 𝑞 = 2 Potts case. However, when the next-
nearest neighbour interactions, 𝐽nnn = 1, are considered, the differences between the
directionally dependent correlation functions are not noticeable by the eye.

In both anisotropic cases considered here, the observed behaviour of the directionally
dependent correlation functions is consistent with the preference of building APBs
parallel to the {100} planes. These planes are the energetically preferred ones for
the sc and fcc lattices when considering exclusive nearest neighbour interactions, as
indicated in Fig. 3.5. The anisotropy of the systems is as distinctive as possible under
cubic symmetry, which becomes clear when considering the following extreme case:
Let us consider an APD configuration on a lattice of cubes, with the volume enclosed
by a given cube being assigned to a random APD. The resulting correlation function
can be calculated analytically as the auto-correlation function of a single cube-shaped
domain

𝑔(𝜌) =


max(0, 1 − 𝜌) along⟨100⟩

max(0, 1 − 𝜌/
√

2)2 along⟨110⟩

max(0, 1 − 𝜌/
√

3)3 along⟨111⟩.

(3.8)

Fig. 3.6 shows that an L12-system with exclusively nearest neighbour interactions
gives anisotropies as pronounced as this most extreme model of cubic APDs. For the
sake of simplicity, in the following sections we will report only radially averaged
correlation functions 𝑔(𝑟 ), since we can safely assume the APD configuration to
be isotropic under the following two conditions: First, when the ordering process
happens at the simulation temperature 0.75𝑇c, which we use in the remainder in this



24 Chapter 3. Modeling the Coarsening Process of Anti-Phase Domains

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40

50 MCS

500 MCS

2000 MCS

4000 MCS

7500 MCS

0 10 20 30 40

C
o
rr

e
la

ti
o
n
 f

u
n
c
ti

o
n

Distance r

Figure 3.7: APD correlation functions of the𝑞 = 4 Potts model in the fully uncorrected
version (left), and corrected for disorder according to Eq. (3.11) (right).

work. Secondly, we need to consider second-nearest neighbour interactions for the
microscopic m-L10 and L12 cases.

3.3.1.2 Correcting For Disorder

In case of a perfectly ordered system the correlation function is unity at all distances
𝑟 . However diffuse APBs that show approximately isotropic configurations require
a high ordering temperature which leads to having a significant concentrations of
point defects also away from the APBs. To give an accurate description and model of
the correlation functions we need to correct for the effects of local disorder inside of
the domains as well as at the APBs and obtain the correlation function 𝑔′(𝑟 ) of the
idealized APD configuration unaffected by thermal disorder. We start with the effect
due to a finite long-range order parameter, giving point defects inside the domain.
Without correction for thermal disorder we obtain the apparent APD correlation
function 𝑓 ′(𝑟 ) determined as detailed in Sec. 3.3, which is reduced compared to 𝑔′(𝑟 )
due to thermal disorder.

In equilibrium one domain dominates while the other domains contribute equally
as point defects. If 𝑝 (𝑟 ) is the probability that two points separated by a distance 𝑟
are assigned to the same domain in equilibrium, we can write the uncorrected APD
correlation function in a coarsening simulation as

𝑓 ′(𝑟 ) = 𝑔′(𝑟 )𝑝 (𝑟 ) + (1 − 𝑔′(𝑟 )) (1 − 𝑝 (𝑟 ))
𝑞 − 1 . (3.9)

Here we made the approximation that the correlations of point defects as quantified
by 𝑝 (𝑟 ) behave across APD boundaries as they do within a domain, which will be
exactly fulfilled in the limit of vanishing point defect correlations, that is, at large
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distances. Solving for 𝑔′(𝑟 ) gives

𝑔′(𝑟 ) = (𝑞 − 1) 𝑓 ′(𝑟 ) − 1 + 𝑝 (𝑟 )
𝑞𝑝 (𝑟 ) − 1 . (3.10)

Hence our rescaled pair-correlation function 𝑔(𝑟 ) is given according to Eq. 3.7 as

𝑔(𝑟 ) = 𝑞𝑓 ′(𝑟 ) − 1
𝑞𝑝 (𝑟 ) − 1 . (3.11)

For simplicity, and justified by the fact that in fitting we anyway consider the cor-
relation functions only for 𝑟 ≥ 10 in order to avoid effects due to short-range order
of defects, we replace 𝑝 (𝑟 ) by its long-distance limit, given by the concentration of
point defects in equilibrium as determined in dedicated simulations.

Fig. 3.7 illustrates the effect of the correction for thermal point defects. While the
improvement is obvious, a close look shows that the expected behaviour of an ex-
trapolation to exactly 1 as 𝑟 → 0 is still not fulfilled. This behaviour arises from the
depression of order close to the APB, where the introduction of a point defect is less
costly than in the inside of the domains. In the simplest approach, we can model the
APBs as having a finite width 𝑐 , within which the order is completely lost. As the
specific interface area, in the sense of interface area per unit volume, is defined by 𝜉 ,
the extrapolation of the correlation function to 𝑟 = 0 will correspondingly decrease
from 1 to 1 − 𝑐𝜉 . Due to the correlation function’s derivative of −𝜉 at 0, we correct
this effect by shifting the distance scale 𝑟 by 𝑐 . The fitted values for 𝑐 with increasing
𝑞 are 0.75, 0.62 and 0.51 for the Potts cases, and 0.76, 0.71 and 0.57 for the microscopic
systems.

Hence, to have approximately isotropic APD configurations without introducing too
much atomic-scale disorder, we use consistently temperatures of about 75% of the
phase transition temperature 𝑇c for our coarsening simulations. Specifically, we use
𝑘B𝑇 of 1.7296, 1.4, and 1.2 for the 𝑞-state Potts cases of 𝑞 = 2, 𝑞 = 3, and 𝑞 = 4. For
the microscopic B1, m-L10 and L12 cases we assume 𝑘B𝑇 = 3.4592, 1.36275, and 1.26.

3.3.2 Dynamical Scaling

Fig. 3.8 depicts the general evolution of the ordering process for the 𝑞-state Potts
models by showing the domain assigned configurations at several time steps. With
increasing ordering time the APDs coarsen, and their surface energy decreases. In the
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Figure 3.8: Coarsening configurations for the three Potts models at various stages,
together with final configuration of a single domain with isolated point defects.
Shown are sections of 100 sites edge length of two-dimensional slices, while the three-
dimensional simulation box is considerably larger. The equilibrium configurations
were obtained after 1000 MCS starting from a perfectly ordered configuration.
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Figure 3.9: Simulated radially averaged real-space correlation functions (top left)
and reciprocal-space structure factors (bottom left) of 𝑞 = 4 Potts model at various
coarsening stages. In the right column, the data are replotted on the scaled coordinates
together with the scaling functions in red, demonstrating the universal shape in the
scaling regime. Note that only a subset of simulated points is plotted for being able
to distinguish the data sets.

final equilibrium state, a single domain dominates, and only local disorder remains
in the system.

The pair-correlation functions𝑔(𝑟 ) of the 𝑞 = 4 Potts system are depicted in the upper
panel of Fig. 3.9 for various coarsening times 𝑡 . As the domains grow, the correlation
length increases and the APB density 𝜉 decreases. Since for small distances 𝑟 the
unscaled correlation function can be approximated by 𝑔′(𝑟 ) ∝ (1 − 𝜉𝑟 ), the decay of
𝑔(𝑟 ) is slowed down with increasing domain size.

The lower panel of Fig. 3.9 illustrates the respective Fourier transforms of 𝑔(𝑟 ), the
structure factor 𝑆 (𝑘). With increasing ordering time, we observe a redistribution of
intensity to lower 𝑘 , indicating increased long-range order. This shift in intensity
converts to the growth of large structures, such as APDs. We observe this general
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evolution of order in all investigated systems, independent of the number of APDs
or crystal structures.

According to the scaling hypothesis, the pair-correlation functions and their Fourier
transforms can be scaled on top of each other for late ordering times. This is fulfilled
in our simulations as illustrated in Fig. 3.9 b) and d) for the 𝑞 = 4 Potts case. A
single scaling parameter 𝐿(𝑡) can match both real-space correlation functions and
reciprocal-space structure factors with high accuracy and precision. The transformed
functions are given by

𝜌 = 𝑟𝑞/𝐿(𝑡) (𝑞 − 1) and (3.12)

𝜅 = 𝑘𝐿(𝑡) (𝑞 − 1)/𝑞, (3.13)

respectively. The newly introduced term 𝑞/(𝑞 − 1) will be explained in more detail
within Sect. 3.5.3. For short ordering times, the scaling factor becomes so small that
it reaches the lower limit of the fundamental discretization of space, the nearest
neighbour distance. Due to the overlap of this lower limit and the features due to
the APD configuration, we observe deviations from scaling at small 𝜌 and large 𝜅,
respectively.

3.4 The Scaling Function

3.4.1 Phenomenological Ansatz

In order to describe the general form of the scaling function in real as well as reciprocal
space by an analytic expression, we use a combination of an exponential decay and
Gaussian functions as an ansatz. We found that our scaled correlation functions are
satisfactorily described by a linear combination of an exponential decay and two
Gaussian functions

𝑔(𝜌) = 𝑏 exp(−𝜌/𝑏) +
2∑︁
𝑖=1

𝑎𝑖 exp(−𝜌2/2𝜎2
𝑖 ). (3.14)

The first general restriction of this scaling function is the unity condition 𝑔(0) = 1,
which is necessary for all correlation functions. It is fulfilled by setting𝑏 = 1 − 𝑎1 − 𝑎2.
The derivative of the pair-correlation function gives the second condition: As men-
tioned before, for small distances the unscaled correlation function 𝑔′(𝑟 ) can be
approximated by a linear decrease via the specific interface area 𝜉 , which is defined
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as the average area of interface per unit volume, (𝑔′(𝑟 ) ∝ 1 − 𝜉𝑟 ). By construction
the derivative of our scaling function is −1 at 𝜌 = 0. Hence this condition allows us
to define the spatial scale of a simulated APD configuration via the scaling factor
𝐿(𝑡). In order for the scaling function to fit on the simulated correlation function at
coarsening time 𝑡 , it needs to be scaled by the factor 𝐿(𝑡) via Eq. (3.12). The scaling
factor is proportional to the inverse of the specific interface area of the configuration,
𝐿(𝑡) = 2/𝜉 , which will be discussed in detail in Sect. 3.5.3. The behaviour of 𝐿(𝑡) as a
function of the coarsening time 𝑡 is investigated and discussed below in section 3.5.1.

Since the scaling function is a radial symmetric function in real space, its correspond-
ing three-dimensional Fourier transform can be obtained using the following theorem
by Iosevich and Liflyand (2014)

(F (𝑓 )
)
(𝜅) = 4𝜋

∫ ∞

0
d𝜌 sin(𝜅𝜌)

𝜅
𝑓 (𝜌)𝜌. (3.15)

The expression for the respective structure factor is

𝑆 (𝜅) = 8𝜋
(𝜅2 + 1/𝑏2)2 +

√
8𝜋3

2∑︁
𝑖=1

𝑎𝑖𝜎
3
𝑖 exp(−𝜅2𝜎2

𝑖 /2). (3.16)

Further, integrating this three-dimensional radially symmetric function over two
perpendicular dimensions gives the expression corresponding to the peak profile in
powder diffractometry

𝑆′(𝜅𝑥 ) =
8𝜋2

𝜅2
𝑥 + 1/𝑏2 +

√
32𝜋5

2∑︁
𝑖=1

𝑎𝑖𝜎𝑖 exp(−𝜅2
𝑥𝜎

2
𝑖 /2), (3.17)

which is remarkably similar to the phenomenological pseudo-Voigt profiles typically
used for this purpose.

The exponential decay at large 𝜌 of this expression in real space conflicts with the
expected super-exponential decay due to diffusive interaction (Bray, 2002), but we
want to note that the asymptotic real-space behaviour is practically accessible neither
in simulations nor in experiments. In reciprocal space, our expression for the structure
factor gives the correct asymptotic behaviour both for small and large 𝜅.
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𝑞 = 2 𝑞 = 3 𝑞 = 4
Potts B1 Potts m-L10 Potts L12

𝑎1 0.0557(106) 0.0428(60) 0.0419(67) 0.0609(62) 0.0450(37) 0.0551(42)
𝑎2 0.6296(242) 0.5805(139) 0.5506(172) 0.5634(161) 0.5253(90) 0.5129(98)
𝜎1 0.2841(47) 0.2905(71) 0.2930(59) 0.3170(57) 0.3126(30) 0.3713(50)
𝜎2 0.6280(27) 0.6240(34) 0.6609(31) 0.6499(65) 0.6860(21) 0.6954(55)

Table 3.1: Parameters of the scaling function given in equation Eq. (3.14) for all
systems.

3.4.2 Fitting the Scaling Function

For all our six systems, we determine the four parameters of Eq. (3.14) via least-
squares fitting of the scaled pair-correlation functions at successive coarsening time
steps in real space. To minimize the effects of short-range order, we consider only
values of the spatially unscaled correlation function 𝑔(𝑟 ) at distances 𝑟 ≥ 10 in units
of the simple-cubic lattice constant. We modelled the scaling function to the scaled
correlation functions by minimizing the weighted squared deviations using weights
in time and space. The spatial weights are given by splitting the spatial range of
0.1 ≤ 𝜌 ≤ 5 into 20 logarithmically equidistant bins, with each interval contributing
according to its width in logarithmic units. The weights for the coarsening time are
considered analogously in the range 25 MCS ≤ 𝑡 ≤ 7500 MCS. In our view, this is the
most efficient way to use the available information in the simulations: As we will
discuss in Sec. 3.5.1, 𝐿(𝑡) shows a power-law behaviour in coarsening time 𝑡 (Allen
and Cahn, 1979). Hence, for a given logarithmic increment in 𝑡 , the scale parameter 𝐿
of the newly attained configuration has increased by a given factor. The parameters
are obtained iteratively, by fitting first the scaling factor 𝐿(𝑡) to rescale the correlation
functions onto the model function and then the parameters 𝑎1, 𝑎2, 𝜎1, and 𝜎2 of the
common model function.

The parameters of the scaling function of each system are listed in table 3.1. For
convenience, we also give the full widths at half maximum 𝐵FWHM and the integral
breadth 𝐵I of the corresponding powder diffractometry peak profiles in Tab. 3.2.
The estimated statistical errors were obtained by bootstrap sampling (Efron and
Tibshirani, 1994).

For the 𝑞 = 4 Potts case, the scaled correlation functions are plotted together with
their real-space scaling function in the upper panel of Fig. 3.9, while the corresponding
results for the reciprocal space are shown in the lower panel. The agreement is in
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𝑞 = 2 𝑞 = 3 𝑞 = 4
Potts B1 Potts m-L10 Potts L12

𝐵FWHM 4.058(16) 4.064(17) 3.852(25) 3.952(44) 3.726(17) 3.699(35)
𝐵I 5.113(20) 5.137(17) 4.928(24) 5.033(45) 4.804(17) 4.765(35)

Table 3.2: The full width at half maximum 𝐵FWHM and integral breadth 𝐵I of the
powder-diffraction intensity given in equation (3.17).
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Figure 3.10: Scaling functions for the real-space correlation functions (left) and
reciprocal-space structure factors (right), comparing our phenomenological func-
tions according to Eqs. (3.14) and (3.16) for the Potts and microscopic systems for
various 𝑞. To highlight the differences between the systems, the lower panel shows
the deviations with respect to our 𝑞 = 2 Potts correlation function.

real and in reciprocal space very good, even though only the real-space correlation
functions are used to determine the parameters of the scaling function.

The obtained scaling functions of all systems are depicted in Fig. 3.10 in real as well
as reciprocal space. Even though the systems qualitatively differ on the microscopic
scale, the resulting rescaled correlation functions and the respective structure factors
match to a high degree. However, a detailed visual inspection shows that minute
differences exist specifically between curves of different 𝑞, while the curves that
correspond to the microscopic and 𝑞-state Potts models for the same 𝑞 can hardly
be distinguished by eye. The respective deviations between the real-space scaling
functions, depicted in the lower panel of Fig. 3.10, support these observations. An
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𝑞 = 2 𝑞 = 3 𝑞 = 4
Potts B1 Potts m-L10 Potts L12

𝑞 = 2 Potts 0 0.0036(19) 0.0181(28) 0.0081(36) 0.0306(23) 0.0341(39)
B1 - 0 0.0207(27) 0.0103(43) 0.0331(22) 0.0368(39)

𝑞 = 3 Potts - - 0 0.0104(46) 0.0125(27) 0.0162(41)
m-L10 - - - 0 0.0229(45) 0.0265(55)

𝑞 = 4 Potts - - - - 0 0.0040(25)
L12 - - - - - 0

Table 3.3: The 𝐿2-distance between the real-space correlation functions of the different
systems, along with estimated statistical errors.

exception is the case 𝑞 = 3, where the m-L10 scaling function is about half-way
between the 𝑞 = 3 Potts and both 𝑞 = 2 cases.

With increasing 𝑞 the decay from 𝑔(𝜌 = 0) = 1 to 𝑔(𝜌 → ∞) = 0 decreases at inter-
mediate distances. We attribute this behaviour to the increasing number of domains
whose boundaries meet at a single point. On an sc lattice with exclusive nearest
neighbour interaction, the highest degeneracy of a border junction is fourfold, going
from edges present for 𝑞 ≤ 3 to corners for 𝑞 ≥ 4. To understand the implication
of this APB degeneracy better, let us consider the following construct: Imagine a
three-dimensional space which is divided into a large number of randomly arranged
compact regions. We construct a 𝑞-state APD configuration by randomly assigning
a state from 1 to 𝑞 to each region. Due to this random assignment the correlation
function is independent of 𝑞. However, allowing the domains to coarsen leads for the
𝑞 = 2 case quickly to evolve smooth boundaries, thereby decreasing the interfacial
area 𝜉 and leading, due to 𝑔(𝜌) ≈ 1 − 𝜉𝜌 , to increased correlations at small 𝜌 . For
larger 𝑞 edges and corners will evolve, giving a comparatively smaller increase at
small 𝜌 .

To substantiate the statement that systems with the same 𝑞 bear a significantly closer
similarity than systems of different 𝑞, we report the 𝐿2-distances between the scaling
functions of the different systems in Tab. 3.3. Their estimated statistical error was
obtained by bootstrap sampling. Indeed, these values show that the discrepancies
between microscopic and 𝑞-state Potts models for the same 𝑞 are, in most cases, much
smaller than the differences between models for different 𝑞. The deviations between
systems for the same 𝑞 are also typically a factor two larger than the corresponding
expected errors. The above-noted 𝑞 = 3 case is no exception from this observation,
but only shows a larger estimated error. Hence, our simulations are still consistent
with the hypothesis of universal scaling functions for given 𝑞. Further, the values
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Figure 3.11: Scaling functions for the real-space correlation functions (left) and
reciprocal-space structure factors (right), comparing our phenomenological functions
according to Eqs. (3.14) and (3.16) for the 𝑞 = 2 Potts function to various theoretical
predictions for 𝑞 = 2. To highlight the differences between the theories, the lower
panel shows the deviations with respect to our 𝑞 = 2 Potts correlation function.

imply that the progression of the scaling function with 𝑞 is essentially along a line in
high-dimensional space. In particular, the distance between 𝑞 = 2 and 𝑞 = 4 in the
microscopic as well as in the 𝑞-state Potts models is equal to the sum of the distances
between 𝑞 = 2 and 𝑞 = 3 and between 𝑞 = 3 and 𝑞 = 4, which is not so obvious from
a direct comparison of the model parameters due to their correlations.

Ohta, Jasnow, and Kawasaki (1982) and Mazenko (1990) gave analytic predictions
for the form of the scaling function in the 𝑞 = 2 case: the OJK model and the
Mazenko theory, respectively. In Fig. 3.11 our scaling function of the 𝑞 = 2 Potts
system is depicted together with the correspondingly scaled predictions of the OJK
and Mazenko theories. Given the fact that, as discussed, system properties, such
as 𝑞, have only a small effect on the correlation function, the OJK theory displays
a markedly better agreement with the simulations than the Mazenko expression.
For example, the 𝐿2-distance between our scaling function and the OJK theory is
7.1× 10−3 in comparison to a value 16.3× 10−3 for the Mazenko one. The latter seems
to represent the 𝑞 = 3 case more than the actually considered 𝑞 = 2 one.

Finally, we investigate the similarities of our scaling function to the correlation
function of spatially uncorrelated polydisperse spheres, a common approximation
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of the structure factor in small angle experiments. Using Eq. (3.15) we obtain the
Fourier transform of the squared form factor of Gaussian distributed polydisperse
spheres whose radii are log-normal distributed. Its parameters, the mean 𝜇 and the
standard deviation 𝜎 , fulfill the condition 𝜇 = −5/2𝜎2 + log(3/4), which is needed
for the derivation being −1 at 𝜌 = 0, with 𝜎 = 0.3. For this value of 𝜎 we observe
the closest agreement of the approximation and our scaling function, with a 𝐿2-
distance of 10.5 × 10−3. A systematic effect common to all theoretical expressions is
an underestimation of the simulated correlation function at small distances 𝜌 , as can
be seen in the deviation plot (on the lower left in Fig. 3.11). As far as we know, there
have not been any theoretical predictions for the correlation functions for 𝑞 > 2.

3.5 Growth of the Anti-Phase Domains

3.5.1 Kinetics

To investigate the growth of APDs, we study the time-dependent behaviour of the
scaling factor 𝐿(𝑡). Figure 3.12 depicts the temporal evolution of 𝐿(𝑡) for the 𝑞-state
Potts and microscopic systems. For the simple Ising model, the increase of the APD
size should follow the predicted power-law dependence on time with an exponent of
𝜈 = 1/2 (Allen and Cahn, 1979). The same power-law dependence should be observed
for the Potts cases (Rutenberg and Bray, 1995). Since we start each simulation from
a completely random state, the length scale with which the simulation enters the
scaling regime is not necessarily consistent with the time it does so according to
the scaling relation. Hence, the absolute zero of time has to be regarded as a free
parameter. We shifted the data in time, typically by positive values of a few MCS, to
obtain a small-𝑡 behaviour as systematic as possible.

At first sight, the growth of theAPDs in the Potts systems seems to follow the expected
square root behaviour 𝑡1/2 (Rutenberg and Bray, 1995) quite well. However, a detailed
inspection shows that the temporal evolution of the scaling factor is best described
when the exponent 𝜈 is reduced to 𝜈 = 0.48. (Grest, Anderson, and Srolovitz, 1988)
and (Blundell and Bray, 1994) already reported such behaviour and suggested that
either pinning of defects on the lattice or the asymptotic regime having not yet been
reached (Blundell and Bray, 1994) explain this reduction of the expected exponent.
Since we performed simulations on much larger lattices and longer simulation times
than the ones used in (Grest, Anderson, and Srolovitz, 1988; Blundell and Bray, 1994),
we can safely dismiss the latter option. Having simulated all Potts case on an sc
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Figure 3.12: Growth of the scaling factor 𝐿(𝑡) with the coarsening time 𝑡 for all
considered systems. The black solid lines represent the behaviour 𝐿(𝑡) ∝ 𝑡0.5 and
𝐿(𝑡) ∝ 𝑡0.46

lattice by using the same updating method the evolution of the spatial length scale
differs between the Potts cases only in 𝑞. Hence we can directly compare their kinetic
behaviour and observe that with increasing 𝑞, domain coarsening slows down. This
deceleration is due to the increasing number of neighbouring domains to a given
domain, as we observed before when comparing the respective correlation functions:
the appearance of APD boundary edges (at 𝑞 = 3) and corners (at 𝑞 = 4), and thus a
reduction of the mean boundary curvature at given domain scale, are the dominant
effects for this behaviour.

For the microscopic model, we observe a different behaviour. For the B1 case, the
temporal evolution of the spatial scale is best described by a power-law dependence
with a growth exponent of about 0.505. This value is slightly but significantly higher
than the expected 0.5 growth exponent. We attribute this behaviour to the attraction
of the vacancy to the domain boundaries, where it is more effective for the coarsening
process (Fratzl and Penrose, 1994). With increasing domain size, the proportion of
the interface area in the system decreases. Hence, as the simulation time goes on,
the vacancy concentration increases preferentially within the boundary rather than
the ordered domain. This results in an acceleration of the coarsening process (Vives
and Planes, 1992; Frontera, Vives, and Planes, 1994).

The APDs in the m-L10 and L12 systems show a significantly slower evolution with
simulation time than the expected power-law dependence. Instead of following a
power law with a fixed exponent of 0.5, we observe a monotonously increasing
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exponent with a maximum value of 0.46 in the final stages of the simulations. We
think this is due to the conversation laws in the microscopic systems. Due to the
asymmetric stoichiometry in these systems, unlike in the B1 case, the concentration of
minority to majority atoms in an APB is not the same as inside a domain. With having
one atom type occupying positions rather inside the boundary region than inside
the APD for the domain to grow, the APB containing segregated atoms has to move,
thereby slowing the growth of the domain down. Due to thesemicroscopic differences
the definitions of the domain scales can not be compared for the microscopic models,
unlike in the Potts cases. Hence the qualitative similar behaviour of the growth
kinetics being slowed down with increasing 𝑞, which we observed for the Potts cases,
should be regarded as fortuitous.

3.5.2 Temperature Dependence

Next we study the temperature-dependence of the APD growth. Due to the above-
mentioned evolution of the spatial length scale for the microscopic models, we inves-
tigated the temperature-dependent behaviour solely in the Potts systems on a smaller
lattice size with 𝑁 = 250 with coarsening times 𝑡 of up to 2000 MCS. We expect to
find the temporal evolution of the scaling factor to follow the power-law dependence
𝐿(𝑡) ∝ 𝐵(𝑇 )𝑡𝜈 where 𝐵(𝑇 ) denotes the temperature-dependent growth rate. Since the
Metropolis probability (Eq. (3.3)) to accept an energetically unfavourable exchange
depends exponentially on temperature, 𝑝 (Δ𝐻 ) = exp (−Δ𝐻/𝑘B𝑇 ), the growth rate
decreases with decreasing temperature, showing an Arrhenius-type behaviour of
− ln(𝐵(𝑇 )) ∝ 𝑇c/𝑇 (Allen and Cahn, 1979; Weinkamer et al., 1998; Kessler, Dieterich,
and Majhofer, 2003b).

We investigated the thermal evolution of the growth rate 𝐵(𝑇 ) in a temperature range
between 0.1 𝑇c and 0.95 𝑇c. For each temperature and system, we performed up to 40
coarsening simulations. Even though we observe at such low ordering temperatures
the APDs to be slightly faceted, as shown in Sec. 3.3.1.1, radially averaging the pair-
correlation function corrects for these anisotropies. The averaged pair-correlation
functions of these simulation temperatures show a good agreement with their respec-
tive scaling functions, as displayed in Fig. 3.13 for the 𝑞 = 4-state Potts system at 0.5𝑇c.
The temperature-dependent growth rates of the system are shown in the right panel
of Fig. 3.13. We observe the same power-law dependence of the scaling factor 𝐿(𝑡) as
discussed before for all temperatures. With decreasing temperature, the coarsening
process slows down, which agrees with Allen and Cahn (1979), Weinkamer et al.
(1998), and Kessler, Dieterich, and Majhofer (2003b). The obtained growth rates
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Figure 3.13: The scaled real-space correlation function of the 4-state Potts model
at a simulation temperature of 0.5𝑇c at 100 MCS, 600 MCS, 800 MCS, 1200 MCS and
2000 MCS, plotted together with the respective scaling function (in red). The size of
the system is 𝑁 = 250. On the right the growth of the characteristic length scales 𝐿
with time for various simulation temperatures are shown.

1

1.5

2

2.5

3

4

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

q =2

q =3

q =4

Potts model

B
(T

)

Tc / T
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are shown for all Potts systems in Fig. 3.14. The thermal evolution of 𝐵(𝑇 ) follows
for all 𝑞.state Potts models the expected Arrhenius-type behaviour. However, with
increasing 𝑞, the influence of the simulation temperature on the coarsening process
increases, which can be best observed when comparing the temperature-dependence
of the𝑞 = 4 to the𝑞 = 2 Potts system. This behaviour can be explained by considering,
once again, the increasing number of neighbouring domains: as mentioned before,
the APBs forms corners for the 𝑞 ≥ 4 Pott system. At low temperatures, the proba-
bility of an unfavourable exchange is small, hence at a corner, with three favourable
and three unfavourable bonds (on sc lattice), the coarsening process becomes very
slow since there is no favourable exchange. In contrast, the coarsening process slows
down the 𝑞 = 2 Potts system due to the decreased probability of exchange but can not
become stuck. Hence, we observe for the 𝑞 = 2 only a small decrease of the growth
rate over a large temperature range.

3.5.3 Measures of Domain Size

The size of an APD is ill-defined when it is percolating in three dimensions and,
thereby, has an infinite volume. As such behaviour becomes relevant for not too
large values of 𝑞, more appropriate descriptions of APD scales are required. In this
chapter we consider the specific interface area (interfacial density) which determines
the average area of interface per unit volume.

In the following, we derive what measure of real-space APD scale the respective
scaling parameter 𝐿 corresponds to under the assumption of large domains and small
distances. Our definition of the scaling function implies that its derivative approaches
−1 for small distances. To understand the implications of this assumption, we consider
the following scenario: in a three dimensional APD configuration with a specific
interfacial area 𝜉 we consider two points A and B, which are randomly located in
three dimensional space and separated by a distance 𝑟 . In case of large domains and
small distances the interface separating two domains can be regarded as flat. If these
interfaces were oriented perfectly perpendicular to the vector connecting A to B
(corresponding to the one dimensional scenario of an APD configuration), then the
probability of this vector to pass through one interface would be equal to 𝜉𝑟 in the
limit of small 𝑟 . In case of an arbitrary direction of 𝒓 in three dimensional space, the
two points A and B are located at random positions in space. Hence the projection
of their connecting vector 𝒓 along the boundary plane direction vector is needed.
The mean absolute value of a randomly oriented three dimensional unit vector’s
projection along a given direction corresponds to the value 1/2. Thus, in this limit,
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the probability for A and B to be in the same domain, which is nothing else than the
(unscaled) correlation function 𝑔′(𝑟 ), is given by

𝑔′(𝑟 ) ≈ 1 − 𝜉𝑟/2. (3.18)

As a consequence, with Eqs. (3.7) and (3.12) the scaling parameter 𝐿 that leads to 𝑔(𝜌)
having a derivative of −1 at 𝜌 = 0 fulfills

𝐿 = 2/𝜉 . (3.19)

Per definition, our APD scale 𝐿 is exactly equivalent to the measure obtained via
the linear intercept method (Smith and Guttman, 1953). This analysis technique is
commonly used in real spacemethods like Transmission Electron Spectroscopy (TEM)
(Rogers, Flower, and Rawlings, 1975; Suzuki, Takeyama, and Matsuo, 2002; Brenker,
Müller, and Brey, 2003). As mentioned in the introduction of this chapter, here, the
APD scale is determined by counting the number of intersections 𝑁𝑖 along a line
segment of random direction with length 𝑙 in the image plane. The mean distance
between the intersection 𝑁𝑖/𝑙 is related to the APB density 𝑆/𝑉 , when assuming
isotropic APD configurations (Smith and Guttman, 1953), analogously to our scale.

When studying the APD scale via reciprocal-space methods, like powder diffraction,
the finite correlation length of the superstructure, whose correspondingly ordered
domains we assume to scatter coherently, results in a broadening of the respective
Bragg peaks. Themost basic approach to obtain theAPD scale is the Scherrer equation
(Scherrer, 1918). It relates the diffraction-peak’s width Δ𝑘 in units of the wave-vector
transfer to the scale 𝐷̄ of real-space features and is defined as

𝐷̄ =
2𝜋𝐾
Δ𝑘

. (3.20)

In this simple form, contributions to the broadening such as strain or instrument
broadening are neglected. 𝐾 is the so-called Scherrer constant and is influenced by
the shape of the real-space features, the crystallographic direction, the shape of the
diffraction peak profile, the definition of the profile width and the size distribution
of the domains (Langford and Wilson, 1978). Due to this complexity, the observation
that the Scherrer constant is usually close to unity and the fact that, in most cases, the
actual domain shape is either unknown or ill-defined, it has become common practice
to use an "overall average" shape factor, which is set to unity (e.g., Ref. Gilles et al.
(2010)). In particular, assuming monodisperse spherical domains of the volume 𝐷̄3 in
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real space, which is the most basic choice for the case of powders or polycrystals, and
determining Δ𝑘 as the FWHM of the peak implies 𝐾FWHM ≈ 0.8920 (Patterson, 1939).
However, if instead the integral breadth is used to determine 𝐷̄ , one has to consider
𝐾I = 3

√︁
32𝜋/81 = 1.0747 (Langford and Wilson, 1978). We have shown that there

exists a universal scaling function for a given 𝑞, whose respective FWHM and integral
breadth are given in Tab. 3.2. Hence, we can relate scales determined by microscopy
and diffraction quite easily, without having to consider a detailed phenomenological
model in terms of distribution functions (Sauthoff, 1973; Leoni and Scardi, 2004).

Specifically, if the APD scale is assumed to be 𝐷̄ = 𝐿 = 2/𝜉 in Eq. (3.20), we obtain
for the 𝑞 = 2 Potts model the Scherrer constants 𝐾FWHM = 1.2916 and 𝐾I = 1.6275.
The rescaling factor 2(𝑞 − 1)/𝑞 relates the derivative of the rescaled pair-correlation
function 𝑔(𝑟 ) to the APB density 𝜉 . With increasing 𝑞, its contribution becomes
dominant for the behaviour of 𝐾 , while the specific shape of the scaling function
is of only secondary importance for increasing 𝑞, leading to 𝐾FWHM = 0.7908 and
𝐾I = 1.0195 for the 𝑞 = 4 Potts case. In particular, if we consider a system of spheres
with radius 1 which fill the complete volume of the system, the respective interface
area density 𝜉 would be given as 𝑆/2𝑉 = 3/2 (Glatter and Kratky, 1982). Hence the
ratio of the scale defined by 𝐿 and 𝐷̄ is 3

√︁
16/9𝜋 ≈ 0.8271. Therefore, if the specific

definitions of the spatial scale 𝐷̄ are taken into account, we obtain a satisfactory
approximation of the polycrystalline case (𝑞 = ∞) if the Scherrer constants are set
to unity. However, for the low 𝑞 case this approximation would lead to a drastic
overestimation of the specific interface area.

3.6 Conclusion

In this chapter, the coarsening process in symmetric and asymmetric binary com-
pounds (AB) was investigated via large-scale Monte Carlo simulations. We considered
microscopically realistic models (Ising model) and an abstract approach using the
Potts model to study the atomic ordering process in these systems.

We proposed an analytical expression for the real-space and reciprocal-space scaling
functions. We obtained parameters for all realistic relevant cases 𝑞 = 2, 3, and 4,
which give a very good fit of the simulation results. Using this model, we found
that systems of the same ground-state degeneracy 𝑞 bear closer a resemblance than
systems of different 𝑞, independent of the underlying model. This result upholds our
hypothesis of an universal scaling function describing the pair-correlation functions
and structure factors of a system with a distinct ground-state degeneracy 𝑞.
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Introducing the scaling parameter 𝐿(𝑡), a real-space scale proportional to the interface
density, we studied the growth of the APDs and found the characteristic length scales
of each system obeying the power-law dependence on time. Finally, we compared
our APD scale to the evaluation methods commonly used in experiments. With our
scaling parameter being essentially the inverse of the specific interface area, it is
equivalent to the measure obtained via the linear intercept method in microscopy.
Hence, with our scaling function, it is possible to relate, quantitatively, scales obtained
via microscopy to those measured using the broadening of Bragg peaks in diffraction
without any adjustable parameters.

In the following chapter, we apply this new scaling function of the 𝑞 = 2 model to
investigate the extent of L21 order in Ni2MnZ alloys and, thereby, to obtain the APD
scale from scattering experiments.
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Chapter 4

Correlation of Structural and Magnetic
Domains

4.1 Influence of Structural Order on the Magnetic
Properties of Ni2MnZ Heusler Alloys

In Chapter 3 the coarsening process of three-dimensional anti-phase domain struc-
tures was investigated. As mentioned before, structural order has a large influence in
the development of system properties such as magnetism or yield strength, for exam-
ple in superalloys (e.g. Ni3Al (Stoloff, 1984)), superconductors (e.g. SrFe2As2 (Jesche
et al., 2008)) and functional materials such as Gd5Si2Ge2 (Pecharsky and Gschneidner,
1997) or the Heusler alloys (Acet et al., 2002; Neibecker et al., 2017).

Specifically in Ni2MnZ Heusler compounds, the atomic order of the austenite phase
plays a crucial role in their magnetic properties. Here the magnetic moments are
mainly carried by the Mn atoms, whose exchange interaction depends strongly on
the distance between them as in many other compounds with a sufficiently high
concentration of Mn (Acet et al., 2002; Kwiatkowski et al., 2007). Their exchange
interaction is dominated by the coupling between the Ni-Mn as well as the Mn-Mn
pairs, as sketched in Fig. 4.1. Here we assume the magnetic moments of Ni to be
induced by their surrounding Mn moments (Ležaić et al., 2013; Simon et al., 2015).
The interaction between Ni-Mn pairs is ferromagnetic, while the exchange between
Mn-Mn pairs is anti-ferromagnetic. In the case of a fully L21 ordered structure, as
displayed in Fig. 4.1, direct Mn-Mn pairs no longer exist in the system. Hence the
exchange interaction consists only of the ferromagnetic Ni-Mn interaction, resulting
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Figure 4.1: Sketch of the ordering states of Ni2MnZ on the bcc lattice with their corre-
sponding magnetic exchange interaction: In B2 order magnetic exchange interactions
have to be considered between Ni-Mn pairs as well as Mn-Mn pairs as sketched by
the two ellipses. In L21 order direct Mn-Mn pairs do not exist, therefore only the
coupling of the Ni-Mn spins has to be considered.

in the ferromagnetic properties of a fully L21 ordered Ni2MnZ compound (Kreissl et
al., 2003). Yet, in the B2 ordered structure the Mn-Z sublattice is in disorder, resulting
in direct Mn-Mn pairs as well as the induced Ni moments to be zero (Simon et al.,
2015). Therefore the overall magnetic properties found in a B2 ordered Ni2MnZ
compound are anti-ferromagnetic (Acet et al., 2002). However, the atomic disorder
leads to a local competition between the anti-ferromagnetic as well as ferromagnetic
exchange interactions where locally non-collinear magnetic structures can exist (Acet
et al., 2002). Due to this competition, the magnetic structure of intermediate ordering
states of the B2-L21-transition is complicated with a non-trivial transition between
anti-ferromagnetic to ferromagnetic order.

The simplest model for the magnetic exchange interactions in Ni2MnZ compounds
is to assume that the spins of the next nearest neighbour Mn atoms couple ferro-
magnetically due to the mediation by the Ni atoms, while neighbouring Mn spins
couple anti-ferromagnetically. If we apply this interaction model to a B2 ordered
state, as sketched in Fig. 4.2, the system would exhibit anti-ferromagnetic proper-
ties since here direct Mn-Mn pairs exist and dominate the structure. However, this
model leads to ferromagnetic properties in a fully L21 ordered crystal, as no Mn-Mn
pairs are left in the system. For intermediate states of L21 order, we would expect,
according to this argumentation, a reversal of magnetisation when crossing an APD
boundary, as sketched in Fig. 4.2. The neighbouring Mn spins located at the domain
interface would align anti-parallel, while the next nearest neighbour Mn spins in-
side the APD couple ferromagnetically. Hence, the direction of the magnetisation
of an APD would be given by the Mn spins at the APD boundary. Using TEM and
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Figure 4.2: Sketch of the magnetic exchange interaction in Ni2MnZ compounds in the
plane of the Mn-Z sublattice: in B2 order the Mn-Z sublattice is disordered resulting
in direct MnMn pairs whose spins align antiparallel to each other. In the intermediate
ordering state an the structurally ordered domains are separated by an APB (dashed
line), the spins located at the APB align antiparallel to each other, leading to an
antiparallel alignment of the APD to each other. In L21 order no direct MnMn pairs
are present, therefore the spins align parallel to each other.

Lorentz TEM the magnetisation has indeed been observed to reverse at structural
APD boundaries in Ni2MnAl0.5Ga0.5 samples, implying that structural and magnetic
domains are identical (Yano et al., 2007; Ishikawa et al., 2008). Also, the width of the
magnetic domain walls in these systems is unusually thin, about 10 nm (Yano et al.,
2007). The magnetic properties of these systems are therefore strongly dependent on
the microstructure, with anti-ferromagnetic and ferromagnetic exchange interactions
being present (Neibecker et al., 2017).

The size of structurally ordered domains can be accessed either by real-space meth-
ods, e.g. electron microscopy (Murakami et al., 2006; Venkateswaran, Nuhfer, and
De Graef, 2007; Yano et al., 2007; Murakami et al., 2011), or by diffraction methods
in reciprocal space. An appropriate way to evaluate the length scale of structurally
ordered domains is to measure the APB density, as it is commonly done in microscopy
experiments (Rogers, Flower, and Rawlings, 1975; Suzuki, Takeyama, and Matsuo,
2002; Brenker, Müller, and Brey, 2003) via the linear intercept method (Smith and
Guttman, 1953). In diffraction experiments, the finite size of the correlation length of
L21 order results in a broadening of the corresponding superstructure peaks. Its re-
spective length scale is directly linked to the peak’s FWHM via the Scherrer equation
(Scherrer, 1918).

In contrast to diffraction experiments, which are mostly used to probe the atomic
structure of a sample, small-angle neutron scattering is sensitive to structures of
the mesoscopic length scale (Mühlbauer et al., 2019). Due to the neutron’s magnetic
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moment, which couples to the local internal magnetic field from the magnetic atoms
in the sample, the contrast between local magnetic fields can be probed and the
corresponding magnetic microstructure can be investigated via small angle neutron
scattering (SANS) experiments (Bhatti et al., 2012; El-Khatib et al., 2019).

In Ni2MnGa, the B2 structure transforms within seconds to the full-Heusler structure
(Overholser, Wuttig, and Neumann, 1999), whereas Ni2MnAl shows, in general, a
low L21 order tendency (Ziebeck and Webster, 1975; Acet et al., 2002). In contrast
to these ternary compositions, the quaternary compound Ni2MnAl0.5Ga0.5 can be
obtained in the B2 state by quenching a crystal from the B2-stable regime to room
temperature as well as large APDs can be achieved by low-temperature annealing
quenched crystals in the L21-stable regime (Ishikawa et al., 2008; Umetsu et al., 2011).

To study the interplay of magnetic and structural order as well as the mechanism of
coupling of ferromagnetic domains across APD boundaries, we have applied neutron
powder diffraction as well as small-angle neutron scattering (SANS) to investigate
the structural and the magnetic microstructure, respectively, of Ni2MnAl0.5Ga0.5 and
Ni2MnAl powder samples in distinct L21 ordering states. The powder diffraction data
presented in this chapter were collected and partially published by P. Neibecker in
Neibecker (2017). P. Chiu gathered the SANS data, partially analysed and presented
them in Chiu (2017). Using the phenomenological model derived in the previous
chapter, the diffraction data were analysed by the author and connected to the SANS
data. The results of this chapter have been partially published in an article (Zweck
et al., n.d.).

4.2 Sample Preparation

Polycrystalline Ni2MnAl and Ni2MnAl0.5Ga0.5 ingots were prepared by induction
melting stoichiometric amounts of the constituting high purity elements and tilt or
suction casting in Ar atmosphere. In order to promote homogeneity and to remove
segregation effects from casting, the ingots underwent a solution annealing treat-
ment and were subsequently water quenched. The exact compositions of the ingots
were determined via Energy-Dispersive X-Ray Spectroscopy (EDS) at the Staatliche
Materialprüfamt für Maschinenbau at the Technical University of Munich, Germany.
For each alloy ten randomly selected positions were studied. The average over these
values are given in Tab. 4.1 and show a satisfactory agreement with the nominal
compositions stoichiometry.
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Compound at.%(±0.5 %) Ni Mn Al Ga
Ni2MnAl0.5Ga0.5 51.1 26.0 11.2 11.7

Ni2MnAl 49.2 25.6 25.2 -

Table 4.1: Actual composition of the Ni2MnAl and Ni2MnAl0.5Ga0.5 ingots measured
via EDS.

The ingots were ground to powder of grind size <125 µm. In order to release me-
chanical stresses and strains introduced by the grinding process the samples were
subsequently annealed in evacuated quartz ampules at𝑇𝑞 = 1073 K, corresponding to
the B2 stable regime, for 4 h and water quenched. To obtain distinct states of L21 order
the powder samples underwent a low temperature annealing treatment in the L21

stable regime at 𝑇𝑎 = 623 K. We investigated in total four Ni2MnAl0.5Ga0.5 samples
and three Ni2MnAl samples, with the Ni2MnAl0.5Ga0.5 samples being annealed for
𝑡𝑎 = 0.5 h, 3 h and 10 d, and the Ni2MnAl samples for 24 h and 10 d, respectively. For
both compositions an as-quenched (a. q.) sample was retained.

To determine the magnetic transition temperatures 𝑇c of the samples Differential
Scanning Calorimetry (DSC) measurements were performed with heating rates of
10 K min−1 between 250 K and 400 K. In order to check if the grinding process had
any influence on the magnetic properties of the samples corresponding bulk samples
were prepared. While annealing these bulk samples at 623 K DSCmeasurements were
performed for consecutive timesteps. The curves of the respective bulk samples show
a sharp transition between the magnetic and paramagnetic phase, while the DSC
data of the corresponding powder samples are in general broader with the transition
being less distinctive due to the inhomogeneities of the powder grain. Fig. 4.3 shows
the DSC curves of the Ni2MnAl 24 h annealed bulk and powder sample, where we
observe the curve of the bulk sample to be more distinctive compared to the powder
sample. In order to retrieve the magnetic transition temperature from these less
distinctive curves the data were convoluted with a centered Gaussian kernel. The
position of the transition was identified as the position with the maximum negative
gradient. The evolution of the corresponding transition temperatures with annealing
time is shown in Fig. 4.4, where we observe a positive correlation between both
parameters for both alloy families, as it has been reported for Ni2MnAl bulk samples
by Neibecker et al. (2014).

When comparing between the alloy families the low ordering tendency of Ni2MnAl
becomes clear, with its 𝑇c evolution being slower than the one of Ni2MnAl0.5Ga0.5.
For Ni2MnAl we observe an excellent agreement between the bulk and the powder
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Figure 4.3: DSC measurements of the magnetic transition in Ni2MnAl 24 h annealed
for powder and bulk samples. Measurements have been performed on heating using
a heating rate of 10 K min−1. The respective 𝑇c is indicated by the arrows and has
been determined as the position of the maximum negative gradient.
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Figure 4.4: Evolution of the magnetic transition temperature extracted from the DSC
measurements as function of annealing time 𝑡𝑎 at 𝑇𝑎 = 623 K for the Ni2MnAl and
Ni2MnAl0.5Ga0.5 powder and bulk samples. The black line serves as a guide for the
eyes.
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samples, while for Ni2MnAl0.5Ga0.5 the results show a satisfactory agreement, with
the results of the bulk samples being in general lower than for the powder samples.
This deviation results most likely from the phenomenological determination of the
transition temperature due to the broadened DSC curves of the powder samples,
as shown in Fig. 4.3. For the bulk samples the transition is so distinctive that this
phenomenological determination does not affect the resulting 𝑇c-value.

4.3 Neutron Powder Diffraction

4.3.1 The Time-of-Flight Spectrometer POWGEN

We employed neutron powder diffraction measurements to study structural as well
as magnetic order in intermetallic compounds. The experiments were carried out at
the time-of-flight (TOF) diffractometer POWGEN, located at the Spallation Neutron
Source (SNS) in Oak Ridge. The setup of the instrument is sketched in figure 4.5.

At SNS neutrons are produced in pulses by high energy protons hitting a target of
liquid mercury, where spallation occurs. Here the protons are momentarily incorpo-
rated in the nuclei of the heavy atoms, transferring their energy to single nucleons,
which results in an internal nucleon cascade within the excited mercury nucleus. This
internal cascade is followed by an internuclear cascade when high energy particles
including neutrons are ejected and absorbed by other nuclei. The charged protons
will be stopped within the target, while many lower-energy neutrons and a variety
of nucleons, photons and neutrinos are emitted and can be subsequently used. The
pulses are emitted at a frequency 𝑓 and contain white neutrons. The neutron bunch
is scattered on a sample, as sketched in Fig. 4.5, and travels a fixed distance 𝐿 from
the source to the instrument detector, with faster neutrons of a shorter wavelength

neutron
pulse 
source

ki
→

collimation
sample

kf
→

Q
→

bandwidth choppers

detector bank

Figure 4.5: Sketch of the setup of the instrument POWGEN with a polychromatic
neutron beam at SNS, Oak Ridge.
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needing less flight time than slower neutrons with a larger wavelength. The path
length 𝐿 varies depending on the position of the detector bank. If solely neutrons
from a single pulse, without any frame-overlap, are detected, one can determine the
wavelength 𝜆 of the scattered neutron by measuring its time-of-flight 𝑡 . The combi-
nation of Bragg’s law and de Broglie’s equation leads to the following proportionality
between the wavelength and 𝑡 :

𝜆 =
ℎ𝑡

𝑚𝑁𝐿
(4.1)

where ℎ is the Planck constant,𝑚N is the mass of the neutron and 𝐿 is the total flight
path length. The neutrons’ wavelength is inverse proportional to the wavevector
transfer 𝑄 which is given by Bragg’s equation as

𝑄 =
4𝜋
𝜆

sin𝜃 (4.2)

with 𝜃 being the scattering angle.

To avoid a frame-overlap of very fast or very slow neutrons leaking into other pulses,
the incoming neutron pulse has to pass three bandwidth choppers before hitting
the sample (Huq et al., 2015a). This chopper system sets the center frequency 𝑓𝑐 as
well as the bandwidth Δ𝜆, which is chosen in order to prohibit frame-overlap. The
bandwidth depends on the distance between the source and the detector as well as
on the pulse frequency and is given according to Willis and Carlile (2009) as

Δ𝜆 =
ℎ

𝑚N
=

3956 Åm
s

𝐿𝑓
. (4.3)

For POWGEN the source-detector distance 𝐿 varies between 62.5 m and 64.7 m de-
pending on the specific detector position in the detector bank (Huq et al., 2015a). With
the pulse source operating with a repetition rate 𝑓 = 60 Hz, the maximum bandwidth
one can record without eliminating whole neutron pulses is Δ𝜆 = 1.066Å (Huq et al.,
2015a). In this thesis measurements at two different center wavelengths, 𝜆𝑐 = 1.333Å
and 𝜆𝑐 = 2.665Å, were performed. The corresponding wavelength [𝜆min, 𝜆max] as
well as wavevector transfer ranges [𝑄min, 𝑄max] are listed in Tab. 4.2.

An expression for the resolution function 𝑅 of the instrument can be obtained by
taking the partial derivatives of equation 4.1 (Willis and Carlile, 2009)

𝑅 =

(
Δ𝑄

𝑄

)2
=

(
Δ𝑑

𝑑

)2
=

(
Δ𝑡

𝑡

)2
+

(
Δ𝐿

𝐿

)2
+

(
Δ𝜃 cos𝜃

sin𝜃

)2
. (4.4)
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𝜆𝑐 (Å) 𝜆min(Å) 𝜆max(Å) 𝑄min(Å−1) 𝑄max(Å−1)
1.333 0.800 1.866 1.0239 15.1700
2.665 2.132 3.198 0.5975 5.6923

Table 4.2: Center wavelengths and their corresponding wavelength at POWGEN used
for the measurements presented in this thesis. The accessible angle range 2𝜃 is from
17.5◦ to 150◦.

The maximum resolution for POWGEN is Δ𝑑/𝑑 = 0.0015 for 𝑑 = 1Å (Huq et al.,
2015b).

4.3.2 Neutron Scattering Theory

In order to interpret the neutron data obtained from scattering processes of large
structural as well as magnetic domains the fundamental interactions of neutrons and
matter will be revised in this section.

4.3.2.1 Neutron Interactions with Matter

The neutron is an uncharged particle which interact through short-range nuclear
interactions. The scattering process of neutrons with nuclei is a quantum mechanical
process and has to be described in terms of wavefunctions. The wave properties of
the neutron and its interaction with matter given by the interaction potential 𝑉 (𝒓)
are described by the stationary Schrödinger Equation

𝐸Ψ(𝒓) =
[
−ℏ

2Δ

2𝑚 +𝑉 (𝒓)
]
Ψ(𝒓). (4.5)

which is a scalar wave equation for the wavefunction Ψ of a particle with energy 𝐸
and mass𝑚. ℏ denotes the reduced Planck constant. The neutron couples via the
strong nuclear force interaction 𝑉nuc to the nuclei which can be well described for
low energy neutrons by point like Fermi pseudo potentials at the positions 𝒓 𝒊

𝑉nuc(𝒓) =
2𝜋ℏ2

𝑚

𝑁∑︁
𝑖=1

𝑏𝑖𝛿 (𝒓 𝒊) (4.6)

where the nuclei are located at the positions 𝒓 𝑖 and have the scattering lengths 𝑏𝑖
(Squires, 2012). This approximation of the strong force interaction potential is valid
for thermal and cold neutrons where the wavelength of the neutron is much larger
than the range of the interaction.
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Also the magnetic structure of a sample can be investigated via neutron scattering,
since the neutron has a magnetic dipole moment 𝝁, which couples to the internal or
external local magnetic field 𝑩. Its interaction 𝑉mag(𝒓) is expressed by the Zeeman
equation (Squires, 2012)

𝑉mag(𝒓) = −𝝁 · 𝑩(𝒓). (4.7)

The neutrons are either absorbed by, reflected by, or scattered off the sample via the
nuclear and magnetic interactions. Due to their weak interaction potential other
interactions, such as gravitational forces, can be neglected in most cases.

4.3.2.2 Scattering Process

In the simplest case the incident neutron beam can be represented by a plane wave-
function in 𝑧-direction Ψ𝑖 (𝑘) = exp (𝑖𝑘𝑧), which is the solution of the Schrödinger
equation in free space (𝑉 = 0) with 𝑘 being the wavevector. When this plane wave
is scattered at a single nucleus located at the origin with a scattering length 𝑏, the
wavefunction of the scattered neutrons can be written as a spherical wavefunction
Ψf (𝑘) = −𝑏

𝑟
exp(𝑖𝑘𝑟 ), since the scattering is spherically symmetric.

In case of scattering off an arbitrary structure, which contains more than one single
nucleus and is defined by a non-zero interaction potential𝑉 (𝒓), the scattered neutron
wavefunction is given by the Lippmann-Schwinger equation (Squires, 2012):

Ψ𝑓 (𝒓) = Ψ𝑖 (𝒓) −
𝑚

2𝜋ℏ2

∫ exp(𝑖𝒌 𝑓 |𝒓 − 𝑹 |)
|𝒓 − 𝑹 | 𝑉 (𝑹)Ψ𝑓 (𝑹)d𝑹 (4.8)

where 𝑹 is within the sample, while 𝒓 is far from it. Hence we can assume 𝑟 ≫ 𝑅

and therefore approximate |𝒓 − 𝑹 | ≃ 𝑟 − 𝒓 · 𝑹/𝑟 . This equation is solved iteratively
by inserting Ψ𝑓 (𝒓) on the right hand side starting with the neutron’s initial state
Ψ𝑖 (𝒓), the plane wavefunction. In most scattering experiments the dimensions of the
sample are chosen in a way that multiple scattering events can be neglected, hence
the wavefunction of the outgoing neutron is given by the solution after the first
iteration. This corresponds to the first Born approximation and holds for scattering
with thermal and cold neutrons. For |𝒓 | ≫ |𝑹 | the wavefunction of the scattered
neutron can be approximated as a superposition of the incident wave and a spherical
wave weighted by the Fourier transform of the interaction potential,

Ψ𝑓 (𝒓) = exp(𝑖𝒌𝑖 · 𝒓) +
exp(𝑖𝒌 𝑓 · 𝒓)

𝑟

∫
𝑉 (𝑹) exp(𝑖𝑸 · 𝑹)d𝑹 . (4.9)
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The Fourier transform of the interaction potential is also known as the scattering
amplitude 𝑓 (𝑸) which depends on the momentum transfer𝑸 = 𝒌 𝑓 −𝒌𝑖 of the neutron.

In a scattering experiment the number of neutrons scattered from the sample in the
solid angle dΩ normalized to the incident neutron flux Φ is measured. The incident
flux is defined as the number of particles per time that go through an area normal
to the beam direction. The intensity scattered in Ω is called the differential scatter-
ing cross-section d𝜎/dΩ and is given by the squared scattering amplitude |𝑓 (𝑸) |2

(Squires, 2012). The total scattering cross-section 𝜎tot is obtained by integration over
all solid angles. For the simple case of neutrons being scattered off a single fixed
nucleus the total cross-section is given as 𝜎tot = 4𝜋𝑏2 (Squires, 2012).

Scattering neutrons on a regular arrangement of nuclei will result in a regular scat-
tering pattern. For purely nuclear scattering this pattern can be approximated by the
squared Fourier transform of a sum of Fermi pseudo potentials (Eq. (4.6)) located at
the nuclei equilibrium positions 𝒓 𝑖

d𝜎
dΩ =

𝑁∑︁
𝑗=1

𝑁∑︁
𝑖=1

𝑏𝑖𝑏 𝑗 exp(𝑖𝑸 · (𝑹𝑖 − 𝑹 𝑗 )). (4.10)

In reality the scattering lengths of the nuclei in a material differ, either because of
different spin configurations or different isotopes located at 𝒓 𝑖 . Hence the scattering
length of one atom can be written as a linear combination of its average scattering
length 𝑏 and its specific deviation from it 𝛿𝑏𝑖 , 𝑏𝑖 = 𝑏 + 𝛿𝑏𝑖 . Eq. (4.10) transforms to

d𝜎
dΩ =

𝑁∑︁
𝑗=1

𝑁∑︁
𝑖=1

(𝑏 + 𝛿𝑏𝑖) (𝑏 + 𝛿𝑏 𝑗 ) exp(𝑖𝑸 · (𝑹𝑖 − 𝑹 𝑗 ))

= 𝑏2
𝑁∑︁
𝑗=1

𝑁∑︁
𝑖=1

exp(𝑖𝑸 · (𝑹𝑖 − 𝑹 𝑗 )) +
𝑁∑︁
𝑗=1

𝑁∑︁
𝑖=1

𝛿𝑏𝑖𝛿𝑏 𝑗 exp(𝑖𝑸 · (𝑹𝑖 − 𝑹 𝑗 ))

+ 2𝑏
𝑁∑︁
𝑗=1

𝑁∑︁
𝑖=1

𝛿𝑏𝑖 exp(𝑖𝑸 · (𝑹𝑖 − 𝑹 𝑗 )) .

Due to the definition of the center of mass — ¯𝛿𝑏𝑖 =
∑𝑁
𝑖=1 𝛿𝑏𝑖 = 0 — the last term

can be neglected. Thus the scattering pattern can be split into a coherent part ∝ 𝑏,
corresponding to the correlation between the positions of different nuclei, and an
incoherent part, which is due to the random distribution of the deviations of the
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scattering lengths from their mean value, and is given by (Squires, 2012)

d𝜎
dΩ = 𝑏2

∑︁
𝑖, 𝑗=1

⟨exp(𝑖𝑸 · (𝑹𝑖 − 𝑹 𝑗 ))⟩ +
∑︁
𝑖, 𝑗

(𝛿𝑏 𝑗 )2. (4.11)

with ⟨. . . ⟩ being the ensemble average.

4.3.2.3 Elastic Coherent Scattering Cross-Section

The intensity detected by a neutron powder diffractometer has four main contribu-
tions: elastic coherent, elastic incoherent, inelastic coherent and inelastic incoherent
scattering. For the samples studied in this thesis, which are all powder samples of
cubic crystal structures, the elastic coherent scattering is responsible for the defining
features of the powder diffractogram, i.e., the positions, shapes and intensities of the
Bragg peaks.

First we consider the nuclear scattering by a crystal whose unit cell contains more
than one atom. The differential scattering cross-section results from the Fermi pseudo-
potentials Eq. (4.6) and its general expression is given according to Squires (2012)
as (

d𝜎
dΩ

)
coh,el

= |𝑓 (𝑸) |2 = (𝑏)2𝑁 exp(−2𝑊 (𝑸))
∑︁
𝒅

exp(𝑖𝑸 · 𝒅), (4.12)

where 𝑁 is the number of unit cells in the scattering volume and 𝒅 denotes the
position of the nucleus in equilibrium. The exponential term exp(−2𝑊 (𝑸)) is known
as the Debye-Waller factor, with the exponent coefficient𝑊 (𝑸) corresponding to the
mean-square displacement 𝑄2

〈
𝑢2
𝑄

〉
in the direction of 𝑸 of the atoms in the crystal.

For a cubic crystal 𝒖 is independent of the direction, thus we can express the direction
dependent displacements 𝑢𝑄 by their mean value:〈

𝑢2
𝑥

〉
=

〈
𝑢2
𝑦

〉
=

〈
𝑢2
𝑧

〉
=

1
3

〈
𝑢2〉 (4.13)

Therefore,𝑊 (𝑸) can be expressed as𝑊 (𝑸) = 1
6𝑄

2 〈
𝑢2〉.

For scattering on a lattice the sum of exponential functions can be written as the sum
of 𝛿 functions,

∑
𝒅 exp (𝑖𝑸 · 𝒅) = (2𝜋)3

𝑣0

∑
𝜏 𝛿 (𝑸 − 𝝉 ), with 𝑣0 being the volume of the

unit cell of the crystal and 𝝉 being a vector in the reciprocal lattice (Squires, 2012).
Thus Eq. (4.12) can be written as(

d𝜎
dΩ

)
coh,el

= 𝑁
(2𝜋)3

𝑣0
exp(−2𝑊 (𝑸))

∑︁
𝜏

|𝑆nuc(𝑸) |2𝛿 (𝑸 − 𝝉 ), (4.14)
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with the nuclear unit cell structure factor

𝑆nuc(𝑸) =
∑︁
𝑑

𝑏𝑑 exp(𝑖𝑸 · 𝒅), (4.15)

where 𝒅 is the equilibrium position of the 𝑑 th atom in the unit cell.

Next we take into account the scattering cross-section due to the magnetic interaction
between the neutron and unpaired electrons in the atom. The corresponding elastic
differential scattering cross-section for a sample withmany ferromagnetically ordered
domains is given as (Squires, 2012)(

d𝜎
dΩ

)
el
= (𝛾𝑟0)2𝑁

(2𝜋)3

𝑣0
𝑒−2𝑊 (𝑸)𝐹 2

mag(𝑸)⟨𝑺𝜂⟩2
∑︁
𝝉

⟨1 − (𝝉 · 𝜼)2
av⟩𝛿 (𝑸 − 𝝉 ) (4.16)

with the positive constant𝛾 = 1.913, which is half the value of the neutrons’ magnetic
moment, 𝑟0 is the classical radius of the electron equal to 2.818 × 10−15m and ⟨𝑺𝜂⟩
is the average spin component in the direction 𝜼, a quantity proportional to the
magnetisation. 𝐹mag(𝑸) is the magnetic form factor which is defined according to
Squires (2012) as

𝐹mag(𝑸) =
∫

𝑠 (𝒓)𝑒𝑖𝑸 ·𝒓d𝒓 (4.17)

with 𝑠 (𝒓) being the normalised spin density of the unpaired electrons.

There are several differences between nuclear and magnetic elastic scattering. First,
the magnetic form factor depends on 𝑄 , which results in a rapid decrease of the
magnetic signal with increasing 𝑄 , whereas the nuclear form factor (𝐹nuc = 𝑏) is
independent of 𝑄 . Secondly, the magnetic Bragg scattering has a strong tempera-
ture dependence especially around the magnetic transition temperature 𝑇c as it is
proportional to ⟨𝑺𝜂⟩2 which falls to zero above 𝑇c. For nuclear scattering the Bragg
intensity varies only with the Debye-Waller factor. Lastly the magnetic scattering
depends on the orientation of ⟨𝑺𝜂⟩ relative to the reciprocal lattice 𝝉 (Furrer, Mesot,
and Strässle, 2009). Here only the components of the magnetisation perpendicular
to 𝝉 give a non-zero contribution to the scattering intensity. Note that in case of no
preferred orientation of the ferromagnetic domains, the term ⟨1 − (𝝉 · 𝜼)2

av⟩ converts
to a factor of 2/3.

For an anti-ferromagnet the average ⟨𝑺𝜂⟩ taken over the whole lattice is zero, since
a magnetically ordered domain decomposes into two interpenetrating sublattices,
whose spins are oriented in opposite directions. Thus the cross-section is derived
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for the so-called staggered average spin component ⟨𝑺𝜂
𝑖
⟩, which corresponds to the

magnetisation of each sublattice 𝑖 . Its differential scattering cross-section is given for
one sublattice with spins at the position 𝒅 in the magnetic unit cell (indicated by the
index𝑚) as(

d𝜎
dΩ

)
el
= (𝛾𝑟0)2𝑁𝑚

(2𝜋)3

𝑣0,𝑚

∑︁
𝝉

|𝐹M(𝝉𝑚) |2 exp(−2𝑊 (𝑸)) (1−(𝝉 ·𝜼)2
av)𝛿 (𝑸−𝝉𝑚). (4.18)

The form factor 𝐹M is defined by

𝐹M(𝝉𝑚) =
1
2𝑔⟨𝑺

𝜂

𝑖
⟩𝐹 (𝝉𝑚)

∑︁
𝒅

𝜎𝒅𝑒
𝑖𝝉𝑚 ·𝒅 (4.19)

where 𝜎𝒅 = ±1 is spin state at the position 𝑑 in the magnetic unit cell.

4.3.3 Intensity in Time-of-Flight Neutron Powder Diffractometers

In an experiment the differential cross-section as described above can not be mea-
sured directly. Instead the cross-section of a Bragg peak, i.e,. the integral of the
differential cross-section over certain directions, is measured. In case of a powder
sample the relationship between the integrated intensity 𝐼int of the diffraction peak
and its structure factors at the position 𝑄ℎ𝑘𝑙 may be written according to Squires
(2012) as

𝐼int = Φ
𝑉

𝑣2
0

𝑑𝜆3

8𝜋𝑟 sin𝜃 sin 2𝜃
∑︁
𝑸

|𝑆 (𝑸ℎ𝑘𝑙 ) |2𝑒−2𝑊 (𝑸) (4.20)

where Φ is the neutron flux, 𝑉 = 𝑁𝑣0 represents the volume of the crystal, 𝑑 is the
effective diameter of the neutron detector which is placed at a distance 𝑟 from the
target and

∑
𝑸 averages over all 𝑸 with the same value of 𝑄 . Since we measure in a

powder diffraction pattern the scattered intensity along one direction, not only one
permutation of ℎ, 𝑘 and 𝑙 results in the Bragg reflection at the respective 𝑄 , but all
permutations which fulfill the Pythagorean requirement

ℎ2 + 𝑘2 + 𝑙2 =
(
2𝑎 sin(2𝜃/2)

𝜆

)2
. (4.21)

The number of permutations is called the multiplicity of the reflection.

Thus the intensity of a peak depends not only on the squared structure factors, the
Debye-Waller factor and the multiplicities, but also on the setup of the experiment
via the so called Lorentz factor.
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Since one can not access the scattering cross-section directly in 𝑄-space but in wave-
lengths or time-of-flights, the Lorentz factor accounts for the geometry and layout
of the instrument, which - in case of POWGEN - uses a polychromatic beam and
measures each data point for a fixed diffraction angle. Hence the corresponding
Lorentz-factor is wavelength dependent and decomposes in two parts 𝐿1 and 𝐿2.

The intensity detected for a givenwavelength depends on the number of the reciprocal
lattice points which can be observed at the same time. These points are distributed
homogeneously on the surface of a sphere with radius 𝑄 in a powder sample, as
each powder grain is randomly oriented. The observable area on this reciprocal
sphere 4𝜋𝑄2 corresponds to the first part of the Lorentz factor 𝐿1 ∝ 𝑄−2. For small
𝑄 the sphere is small and a large portion of this sphere is covered by the detector
area. For large 𝑄 the area of the sphere increases quadratically, while the detector
area stays the same, hence only a small portion of the respective sphere’s surface
can be detected. This leads to an asymmetric weight of the scattering events, since
regions for large wavevector transfers are accounted for less than the regions for
small wavevector transfers.

Further the intensity is not measured in 𝑄 but in the time-of-flight of the neutron,
which is according to Eq. (4.1) linearly proportional to its wavelength 𝜆. Hence
a conversion of 𝑄 to 𝜆 has to be considered, where the wavevector transfer 𝑄 is
inversely proportional to the wavelength via

𝑄 =
4𝜋
𝜆

sin(2𝜃/2). (4.22)

For a fixed scattering angle we obtain

d𝑄 ∝ 1
𝜆2 d𝜆. (4.23)

The total Lorentz factor depends therefore on the units the measurement is analysed:
It is the combination of both geometrical effects and is therefore proportional to 𝜆4,
if the measurement is analysed in 𝑡 (Buras and Gerward, 1975), or 𝑄−2, if the data is
transformed into 𝑄-space and the conversion of 𝑄 is no longer necessary.

To extract the structural details from the diffraction data the Pawley refinement
method (Pawley, 1981) was employed. The Bragg intensity 𝑦𝐵 (𝑡) is given as (Von
Dreele, Jorgensen, and Windsor, 1982)

𝑦𝐵 (𝑡) = |𝑆ℎ𝑘𝑙 |2𝑒−2𝑊 (𝑸)𝑚ℎ𝑘𝑙𝐿(𝑡)𝐹 (𝑡) (4.24)
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where𝑚ℎ𝑘𝑙 is the multiplicity of the Bragg peak and 𝐹 (𝑡) is the peak shape function.

The instrumental resolution function (IRF) 𝐹 (𝑡) of a TOF diffractometer is according
to Von Dreele, Jorgensen, and Windsor (1982) and Thompson, Cox, and Hastings
(1987) best described by the convolution of back-to-back exponentials with a pseudo-
Voigt-function. The peak shape parameters describe the rising and decaying expo-
nentials with the rise coefficient 𝛼 and the decay coefficient 𝛽 , respectively, as well
as the Gaussian (𝜎) and Lorentzian (𝛾 ) contributions to the pseudo-Voigt-function.
Before each beam time cycle several standard samples are measured for calibration.
The numerical considerations for this resolution functions are discussed in detail in
the appendix A.

4.3.4 Determination of the Structural Domain Size

The general structure of an ordered Heusler alloy (X2YZ) is L21 order and can be
described by four interpenetrating fcc lattices. For crystals of an fcc symmetry non-
zero Bragg reflections are observed solely for all even or all odd Miller indices (ℎ𝑘𝑙)
of the scattering planes. The corresponding reflections can be divided into three peak
families originating from A2, B2 and L21 order (Webster et al., 1984). Their respective
structure factors are defined as

𝑆A2(ℎ, 𝑘, 𝑙) = 4| (2𝑓X + 𝑓Y + 𝑓Z) | if (ℎ + 𝑘 + 𝑙)/2 = 2𝑛

𝑆B2(ℎ, 𝑘, 𝑙) = 4| (2𝑓X − 𝑓Y − 𝑓Z) | if (ℎ + 𝑘 + 𝑙)/2 = 2𝑛 + 1

𝑆L21 (ℎ, 𝑘, 𝑙) = 4| (𝑓Y − 𝑓Z) | if ℎ, 𝑘, 𝑙 all odd

where 𝑓𝑖 is the average scattering factor of one of the four fcc sublattices, with the
average taken over the scattering factors of the respective atoms occupying this
sublattice. The structure factor of the A2 reflections solely depends on the alloys’
composition, resulting from all lattice sites contributing in phase. For B2 order,
as mentioned in Chap. 2, the structure factor results from the diffraction contrast
between the Wyckoff positions (1𝑎) and (1𝑏), which are occupied by X atoms and a
random distribution of Y and Z atoms, respectively. Finally the L21 peaks are due
to the diffraction contrast of the inner fcc sublattices of the bcc structure, resulting
from the different scattering lengths on the Y and the Z sublattices.

Fig. 4.6 shows the neutron powder diffraction patterns of the four Ni2MnAl0.5Ga0.5

samples at 𝑇𝑚 = 450 K using both center wavelengths. All diffraction peaks can be
assigned to the three distinct peak families, A2, B2 and L21. The A2 and B2 reflections
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Ni2MnAl0.5Ga0.5 annealed at Ta = 623 KTm = 450 K

Figure 4.6: Neutron diffraction patterns obtained for Ni2MnAl0.5Ga0.5 in four distinct
annealing states, 𝑇𝑎 = 623 K. The measurements were performed at 𝑇𝑚 = 450 K, well
above the highest 𝑇𝑐 = 392 K of the powder samples, and with a center wavelength
𝜆c = 2.665Å (top) and 𝜆c = 1.333Å (bottom). The solid black lines represent the
Pawley refinements to the experimental data, the location of the nuclear reflections
(A2, B2 and L21) is indicated by small symbols (circle, triangle and grey dotted line
for 𝜆c = 2.665Å or bar for 𝜆c = 1.333Å) at the bottom of the diagrams.
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Figure 4.7: L21 peaks present in the diffractogram at 𝜆c = 2.665Å and 𝜆c=1.333Å
shifted onto each other, corrected for the Debye-Waller factor, multiplicities as well
as the background.

are as sharp as expected from the calibration measurements for every annealing
state and therefore independent of the respective finite correlation length of L21

order. Therefore, in order to describe the structural details of our patterns as best as
possible the IRF parameters were adapted to fit the A2 and B2 peaks, as we observe
no indication of strain or size broadening in these reflections.

In contrast to that the reflections of the L21 peak family are generally broader than
expected from the calibration measurements. As a function of increasing annealing
time all of theses peaks sharpen and gain intensity, independent of their location in
𝑄-space. Fig. 4.7 displays the L21 peaks shifted onto each other, which were mea-
sured using 𝜆c = 2.665Å at 𝑇𝑚 = 450 K and are corrected for the Debye-Waller factor,
multiplicities of the specific reflection and the background. The broadening of the
different reflections is independent of the peak location, hence the finite correlation
length of L21 order must be the reason for this broadening. By comparing the diffrac-
tion patterns of different annealing duration the continuous transition from B2 to
L21 order can be observed. Even though the measurements were performed well
above the magnetic transition temperatures we still observe additional intensity on
the smallest L21 reflection (111) for all annealing states. Here the additional signal
decays with increasing 𝑄 . The L21 reflections at larger 𝑄 show no additional sig-
nal, as shown in Fig. 4.7, thus — due to the strong 𝑄-dependence of the magnetic
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structure factor (∝ 𝑄−4) — the nature of this signal must be magnetic. At such high
temperatures possible magnetic short-range order from, e.g., neighbouring Mn-Mn
atoms present at the APBs or as local disorder in the APDs can cause this additional
intensity contribution. Thus the smallest reflection is neglected in the refinement
analysis and does not contribute to the determination of the structural details of the
diffraction data.

To investigate the ordering transition from B2 to L21 order quantitatively we em-
ployed the Pawley refinement method (Pawley, 1981) and examined the evolution of
the correlation length of L21 order with annealing time. We used a linear combina-
tion of only resolution broadened peak profiles for the A2 and B2 reflections, a six
coefficient polynomial for the background, and an additional model function given
in Eq. 3.17 to describe the broadened L21 peaks. The model function 𝑆′(𝑄𝐿struc(𝑡)/2)
was derived in the previous chapter (Chap. 3) and is centered around the Bragg peak
position 𝑄hkl. The retrieved scale of the APDs 𝐿struc(𝑡) is inverse proportional to
the interfacial density of the domains and is equivalent to the scale obtained by the
linear intercept method (Smith and Guttman, 1953) used in microscopy experiments.
The corresponding refinements are plotted together with the patterns in the semi-
logarithmic plot for the Ni2MnAl0.5Ga0.5 in Fig. 4.6 and for the Ni2MnAl samples
in Fig. 4.8. The diffractograms of the Ni2MnAl samples show the same qualitative
behaviour, with the L21 peaks increasing in sharpness and intensity with annealing
time.

Using this combination we refine the diffractograms at both 𝜆c simultaneously via
least-squares fitting. According to counting statistics the inverse of the squared
uncertainties of the diffraction data was used as weights. We obtain an excellent
agreement between the refinements and the diffraction data for all annealing states
and both alloy families. The corresponding L21 order length scales 𝐿struc, as listed
in Fig. 4.8 and 4.6, increase with annealing time. By comparing the retrieved length
scales of both alloy families the lower L21 ordering tendency of Ni2MnAl becomes
clear, with its largest length scale being about half of the longest (10 d) annealed
Ni2MnAl0.5Ga0.5 sample.

The correlation length of L21 order grows with annealing time. This positive correla-
tion was also observed in TEM measurements for Ni2MnAl0.5Ga0.5 samples, which
were of the order of 100 nm (Yano et al., 2007; Umetsu et al., 2011; Murakami et al.,
2011). Since these samples were annealed at a higher temperature (673 K (Yano et al.,
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Figure 4.8: Neutron diffraction patterns obtained for Ni2MnAl in three distinct an-
nealing states. The measurements were conducted at 𝑇𝑚 = 450 K with the center
wavelengths 𝜆c = 2.665Å (top) and 𝜆c = 1.333Å (bottom); the solid black lines rep-
resent the Pawley refinements to the experimental data, the location of the nuclear
reflections (A2, B2 and L21) is indicated by small symbols (circle, triangle and grey
dotted line for 𝜆c = 2.665Å or bar for 𝜆c = 1.333Å) at the bottom of the diagrams.
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2007; Murakami et al., 2011) and 773 K (Umetsu et al., 2011), respectively) in contrast
to our samples (annealed at 623 K), their domain sizes are as expected larger.
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4.4 Small-Angle Neutron Scattering

In order to investigate the microstructure as well as magnetic inhomogenities on
the mesoscopic length scale (1 nm up to a few hundred nm) (Mühlbauer et al., 2019),
small-angle neutron scattering (SANS) proves to be a powerful technique. SANS
enables the study of the formation and growth of precipitation in a phase separation
process (Kostorz, 1991) as well as the magnetic microstructure due to the magnetic
interaction of the neutron and the unpaired electrons of the atoms. Thus, using
this technique we can investigate the formation and growth of magnetically ordered
domains in our structurally ordered compounds.

We performed SANS measurements at the instrument SANS-1 at the Forschungsreak-
tor München II (FRMII), Garching, and at the instrument D33 at the Institute Laue-
Langevin (ILL), Grenoble. Since both instruments are located at a nuclear reactor, the
setup of SANS-1 will be described in the following as an example for a SANS exper-
iment with a monochromatic neutron beam. The specifications for the instrument
setup of D33 are given below. The typical setup is sketched in figure 4.9.

A cold neutron beam is guided through a vertically curved S-shaped neutron guide
line to a selector tower. The S-shape of the guide line prevents undesired neutrons
to arrive at the instrument by resulting in a cut-off to small wavelengths, as these
fast neutrons would only increase the background (Gilles, Ostermann, and Petry,
2007). Passing an adjacent velocity selector tower produces a qisuasi monochromatic
beam of cold neutrons of a bandwidth Δ𝜆 = 10 % in a wavelength range of 4.5Å to
30Å. The beam passes a collimation system consisting of a combination of apertures
which allow only neutrons whose path is sufficiently straight to pass. The collimation
system has a variable length of 1 m up to 20 m. The collimated beam then hits the

neutron 
source

ki
→

collimation
   system

sample

kf
→

Q
→

x→

y→
z→

2D detector image

selector tower

Figure 4.9: Sketch of the setup of a SANS instrument with a monochromatic neutron
beam at a nuclear reactor. The scattering signal is recorded in the 𝑸𝒙 × 𝑸𝒚 plane.
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powder sample and the intensity of the scattered neutrons is recorded by an 1 m×1 m
detection area. The detector can be moved to a sample-detector distance of 2 m up to
22 m. It is made out of 128 position sensitive 3He tube-detectors with the tubes having
an active length of 1 m and a diameter of 7.94 mm. This yields a final pixel resolution
of 8 mm×8 mm (Mühlbauer et al., 2016) and a detection area of 128×128 pixels.

The instrument setup of D33 consists a velocity selector producing a quasi-mono-
chromatic beam of neutrons with wavelengths between 4.5Å and 40Å (Dewhurst
et al., 2016). The scattered neutrons are detected in the evacuated detector tank by
five position-sensitive 3He detector panels, consisting of a rear area detector and four
separate monoblock panels. The sample-detector distance can be varied between
1.2 m to 12.8 m with a minimum distance of 0.8 m between the front panels and
the rear detector. The dimensions of an individual 3He gas tube are 4.5 mm×10 mm
with the rear detector consisting of a 0.64 m×0.64 m array of 128 horizontal position-
sensitive detector tubes. The position along the wire is digitized into 256 channels,
corresponding to a pixel size of 2.5 mm, thus yielding a detector area of 256×128 pixels.
The intrinsic resolution along the wire length is estimated to be approximately 5 mm,
matching that of the tube spacing in the vertical direction (Dewhurst et al., 2016).

The accessible 𝑄-range depends on the sample-detector distance 𝐿, the wavelength
of the incoming neutrons 𝜆 as well as the accessible radial distance on the detector 𝑟
(Mühlbauer et al., 2019) and is given via the following equation

𝑄 =
4𝜋
𝜆

sin (0.5 arctan (𝑟/𝐿)) . (4.25)

4.4.1 Neutron Scattering of Large Structures

Since length scales larger than atomic dimensions are investigated, a description
of the corresponding differential scattering cross-section via the point-like Fermi-
pseudo potentials as in Eq. (4.12) is no longer reasonable. Instead, we introduce the
scattering length density 𝜌 (𝒓), which is the total scattering length per unit volume.
Using this quantity the elastic differential scattering cross-section d𝜎/dΩ(𝑸) defined
in Eq. (4.12) transforms to macroscopic elastic differential scattering cross-section
dΣ/dΩ(𝑸) which is averaged over the whole sample and can be expressed according
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to Feigin and Svergun (1987) by

dΣ
dΩ (𝑸) =

���∫
𝑉

𝜌 (𝑹) exp(−𝑖𝑸 · 𝑹)d𝑹
���2

=

∫
𝑉

∫
𝑉

𝜌 (𝑹)∗𝜌 (𝑹2) exp(−𝑖𝑸 · (𝑹2 − 𝑹))d𝑹d𝑹2

=

∫
𝑉

[∫
𝑉

𝜌 (𝑹)∗𝜌 (𝑹 + 𝒓)d𝑹
]

exp(−𝑖𝑸 · 𝒓)d𝒓

with 𝑉 being the sample volume and ∗ denoting the complex conjugation. Since the
autocorrelation function of the scattering length density is defined as the term in the
square brackets, dΣ/dΩ(𝑸) is its Fourier transform.

If the scattering model can be considered to consist of two phases of different scatter-
ing length densities (𝜌1 and 𝜌2), for example grains and vacuum or magnetic domains
with different magnetisation, one can investigate the shape and size of large struc-
tures in the sample. In structural ordering processes — as the ones we observe for
Ni2MnZ compounds — the structurally ordered domains have the same scattering
length density, thus making it impossible to detect structural domains in our sam-
ples using SANS. However, due to the neutron’s exchange interaction with the local
internal magnetic field we can still use SANS to access the magnetic microstructure.

4.4.2 Magnetic Domains in Ni2MnZ Compounds

In order to investigate the magnetic microstructure of the Ni2MnAl0.5Ga0.5 and
Ni2MnAl powder samples with distinct L21 order states, small-angle neutron scatter-
ing measurements were conducted at SANS-1 at the FRM II, Garching. To reduce the
probability of multiple scattering events the powder samples, which were wrapped
in aluminium foil, had an effective thickness of 0.4 mm. Measurements between
4.2 K and 450 K were performed at three detector distances, 2 m, 8 m and 20 m, using
unpolarised neutrons. For the short detector distances we chose a neutron wave-
length of 5Å, while for the largest distance we performed measurements using a
wavelength of 6Å in order to access a 𝑄-regime of down to 0.002Å−1. To limit the
influence of the beam stop, correct for inactive detectors as well as the noise from the
shadow of the beam tube we applied a mask to our data. In the absence of an external
magnetic field the scattering was isotropic in the detector plane (𝑄𝑥 × 𝑄𝑦), thus it
was radially averaged to obtain the scattering signal dΣ/dΩ(𝑄) in the 𝑄 range of
0.002Å−1≤ 𝑄 ≤0.3Å−1. Instead of stabilizing the temperature the data were collected
continuously during temperature sweeps to acquire them in the whole temperature
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range. We observe no dependence of the signal on the temperature gradient, as the
profiles measured during a cooling cycle are identical the profiles measured while
heating the sample. The signal of an empty Aluminum foil was measured for all three
distances and subtracted from the respective samples’ intensities.

Fig. 4.10 displays the SANS profiles in a temperature range from 5 K to 450 K of the
Ni2MnAl0.5Ga0.5 powder samples. For the sample with the longest annealing duration
of 10 d, shown in Fig. 4.10 panel a), the SANS profiles recorded above the magnetic
transition temperature of 𝑇c = 392 K can be best described for small 𝑄 < 0.03Å−1 by
a straight line on these double logarithmic plots, indicating a power-law behaviour.
The scattering intensity in this low 𝑄-regime has its main contributions from the
divergence of the beam as well as the Porod scattering of large (> 100 nm) 3D struc-
tures, such as powder grains or powder grain boundaries. In the high 𝑄-regime
(𝑄 > 0.1Å−1) the power-law scattering gives way to a different behaviour. Here the
intensity consists mainly of scattering of chemical inhomogeneities on the atomic
length scale as well as incoherent scattering. Hence no large structures of the meso-
scopic length scale can be observed at such high temperatures in the SANS profiles
where our sample is paramagnetic.

With decreasing temperature an additional intensity contribution appears in the
SANS profiles at 𝑄 ≈ 0.1Å−1, which shifts in the temperature range from 450 K
to 390 K towards lower 𝑄 . This behaviour can be observed best by comparing the
last three SANS profiles which correspond to the measurements at 450 K, 400 K and
390 K. For the profile at 450 K shows no additional signal, while for the measurement
at 400 K we observe a new contribution in the profile, with its maximum being at
around 𝑄 = 0.07Å−1. This contribution appears to have shifted to 𝑄 = 0.05Å−1 for
the measurement at 𝑇𝑚 = 390 K.

Below the magnetic transition temperature the additional signal remains at around
𝑄 ≈ 0.03Å−1 and increases in intensity with decreasing temperature. Atomic diffu-
sion is at such low temperatures inactive in this composition, thus structural changes
cannot be the reason for any temperature-dependent signal and the nature of this
signal must be magnetic, corresponding to the scattering of magnetic domains in the
sample.

This temperature-dependent behaviour is present in all annealing states, Fig. 4.10 a)
to d), as well as in the ternary alloy family, with the corresponding measurements
displayed in Fig. 4.11 b) and c). The signal is most distinctive for the profile of
the sample with the longest annealing duration and weakest for the as-quenched
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Figure 4.10: Temperature-dependent SANS profiles of the Ni2MnAl0.5Ga0.5 samples
annealed for a) 10 d, b) 3 h, c) 0.5 h at 𝑇𝑎 = 623 K and d) the as-quenched sample at
𝑇𝑚 = 5 K, 300 K, 340 K, 360 K, 380 K, 390 K, 400 K and 450 K. The profiles are plotted
together with a linear combination of the profile at 450 K and a model function given
in Eq. 3.16 (black line).
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one. Its onset varies for each sample, corresponding to the respective transition
temperature𝑇c. A similar temperature-dependence of the SANS profiles was observed
in Ni44Co6Mn40Sn10 alloys, see Ref. (Bhatti et al., 2012; El-Khatib et al., 2019).

To study the extent of the magnetic order quantitatively we fit the SANS profiles
using a combination of the signal at𝑇𝑚 = 450 K, 𝐼450 K, corresponding to the structural
scattering signal of the sample, and the model function given in Eq. (3.16), which
accounts for the scattering signal from the magnetic domains and was derived in the
previous chapter. The model function is composed of a Lorentzian and two Gaussian
distributions, as depicted in Fig. 4.11 a), and the complete fit to the SANS profiles is
given as

𝐼 (𝑄) = 𝐴(𝑇 ) (𝐿mag(𝑡)/2)3𝑆 (𝑄𝐿mag(𝑡)/2) + 𝐵(𝑇 )𝐼450 K. (4.26)

We determine the size 𝐿mag from the low temperature measurements (𝑇𝑚 < 200 K).
Under the assumptions that the magnetic domains are continuous as well as their size
is temperature-independent, we keep 𝐿mag fix for the determination of the factors
𝐴(𝑇 ) and 𝐵(𝑇 ) for all measurements. In order to minimize the relative — instead of
the absolute — deviations between the data and our model on this double logarithmic
scale, we used the inverse square of the intensity as weights instead of the inverse
intensity, which would correspond to the weights according to the counting statistics.
We observe a satisfactory agreement between the SANS profile and the fit. The
prefactor𝐴 is a measure of the strength of the magnetic signal, while 𝐵 is the prefactor
of the structural signal and is of the order of unity.

The obtained length scale 𝐿mag corresponds to the magnetic domain interface density,
as listed in Tab. 4.3. Since the length scale obtained via SANS is equivalent to
the length scale extracted from the neutron powder diffraction data (Zweck and
Leitner, 2021), we can compare the extent of the magnetic as well as the structural
order directly without any further transformation needed. Both scales are of the
same size and increase with annealing time, as it has been reported in Lorentz-TEM
measurements (Umetsu et al., 2011). Their values agree satisfactory and imply both
domains to be identical. This observation agrees with the measurements performed
on Ni2MnAl0.5Ga0.5 as well as Ni2MnGa samples using Lorentz-TEM (Murakami et al.,
2006; Venkateswaran, Nuhfer, and De Graef, 2007; Ishikawa et al., 2008; Umetsu et al.,
2011).

In contrast to the quaternary compound the SANS profile of the as-quenchedNi2MnAl
sample shows no additional intensity at low temperatures, implying that Ni2MnAl in
its B2 ordered state has no magnetic inhomogeneities such as ferromagentic domains.
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Figure 4.11: a) The model’s contributions for the SANS profile at 𝑇𝑚 = 5 K for the
Ni2MnAl sample 10 d annealed at 𝑇𝑎 = 623 K are a Lorentzian and two Gaussians
together with the signal at 450 K. Temperature-dependent SANS profiles of the
Ni2MnAl sample annealed for b) 10 d and c) the as-quenched sample at 𝑇𝑚 = 5 K,
300 K, 340 K, 360 K, 380 K, 390 K, 400 K and 450 K. The profiles are plotted together
with a linear combination of the profile at 450 K and a model function 3.16 (black
line).
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Ni2MnAl0.5Ga0.5 as-quenched 0.5 h 3 h 10 d
𝐿struc(Å) 44 42 52 119
𝐿mag(Å) 52 43 53 134

Ni2MnAl as-quenched 24 h 10 d
𝐿struc(Å) - 39 71
𝐿mag(Å) - - 89

Table 4.3: APB density 𝐿struc as well as magnetic interface density 𝐿mag of the
Ni2MnAl0.5Ga0.5 and Ni2MnAl samples of distinct annealing durations at 𝑇𝑎 = 623 K.

This observation agrees with the magnetisation measurements of Acet et al. (2002),
who found Ni2MnAl in the B2 ordered state to exhibit anti-ferromagnetic properties.

4.4.2.1 Magnetic Transition

The difference between the integral weighted with the square of 𝑄 ,
∫
𝐼 (𝑄)𝑄2d𝑄 ,

of the SANS profiles and the respective weighted integral of the signal at 450 K is
proportional to the strength of the magnetic contribution 𝐴(𝑇 ). In order to obtain a
quantity proportional to the magnetic moment of the sample the integral is taken in a
𝑄-range relative to themagnetic domain size,

[
𝜋/𝐿mag, 3𝜋/𝐿mag

]
, as well as corrected

to the weight and composition of the respective sample. In Fig. 4.12 the temperature-
dependent difference integrals are shown relative to the difference integral of the
SANS profile at 5 K of the Ni2MnAl0.5Ga0.5 sample 10 d annealed. The magnetic signal
decreases continuously to zero with increasing temperature, indicating a second
order phase transition. Fitting the transition with the critical mean-field behaviour
(1 − (𝑇 /𝑇c))1/2 allows us to obtain the respective magnetic transition temperatures.
The extrapolated values are in good qualitative agreement with the results obtained
via the DSC measurements, but the DSC values are noticeably lower which is due
to the diffuse DSC curves and the resulting phenomenological determination of its
transition temperature.

With annealing time, the magnetic contribution of the small-angle scattering signal
increases steadily for all powder samples of both the Ni2MnAl0.5Ga0.5 and Ni2MnAl
alloys. For the latter one, we observe an increase from essentially zero according to
Fig. 4.11 c). This increase is contradictory to the time-dependent behaviour of the
characteristic lengths 𝐿mag, where we observe at small annealing times almost no
change and only after 10 d annealing a significant increase. We interpret these results
in the following way: The coarsening kinetics show a thermally activated behaviour.
Hence, when a sample is quenched from a disordered state to room temperature,
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Figure 4.12: Strength of the magnetic contribution in the SANS profiles in the temper-
ature range between 5 K and 450 K in Ni2MnAl0.5Ga0.5 and Ni2MnAl powder samples
relative to the maximum strength in Ni2MnAl0.5Ga0.5 10 d annealed. The magnetic
transition temperature is extrapolated by fitting the data close to the transition by
the mean-field behaviour (1 −𝑇 /𝑇c)1/2, plotted here as solid black lines, while the
corresponding transition temperatures obtained via DSC measurements are plotted
as dashed lines.

the few moments the sample spends just below the ordering temperature, 931 K for
Ni2MnAl0.5Ga0.5 (Ishikawa et al., 2008) and 1220 K (Sołtys, 1981) for Ni2MnAl, will
coarsen the configuration to a scale that would have taken much longer to reach at
the low-temperature annealing temperature of 623 K. However, the resulting APDs
will show a lower degree of long-range order than expected for the low-temperature
annealing temperature, since their degree of long-range order will correspond to
the one just below the order-disorder transition. As a consequence, the ordered
moment per formula unit is small, as a Mn anti-structure atom aligns antiparallel to
the regular Mn spins (Simon et al., 2015). Hence, when low-temperature annealing
such a quenched sample, the first few atomic exchanges per site will increase the
degree of long-range order of the APD configuration towards the new equilibrium
value, which apparently corresponds to timescales of some hours. Thus, this explains
the increase in magnetic scattering, while observing no change in the growth of the
characteristic length scale. The latter process, corresponding to the coarsening of
the domains, takes place on much longer timescales on the order of days. Another
contribution to the increase of themagnetic small-angle contributionwould be a finite
width of disordered APD walls, whose volume fraction decreases with coarsening,
but we think this effect to be much smaller in comparison.
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Figure 4.13: Radially averaged SANS signal at 300 K, 380 K, 390 K, 400 K, 420 K and
450 K for the Ni2MnAl0.5Ga0.5 sample 10 d annealed.

4.4.2.2 Shift of Intensity

As mentioned above the intensity of the additional signal shifts towards smaller
𝑄 close to the transition temperature while cooling the sample. This shift can be
observed well by comparing the SANS profiles measured close to𝑇c, with a section of
distinct profiles measured on the Ni2MnAl0.5Ga0.5 sample with the longest annealing
duration being shown in Fig. 4.13. In order to investigate the intensity distribution
of the additional signal quantitatively the difference spectra between the profiles
and the signal at 450 K is studied. The corresponding difference spectra for the
Ni2MnAl0.5Ga0.5 sample annealed for 10 d are shown in Fig. 4.14 together with the
respective structure factors 𝑆 (𝑄).

Approximating this magnetic signal for 𝑄 → 0 with the structure factor allows us to
investigate the mean ⟨𝑄⟩ which is given as

⟨𝑄⟩ =
∫
𝑆 (𝑄)𝑄d𝑄∫
𝑆 (𝑄)d𝑄

. (4.27)

Its evolution with temperature is shown in Fig. 4.15. For all annealing states as well
as for both alloy families the mean𝑄 value is constant below the respective transition
temperature at roughly 𝜋/𝐿mag. Above 𝑇c ⟨𝑄⟩ increases, corresponding to a shift
of intensity towards higher 𝑄 , with the most distinct shift being observed for the
longest annealed samples.
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Figure 4.14: Difference spectra between the SANS profiles and the scattering signal
at 450 K, 𝐼450K, for the Ni2MnAl0.5Ga0.5 sample 10 d annealed at 623 K on a linear scale.
Depicted are the profiles at 5 K, 300 K, 340 K, 360 K, 380 K, 390 K and 400 K. The black
lines correspond to the scaling functions 𝑆 (𝑘) defined in Eq. (3.16).
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Figure 4.15: Mean ⟨𝑄⟩ of the difference spectra between the SANS profiles and the
scattering signal at 450 K, 𝐼450K. The positions of the transition temperatures are
marked by dashed lines.
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One explanation for this shift is the transition from magnetic scattering intensity to
diffuse scattering intensity, as the magnetic contrast is lost with increasing tempera-
ture due the decreasing coupling strength of the magnetic moments. With this loss of
magnetic order the scattering intensity shifts towards higher𝑄 as the neutrons are no
longer scattered from a magnetic microstructure but disordered spins corresponding
to more diffuse scattering. This continuous decrease in the intensity distribution
within the ferromagnetic phase equals the second order transition of a ferromagnet
to a paramagnet.

4.5 Conclusion
The results presented in this chapter demonstrate a strong correlation between the
structurally ordered domains and the magnetic ones in Ni2MnZ compounds. Using
the same phenomenological model derived in Chap. 3 the data recorded by a neutron
powder diffractogram could be directly compared to the results obtained from SANS
profiles. The length scale of the structural order in these compounds is of the same
size as the length scale of the magnetic order. Hence our observations agree with the
Lorentz-TEM studies Yano et al. (2007) implying both domains to coincide.

Furthermore, the magnetic transition was investigated by comparing the temperature-
dependent SANS data and the retrieved transition temperatures are in good agree-
ment with DSC measurements of the same samples.

Finally a shift in intensity in the magnetic signal of the SANS profile was observed
around the transition temperature. This shift is attributed to the transition from a
magnetically ordered structure to a paramagnet, which results in a transition of the
intensity distribution towards the high 𝑄-regime.
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Chapter 5

Anti-Ferromagnetic Coupling of
Anti-Phase Domains

5.1 Introduction

In the previous chapter, the magnetic domains in the Ni2MnZ compounds were ob-
served to be the same size as the structurally ordered ones. These observations agree
with TEM and Lorentz-TEM studies of thin Ni2MnAl and Ni2MnAl0.5Ga0.5 samples
(Yano et al., 2007; Umetsu et al., 2011), which found the structural domains to be
identical with the magnetic ones. In contrast to these measurements, the magnetic
correlation lengths obtained from low-temperature neutron powder diffraction pat-
terns were found to be much larger than the structural L21 order, as presented in
Neibecker (2017). Fig. 5.1 displays in its upper panel the powder diffraction patterns
of the Ni2MnAl0.5Ga0.5 samples recorded well above their magnetic transition tem-
peratures. These patterns were discussed in detail in the previous chapter and show
broadened L21 reflections, with the corresponding structural correlation length being
of the order of ∼80Å. In the lower panel of Fig. 5.1 the corresponding measurements
below their magnetic transition temperatures at 200 K are displayed. Here we observe
a sharp, strongly 𝑄−dependent intensity contribution on top of the broadened L21

reflections. Due to its temperature- as well as its strong 𝑄-dependence, this sharp
additional contribution was identified to result from the magnetic order of the sample
(Neibecker, 2017). For all annealing states, this signal is as sharp as expected from
the calibration measurements, indicating a magnetic correlation length of at least
530Å, which disagrees with the one obtained from the SANS measurements (∼100Å).
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A detailed discussion of this signal and the low-temperature diffraction patterns is
given in Neibecker (2017).

One possible explanation for these large deviations between the magnetic correlation
lengths is the coupling between the magnetic domains. There are three possible
scenarios for the magnetic exchange interaction across APBs:

In the first scenario, the spins located in two neighbouring APDs do not couple
across their APB. Hence their exchange interaction is confined to the size of the
respective APD. This case would correspond to spins coupling ferromagnetically
inside an APD, forming ferromagnetic domains. These magnetic domains would
compare to isolated superspins, which couple paramagnetically to an external mag-
netic field. Without any exchange interaction between the superspins, they would
be randomly orientated in case of no preferred orientation given by an external mag-
netic field. Hence the magnetic microstructure would correspond to large magnetic
inhomogeneities, as observed in the SANS measurements. For the neutron powder
diffraction measurements, this case would lead to broadened magnetic reflections
similar to the L21 superstructure peaks, which is inconsistent with our observations
in the low-temperature powder diffraction patterns.

In the second scenario, the superspins interact ferromagnetically across the APBs.
Here, the magnetic order would be not confined to the APD size but persist through
the sample similar to a macroscopically ferromagnetic system. This case would
contradict our observation from the SANS measurements as no magnetic inhomo-
geneities would exist in this scenario. For the neutron diffractogram, this case would
correspond to an additional magnetic contribution on the peak intensities at low
𝑄 but leave the peak width as determined by the structural order unchanged, thus
disagreeing with our observations.

In the last scenario, the superspins of neighbouringAPDs interact anti-ferromagnetically
across the APB, while the spins located in the same APD interact ferromagnetically
with each other. Here the exchange interaction would be long-range, as the spin
coupling is not confined to the APD size and would persist through the adjacent
domains due to the couplings of the spin across the APBs. Hence this third case
would correspond to magnetic structures of the mesoscopic length scale, as we ob-
served in SANS. But the exchange interaction also leads to a much larger correlation
length of the magnetic order than the correlation length of the structural order. A
detailed discussion of the implications of this AFM-like coupling of APDs for the
neutron powder diffractogram is given in Neibecker (2017), with this case leading to
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Figure 5.1: Neutron powder diffraction patterns of the Ni2MnAl0.5Ga0.5 powder sam-
ples of distinct L21 order states using a center wavelength of 𝜆c = 2.665Å: in the
upper panel the measurements at 450 K, above the magnetic transition temperatures,
are shown, while in the lower panel the diffraction data recorded below the respective
𝑇c, at 200 K, are displayed. The dashed lines denote the position of the L21 reflections,
while the positions of the fundamental Bragg peaks of A2 and B2 order are indicated
by circles and triangles.
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a sharp additional intensity on top of the L21 reflections just as we observe in the
low-temperature diffraction patterns.

This last case is the most interesting one as it corresponds to our simple model of the
magnetic coupling in Ni2MnZ compounds being only dependent on the structural
order of the Mn atoms. For example, in Lorentz-TEM measurements, a reversal of
the magnetisation at the APBs was observed (Yano et al., 2007). Still, until now, this
coupling across structural domain boundaries has not been studied in bulk Ni2MnZ
samples.

To distinguish between these three coupling across the APBs scenarios further, the
SANS signal of the powder samples was investigated with an external magnetic field
applied. Without a magnetic field, the SANS signal of the powder samples was, as
expected, isotropic. Due to the neutrons’ exchange interaction with the average spin
component in the direction 𝜼, 𝑆𝜼 , a quantity proportional to the magnetisation of the
sample, the magnetic scattering intensity is proportional to the difference between
unity and the scalar product of the wavevector transfer 𝑸 and 𝜼, 𝐼 ∝ (1− (𝑸 ·𝜼)2) as
given in Eq. (4.16). Hence only magnetic inhomogeneities with a magnetisation com-
ponent perpendicular to 𝑸 have a non-zero contribution to the scattering intensity.
The magnetic scattering intensity in case no magnetic field is applied corresponds
to the contribution of 2/3 of the sample’s spins due to the random orientation of the
grains.

If a magnetic field is applied, the spins of ferromagnetic domains align parallel to
the magnetic field direction. The main spin component of the sample 𝝈 corresponds
to the sum over all spins in the sample and is in this case parallel to 𝑩. Hence the
SANS signal of a ferromagnet becomes anisotropic with intensity being shifted in the
direction perpendicular to the magnetic field (Wagner et al., 1991). Thus for the first
scenario of the magnetic coupling across APBs we would expect a shift of intensity
with less intensity in the direction parallel to the 𝑩-field and more in the direction
perpendicular to it.

We expect the domains to respond to the external magnetic field like a Heisenberg
anti-ferromagnet for the third scenario. The energy of an anti-ferromagnetic ar-
rangement is minimal, if the angle between the magnetisations 𝑴𝐴 and 𝑴𝐵 of the
respective sublattices is 2𝛼 = 180◦, with 𝐸 ∝ 𝑀2 cos(2𝛼), as sketched in Fig. 5.2 on
the left. Suppose an external magnetic field 𝑩ext is applied to an arrangement of
anti-ferromagnetic spins; in that case, an additional term, the Zeeman term, has to
be considered with the spins of both sublattice wanting to be aligned in the field
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Figure 5.2: Action of an external magnetic field 𝑩 on an anti-ferromagnet, the coupled
spins align perpendicular to the 𝑩-field under the angle 𝛼 . The magnetic field in-
creases from state 1, corresponding to a small magnetic field, to state 4, corresponding
to the spin state with a very high magnetic field being applied.

direction. Hence the energy of the system is given as 𝐸 ∝ 𝑀2 cos(2𝛼) + 𝐵𝑀 sin(𝛼).
Here the energy minimum is obtained if the spins align perpendicular to the external
magnetic field, since this spin arrangement allows an antiparallel alignment to its
neighbouring spin as well as a parallel alignment to the magnetic field under a certain
angle 𝛼 (Neel, 1952), as sketched in state 1 of Fig. 5.2. With increasing magnetic field,
the spins can be turned more and more in field direction, as sketched in states 2 and
3 of Fig. 5.2, until for high enough fields, the spins are completely aligned in field
direction, resulting in a polarised spin state, as displayed in the state 4 of Fig. 5.2.
Thus for this coupling of the APDs across APBs scenario, we would expect the super
spins 𝝈 𝒊 , corresponding to the mean magnetisation direction of a single domain, to
align perpendicular to the magnetic field direction at a low magnetic field. Hence the
expected SANS signal would show a shift of intensity in the field direction.

Investigating the SANS signal close to the magnetic transition temperature as well
as under high magnetic fields allows us to study the interplay and strength of the
magnetic exchange interactions of the spins located in neighbouring APDs as well
as their coupling to an external magnetic field.

5.2 Isothermal Measurements Under High Magnetic
Fields

In order to investigate the coupling mechanism between the magnetic domains in
Ni2MnZ alloys, small-angle neutron scattering measurements were performed on
the Ni2MnAl0.5Ga0.5 powder samples with a magnetic field of up to 4 T applied. The
measurements were conducted at SANS-1 at the FRM II, Garching, at a sample-
detector distance of 8 m. Using unpolarised neutrons of a wavelength of 5Å allowed
us to access a 𝑄-range of [0.007, 0.11] Å−1. We collected the data during several
isothermal sweeps of the magnetic field between 0 T and 4 T in a temperature range
of 50 K to 315 K. Similar to the measurements discussed in the previous chapter,
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Figure 5.3: 2D SANS signal of the Ni2MnAl0.5Ga0.5 sample annealed for 10 d at 623 K
with no magnetic field and with a magnetic field of 0.2 T applied, measured at 300 K.

we observe no difference between the samples’ profiles measured during heating or
cooling.

In Fig. 5.3 the 2D SANS signals of the Ni2MnAl0.5Ga0.5 sample with the longest anneal-
ing duration of ten days are shown for no and a small magnetic field of 0.2 T applied
at 300 K. Comparing both signals, we observe a clear redistribution of intensity from
the isotropic picture in case of no external magnetic field to an anisotropic signal
in case of a non-zero magnetic field, with more intensity in the direction parallel
to the magnetic field. Hence the spins of the sample show a behaviour similar to
a Heisenberg anti-ferromagnet, with its scattering signal indicating that the main
spin component 𝝈 𝑖 of a single domain is perpendicular to the magnetic field. This
observation confirms our theoretical model of the spin coupling in Ni2MnZ alloys,
with the spins interacting ferromagnetically inside an APD, while the ferromagnetic
domains couple anti-ferromagnetically to each other across the APBs.

The radial average of the scattering signals at 300 K with distinct magnetic fields
between 0 T and 4 T applied is shown in Fig. 5.4 a). At zero magnetic field we observe
the same characteristic magnetic signal, which was discussed in detail, in the previous
chapter 4. With an increasing magnetic field, this signal shifts towards higher 𝑄 and
decreases in intensity.

In order to study the anisotropy of the magnetic signal quantitatively, we take the
radial average of the intensity in the horizontal and the vertical direction. The distinct
regions of the 2D signal which contribute to each profile are shown in the inset of
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Figure 5.4: Radially averaged SANS-profiles at 300 K of the 10 d annealed
Ni2MnAl0.5Ga0.5 sample under 0 T, 1 T, 2 T, 3 T and 4 T, depicted in a). The respective
radially averaged SANS-profiles in the horizontal and vertical direction are shown in
b). The dashed lines mark the𝑄-range, in which anisotropy of the signal is evaluated.
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Fig. 5.4 b), with the corresponding direction-dependent profiles being displayed in
Fig. 5.4 b). If no external magnetic field is applied, both profiles show an identical
intensity distribution. In the case of a non-zero external magnetic field, the profile
in the horizontal direction (∥ 𝑩ext), depicted as circles in Fig. 5.4 b), displays more
intensity than the profile in the vertical direction (⊥ 𝑩ext), depicted as triangles,
around the centre of the magnetic signal, sketched by the dashed lines in Fig. 5.4 b).

Taking the integral of these profiles around the centre of the magnetic signal allows
us to investigate the coupling of the sample’s spins with each other and the external
magnetic field closer. The integral is evaluated in the 𝑄-range [0.03, 0.075] Å−1,
with the range being sketched in Fig. 5.4 b). We performed isothermal scans of the
magnetic field at 50 K and 300 K for the Ni2MnAl0.5Ga0.5 sample 10 d annealed and the
evolution of the integrated intensity is shown in Fig. 5.5 a). For both temperatures, we
observe the same qualitative behaviour: For small magnetic fields, the total intensity
increases before decreasing with increasing magnetic field, as indicated in the radial
averages shown in Fig. 5.4.

The respective integrals of the direction-dependent profiles are shown in Fig. 5.5
b). For the integral parallel to the field direction, we observe an intensity maximum
at 0.3 T and 0.2 T, respectively. In contrast, the vertical intensity integral decreases
continuously with increasing magnetic field. The integral in field direction is in
general larger than the one perpendicular to the magnetic field, with their intensity
ratios being depicted for both temperatures in Fig. 5.5 c). Furthermore, their ratio
is a quantity proportional to the magnetisation direction of a single domain, as it
indicates the direction main spin component on the mesoscopic length scale. With
increasing magnetic field, it decreases for both isothermal measurements.

Comparing the scans at 50 K and 300 K, we observe a distinctly stronger intensity
integral as well as anisotropy in the lower temperature 𝑩-scan, which is due to
the strength of the magnetic signal being temperature-dependent, as discussed in
Chap. 4.4.2. At low temperatures, the signal at zero magnetic field shows signs of
a remaining anisotropy in field direction, with the integral ratio being larger than
0.5. This observation indicates that a preferred spin alignment perpendicular to the
magnetic field remains in the sample even after applying a magnetic field.

For the as-quenched Ni2MnAl0.5Ga0.5 sample 𝐵-scans were recorded at 50 K, 130 K,
200 K, 270 K, 305 K and, close to the magnetic transition temperature, at 315 K. Their
integral ratios are displayed in the lower panel of Fig. 5.5 d) and show the same qual-
itative behaviour as the ones of the 10 d annealed sample. The anisotropy maximum
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Figure 5.5: The integrals of the SANS profiles for the scan of the magnetic field
at 50 K and 300 K for the Ni2MnAl0.5Ga0.5 sample 10 d annealed are shown in a).
The respective integrals in the horizontal and vertical direction are shown in b),
with the corresponding integral ratios being depicted in c). For the as-quenched
Ni2MnAl0.5Ga0.5 sample 𝐵-scans were recorded at 50 K, 130 K, 200 K, 270 K, 305 K and,
close to the magnetic transition temperature, at 315 K and the corresponding integral
ratios are shown in d).
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Figure 5.6: 1D sketch of antiferromagentically coupled APDs with increasing mag-
netic field. The APB is sketched by the black dashed line.

shifts with decreasing temperature towards higher magnetic fields, starting from
0.1 T for the signal close to the magnetic transition temperature, 𝑇c = 322 K, and
shifts to 0.3 T for the scan at 50 K. For the scans close to 𝑇c, we observe a continuous
transition of the anisotropy frommore intensity in the direction parallel to the 𝑩-field
to more intensity in the direction perpendicular to it.

The increase of the total intensity for small magnetic fields applied can be explained
by considering the geometry of the experiment setup. We measured the signal in
the 𝑄𝑥 ×𝑄𝑦-plane. Without a magnetic field, the spins in the powder sample have
no preferred direction and are therefore randomly distributed. However, due to the
neutron’s magnetic interaction with the spins, only 2/3 of the spins contribute to the
scattering signal in 𝑄𝑥 and 𝑄𝑦 direction. If all spins were aligned in the 𝒛-direction,
the intensity of the signal would be at its maximum, 1 in both directions, as the main
spin component of the sample is in this case orthogonal to all possible 𝑸 , which can
be recorded.

If a small external magnetic field is applied in 𝒙-direction, the spins of an anti-
ferromagnet align preferably perpendicular to it, thus having their main spin compo-
nents in 𝒚 and 𝒛 direction. Hence we expect a shift of intensity, with the intensity in
field direction increasing from a factor of 2/3 to a factor of 1 since the spins aligned in
𝒚 and 𝒛 direction contribute to the scattering intensity measured in 𝒙 direction. With
no spins being aligned along the 𝒙 direction, only the intensity of spins aligned in 𝒛

contribute to the intensity perpendicular to the magnetic field (𝑸𝑦). Therefore the in-
tensity along 𝑸𝑦 decreases from a factor 2/3 to a factor 1/2. With the intensity of one
direction of the signal increasing twice as much as decreasing in the other, as shown
in Fig. 5.4 b), we observe the total intensity to increase for small magnetic fields. The
decrease in intensity of the magnetic signal as well as its shift towards higher𝑄 with
the increasing magnetic field is very similar to the temperature-dependent behaviour
of the SANS-signal discussed in the previous chapter 4.4.2. To explain this shift, we
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need to consider the different coupling strengths inside the domain. In the case of the
temperature-dependent signal, we found that, with increasing temperature, the inten-
sity of the SANS signal decreases due to the decrease of the magnetic contrast in the
sample. In Chap. 4.4.2 we assumed the shift to be due to increasing magnetic disorder
which leads to a loss of intensity in the scattering signal at low 𝑄 , corresponding to
scattering of structures on the mesoscopic length scale, and an increasing diffusive
scattering intensity in the high 𝑄-regime. In the case of an external magnetic field,
the same model applies; only now the spins inside a domain are not disordering but
aligning parallel to the field. Likewise to the previous scenario, the magnetic contrast
is lost, resulting in a loss of intensity in the scattering signal. However, in this case the
scattering of the spins inside a domain is not diffusive but results from the scattering
of a ferromagnetic alignment. Hence the intensity of the Bragg peak increases in the
low 𝑄-regime, which cannot be observed in these SANS measurements directly but
only as the intensity loss of our magnetic signal. This process is sketched in Fig. 5.6,
where three states of a 1D representation of anti-ferromagnetically coupled APDs
with an increasing magnetic field are displayed.

Close to 𝑇c, we observe a transition of the anisotropy from more intensity in the
horizontal direction to the vertical one. Here the effects of temperature and magnetic
field on the spin coupling have to be considered. To study this linear transition closer,
further magnetic SANS measurements at high temperatures were performed and will
be discussed in the next section.

5.3 Temperature-Dependent Measurements

In order to study the magnetic coupling in APDs with temperature as well as an exter-
nal magnetic field, high temperature magnetic SANS measurements were performed
in a temperature range of 50 K to 500 K at the instrument D33 at the ILL, Grenoble.
Since the magnetic signal of samples of a shorter annealing duration is located at
higher 𝑄 and shifts with an increasing magnetic field towards higher 𝑄 , a 𝑄-range
of [0.02, 0.28]Å−1 was investigated using a sample-detector distance of 2 m as well
as neutrons of the wavelength of 5Å. We applied magnetic fields of up to 640 mT
in the 𝒙-direction, perpendicular to the incoming neutron beam, and performed iso-
magnetic temperature sweeps as well as isothermal scans of the magnetic field. The
measured scattering signals were recalibrated as described in the appendix B.

The SANS profiles measured at SANS-1 fit perfectly to the SANS profiles measured at
D33, as depicted in Fig. 5.7 for the Ni2MnAl0.5Ga0.5 sample 10 d annealed for the pro-
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Figure 5.7: Radially averaged SANS profiles of the Ni2MnAl0.5Ga0.5 sample 10 d an-
nealed were measured at 300 K without an external magnetic field at SANS-1 for a
sample-detector distance of 8 m and at D33 for a sample-detector distance of 2 m.

files recorded at 300 K without a magnetic field and with a magnetic field of 640 mT
applied. The profiles measured at the respective instruments are scaled according to
their sample-detector distance, their detector area and pixel area. Their respective
anisotropies were analysed by taking the ratio of the integral in the horizontal direc-
tion and the total intensity Inttot (Inttot = Inthor + Intver). The integrals were obtained
for the same 𝑄-range and are for both instruments in good agreement, as shown in
the lower panel of Fig. 5.7.

Since the location of the magnetic signal depends on the L21 order state for the
Ni2MnZ compounds, the integrals to study the anisotropy were taken for shorter
annealing durations in a 𝑄-range of [0.05, 0.1] Å−1. In contrast, for the longest
annealed Ni2MnAl0.5Ga0.5 sample a 𝑄-range of [0.03, 0.075] Å−1 was chosen. The
evolutions of the anisotropy with temperature as well as magnetic field are depicted
for all annealing states of the Ni2MnAl0.5Ga0.5 powder samples in Fig. 5.8, Fig. 5.9
as well as Fig. 5.10. For measurements at high temperatures (≫ 𝑇c) we expect the
signal to be isotropic since, as the sample becomes paramagnetic, the large magnetic
inhomogeneities vanish. Here small anisotropies of the signal were observed, for
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Figure 5.8: Isothermal sweeps of the magnetic field at 50 K, 130 K, 200 K, 250 K and
300 K of the Ni2MnAl0.5Ga0.5 powder samples a) as-quenched, b) 0.5 h, c) 3 h and d)
10 d annealed at 623 K. The ratios of the intensity integral in horizontal direction to
the total integrated intensity (Inthor/Inttot) of the as-quenched sample were retrieved
from themeasurements at SANS-1, while for the other samples this ratio was obtained
from measurements conducted at D33. The solid lines are a guide to the eye. The
remanence is due to the order of the measurements, for example the measurements
of the 10 d sample were recorded during field cooling. Inttot is defined as the sum of
Inthor and Intver.
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Figure 5.9: Evolution of the ratio of the integrals of the direction dependent profiles
with the magnetic field close to the magnetic transition temperatures of 322 K, 338 K
and 354 K of the respective Ni2MnAl0.5Ga0.5 powder samples as-quenched, 0.5 h and
3 h annealed at 623 K. Linear fits of the respective curves are depicted as solid lines.

which we corrected by adding a small constant contribution to all horizontal integrals.
For low temperatures, this contribution does not affect the resulting anisotropies as
the signal is much stronger than at high temperatures.

These isothermal measurements, depicted in Fig. 5.8, show independent of the an-
nealing state the same characteristic behaviour: Well below the magnetic transition
temperature we observe more intensity in the horizontal direction (∥ to 𝑩) than in
the vertical one. Above the magnetic transition temperature, the scattering signal
is isotropic, with the ratio between the horizontal integral to the total intensity be-
ing 0.5. The remanence observed for the samples is due to the order in which the
measurements were recorded. For the 10 d annealed samples all measurements were
recorded for field cooling, decreasing the magnetic field from 640 mT to 0 mT. In the
case of the 3 h sample, the measurements at 50 K were recorded while field cooling,
while the respective measurements at 300 K were performed during field heating.
When approaching the magnetic transition temperature, we observe the same con-
tinuous transition of the anisotropy as we did in the measurements at SANS-1 when
applying high magnetic fields for the as-quenched sample displayed in Fig. 5.5 d).
Fig. 5.9 shows the evolution of the anisotropy close to 𝑇c for the as-quenched, 0.5 h
and 3 h annealed Ni2MnAl0.5Ga0.5 samples. Here the anisotropy decreases linearly
with increasing magnetic field and becomes smaller than 0.5, indicating a change in
the main spin component of the sample from perpendicular to the 𝑩-field to parallel
to it. Hence we can turn the main spin component in field direction either with high
enough fields as in the case of the measurements at SANS-1 or at temperatures close
to 𝑇c with lower fields.
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Figure 5.10: Evolution of the ratio of the integrals of the direction dependent pro-
files with temperature for a magentic field of 640 mT, 430 mT and 220 mT of the
Ni2MnAl0.5Ga0.5 powder samples as-quenched, 0.5 h, 3 h and 10 d annealed at 623 K.
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Figure 5.11: Evolution of the integral ratio of the direction dependent profiles for
the Ni2MnAl sample 10 d annealed with a) increasing magnetic field at 50 K, 130 K,
200 K, 250 K, 300 K, 400 K, 450 K and 500 K. In b) its evolution with temperature for a
magnetic field of 640 mT, 430 mT and 220 mT are shown.

Fig. 5.10 shows the evolution of the anisotropy of the scattering signal with tempera-
ture while a constant magnetic field is applied. For all Ni2MnAl0.5Ga0.5 samples we
observe the same characteristic behaviour: The anisotropy is constant for tempera-
tures well below the respective 𝑇c with more intensity in the horizontal than vertical
direction. When approaching the transition temperature, the anisotropy decreases
until, close to 𝑇c, it changes to be smaller than 0.5. For temperatures well above 𝑇c

the scattering signal becomes isotropic, with the ratio of the direction dependent
profiles being one. These two phase transitions of the anisotropy are visible in all
samples as well as for different magnetic field values. With increasing magnetic field,
the transitions shift towards lower temperatures as well as anisotropy in the second
phase becomes larger, as shown in Fig. 5.8 d).

Comparing between the distinct annealing states of the Ni2MnAl0.5Ga0.5 samples we
observe the scattering signal of the longest annealed sample to be the least anisotropic
one at low temperatures as well as experiencing close to 𝑇c the strongest anisotropy
perpendicular to the magnetic field.



5.3. Temperature-Dependent Measurements 93

The evolution of the anisotropy for the Ni2MnAl sample 10 d annealed at 623 K is
depicted in Fig. 5.11 a) for the isothermal measurements and in b) for a constant
𝑩-field. We observe the same characteristic behaviour as for the Ni2MnAl0.5Ga0.5

samples.

The ratio of all samples is at low temperatures greater than 0.5, which indicates
the main spin component of the domains being perpendicular to the magnetic field.
Hence the response of the spins located in the domains for all distinct L21 order states
as well as both alloy families corresponds to that of a Heisenberg anti-ferromagnet,
indicating an anti-ferromagnetic coupling of the APDs across their APBs. Above the
magnetic transition temperatures, the samples become paramagnetic, thus losing the
magnetic microstructure and leading to isotropic scattering signals.

To explain the linear decrease of the anisotropy at a constant temperature close to
𝑇c, shown in Fig. 5.9, the competing forces acting on the spins have to be considered:
According to the Heisenberg model, the energy of the exchange interaction of the
atoms 𝑖, 𝑗 with the electron spins 𝑺𝑖, 𝑺 𝑗 is given by 𝑈H = −2𝐽𝑺𝑖 · 𝑺 𝑗 . This term
depends on the alignment of the spins to each other. Hence, it is sensitive to the
fluctuations of the spins, which contribute quadratically. If a magnetic field is applied,
also the interaction of the magnetic moments with an external magnetic field has
to be considered via the so-called Zeeman-term, 𝑈Zeeman = 𝑔𝑆

𝜇B
ℏ
𝑺 · 𝑩ext. At low

temperatures, the spins are stiff, with only small deviations from their ground-state.
The Heisenberg term here dominates, and it is even at high fields not possible to
change the antiparallel alignment of the spins, as we observed in the previous section
Fig. 5.5a). With increasing temperature, the spins fluctuate around their ground-
state alignment due to thermal excitations. These fluctuations result in a parabolic
decrease of the influence of the spin stiffness for the interaction between twomagnetic
moments (𝑈H ∝ |𝑆 |2). The Zeeman term decreases linearly with the spin stiffness,
hence at temperatures close to𝑇c as well as high magnetic fields, this term dominates,
resulting in a change of the main spin direction to parallel to the magnetic field, as
sketched in Fig. 5.6.

In case of a constant magnetic field applied, we observe two magnetic transitions: At
low temperatures, the spins inside an APD align antiparallel to the spins in the neigh-
bouring APDs. With increasing temperature, the spins begin to fluctuate, with the
fluctuations of the spins located inside the domain being stronger than for the spins
located at the APB according to our model, presented in Chap. 4. When approaching
the respective 𝑇c the Zeeman term dominates, resulting in the spins inside an APD
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to align parallel to the magnetic field. The more spins are turned in the field direc-
tion, the easier it is to spin-polarize the remaining spins due to their ferromagnetic
exchange interaction. Hence for the isomagnetic transition, we observe a steeper
transition of the anisotropy. This change in the anisotropy corresponds to the tran-
sition from an antiparallel alignment of the spins across APBs to the spin polarised
case, sketched in Fig. 5.6. As the temperature increases further, this polarised spin
alignment becomes disordered as the sample becomes paramagnetic, resulting in an
isotropic scattering signal.

5.4 Conclusion
Using magnetic SANS measurements the coupling of the magnetic domains across
APBs in Ni2MnZ compounds was investigated. Due to the anisotropy of the magnetic
scattering signal in the case of an applied magnetic field, we observed the domains
to behave similar to a Heisenberg anti-ferromagnet, indicating the spins located in
neighbouring APDs to couple anti-ferromagnetically across their APB.

With increasing magnetic field, the magnetic scattering signal shifts towards higher
𝑄 and its intensity decreases similar to its behaviour with increasing temperature,
discussed in Chap. 4.4.2. Hence we were able to study the coupling strengths of the
spins inside a domain; we found the model given for the temperature-dependence to
be valid for this case as well, with the spins inside a domain breaking from the order
of the domain earlier than the ones located at the APB.

With increasing temperature, we observed two magnetic transitions in the samples:
first from the antiparallel alignment of the domains to a spin polarised case when
approaching the respective magnetic transition temperature and the transition from
this spin polarised state to a disordered paramagnetic one above the 𝑇c.
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Chapter 6

Summary

Throughout this thesis, the atomic ordering process and its influence on the magnetic
properties in Ni2MnZ Heusler alloys were investigated.

In chapter 3 we studied the coarsening process of anti-phase domains in symmetric
and asymmetric binary compounds via large scale Monte Carlos simulations. Us-
ing the 𝑞-state Potts model and microscopically realistic models of atomic order in
compounds, we showed that there exists a universal scaling function for a system
with a given ground-state degeneracy 𝑞. The general form of the scaled real-space
pair-correlation functions can be described very well by a linear combination of
an exponential function and two Gaussian distributions. The respective Fourier
transform of this real-space scaling function results in a very good fit of the scaled
reciprocal-space structure factors. Further, integrating this three-dimensional radi-
ally symmetric function over two perpendicular dimensions gave us an expression
corresponding to the peak profile in powder diffractometry. Finally, we introduced
the scaling factor 𝐿(𝑡), which relates the APD scale to the inverse of the specific
interface area of the APD configuration. This spatial length scale is equivalent to the
domain size obtained with the standard linear intercept method in microscopy. With
our expression of the peak profile we can describe the size broadened superstructure
peaks in diffraction using the same scaling factor 𝐿(𝑡). Hence, we obtained in this
chapter a model which quantitatively relates the APD scale obtained in microscopy
to the ones measured via scattering experiments without any adjustable parameters.

The correlation between structural order and the extent of magnetic order in Ni2MnZ
Heusler alloys was investigated in chapter 4. Here, we demonstrated the applicability
of our phenomenological model for the coarsening process in Ni2MnZ Heusler alloys.
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The structural ordering process of the B2-L21 transition corresponds to a system
with a ground-state degeneracy 𝑞 = 2. We investigated the APD scale of Ni2MnAl
and Ni2MnAl0.5Ga0.5 powder samples for distinct L21 ordering states using neutron
powder diffraction. With increasing annealing time, we observed an increase in the
APD scale for the ternary and quaternary compounds. Small-angle neutron scatter-
ing measurements were performed on the powder samples to study the respective
magnetic microstructure. We obtained an equivalent length scale for the magnetic
order by applying the same phenomenological model. Comparing both length scales
showed that the magnetic and structural domains are identical. Finally, we observed
in the temperature-dependent SANS profiles a shift of intensity towards higher𝑄 for
the measurements above the magnetic transition temperature. This shift indicates
an increase in diffusive scattering intensity, which equals to the loss of the magnetic
contrast in the samples.

Having provided strong evidence that the structural and magnetic order are strongly
correlated, we investigated the magnetic coupling of the magnetic domains across
the structural domain boundaries in Ni2MnZ compounds via magnetic small-angle
neutron scattering. In chapter 5, the presented magnetic scattering signal shows an
anisotropy in the case of an applied magnetic field, similar to the expected response
of a Heisenberg anti-ferromagnet. This behaviour of the scattering intensity is ob-
served in all samples and indicates the spins located in neighbouring APDs to couple
anti-ferromagnetically across their APB. Interestingly, we observed with increas-
ing temperature two magnetic transitions in the samples: first from the antiparallel
alignment of the domains to a spin polarised case when approaching the respective
magnetic transition temperature and at higher temperatures the transition from this
spin polarised state to a disordered paramagnetic one above the 𝑇c.

The here presented model gives a qualitative description of the coarsening process
of anti-phase domains as well as the development of magnetic order on the meso-
scopic length scale. However in this model we used the assumption that there is no
magnetic disorder inside the domains, resulting for example from Mn antisites, or
magnetocrystalline anisotropy. Instead we considered the spins to be free to align
to an external magnetic field only depending on their neighbouring spins and all
magnetic domains to be perfectly ordered. Since the microscopic picture of magnetic
order is much more complicated than assumed in our model, it would be interesting
to test our model and further develop it for the magnetic order.
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Appendix A

Considerations of the Instrumental
Resolution Function for Time-of-Flight
Neutron Powder Diffractometers

The line shape of a spectrum curve measured at a time-of-flight neutron powder
diffractometer at a pulsed neutron source is asymmetric due to the moderation pro-
cess in a spallation source. Here the high-energy neutrons are moderated to epither-
mal (> 300 meV) and thermal (< 300 meV) energies before being used for diffraction.
The resulting neutron pulse structure is shaped further by the choppers of the velocity
selectors and has a complex and asymmetric shape, which is usually characterized
by a sharp exponential rise and slower exponential decay (Von Dreele, Jorgensen,
and Windsor, 1982). This asymmetry makes describing the line shape of a TOF neu-
tron powder diffraction pattern difficult: Von Dreele, Jorgensen, and Windsor (1982)
suggested an empirical description, which is a back-to-back paired set of exponen-
tials convoluted with a Gaussian distribution. A more successful approach is given
by the convolution of a pseudo-Voigt function and the back-to-back exponentials
(Thompson, Cox, and Hastings, 1987) and is implemented in many diffraction analysis
programs (Larson and Von Dreele, 1994; Rodríguez-Carvajal, 2001). In this section
the convolution of these functions is derived as well as the numeric considerations
needed for its evaluation are discussed.

One of the best mathematical descriptions of the instrumental and sample intrin-
sic profiles measured via powder diffraction is the Voigt profile 𝑉 (𝑥 ;𝜎,𝛾) (Young
and Wiles, 1982). It is given by a convolution of a Lorentzian distribution 𝐿(𝑥 ;𝛾)
and a Gaussian distribution 𝐺 (𝑥 ;𝜎). However, due to its relative complexity its
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computational use was delayed and many earlier programs used instead a simple
approximation, the pseudo-Voigt function 𝑉𝑝 (𝑥 ; 𝑓 ) (David, 1986). Rather than com-
puting the convolution of both distributions this profile is a linear combination of
the Gaussian and the Lorentzian distribution, as given in

𝑉𝑝 (𝑥 ; 𝑓 ) = 𝜂𝐿(𝑥 ; 𝑓 ) + (1 − 𝜂)𝐺 (𝑥 ; 𝑓 ) = 𝜂 𝑓

𝜋 (𝑥2 + 𝑓 2) + (1 − 𝜂) 1
𝑓
√

2𝜋
𝑒−𝑥

2/(2𝑓 2) . (A.1)

Here, 𝜂 is the scaling parameter of the Gaussian and the Lorentzian distribution and
𝑓 is the total full width at half maximum parameter of 𝑉𝑝 (𝑥 ; 𝑓 ). In order to mimic
the exact Voigt function the pseudo-Voigt profile is parametrized as proposed by
Thompson, Cox, and Hastings (1987): The total FWHM 𝑓 is given by the Gaussian
𝑓𝐺 and Lorentz 𝑓𝐿 as:

𝑓 =
[
𝑓 5
𝐺 + 2.69269𝑓 4

𝐺 𝑓𝐿 + 2.42843𝑓 3
𝐺 𝑓

2
𝐿 + 4.47163𝑓 2

𝐺 𝑓
3
𝐿 + 0.07842𝑓𝐺 𝑓 4

𝐿 + 𝑓 5
𝐿

]
.

The scaling parameter 𝜂 is a function of the Lorentz and total FWHM and is described
by

𝜂 = 1.36603 𝑓𝐿
𝑓
− 0.47719

(
𝑓𝐿

𝑓

)2
+ 0.11116

(
𝑓𝐿

𝑓

)3
.

Since further convolutions with additional functional contributions such as the mod-
erator pulse, described by back-to-back exponentials (Von Dreele, Jorgensen, and
Windsor, 1982), are needed to describe the time-of-flight neutron powder diffraction
data and these convolutions are more simply computed for the pseudo-Voigt profile
than the Voigt profile, many programs, such as General Structure Analysis System
(GSAS; Larson and Von Dreele (1994)) and FULLPROF (Rodríguez-Carvajal, 2001)
still use rather the pseudo-Voigt profile than the Voigt profile.

The back-to-back exponentials are given as

𝐵(𝑥 ;𝑎, 𝑏) = 𝑎𝑏

𝑎 + 𝑏

(
𝑒−𝑎𝑥𝜃 (𝑥) + 𝑒𝑏𝑥𝜃 (−𝑥)

)
(A.2)

where 𝜃 (𝑥) is the Heaviside step function, 𝑎 is the decay coefficient and 𝑏 the rise
coefficient.
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The convolution of an exponential decay with a Gaussian distribution is((
𝑒−𝑎𝑥𝜃 (𝑥)

)
⊛

(
1

√
2𝜋𝜎

𝑒−𝑥
2/2𝜎2

))
(𝑦) = 1

√
2𝜋𝜎

∫ ∞

0
𝑒−𝑎𝑥𝑒−(𝑦−𝑥)

2/2𝜎2
𝑑𝑥

=
1
√
𝜋
𝑒−𝑎(𝑦−𝜎

2𝑎/2)
∫ ∞

−(𝑦−𝜎2𝑎)/
√

2𝜎
𝑒−𝑧

2
𝑑𝑧,

where we used the substitution 𝑧 =
(
𝑥 −

(
𝑦 − 𝑓 2𝑎

) )
/
√

2𝑓 . The integral of exp
(
− 𝑧2)

can be written as the complementary error function. Since the convolution of an
exponential rise function and a Gaussian distribution can be derived analogously, we
obtain for the convolution of the back-to-back exponentials with the Gaussian part
of the pseudo-Voigt function the following expression:

(
𝐵(𝑥 ;𝑎, 𝑏)⊛𝐺 (𝑥 ; 𝑓 )

) (
𝑦
)
=

𝑎𝑏

2(𝑎 + 𝑏)

(
𝑒−𝑎(𝑦−𝑓

2𝑎/2)erfc
(
−𝑦 − 𝑓

2𝑎
√

2𝑓

)
+𝑒𝑏 (𝑦+𝑓 2𝑏/2)erfc

(
𝑦 + 𝑓 2𝑏
√

2𝑓

))

For the convolution of Eq. A.2 and a Lorentzian profile we have to consider first the
expression of the Lorentzian distribution as an imaginary function:

1
1 + (Γ𝑥)2 =

1
2

(
1

1 + iΓ𝑥 + 1
1 − iΓ𝑥

)
= Re

(
1

1 + iΓ𝑥

)
(A.3)

where the last expression holds for real 𝑥 values. If the exponential decay coefficient
is also a real number, one can write the convolution as( (

𝑒−𝑎𝑥𝜃 (𝑥)
)
⊛

( 1
(Γ𝑥)2 + 1

))
(𝑦) = Re

(∫ ∞

0
𝑒−𝑎𝑥

1
1 + iΓ(𝑦 − 𝑥)𝑑𝑥

)
= Re

(
i
Γ
𝑒−𝑎(𝑦−i/Γ)

∫ ∞

−𝑎(𝑦−iΓ)

𝑒−𝑧

𝑧
𝑑𝑧

)
,

where 𝑧 substitutes the following expression 𝑧 = −𝑎𝑦 + i𝑎/Γ. The integral of this
equation is known as the exponential integral 𝐸1(𝑥) =

∫ ∞
𝑥

exp(−𝑡)/𝑡𝑑𝑡 , hence we can
write the convolution of 𝐵(𝑥 ;𝑎, 𝑏) and the Lorentz part of the pseudo-Voigt profile as(

𝐵(𝑥 ;𝑎, 𝑏) ⊛ 𝐿(𝑥 ; 𝑓 )
)
(𝑦) = 𝑎𝑏

𝜋 (𝑎 + 𝑏)Re
(
i𝑒−𝑎

(
𝑦−i𝑓

)
𝐸1

(
− 𝑎𝑦 + i𝑎𝑓

) )
+ 𝑎𝑏

𝜋 (𝑎 + 𝑏)Re
(
i𝑒𝑏

(
𝑦+i𝑓

)
𝐸1

(
𝑏𝑦 + i𝑏𝑓

) )
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The complete convolution of 𝐵(𝑥 ;𝑎, 𝑏) and the pseudo-Voigt function is a function of
𝑡 , the time of flight of a neutron from its source to the detector. As 𝑡 can reach large
values (𝑡 > 10 000 µs), the numeric representation of exp(𝑏𝑡) can become problematic.
But in the convolution the exponential functions, which can become very large, are
combined with functions, which become very small for large 𝑡 . Hence in order to
still give meaningful expression for such values, we have to consider approximations
and different expressions for the complementary error function and the exponential
integral.

The exponential integral can be expressed by a convergent series as (Abramowitz
and Stegun, 1972)

𝐸1(𝑥) = −𝛾 − ln(𝑥) −
∞∑︁
𝑘=1

(−𝑥)𝑘
𝑘 𝑘! (A.4)

where 𝛾 is the Euler-Mascheroni constant. For large 𝑥 values, in the limits 𝑡 < −6/𝑏
and 20/𝑏 < 𝑡 , as well as if the FWHMof the Lorentzian distribution is smaller than the
exponential coefficient, the integral is well approximated by the continued fraction
expansion (Abramowitz and Stegun, 1972)

𝐸1(𝑥) =
exp(−𝑥)

𝑥 +
1

1 +
2

𝑥 +
2

1 +
3
. . .

. (A.5)

Using these expressions we can give a good numeric representation of the respective
convolution, as the exponential functions either cancel each other as in Eq. (A.5) or
the values of 𝑡 are small enough to be expressed by exp(𝑏𝑡).

In case of the complementary error function erfc(𝑦) we use the following case dis-
tinction to approximate it (Press et al., 1992):

erfc(𝑥) ≈

𝜏 (𝑥) 𝑥 ≥ 0

2 − 𝜏 (−𝑥) 𝑥 ≤ 0
(A.6)
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where the function 𝜏 (𝑥) is given as

𝜏 (𝑥) = 𝑢 exp( − 𝑥2 − 1.26551223 + 1.00002368𝑢 + 0.37409196𝑢2 + 0.09678418𝑢3

− 0.18628806𝑢4 + 0.27886807𝑢5 − 1.13520398𝑢6 + 1.48851587𝑢7

− 0.82215223𝑢8 + 0.17087277𝑢9)

with 𝑢 being defined as 𝑢 = 1/(1 + 0.5|𝑥 |). Here the exponents of the exponential
functions can be added in the problematic case of 𝑥 ≥ 0, which resolves the numeric
representation problem. For values smaller 0, the exponential function is small and
therefore in this case no further approximation is needed.

Via these approximations we are able to give a numeric evaluation of the instrumental
resolution function over the whole 𝑡-range.
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Appendix B

Calibration of the Small-Angle Neutron
Scattering Signal

This appendix chapter deals with the correction of the miscalibration of a 2D SANS
detector. For both instruments, SANS-1 at FRM II and D33 at ILL, we measured the
SANS signal using a 3He gas multi-tube detector with a monoblock design.

Fig. B.1 shows the 2D scattering intensity of our Ni2MnAl0.5Ga0.5 10 d annealed sample
at room temperature without amagnetic field applied, measured at D33, ILL, Grenoble.
At first glance we observe an isotropic signal as we have seen at the instrument SANS-
1 for the same sample under similar conditions. A closer examination of the signal
reveals that several detector rows are shifted against each other, as indicated by the
arrows in Fig. B.1. As these shifts are visible in all measurements independent of the
sample, temperature or external magnetic field, they must be due to a no longer valid
calibration of the plane detector. As for our data analysis of the 2D signal the ratio of
the intensity distribution in the horizontal and vertical direction is of great interest,
a precise allocation of the events on the plane detector is crucial.

These shifts are due to the set-up of the detector, which was briefly discussed in
Chap. 4.4. To understand why we can correct for them via an ex post calibration, we
first discuss the general set-up of such a plane detector in greater detail and compare
its signal between both instruments.

Dewhurst et al. (2016) give a detailed description of the experimental set-up of the
instrument D33. Its neutron detector is a 3He gas multi-tube detector with the
dimensions of 0.64 m×0.64 m. It contains 128 horizontal position sensitive detector
tubes with a vertical resolution of 5 mm determined by the tube spacing. In the
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Figure B.1: 2D SANS signal of the sample Ni2MnAl0.5Ga0.5 10 d annealed at room
temperature without an external magnetic field. On the left the uncalibrated signal
is depicted, while on the right the signal after calibration is shown.

horizontal direction the event positioning is provided by a charge division of the
neutron event on the resistive detection wire. The position along the wire is digitized
into 256 channels, corresponding to a pixel size of 2.5 mm. The intrinsic resolution
along the wire length is estimated to be approximately 5 mm, matching that of the
tube spacing in the vertical direction. Due to the construction of the 2D detector,
each row corresponds to a single detector, which is evaluated independently to their
neighbouring rows and must be calibrated separately.

In case of D33 the detector is calibrated by mounting a Cadmium mask with precisely
machined slits on its front window. Using a so-called flat scattering sample, e.g. water
or acrylic glas, ensures a uniform illumination over the entire detector surface. With
the neutrons being only detected at the positions of the slits, the raw pixel positions
are determined via centre-of-mass calculations. Dewhurst et al. (2016) observed the
position sensitivity of the tubes to be highly linear with different offsets and gradients
for each tube.

The observed shifts in the 2D signal appear to be mainly in the horizontal direction as
shown in Fig. B.2, where the intensity distribution around the beam stop in vertical
and horizontal direction is depicted. The beam stop covers an area of (13 × 27)
pixels, at the position [59, 72] × [114, 141] pixels. Since the shifts are stable for all
measurements independent of the sample and sample environment, we determine
the parameters of our ex post calibration from the sum over all profiles, which gives
us the best counting statistics for the correction of these shifts.
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Figure B.2: Upper panels: Intensity distribution at D33 around the beam stop before
the calibration. Here are shown the intensity distribution of detector rows on the
right and detector columns on the left of the Ni2MnAl0.5Ga0.5 10 d spectra, measured
at room temperature without an external magnetic field. In the lower panel the
intensity distribution is shown after the calibration. The line connecting the data
points is a guide for the lines.



106 Appendix B. Calibration of the SANS Signal

The idea behind the ex post calibration method is, that the intensity distribution
measured in a certain detector row 𝑥 should not differ severely from the ones recorded
in its neighbouring rows (𝑥 − 1) and (𝑥 + 1). This assumption is valid for our powder
samples as the scattering intensity is expected to decay continuously away from
the beam center. Further we observe the shifts between the detector rows to be
uncorrelated to each other. Hence, we correct for them by comparing the interpolated
intensity distribution to the mean of the interpolated intensities of the neighbouring
rows. As the plot of raw pixel position versus physical position shows the position
sensitivity of the tubes to be highly linear but with different offsets and gradients for
each tube (Dewhurst et al., 2016), we describe the positioning along each detector
tube by the following linear variation of 𝑦 ∈ [1, 256]

𝑦 = 𝑠 (𝑥)𝑦 + d𝑦 (𝑥), (B.1)

where 𝑠 (𝑥) is the scaling factor, which corresponds to the respective resistivity of
the detection wire 𝑥 , and d𝑦 (𝑥) is the shift, being the physical offset of the detector
row 𝑥 relative to its neighbours. Finally we consider the relative efficiency 𝐸 (𝑥) of
the detector row 𝑥 , which fluctuates around unity due to the varying 3He pressure
in the tubes (Dewhurst et al., 2016).

We determine all three parameters for each detector row via least-squares fitting
of the row intensity distribution by minimizing the relative deviation between the
interpolated data and the interpolated average of its neighbours. In order to prevent
the beam stop effecting our parameters we mask the pixels parallel to the beam
stop in all rows. As we observe a strong correlation between the efficiency and the
scale 𝑠 (𝑥) as well as know from (Dewhurst et al., 2016) that the efficiency should be
stable around unity, we use a regularization matrix which leaves the efficiency of the
detector tubes deviating less than 10−5 from 1. The respective parameter values of the
linear variation for each row are depicted in Fig. B.3. We fit these three parameters
iteratively.

With the obtained parameters we calibrate our signal by reassigning counts from one
pixel to another along the detection wire. We assume that the locations of the events
in a pixel are uniformly distributed and assign each event a position inside their
respective pixel. To redistribute the events according to our calibration parameters
we apply the inverse of the linear variation of Eq. (B.1) to each event location and
assign the counts to the pixels which their new location corresponds to. Counts that
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Figure B.3: The ex post calibration parameters scale 𝑠 (𝑥) and shift d𝑦 (𝑥) of the
detector tubes 𝑥 .

would be assigned to a pixel below 1 or beyond 256 are neglected, which is the case
for less than 1% of the total number of counts per tube.

We applied this calibration to all SANS profiles measured at D33.
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