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Abstract

Landing a spacecraft is a challenging task as there are different external (environment)
and internal (measurements) factors that play an essential role in precisely landing the
ship in the target with small error margins. Even though the task is difficult, the success
of such projects can lead to large cost reductions through energy and resource efficiency.
Model Predictive Control can help to achieve the task but requires reasonably accurate
models of the real spacecraft. The task is non-trivial as the dynamics of the spacecraft are
nonlinear and uncertain, which leads to difficulty in constructing models. Different Ma-
chine Learning techniques could be used to build such models, however, this results in a
nonlinear complex representation that is difficult to understand. The processes and out-
comes of such models are difficult to interpret, and they usually function as a ”black box”
mapping of input and output. Thus, the main idea of this thesis is to use the Koopman op-
erator to model the nonlinear dynamics of the spacecraft into a higher dimensional lifted
feature space where its evolution is linearly represented. The linear operators built on
the Koopman operator framework are simple, data-driven, and used to design controllers,
in our case linear Model Predictive Control without any nonlinear optimization schemes.
Furthermore, we explore how the predictors obtained through this method are compara-
tively superior in terms of performance to the existing linear predictors. When used in a
Model Predictive Control scheme, the model is efficient, allowing for quick control loop
optimization. As a result of the effective linear model controlling techniques, it is suitable
for real-time systems. Landing a spaceship has many requirements that are similar to the
stabilization of an inverted pendulum: the spaceship is controlled from below through the
thrusters, which act as the cart in the pendulum. The process of building predictors and
applying Model Predictive Control is similar. That is why a pendulum system is used as
an illustrative example in this study.
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1 Introduction

From the advent of civilization, humans have looked up to the sky and dreamed about
reaching the moon. In the last century, thanks to rapid technological advancement, the
study of the Earth and its surrounding atmosphere have considerably progressed. The
long-range ballistic missiles initially used by Germany during WWII paved the way for
launch vehicles. An interest in such missiles later sparked a space race between the Soviet
Union and the United States. The first successful feat of space travel was on October 4,
1957, when the Soviets launched their first artificial satellite, Sputnik 1, into space. On
April 12, 1961, Russian Lt. Yuri Gagarin became the first human to orbit Earth. Neil Arm-
strong, the first man to walk on the moon, made his ”one great leap for mankind” on July
20, 1969. Between 1969 and 1972, six Apollo missions were launched to investigate the
moon [ 2 ]. Over the last 50 years, autonomous spacecraft have been used to land multiple
rovers on Mars [  18 ], probes in Titan [ 36 ], asteroids [ 8 ], and return missions for humans in
space [ 10 ].

Landing a spaceship is a challenging task. Precision landing of spaceships helps research
and exploration, and makes spaceship resources reusable. To land a spaceship, several fac-
tors must be considered. Spaceships that enter or leave the atmosphere experience extreme
conditions. Heating, atmospheric friction, drag forces, and radiation should be accounted
for. As the slightest error can have catastrophic effects, landing spaceships should have a
small margin for error. The vertical position and velocity should be precisely controlled.
Any sudden disturbances such as the wind should not affect the ability to hit the target
with precision. The field of vertical landing is still in its early stages of research and re-
sources for spacecraft control are limited, so landing a spaceship vertically is an arduous
undertaking. Commercial space stations like Axiom Space and the Bigelow Commercial
Space Station, as well as private firms like SpaceX and Blue Origin, have and will continue
to revolutionize space travel. Blue Origin’s ’New Shepard’ rocket successfully landed on
its West Texas test site several times.SpaceX managed to land its Falcon 9 rocket on a float-
ing landing platform called the Autonomous Spaceport Droneshop ( ASDS ) [ 10 ].

We use Koopman-based Model Predictive Control MPC in this study to achieve optimal
control of an example system (inverted pendulum on cart), which can then be applied to
a spaceship landing. Koopman operator theory has been used for control of dynamical
systems. A major advantage of the Koopman operator is that it makes use of linear pre-
dictors. Linear Predictors are a type of artificial dynamical system that can forecast the
future state (or output) of a given nonlinear dynamical system based on measurements of
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1 Introduction

the present state (or output) as well as the system’s current and future inputs. The process
of constructing linear predictors is data-driven, i.e. no prior knowledge of the dynamics
of the system is required. To compute a finite-dimensional approximation of a controlled
Koopman operator, the paper [ 23 ] utilized a modified version of the Extended Dynamic
Mode Decomposition ( EDMD ). The collection of observables appearing in the EDMD is
given a specific structure, and the resulting approximation of the operator takes form of
a linear controlled dynamical system. It is shown that linear predictors generated in this
manner outperform Carleman linearization and local linearization approaches in terms of
predictive ability.

Nonlinear Model Predictive Control is a powerful approach has been used to control
various aerodynamical systems. It is applied for path planning and optimal control prob-
lems for multiple mobile robots in a complex three-dimensional environment [ 34 ]. Non-
linear MPC is used for control and guidance for a propeller-tilting hybrid unmanned air
vehicle [ 4 ]. All of these methods have the difficulty of tackling constrained optimization
problems in real time. This is why the Koopman-based MPC controller is used in this work.

Koopman MPC has been successfully used in a variety of fields. The paper [ 1 ] explores
the utility of the Koopman operator theory to control the robotic system. The Sphero  SPRK 

robot is used to investigate the use of the Koopman operator in a reduced state repre-
sentation context, where increased complexity in the basis function improves open- and
closed-loop controller performance in a variety of terrains, including sand. The paper
[ 12 ] presents the result of the utilization of the Koopman operator as a linear predictor to
approximate a nonlinear vehicle model to a higher dimensional space where its system
dynamics are linear and used to perform a linear Model Predictive Control design. The
nonlinearities modeled in this case are rigid-body dynamics, coordinate system transfor-
mations, and the tire. The results from the experiment show that unlike the MPC based on
local linearization, the Koopman-based controller is capable of recovering from a situation
where the vehicle slides sideways in one continuous motion.

In another work, [ 6 ] proposes a methodology for closed-loop feedback control of non-
linear flows that is fully data-driven and model-free, based on the recent development of
the Koopman Model Predictive Control framework. The combination of Koopman with
MPC outperformed the feedback techniques based on local linearization and with sub-
millisecond computation time. Finally, [ 25 ] demonstrates the first application of the Koop-
man MPC for the control of power grid dynamics and transient stabilization. The data-
driven control framework allows for the use of efficient linear MPC computational tools to
control this highly nonlinear dynamical system. The results look promising with success-
ful cascaded grid stabilization without model knowledge, a distributed control structure
(one controller per grid), and quick computation time.

The main objective of this thesis is to implement dense form Koopman MPC for the
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control of a dynamical system and compare it with the traditional nonlinear MPC. The
Koopman-based linear predictors are generated from the nonlinear dynamical system,
which is then used by dense form Koopman MPC to control the position of the cart and
the angle of the pendulum. Then, a spaceship model is presented with all of the necessary
parameters as well as an optimization function, and the control will be implemented in
future work.

The thesis is divided into three main sections. The first section describes the theoretical
background of topics related to this thesis such as Koopman theory, linear predictors, lift-
ing functions, Model Predictive Control, and system dynamics. In the second section, the
main implementation of the control strategy of Koopman MPC is described. This involves
data preparation, model setup, experimental setup and results. Finally, the last section
summarizes the work, concludes the thesis report, and discusses future directions for the
research.
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2 Theoretical Background

2.1 Classical theory of dynamical systems

In the abstract sense, a dynamical system is made up of two parts: a collection of states
that is used to describe the evolution of a system, and a rule that governs the evolution.
There are many instances of dynamical systems in physics where the evolution of the phys-
ical variables in time is described by differential equations. The typical dynamical system
is expressed as

ẋ(t) = F (x(t)) (2.1)

where x(t) is the state, an element of the state space X ⊂ Rn at t ≥ 0, X is a compact state
and F : X → Rn is a continuously differentiable vector field on that state space [ 5 ].

The state space is the set of all coordinates that represents the system in a complete
sense. The evolution rule predicts the next state or states based on the current state of the
system. There are other variables or parameters which are fixed or unknown function of
time that may depend upon the model. The dynamical systems can also be represented by
the discrete time map as

ẋ(t+ 1) = f(x(t)), t ∈ Z (2.2)

where x belongs to the state space X ⊂ Rn, t is the discrete time index and f : X → X is
the dynamic map. We may need to make some additional assumptions on f , similar to the
continuous-time system in (  2.1 ). As the data acquired from dynamical systems are usually
in discrete-time samples, this form is also more practical [ 5 ] [ 28 ] .

2.2 Koopman Operator Theory

Bernard Koopman’s early work in 1931 [ 21 ] gave birth to the Koopman operator formal-
ism. He developed the linear transformation currently known as the Koopman operator
and discovered that it is unitary for Hamiltonian dynamical systems. The Koopman oper-
ator was mainly restricted to the study of measure-preserving systems for several decades
following Koopman and Von Neumann’s work. In 2009, Koopman modes were first used
to a complicated fluid flow, particularly a jet in a cross flow; where the complex nonlin-
ear flow was decomposed into Koopman modes, determined from spectral analysis of the
Koopman operator [  33 ]. This research demonstrated the potential of Koopman Decom-
position in capturing dynamically important flow structures and their related time scales.
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2.2 Koopman Operator Theory

After this, Koopman decomposition and Dynamic mode decomposition (DMD) methods
have not only been used in nonlinear flows, but also in different fields of study. For ex-
ample, use of compressed DMD for background modeling [ 14 ], image analysis with the
DMD in Convergent Path [ 35 ], reconstruction and classification of dynamics via Koopman
features [ 40 ], analysis of traffic data [ 7 ], and fault detection of whole-buildings [ 17 ].

We interpret data in the context of dynamical systems as knowledge of some variable
or variables that are relevant to the state of the system. The logical way to realize this
into mathematical form is to assume that data is an evaluation of state functions. These
functions are referred to as system observables. We consider an uncontrolled discrete-time
dynamical system similar to ( 2.2 ) (where for simplicity we absorb the term t into the equa-
tion) as,

x+ = f(x) (2.3)

where x ∈ Rn is the state of the system, x+ is the successor state and f is the transition
mapping. Let F be an infinite dimensional function space invariant under the action of
Koopman operator made up of all square-integrable real-valued functions with compact
domainX ⊂ Rn. The elements of this spaceF are called observables, and can be lifted into
this function space F . Let us consider a real valued observable of the space F , ψ : X → R.
Then, the Koopman operator K : F → F is defined by

(Kψ)(x) = ψ(f(x)). (2.4)

It describes the evolution of the observables along the trajectories of the system. Impor-
tantly, the Koopman operator K is linear even if the system ( 2.3 ) is nonlinear. Thus, the
main benefit of lifting the dynamics using Koopman operator is that it offers a linear rule
of evolution, however, the space of the observables is infinite dimensional. The linearity
of the Koopman operator follows from the linearity of the composition operation, i.e.,

K(ψ1 + ψ2)(x) = (ψ1 + ψ2)(f(x)) = ψ1(f(x)) + ψ2(f(x)) = Kψ1(x) +Kψ2(x) (2.5)

where ψ1 and ψ2 are any two observables. If the set of observables F contains the compo-
nents of the state xi, i.e. x 7→ xi where i ∈ {1, ..., n} , this operator completely captures the
features of the underlying dynamical system [  23 ]. Figure (  2.1 ) shows a schematic depiction
of the Koopman operator [ 5 ].

5



2 Theoretical Background

Figure 2.1: The Koopman operator lifts the dynamics from state space to the observable
space, where the dynamics is linear but infinite-dimensional. Figure from au-
thor, adapted from [ 23 ].

2.3 Linear predictors for nonlinear dynamical systems

Let us consider a variation of the system ( 2.3 ) which a discrete-time nonlinear controlled
dynamical system

x+ = f(x, u), (2.6)

where x ∈ Rn is the state of the system, x+ is the successor state and f is the transition
mapping and u ∈ U ⊂ Rm control input. There are n states and m control inputs [ 23 ].

This study focuses on predicting the trajectory of ( 2.6 ) given an initial state x0 and con-
trol inputs u0, u1, and so on. We are specifically seeking for simple predictors with a linear
structure that may be used in linear control design techniques (like  MPC ). These linear
predictors are used in nonlinear feedback control and estimation. The use of linear predic-
tor is mature and well understood. Unlike nonlinear methods, the main advantage of this
method is that there is fast computation i.e. linear algebra or convex optimization meth-
ods, because of which it is easy to rapidly deploy in applications [ 23 ].

Let us consider the predictors, which are in the form of controlled linear dynamical
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2.3 Linear predictors for nonlinear dynamical systems

systems, as,

z+ = Az +Bu,

x̂ = Cz
(2.7)

where z ∈ RN , N is the number of lifting functions with (typically) N � n , x̂ is the
prediction of x, A ∈ RN×N , B ∈ RN×m and C ∈ Rn×N . Let us consider an initial condition
of the above predictor ( 2.7 ) as

z0 = ψ(x0) :=

ψ1(x0)
...

ψN (x0)

 , (2.8)

where x0 is the initial condition on ( 2.6 ), and ψi : RN → R with i = {1, ..., N} are the lifting
functions which are usually nonlinear and defined by the user. Lifting means raising of the
dynamical system’s output, rather than the state itself. After applying the lifting function
on the states, we get a lifted state z which is N dimensional. The most important thing
to notice is that the control inputs u are not lifted at all, and thus linear constraints can be
applied to them linearly. Also, because the projected state x̂ is a linear function of the lifted
state ẑ in ( 2.8 ), linear restrictions may be easily put on the state [ 23 ].

Figure 2.2: Linear predictor, lifting and output. Figure from author, adapted from [ 22 ].
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2 Theoretical Background

Figure 2.3: Linear predictor for a nonlinear controlled dynamical system used for Linear
Control Design, in our case MPC. Figure from author, adapted from [ 23 ].

Figure 2.4: Nonlinear Embeddings. Figure from author, adapted from [ 22 ].

This type of predictor lends itself well to linear feedback control design approaches. Im-
portantly, the resultant feedback controller will be nonlinear in the original state x, even
though it may be linear in the lifted state z (though it is not needed). The feedback con-
troller for (  2.6 ) is given by κ : Rn → Rm , while the feedback controller for ( 2.7 ) is given by
κlift : RN → Rm. These two controller are related to each other by

κ(x) := κlift(ψ(x)). (2.9)

The notion is that if for each acceptable input sequence, the real trajectory of x created by
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2.4 State-Space Representation of linear time-invariant systems

( 2.6 ) and the anticipated trajectory of x̂ generated by ( 2.7 ) are close, then the best controller
for ( 2.7 ) should be close to the optimal controller for ( 2.6 ). For the prediction x̂ embeddings
should be ψ [ 23 ].

2.4 State-Space Representation of linear time-invariant systems

The state of a dynamical system refers to a minimum set of variables xi known as state
variables, where i = {1 . . . n}with n being the order of the system, that completely define
the system and its reaction to any given set of inputs. The dynamical behaviour of any
state dependant system is governed by these n dimensional states [ 32 ].

Figure 2.5: System with states, inputs and outputs. Figure from author, adapted from [ 32 ].

The standard mathematical expression is given by a set of n first-order ordinary differential
state equations, where the time derivatives of the state variables are dependent on their n
state variables {x1, x2, ... xn} and m control inputs {u1, u2, ... um}.

x+
1 = f1(x,u)

x+
2 = f2(x,u)
...

...

x+
n = fn(x,u).

(2.10)

In the above general form equations, x is a collection of n state equations called state vector,
and u is a collection of m control inputs called control vector. The function fi(x,u) where
i = {1, 2, ... n} is a general nonlinear, time varying function of the state vectors, the system
input vectors, and time. For simplicity purposes, we have absorbed time in the equation
itself. In vector notation, the ( 2.10 ) can be written as:

x+ = f(x, u). (2.11)

For a linear time-invariant system of dimension n and m inputs, (  2.10 ) is transformed into
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2 Theoretical Background

a set of n coupled first-order linear differential equations with constant coefficients as

x+
1 = a11x1 + a12x2 + . . . + a1nxn + b11u1 + . . . + b1mum,

x+
2 = a21x1 + a22x2 + . . . + a2nxn + b21u1 + . . . + b2mum,

...
...

...

x+
n = an1x1 + an2x2 + . . . + annxn + bn1u1 + . . . + bnmum,

(2.12)

where each derivative of the state is the linear combination of the state variables and con-
trol inputs weighted with constants aij and bij . These constants describe the system. The
( 2.12 ) can be expressed in matrix form as

d
dt


x1

x2

...

xn

 =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

an1 an2 . . . ann




x1

x2

...

xn

 +


b11 . . . b1m

b21 . . . b2m
...

...

bn1 . . . bnm




u1

u2

...

um

 . (2.13)

Finally, above equation ( 2.13 ) can be written as a matrix-vector form as,

x+ = Ax+Bu (2.14)

whereA is a n× n matrix of constants aij that weighs the states, x is a n column vector of
state variables, B is a n ×m matrix of constants bij that weights the inputs, and u is a m
column vector of control input [ 32 ].

The output of the system is defined as all variables that are of relevance or interest.
These system outputs can also be written as a linear combination of the state variables and
control units, along with some constants ci and di as,

y = c1x1 + c2x2 + . . . + cnxn + d1u1 + . . . + dmum. (2.15)

If ny dimension of outputs are chosen, then there will be ny such equations which can be
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2.5 Koopman Operator for controlled system

shown as,

y1 = c11x1 + c12x2 + . . . + c1nxn + d11u1 + . . . + d1mum,

y2 = c21x1 + c22x2 + . . . + c2nxn + d21u1 + . . . + d2mum,

...
...

...

yny = cny1x1 + cny2x2 + . . . + cnynxn + dny1u1 + . . . + dnymum,

(2.16)

and the compact matrix form of the equations can be written as,
y1

y2

...

yny

 =


c11 c12 . . . c1n

c21 c22 . . . c2n

...
...

cny1 cny2 . . . cnyn




x1

x2

...

xn

 +


d11 . . . d1m

d21 . . . d2m

...
...

dny1 . . . dnym




u1

u2

...

um

 . (2.17)

The matrix form in the ( 2.17 ) can be written in compact vector form,

y = Cx+Du (2.18)

whereC is a ny ×n matrix of constants cij that weighs the states, x is a n column vector of
state variables, D is a ny ×m matrix of constants dij that weighs the inputs, and u is a m
column vector of control input. GenerallyD is taken as a null matrix, and hence the ( 2.18 )
can be written as

y = Cx . (2.19)

For a linear time-invariant system, a complete system model consists of n state equations
and m control outputs defined in terms of the matrices A and B. The ny outputs of the
system is expressed in terms ofC andD. The matricesA andB are system attributes that
are dictated by the structure and constituents of the system. The output equation matrices
C and D are defined by the specific selection of output variables. In summary, for the
state equation based modelling process, the main goal is to determine the constituents of
the matrices and express the system model in the form as presented below [ 32 ].

x+ = Ax+Bu

y = Cx+Du
(2.20)

2.5 Koopman Operator for controlled system

For the controlled dynamical system defined in ( 2.6 ), the Koopman operator associated
with it is defined as the Koopman operator associated with the uncontrolled dynamical
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2 Theoretical Background

system developing on the extended state-space. This extended state-space is the product
of the original state-space and the space of all control sequences. `(U) is the space of all
control sequences with elements being u := (u)∞i=0 and u := ui ∈ U . As explained in [ 23 ]
extended (infinite-dimensional) state space which is in Rn × `(U) is given by

X :=

x
u

 . (2.21)

This dynamics of the extended state ( 2.21 ) is described by

X+ = F(X ) :=

f(x,u(0))

Su

 . (2.22)

where S is a shift operator given by Su(i) = u(i + 1) and u(i) is the ith element of the
control sequence u.

The Koopman operator K : H → H associated with ( 2.22 ) is defined as

(Kφ)X = φ(F (X )) (2.23)

where φ : Rn×`(U)→ R belongs to some space of observablesH. The Koopman operator’s
formulation implicitly requires thatH is invariant under the action ofK, and henceHmust
contain functions that are dependent on u in the controlled environment [ 23 ].

2.6 EDMD for controlled system

Extended Dynamic Mode Decomposition ( EDMD ) is a data driven method that approx-
imates the Koopman operator and hence the Koopman eigenvalue, eigenfunction, and
mode tuples. Because EDMD is a data-driven process, it may be used to analyze data from
stochastic systems without requiring any algorithmic modifications. In our case, for the
time domain prediction of trajectories produced by ( 2.6 ), We build a finite-dimensional ap-
proximation of the operator K that produces a predictor of the form (  2.7 ). EDMD requires
a) vector of lifting functions φ(χ), as well as (b) a data set of snapshot pairs, (χj , χ

+
j )Kj=1

which we express as two data sets, χj and χ+
j where χ+

j = F (χj) [ 38 ]. K is the number
of trajectories. The goal of this approach is to find a matrix A that is the transpose of the
finite-dimensional approximation of K that minimizes equation

K∑
j=1

‖φ(χ+
j ))−Aφ(χj))‖22 (2.24)

where
φ(χ) = [φ1(χ), . . . , φNφ(χ)]T (2.25)
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2.6 EDMD for controlled system

is a dictionary of observables or vectors of lifting functions with φi : Rn × `(U) → R, i ∈
{1, . . . , Nφ}. Since the extended state χ = (x,u) is an infinite-dimensional object in general,
the goal ( 2.25 ) cannot be assessed in a limited amount of time unless the φi’s are chosen in
a unique fashion [ 23 ].

2.6.1 Linear predictors

We require that the functions φi be of the form

φi(x,u) = ψi(x) + Li(u) (2.26)

in order to construct a linear predictor ( 2.7 ) and a computable objective function in ( 2.26 ).
In this case, ψi : Rn → R is nonlinear in general while Li : `(U) → R is linear. The vector
of lifting functions φ = [φ1, . . . , φNφ ]T (where Nφ = N +m without loss of generality) is in
the form

φ(x,u) =

ψ(x)

u(0)

 , (2.27)

where ψ = [ψ, . . . , ψN ]T and u(0) ∈ Rm is the initial component of the control sequence u.
We may ignore the final m components of each term φ(χ+

j )) − Aφ(χj) in (  2.24 ) since we
are not interested in forecasting future values of control sequences. N rows of A in ( 2.24 )
should taken into a new matrix Â, and it should be decomposed as Â = [A,B] where
A ∈ RN×N and B ∈ RN×m. This leads to a minimization problem

min
A,B

K∑
j=1

‖ψ(x+
j ))−Aψ(xj)−Buj(0))‖22. (2.28)

After minimizing ( 2.28 ) over A and B, we get the predictor of the form ( 2.8 ). The matrix C
is obtained by

min
C

K∑
j=1

‖xj − Cψ(xj)‖22. (2.29)

The equations ( 2.28 ) and ( 2.29 ) are linear least squares problem and can be solved using
linear algebra techniques. The main reason to use linear predictor is that their concepts
are mature and well understood. It is fast to compute such predictors and can be rapidly
deployed in applications [ 23 ].

Remark 2.1. The solution to ( 2.29 ) is easy if the set of lifting functions ψ1, . . . , ψN comprises the
state observable, i.e., ψi(x) = xi for all i ∈ {1, . . . , n} after every conceivable reordering. In this
situation, the answer to ( 2.29 ) is C = [I, 0], where I is the n-dimensional identity matrix [ 23 ].
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2 Theoretical Background

2.6.2 Predictor Construction

The predictor of type ( 2.8 ) can be constructed by using the measured data. Let us assume
a set of data of the form

X = [x1, . . . , xK ],

Y = [x+
1 , . . . , x

+
K ],

U = [u1, . . . , uK ]

(2.30)

where K is the number of trajectory, each xi is the collection of states until simulation
length Nsims, f being the dynamics discretized with sampling period Ts statisfying x+

i =
f(xi, ui). (xi, x

+
i ) is a pair of consecutive state measurements generated by continuous

time dynamics with the control input ui maintained constant throughout the sampling pe-
riod Ts. The data can be from the real system or artificially collected from a model [ 23 ].

The matrices A ∈ RN×N and B ∈ RN×m of the predictor ( 2.8 ) are obtained from the
solution to the minimization problem

min
A,B
‖Ylift −AXlift −BU)‖F . (2.31)

where ‖.‖F is the Frobenius norm of a matrix and

Xlift = [ψ(x1), . . . ,ψ(xK)],

Ylift = [ψ(x+
1 ), . . . ,ψ(x+

K)]
(2.32)

with

ψ(x) :=


ψ1(x)

...

ψN (x)

 , (2.33)

is the vector of lifting functions. The matrix C ∈ Rn×N is obtained as

min
C
‖X− CXlift‖F . (2.34)

The analytical solution to ( 2.31 ) is given by

[A,B] = Ylift[Xlift,U]† (2.35)

where † denotes the Moore-Penrose pseudoinverse of a matrix. The analytical solution to
( 2.34 ) is given by

C = XX†lift (2.36)

For the practical considerations, the analytical solutions ( 2.35 ) and ( 2.36 ) are not the pre-
ferred way to generate A, B and C matrices. As explained in [  23 ], for larger datasets with
K � N , it is better to solve normal equation. The normal equations is given by

V =MG. (2.37)
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2.6 EDMD for controlled system

If we compare ( 2.35 ) to the normal form in ( 2.37 ), we get normal equations associated to it.
In ( 2.37 ) variable isM = [A,B] and data are

G =

Xlift

U

Xlift

U

T ,
V = Ylift

Xlift

U

T .
(2.38)

Hence the solution to (  2.37 ) is the solution to ( 2.35 ). The size of the matrix G is (N +
m)×(N+m) and V isN×(N+m). This shows that the sizes of matrix in normal equation
is independent of the number of samples K of the data set [ 23 ] [ 25 ].

2.6.3 The Choice of the Lifting functions

The accuracy and rate of convergence of  EDMD , like all spectral techniques, is deter-
mined by the choice of lifting functions which cover the subspace of observables. Some
common choice for the lifting functions are polynomials, fourier modes or radial basis
functions ( RBF ), but the best basis function relies on both the underlying dynamical sys-
tem and the sampling approach used to gather the data. In principle, any of these sets may
be a good fit as a lifting function, albeit infinite domains require some caution to guarantee
that any required inner products converge [ 38 ].

Due to the non-linear nature of the data, many different RBFs could be used. Among
different RBFs, thin plate splines are a particularly useful since they do not require the scal-
ing parameter like other RBFs such as Gaussians. The centers should also be determined
around which the RBFs are established. The common way of selecting those centers is to
use k-means clustering on the combined data set with a pre-specified value of k [ 38 ].

We know that X is matrix which a collection of trajectory of the state. Let C be  RBF s
centers which are either selected from the data itself or by any clustering methods. Then
the sum of squared difference between the data and centers is defined as rs i.e. rs =
sum((X −C)2). Let ε be the kernel width for Gaussian type RBFs and pk be polyharmonic
coefficient for polyharmonic RBFs. Then the different RBFs that can be used are given in
the table as
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Table 2.1: Different choices of RBFs.

Thin plate rs · log(
√
rs)

Gauss e−ε
2·rs

Inverse quadratic 1
1+e2·rs

Inverse multi quadratic 1√
1+e2·rs

Polyharmonic r
pk/2
s · log(

√
rs)

2.7 Model Predictive Control

Model Predictive Control ( MPC ), also called receding horizon control, is a one of the ef-
fective advanced control approach that is used to solve complex multivariable constrained
control issues. By minimizing an objective function, MPC uses the process model to derive
the control signal and generates the control sequence that minimizes the objective function
using a model to forecast the process output at future time instants (horizons) [ 11 ]. The
main idea behind MPC is to forecast the future behavior of the controlled system over a
specified time horizon and calculate an optimal control input that minimizes an a priori
established cost functional while assuring fulfilment of given system constraints. MPC
has been employed in a wide range of applications, such as control of planetary rovers [ 9 ],
Autonomous Ground Vehicles [ 29 ], smart agriculture [ 13 ], optimal discontinuous drug de-
livery [ 20 ], robot manipulator [  30 ], and Mobile Medical Robot [ 19 ]. Generally, out of two
types of MPC, linear and nonlinear, linear MPC solves a convex quadratic problem, allow-
ing for exceptionally quick control input assessment. However, nonlinear MPC addresses
a challenging non-convex optimization problem, needing significantly more processing
resources and/or depending solely on local solutions.

The process model’s output is anticipated in MPC at time instant t in the future. The
future control signals u(t + k|t) are used to forecast the output values y(t + k|t) based on
the previous input and output values t and the future control signals u(t + k|t). These
future control signals are calculated by maximizing particular criteria in relation to the
w(t + k) reference trajectory. The error computation between the projected output signal
and the predicted reference trajectory might be this criterion. The control signal u(t) is
given to process after the error computation and optimization, whereas the subsequent
control signals are discarded since the output value y(t + 1) is already known at the next
sampling moment. With the new value, the process continues, and all sequences are up
to date. To put it in another way, the model uses historical inputs and outputs, as well
as future inputs, to anticipate outputs. The future errors are calculated by comparing the
expected outputs to the reference trajectory. Future errors, as well as the cost function
and constraints, are taken as to an optimizer, which optimizes the control signals before
returning them to the model. With the new computed values, the cycle continues, and
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2.7 Model Predictive Control

all sequences are changed correspondingly. Figure (  2.6 ) depicts the MPC’s fundamental
structure. The prediction model, objective function, and finding the control law are the
three key aspects of the MPC method, which may be chosen individually depending on
the target issue to be addressed [ 11 ] [ 3 ].

Figure 2.6: Structure of MPC. Figure from author, adapted from [ 3 ].

Consider a system at time k which has a reference trajectory that must be followed for a
specified horizon p to see how MPC works. MPC uses the system’s current states as input
and generates simulation of various control inputs from time k to k + p. MPC chooses the
optimum set of inputs from a variety of options to minimize the cost function. MPC then
implements just one of these projected control inputs and restarts the cycle at time k + 1.
MPC is also known as receding horizon control because iterative cycles across the horizon
take one step at a time. The receding control for provided simulation is illustrated in figure
( 2.7 ) [ 3 ].
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2 Theoretical Background

Figure 2.7: Receding horizon of MPC. Figure from author, adapted from [ 3 ].

 MPC is a simple and straightforward formulation that is based on well-known ideas. It
handles constraints directly and makes explicit use of a model. It has well-understood tun-
ing parameters like prediction horizon and optimization problem setup. The development
time is significantly reduced compared to competing sophisticated control technologies. It
is easier to maintain, in the sense that altering the model or specifications does not neces-
sitate a total redesign, and may occasionally be done on the fly. In conclusion, MPC is a
multivariable control technique that incorporates the following elements [ 11 ]:

• a dynamic internal representation of the process

• a cost function J over the receding horizon

• Using the control input u, an optimization procedure is used to minimize the cost
function J .

2.7.1 Koopman MPC

The Koopman MPC is the lifting-based MPC for the nonlinear systems. Just like the lin-
ear MPC, it is based on convex quadratic programming, which allows for extraordinarily
quick evaluation of control inputs. The Koopman MPC controller is distinguished by the
predictor, which takes the form of a linear dynamical system evolving on an embedded
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2.7 Model Predictive Control

(or lifted) state space with a larger dimension than the original state space. This predictor
is valid worldwide (or in a significant subset of the state space) and fixed once and for all,
unlike traditional local linearization strategies [ 25 ].

The general form of the optimization problem of Koopman MPC, where the controller
solves at each time instance k of the closed-loop operation, is given by,

minimize
ui,zi

J((ui)
Np−1
i=0 , (zi)

Np
i=0)

subject to zi+1 = Azi +Bui, i = 0, . . . , Np − 1

Eizi + Fiui ≤ bi, i = 0, . . . , Np − 1

ENpzNp ≤ bNp ,
parameter z0 = ψ(xk),

(2.39)

where Np is the prediction horizon and J is the convex quadratic cost function given by
J((ui)

Np−1
i=0 , (zi)

Np
i=0) = zTNpQNpzNp + qTNpzNp +

∑Np−1
i=0 zTi Qizi + uTi Riui + qTi zi + rTi ui

where Qi ∈ RN×N and Ri ∈ Rm×m are positive semidefinite. State and input polyhe-
dral constraints are defined by the matrices Fi ∈ Rnc×m and Ei ∈ Rnc×N , and the vector
bi ∈ Rnc . The current state of the nonlinear dynamical system xk is used to parametrize
the optimization problem ( 2.39 ) [ 23 ].

A feedback controller

κ(xk) = u∗0(xk) (2.40)

is defined by this optimization problem. The optimal solution to problem ( 2.39 ) parametrized
by the present state xk is denoted by u∗0(xk). The predictions are initialized from the lifted
state ψ(xk) at each time step k. By adding these nonlinear functions among the lifting
functions φi, nonlinear functions of the initial state x can be penalized in the cost function
and included among the constraints [ 23 ].

The figure  2.8 depicts the overall design of Koopman MPC. The design consists of two
main parts: the MPC controller and the system. The system provides the state to the
controller, while the controller after minimizing the cost returns the optimal control to the
system. The MPC controller consists of the optimizer and the predictor. The optimizer
handles the minimization of cost function whereas the predictor generates the lifted state.
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Figure 2.8: Conceptual depiction of the Koopman MPC. Figure from author, adapted from
[ 25 ].

2.7.2 Nonlinear MPC to Koopman MPC

Let us assume a nonlinear MPC problem that solves the optimization problem at each time
step k of the closed-loop procedure is given by

minimize
ui,x̄i

lNp(xNp) +

Np−1∑
i=0

li(x̄i) + uTi R̄iui + r̄Ti ui

subject to x̄i+1 = f(x̄i, ui), i = 0, . . . , Np − 1

cxi(x̄i) + cTuiui ≤ 0, i = 0, . . . , Np − 1

cxNp(x̄Np) ≤ 0,

parameter x̄0 = xk,

(2.41)

where x is the true measured state, x̄ is the predicted state, the true nonlinear dynamics
x+ = f(x, u) is one of the constraints of ( 2.41 ) along with functions li and ci which can
be nonlinear too. The optimization problem ( 2.41 ) is normally a non-convex optimization
problem which is complex and extremely hard to solve [ 23 ].

Translating or transforming ( 2.39 ) into ( 2.41 ) means to find an approximation of the one
function to the other. The representation of a dynamical system into equivalent form of
the function as the lifted linear predictor is not the same as having a linear system (un-
less the dynamical system is linear). The first constraint of ( 2.41 ) is a dynamical sys-
tem that is translated by assuming the predictor of the form ( 2.7 ) with matrices A and
B. These data matrices A and B can be generated by following the steps outlined in
subsection ( 2.6.2 ). The initialization z0 = ψ(xk) can be done using the lifting mapping
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ψ = [ψ1, . . . , ψN ]T . Without loss of generality, we can assume that ψi(x) = li(x), i =
{0, . . . Np} and ψNp+i(x) = cxi(x), i = {0, . . . , Np}. Thus the remaining data is given by
Qi = 0, Ri = R̄i, r = r̄i, qi = [01×i, 01×N−1−i], Ei = [01×Np+i, 01×N−Np−1−i]Fi = cTui , bi = 0
where 0i×j is the matrix of zeros of size i × j. The constraint functions cxi and cui are
scalar-valued in this derivation; for vector-valued constraint functions, the technique is
analogous, with the lifting functions ψi equal to the individual components of the con-
straint functions cxi . Thus this canonical method always results in a linear cost function
( 2.39 ) [ 23 ].

2.7.3 Dense form MPC

The unique structure of MPC can be used by tailored algorithms to render computation
cost independent of the size of the embedding. The minimization in ( 2.39 ) should apply
to both ui’s and zi’s. However, because z0 and u0, . . ., uN−1 determine z0, . . ., zN via
zi+1 = Azi+Bui, the zi’s can be removed, resulting in the so-called dense version of MPC.
This removes the dependency on zi’s, and therefore on the dimension of the embedded
state z. The dense form MPC is given by

minimize
U∈RmNp

UTHUT + hTU + zT0 GH

subject to LU +Mz0 ≤ c
parameter z0 = ψ(xk).

(2.42)

The the data matrices of the problem ( 2.42 ) are,

H = R + BTQB, h = BTq + r, G = 2ATQB

L = F + EB, M = EA, cT = [bT , bT , . . . , bT ]
(2.43)

where

A =


I
A
A2

...
ANp

 , B =


0 0 . . . 0
B 0 . . . 0
AB B . . . 0

...
. . . . . .

ANp−1B . . . AB B

 ,
Q = INp+1 ⊗Q, R = INp ⊗R,

E = INp+1 ⊗ E, F =

[
INp ⊗ F

02(N+m)×mNp

]
,

F =

02N×m
Im
−Im

 , E =

 IN
−IN

02m×N

 , b =


zmax
−zmin
umax
−umin

 .

(2.44)
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for some positive-semidefinite matrix H ∈ RmNp×mNp , and for some matrices and vec-
tors, h ∈ RmNp , G ∈ RNp×mNp , L ∈ RncNp×mNp , and M ∈ RncNp×N . Before deploying
the controller, these matrices are fixed and precomputed offline. The optimization is per-
formed on the predicted control inputs vector U = [uT0 , u

T
1 , . . . , u

T
Np−1]. IN is the N-fold

block-diagonalization operator, with ⊗ representing the Kronecker product. This form is
especially well-suited for the active set solver qpOASES [ 15 ], as it allows for quick warm-
up. Since, Hessian H is independent of the size of the lift N , once the nonlinear mapping
z0 = ψ(xk) is generated, the cost of solving ( 2.42 ) is linear [ 23 ] [ 25 ].

The algorithmic summary of the lifting based MPC is given below.

Algorithm 1 Koopman MPC - closed-loop operation [ 23 ]

Require: Predictor (A,B), Cost matrices (Q,R), bounds (umax, umin, zmax, zmin).
1: for k = 0, 1 . . . do
2: Measure xk on the real system
3: Set z0 := ψ(xk)
4: Solve to get an optimal solution U∗ = (u∗0, . . . , u

∗
Np−1)

5: Set uk = U∗1:m

6: Apply uk := u∗0 to real system
7: end for

2.8 Pendulum dynamics

Consider the experimental setup of the inverted pendulum on a cart as shown in fig-
ure ( 2.9 ). This setup will be utilized on this study for Koopman MPC. A pendulum and a
moving cart are connected by a swivel, which allows the pendulum to freely rotate. The
cart wheels spin on a rail, and the entire system is powered by a DC motor. The displace-
ment of the cart and the angular rotation of the pendulum are available data from two
encoders. From the experimental set-up shown in figure ( 2.9 ), x represents the horizontal
displacement of the cart and θ represents the angle of the pendulum with respect to the
vertical axis. The dynamics of the system are described by a series of ordinary differential
equations derived from mass and energy balances. The cart mass and pendulum mass is
denoted asM andm respectively. The pendulum rod is considered to be massless, with the
entire pendulum mass concentrated at the center of the pendulum bob’s center of gravity.
The coefficient of friction on the wheels of the cart is denoted by µ [ 16 ].
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2.8 Pendulum dynamics

Figure 2.9: Inverted pendulum on a cart. Figure adapted from [ 16 ].

Figure 2.10: Force components of torque balance. Figure from author, adapted from [ 3 ].
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As explained in [ 31 ], in the x-direction, a force balance on the system can be defined as,

M
d2x

dt2
+m

d2xG
dt2

= Gu (2.45)

where coordinates (xG, yG) are the time dependent center of gravity of the point mass
pendulum and G is Tension-Force Gain. The location of the pendulum mass’s center of
gravity is

xG = x+ lsin(θ), yG = lcos(θ) (2.46)

where l is the length of the pendulum. Substituting ( 2.46 ) in ( 2.45 ), we get,

(M +m)ẍ+ µẋ−mlθ̇2sin(θ) +mlθ̈cos(θ) = Gu (2.47)

From the free body diagram in figure ( 2.10 ), the force components of the torque balance
can be written as

(Fxcos(θ))l − (Fysin(θ))l = (mgsin(θ))l (2.48)

where Fx = m d2

dt2
xG and Fy = m d2

dt2
yG are the force components in x and y directions

respectively. Substituting these values in ( 2.48 ), we get,

mẍcos(θ) +mlθ̈ = mgsin(θ)) (2.49)

The inverted pendulum considered in this report can be described by two non-linear dif-
ferential equations ( 2.47 ) and ( 2.49 ). Using these equations, we can derive the system equa-
tions for the dynamics of cart position and pendulum angle as

ẍ =
Gu− µẋ−ml θ̈2 sin(θ)−mg cos(θ)sin(θ)

M +msin2(θ)
(2.50)

θ̈ =
(M +m) g sin(θ) + µ cos(θ) ẋ−ml θ̇2sin(θ) cos(θ)

l(M +m sin2(θ))
(2.51)

The nonlinear equations (  2.50 ) and (  2.51 ) must be represented in the standard state space
form for numerical simulation of the nonlinear model for the inverted pendulum-cart dy-
namic system:

dx

dt
= f(x, u, t). (2.52)

The state variables are given by

x1 = x, x2 = ẋ = ẋ3, x3 = θ, x4 = θ̇. (2.53)

The final state equation for the nonlinear inverted pendulum system is given by

dx

dt
=

d

dt


x1

x2

x3

x4

 =
d

dt


x

ẋ

θ

θ̇

 =


f1

f2

f3

f4

 (2.54)
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where
f1 = x2 (2.55)

f2 =
Gu− µẋ−ml θ̈2 sin(θ)−mg cos(θ)sin(θ)

M +msin2(θ)
(2.56)

f3 = x4 (2.57)

f4 =
(M +m) g sin(θ) + µ cos(θ) ẋ−ml θ̇2sin(θ) cos(θ)

l(M +m sin2(θ))
(2.58)

Finally, if the cart position x and the pendulum angle θ are variables of interest, then the
output equation can be written as

y = Cx or y =

x
θ

 = Cx =

1 0 0 0

0 0 1 0



x

ẋ

θ

θ̇

 (2.59)

The nonlinear inverted pendulum-cart dynamic system is completely represented in state
space by ( 2.54 ) and ( 2.59 ) [ 31 ].
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3 Landing a Spaceship with Koopman
Operator Theory and Model Predictive
Control

This section will mainly focus on the implementation of Koopman  MPC in pendulum
system. For the spaceship dynamics, only the specifics of how this implementation can be
performed will be discussed.

3.1 Evaluation metric

The evaluation metric considered for the model evaluation are Root Mean Square Error
( RMSE ) and Relative Root Mean Square Error ( rRMSE ) are given by

RMSE =

√√√√∑k ||xpred(kTs)− xtrue(kTs)||2
N

(3.1)

rRMSE = 100 ·

√∑
k

||xpred(kTs)− xtrue(kTs)||22√∑
k

||xtrue(kTs)||22
. (3.2)

3.2 Data Preparation

In the experimental-setup, an inverted pendulum on a cart was considered as explained
in section (  2.8 ). For the task of controlling inverted pendulum on a cart, various parameters
related to the pendulum are adjusted. Since the pendulum is a point mass, the mass of the
bar was neglected as the center of gravity of the pendulum is concentrated on the bob.
Table ( 3.1 ) lists the values of the parameters (selection of parameters adapted from [ 16 ]).
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Table 3.1: Parameters of the inverted pendulum on a cart.

Parameters Value Units
m Pendulum Mass 1.12 [kg]
M Cart Mass 0.0905 [kg]
g Acceleration due to gravity 9.81 [ms · s−2]
G Tension-Force Gain 0.365 [·]
l Pendulum length 6.65 [m]
µ Cart Friction 7.5 [·]

The numerical integration of 20 trajectories were used in this experiment, with the as-
sumption that all state variables associated with the system were available. The pendulum
dynamics with 20 random initial points was supplied to the ode45(), a MATLAB builtin
function, to handle the numerical integration of the state vector. This MATLAB function
uses a 4th order Runge-Kutta to integrate the differential equations specified. For the sim-
ulation and experiment, each trajectory was sampled at a constant ∆twhich was chosen as
0.01 and 1000 simulations for each trajectory were generated. For control units, a sine wave
in the range [-1,1] was chosen in this study. Figure ( 3.2 ) shows discrete time evolution of
some trajectories with their respective control inputs at figure ( 3.3 ).
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Figure 3.2: A trajectory of the states [x,ẋ, θ, θ̇]T

Figure 3.3: A trajectory of sinusoidal control input u.

3.3 Model Setup

To set up the model, data collection was performed. The pendulum dynamics was dis-
cretized and 20 trajectories were simulated over 1000 sampling each collected at equal
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interval of 0.01 seconds. The trajectories were started from stable initial condition [0, 0, φ,
0] and were excited by using sinusoidal signal at various frequencies and amplitudes, i.e.,


x0

ẋ0

θ0

θ̇0

 =


0
0
π
0

 , u = Au · sin(ωt+ φ) (3.3)

where the parameters of the control signals are given by Au ∈ (0.1, 1), ω ∈ (π, 3π) and
φ ∈ (0, 2π). These parameters were chosen to ensure that the cart movement does not
exceed the track restrictions (selection of initial values adapted from [ 16 ]). This led to
snapshot of data arranged in snapshot matrices as presented in ( 2.30 ) as

X = [x1, . . . , x20], Y = [x+
1 , . . . , x

+
20], U = [u1, . . . , u20] (3.4)

where the next state from the current state was evolved according to the pendulum dy-
namics. The data collection of pendulum on cart resulted in dimension of X and Y as
4× 4 · 105 where n = 4 is the number of states and m = 1 is the number of inputs. Similarly,
the dimension of U is 1× 4 · 105.

3.3.1 Lifting of snapshot matrices

After the data collection was completed, the snapshot matrices should be lifted to gener-
ate the Koopman predictors. The choice of embedding or the lifting function was discussed
in section ( 3.3.2 ). 100 RBFs centers were randomly chosen from the snapshot matrices.
When the lifting function was applied, the original state was prepended to the result of
lifting to preserve the information about the original state. Thus, after lifting, the dimen-
sion of Xlift and Ylift obtained were 104× 4 · 105, where N = 104 is the dimension of lifted
space. As outlined in subsection  2.6.2 , the regression was performed to obtain the matrices
A,B and C by solving the normal equation ( 2.37 ). The resultant matrices after regression
A, B and C have dimension 104× 104, 104× 1 and 4× 104 respectively.

3.3.2 Choosing lifting function

This step involves selecting lifting functions φ. RBFs were chosen as the lifting function
as it works well with the nonlinear data. There are several choices of RBFs as shown in
table (  2.1 ). All the different types of lifting functions were applied to the ( 3.4 ). A free run
of trajectories from a random initial condition with the identical square wave forcing was
performed for 6 seconds to compare true dynamics with Koopman predictions. The plots
obtained is shown below.
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(a) x (b) θ

Figure 3.4: Thinplate RBFs lifting on pendulum position and angle.

(a) x (b) θ

Figure 3.5: Gaussian RBFs lifting on pendulum position and angle.

(a) x (b) θ

Figure 3.6: Inverse quadratic RBFs lifting on pendulum position and angle.
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(a) x (b) θ

Figure 3.7: Inverse multiquadratic RBFs lifting on pendulum position and angle.

(a) x (b) θ

Figure 3.8: Polyharmonic RBFs lifting on pendulum position and angle.

The comparison between the different choices of RBFs for 100 randomly sampled initial
conditions with the same square wave forcing as input was performed. In order to com-
pare the true and predicted values,  RMSE was calculated for each of the different lifting
functions.

Table 3.2: Average RMSE of position and angle for different embeddings.

RMSE
RBFs position (x) angle(θ)

Thinplate 1.13 × 103 161.25
Gaussian 7.65 × 103 395.6

Inverse quadratic 0.79 0.023
Inverse multiquadratic 2.46 0.04

Polyharmonic 4.7 0.03
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From the table ( 3.2 ), it can be inferred that Inverse quadratic RBFs have less  RMSE for
both position and angle compared to other RBFs. Thinplate RBFs and Gaussian are not
well suited for embedding the states.

Table ( 3.3 ) shows the lifting predictor’s prediction accuracy in terms of average  rRMSE 

error as a function of lift dimension N ; we see that, as expected, the prediction error de-
creases with increasing N , though not in a linear fashion. The rRMSE was taken for the
free run of the true and predicted state for 3 seconds of simulation.

Table 3.3: Average rRMSE of Koopman predictor and N, for 100 random initial points.

N 5 10 25 50 75 100
Average rRMSE 64.3 61.4 61.6 60.8 60.6 57.3

3.4 Experimental Setup

The Dense form Koopman  MPC as explained in ( 2.42 ) was implemented with the model
parameters summarized in Table ( 3.4 ). The data matrices in (  2.42 ) were built from the val-
ues A, B, C obtained from lifting and applying regression on the lifted snapshot matrices.
getMPCPend() function was called with the parameters A, B, C, Q, R, Np, umin, umax,
zmin and zmax. The prediction horizon was set to one second, which results in Np = 100.
The control input was constrained to [umin, umax] = [-1,1] while the lifted state was con-
strained to [zmin, zmax] = [-0.8,0.8]. The constraints for the z was obtained from trail and
error, since the constraint for x is in lifted space. The function returned a controller which
was utilized later in the simulation loop. A tuple (xcurr, yr) was passed to the controller,
where xcurr is the current state and yr is the reference to be tracked. The control objective
is to track the cart position and pendulum angle. The value Q penalizes the state while
the value R penalizes the control input. R was chosen to be 0.01 so that we can actuate it
aggressively. The cost function to minimize is given by

J = (yNp − yrNp)TQNp(yN − yrN ) +
N−1∑
i=0

[(yi − yri)T Q (yi − yri) + uTi R ui] (3.5)

where after minimization, we got the control law ukoop that we applied to the system to get
the next state. For the Dense form Koopman  MPC , the data matrices A, B, Q , R , E and F
should be computed as shown in ( 2.44 ). Following the computation of the controller, the
simulation was performed with the current state being lifted and passed along with the
reference to the controller at each time step. At every loop of the simulation, the Koopman
control was obtained ukoop, which was then applied to the system.
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3.5 Open-loop control

Table 3.4: Different parameters for performing Koopman MPC.

n 4
m 1
N 100

Nsims 1000
Tmax 10
Q 120
R 0.01
Np 100

As we know,  MPC is a technique in which a predictive system model is used to evaluate
a sequence of future control inputs; an optimization algorithm selects the best of all such
control input sequences. The first input of the sequence is usually implemented. The
process is repeated after a specific period of time to find a fresh control input. This is
simple when the predictive model is deterministic. When the predictive model is uncertain
(e.g., stochastic or adversarial), open-loop MPC and closed-loop MPC are frequently used.
Similarly, in our case the optimal control, i.e. the first u value from the list of controls was
selected.

3.5 Open-loop control

It is important to see how far the Koopman system can predict if no information other
than the initial state is given. For open-loop Koopman  MPC simulation, the system starts
from an initial point, but it is not re-initialized, i.e. no feedback of the true system goes back
to the surrogate Koopman model. The results and evaluation of the open-loop control are
presented in this section.

3.5.1 Experimental Results

The open-loop control experiment was set up and the results from the experiments are
presented below. Figures ( 3.9 ) and ( 3.10 ) shows the resultant trajectories for position (x)
and pendulum angle (θ) where figure ( 3.11 ) is the control law obtained from the Koopman
controller. Only a single, fixed sequence of future control inputs were considered in open-
loop MPC; this sequence must produce good performance under all plausible realizations
of the uncertainty.
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Figure 3.9: Comparing trajectory of cart positions obtained from Koopman MPC and arbi-
trary reference trajectory in open-loop, with prediction horizon of 1 second, Np

= 100..

Figure 3.10: Comparing trajectory of pendulum angle obtained from Koopman MPC and
arbitrary reference trajectory in open-loop, with prediction horizon of 1 sec-
ond, Np = 100..
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Figure 3.11: Control obtained from Koopman MPC for arbitrary reference in open-loop.

From the figures ( 3.9 ) and ( 3.10 ), we can observe that the open-loop prediction for both
position and angle of pendulum is not accurate after certain time steps. This is evident
clearly on figure ( 3.9 ), where after 6.5 seconds the trajectory is just an oscillation whose
amplitude is higher than that of the reference trajectory. It is because the model does not
have enough information of the true state other than the initial points.

3.5.2 Model Evaluation

In this subsection, we compare the Koopman  MPC with Original  MPC for step and sinu-
soidal reference in open-loop control. The term ”Original system MPC” refers to nonlinear
MPC in this context.

Figure 3.12: Trajectories for step reference (red), Koopman MPC (blue) and Original system
MPC (green) for cart position, with prediction Horizon of 1 second, Np = 100.
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(a) u for Koopman MPC (b) u for Original system MPC

Figure 3.13: Control obtained from Original system MPC and Koopman MPC for step ref-
erence.

From the figures ( 3.13 (a)) and ( 3.13 (b)), we can observe that the control law in the
Original system MPC in ( 3.13 (b)) is similar to ( 3.13 (a)). The control rule is more similar
in the early time step, up to 3 seconds, than in the latter time step. We can observe that
the original control is more detailed than the Koopman MPC control in the subsequent
time step, starting at 3.5 seconds. This is reflected in the figure ( 3.12 ), where the Original
system MPC better approximates in the later time step. When the sudden change happens
in amplitude of reference at 2.5 seconds from -0.3 to 0.3, clearly both methods try to slowly
approximate the reference. The original MPC reaches the reference at approximately 2.75
seconds, whereas the Koopman MPC overshoots and parallels the reference.

Figure 3.14: Trajectories for sinusoidal reference (red), Koopman MPC (blue) and Original
system MPC (green) for cart position, with prediction horizon of 1 second, Np

= 100.

36



3.5 Open-loop control

(a) u for Koopman MPC (b) u for Original system MPC

Figure 3.15: Control obtained from Original system MPC and Koopman MPC for sinu-
soidal reference.

If we compare the trajectories of both MPCs in figure ( 3.14 ) with their corresponding
control reflected in figure ( 3.15 ), we can observe that from time step 2 seconds to 3 sec-
onds, Koopman MPC is less accurate than Original MPC. The control strategy for Original
MPC is more detailed than that of Koopman MPC in that time frame. On later time frame
after 4.5 seconds, Koopman MPC is superficial as it aggressively applies the control while
Original is detailed and precise. This control is reflected in the resultant trajectory, which
is more accurate for Original MPC than Koopman MPC.

Table 3.5: Simulation time comparison Koopman MPC and Original MPC.

Time elapsed (s)
Reference KMPC Original MPC

step 0.69 560.231
sinusoidal 0.54 516.136

From table ( 3.5 ), it is clear that the Original MPC takes more time to compute than that
of  KMPC . This result is obvious as Original MPC uses nonlinear programming solver
(fmincon) to get the control value u, while in case of KPMC, it is data driven and the
data matrices are precomputed and used only when the MPC simulation runs. We can
observe from figure ( 3.13 ) and ( 3.15 ) that the control strategy applied for the nonlinear and
Koopman MPC follows the similar trajectory.
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Table 3.6: RMSE and RRMSE errors for Koopman MPC and Original MPC.

Step Reference
RMSE RRMSE

KMPC 0.166 55.46%
Original MPC 0.147 49.19%

Table 3.7: RMSE and RRMSE errors for Koopman MPC and Original MPC.

Sinusoidal Reference
RMSE RRMSE

KMPC 0.171 24.22%
Original MPC 0.088 12.48%

However, from tables ( 3.6 ) and ( 3.7 ), it is clear that Original MPC performs better than
Koopman MPC. It is evident from the plots shown in figure (  3.14 ) and ( 3.12 ) that Original
MPC better approximates the reference trajectory. But for the real time systems, Koop-
man MPC would be applicable as it gives similar trajectory as Original MPC with lower
computational complexity.

3.6 Closed-loop control

Closed-loop  MPC takes input into account for its recourse. This relates to the idea that
the controller will have more information available to it before making future decisions
than it does now. As a result, the controller must optimize control policies rather than
just inputs. In our simulation, after every second the state is re-initialized to the trajectory
points. The results and evaluation of the closed-loop control are presented in this section.

3.6.1 Experimental Results

The closed-loop control experiment was set up in the same way as the open-loop control
experiment. Figures ( 3.16 ) and ( 3.17 ) shows the resultant trajectories for position (x) and
pendulum angle (θ) where figure ( 3.18 ) is the control law obtained from the Koopman
controller.
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Figure 3.16: Comparing cart positions obtained from Koopman MPC and arbitrary refer-
ence trajectory in closed-loop with prediction horizon of 1 second, Np = 100.

Figure 3.17: Comparing pendulum angle obtained from Koopman MPC and arbitrary ref-
erence trajectory in closed-loop with prediction horizon of 1 second, Np = 100.
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Figure 3.18: Control obtained from Koopman MPC for arbitrary reference in closed-loop.

From the figure (  3.16 ) and ( 3.17 ), we can observe that the close-loop prediction for both
position and angle of pendulum better approximates the reference trajectory. The approx-
imation is accurate even for the later time steps. It is because the model now has the
information of the true state at every 1 second. Due to this re-initialization, the predicted
trajectory follows the true one closely and accurately.

3.6.2 Model Evaluation

In this subsection, we compare the Koopman  MPC with Original  MPC for step and
sinusoidal reference in closed-loop control.

Figure 3.19: Trajectories for step reference (red), Koopman MPC (blue) and Original system
MPC (green) for cart position in closed-loop with prediction horizon of 0.1
second, Np = 10.
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(a) u for Koopman MPC (b) u for Original system MPC

Figure 3.20: Control obtained from Original system MPC and Koopman MPC for step ref-
erence.

For this evaluation, we considered closed-loop scenario where the both Original as well
as Koopman MPC were initialized to original trajectory state at every 1 second. For step
reference, we can observe that the control is similar for both. However, for Koopman MPC,
the control is more aggressive than Original system control. In addition, the trajectory for
Koopman MPC deviates from the reference even if it is initialized to the reference state.

Figure 3.21: Trajectories for sinusoidal reference (red), Koopman MPC (blue) and Original
system MPC (green) for position in closed-loop with prediction horizon of 0.1
second, Np = 10.

For the sinusoidal reference, the re-initialization does not improve the result signifi-
cantly. This behavior could be due to a shorter prediction horizon for the Koopman MPC.
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(a) u for Koopman MPC (b) u for Original system MPC

Figure 3.22: Control obtained from Original system MPC and Koopman MPC for sinu-
soidal reference.

Similar to open-loop control, the Original MPC takes more time to compute than that of
 KMPC . We can observe from figure ( 3.20 ) and ( 3.22 ) that the control strategy applied for
the nonlinear and Koopman MPC follows the similar pattern. The control for the Original
system MPC is more detailed than the Koopman MPC, and hence it approximates the
reference better than KMPC.

Table 3.8: RMSE and RRMSE errors for Koopman MPC and Original MPC.
Step Reference

RMSE RRMSE
KMPC 0.165 55.3%

Original MPC 0.144 48.2%

Table 3.9: RMSE and RRMSE errors for Koopman MPC and Original MPC.
Sinusoidal Reference

RMSE RRMSE
KMPC 0.13 24.5%

Original MPC 0.08 14.17%

The tables ( 3.8 ) and ( 3.9 ) shows the error comparison between Original MPC and KMPC.
In this case as well, Original MPC performs better than that of KMPC. It is evident from
the plots shown in figure ( 3.21 ) and ( 3.19 ) that Original MPC better approximates the ref-
erence trajectory. The error obtained is similar to that of the open-loop control.

The Koopman MPC cannot precisely approach the reference trajectory, as evidenced by
both open- and closed-loop control. The weighing variables between the cost of the control
and the cost of how quickly the Koopman trajectory should reach the reference could be
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one of the reasons for the discrepancy (i.e. norm(u) vs norm(KMPC trajectory - reference
trajectory).

3.7 Koopman MPC for Spaceship dynamics

A flying spaceship is subjected to four forces: gravity, drag, lift, and thrust. Figure ( 3.23 )
depicts the force direction for a rocket moving uphill.

Figure 3.23: The direction of forces acting on a flying spaceship.

The basic mechanism of spaceship flight is based on high-speed gas ejection from the
combustion chamber. Irrespective to the size or shape of the spaceship, the general dy-
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namics of the spaceship follows Newtonian force. As a result of Newton’s third law, this
process generates force that lifts the rocket.

Let us define FT to be a force generated as a result of the thrust which is equal to the
product of rate of fuel consumption and its exhaust velocity. The thrust is directed along
the rocket’s longitudinal axis, through its center of gravity. The gravitational force of the
Earth is constantly acting on the rocket, directing it to the planet’s center. This force, also
known as the object’s weight, is proportional to the object’s mass and quadratic inverse
proportional to the distance from the planet’s center. The gravitation force acting on the
spaceship is given by

FG = G
mM

(Re + h)2
(3.6)

where G is the universal gravitational constant, m is the mass of the object on which the
force is acted upon, M is the mass of the Earth, Re is the radius of the Earth and h is the
height of the object from the Earth, also known as altitude.

Lift and drag forces are aerodynamic forces that are affected by the rocket’s size, shape,
and velocity. They are also influenced by the characteristics of the air in which the rocket
is traveling. The lift force is determined by the difference in air pressure and the angle of
flight. The drag force is perpendicular to the motion and is proportional to the contacting
surface area and velocity. The lift force is given by

FL =
1

2
ρv2SrefCL, ρ = ρ0e

−βh, h = r −Re (3.7)

and the drag force is given as

FD =
1

2
ρv2SrefCD, ρ = ρ0e

−βh, h = r −Re (3.8)

where ρ is the air density, Sref is the reference area, CD is the drag coefficient, CL is the
lift coefficient, ρ0 is the sea level density, β is the density scale, and h is the flight altitude.

The net force acting on the spaceship can be given by

Fnet = FT + FD − FG. (3.9)

For vertical motion, the sign of the drag force FD is determined by the rocket’s motion
and is equal to the opposite of the vertical velocity direction. Newton’s second law can be
used to calculate the acceleration of a rocket using the net force acting on it and is given by

F = ma (3.10)
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Let y = (rd, s)
T denote the position vector of the spaceship and v be its velocity, then from

acceleration, we can calculate the vertical velocity and position as

vt = v0 + a(y0, v0)∆t (3.11)

yt = y0 + vt∆t (3.12)

where y0 and v0 are initial position and velocity.

For landing of the spaceship, the acceleration acting on the spaceship can be calculated
as

a =
FT − FD − FG

m
. (3.13)

The velocity and position calculation for the spaceship can be performed similar to ( 3.11 )
and ( 3.12 ) as

vt+1 = vt + at∆t (3.14)

yt+1 = yt + vt+1∆t. (3.15)

Thus the objective function to minimize is given by

J =

Np∑
i=1

xTWx+ λu2 (3.16)

where the values of x and W are given as

x =

[
yr − y
vr − v

]
(3.17)

W =

[
0.1 0
0 1

]
. (3.18)

In the above equation, x represents the difference between the reference and current states,
yr represents the reference altitude, vr represents the reference velocity, W represents the
weight matrix, u represents the input, and λ represents the input coefficient [ 3 ].
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Figure 3.24: Geometry of the spaceship. Figure from author, adapted from [ 39 ].

The fuel-optimal spaceship landing problem is addressed in the study [  26 ] using both
aerodynamic forces and propulsion as control inputs in the system dynamics. This model
is more sophisticated than the model presented above. The aerodynamic lift and drag
forces (equivalently, the angle of attack) are considered control inputs in addition to the
thrust. The two-dimensional flight of a spaceship over a flat Earth is the subject of the
paper. As observed from the geometry ( 3.24 ), spaceship’s equations of motion can be
written as

ṙd = vsinγ

ṡ = vcosγ

v̇ =
−FT cos ε− FD

m
− sin γ

r2

γ̇ =
−FT sin ε+ FL

mv
− cos γ

r2v

ṁ =
−FT
Isp

(3.19)

where rd is defined as the radial distance from the center of the Earth to the spaceship, s
is the downrange, which together forms the position vector of the rocket (rd, s)

T , v is the
velocity of the spaceship, γ is the flight path angle, m is the mass of the spaceship, ε is the
thrust direction which is defined as the angle between the thrust vector and the negative
velocity vector, and Isp is the specific impulse of the spaceship engine.
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The variable of controls, the angle of attack α, thrust FT , and thrust direction ε in space-
ship vertical landing may be constrained by their lower and higher bounds, i.e.,

αmin ≤ α ≤ αmax
FTmin ≤ FT ≤ FTmax

εmin ≤ ε ≤ εmax.
(3.20)

As shown in ( 3.20 ), the initial and terminal conditions are contained in boundary con-
straints. Terminal constraints should address landing velocity, attitude, and fuel consump-
tion in order to assure the spaceship’s safe landing [ 37 ].

x0 = [rd(t0), s(t0), v(t0), γ(t0),m(t0)]T

xf = [rd(tf ), s(tf ), v(tf ), γ(tf ),m(tf )]T
(3.21)

vf ≤ vsafe, γf = 900, ‖αf‖ ≤ αsafe, mf ≤ mdry (3.22)

where vsafe is the maximum landing speed, αsafe is the maximum landing angle of attack
and mdry is the structural mass of the spaceship.

Finally, the optimization goal is to reduce the cost of fuel or, in other words, to increase
the final mass. As a result, we have the following objective function for a minimization
issue [ 26 ].

J = −m(tf ) (3.23)
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The final optimization problem is given as

min −m(tf )

s.t ṙd = vsinγ

ṡ = vcosγ

v̇ =
−FT cos ε− FD

m
− sin γ

r2

γ̇ =
−FT sin ε+ FL

mv
− cos γ

r2v

ṁ =
−FT
Isp

αmin ≤ α ≤ αmax
FTmin ≤ FT ≤ FTmax

εmin ≤ ε ≤ εmax
x0 = [rd(t0), s(t0), v(t0), γ(t0),m(t0)]T

xf = [rd(tf ), s(tf ), v(tf ), γ(tf ),m(tf )]T

vf ≤ vsafe
γf = 900

‖αf‖ ≤ αsafe
mf ≤ mdry

(3.24)

The main ideas for applying the  MPC in this case can be summarized below [ 11 ] [ 39 ]:

• Space Dynamics Model: To create control signals, the controller uses a simplified
model of the system to regulate a space launcher. The model should be defined as
per task on hand. It can also be a simple model with no aerodynamic force involved.
This model is used in the data collection phase.

• Controller Design: The controller must be created as per the methods outlined in
subsections  2.6.2 and  2.7.3 . The lifting of the data collected from the model should be
performed as per subsection  2.6.2 , while the dense Koopman MPC should be created
as per subsection  2.7.3 . The final controller function should take in the reference and
lifted state as input, and produce control signals.

• Cost function minimization: The controller must minimize the result of a predeter-
mined cost function that determines how effectively it operates. The cost function
will be connected to the use of rocket fuel.

• Adhere to a set of constraints: For the control of the system, it is important to note
that it should not leave a viable operating zone. For example, the spaceship cannot
land on a negative altitude, and the thrust provided must be within the capabilities
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of the vehicle’s engine. The limitations might additionally include the launcher’s
beginning and intended ending positions and speeds, which must fall within the
practical range.

• Receding horizon strategy: One of the variables to set before running the  MPC is
the horizon time. It specifies the starting point for calculating the control action. It
is termed a receding horizon because it never reaches the present time, but is always
in the future. This can cause some issues while attempting to land a launcher.

After applying the implementation of the code for the pendulum dynamics to the data of
spaceship dynamics, first of all, the N dimensional lifted states would be generated from
the data trajectory. Appropriate lifting functions would be applied to the system. These
lifted states would then be utilized to generate data matrices A, B and C. These data
matrices, as well as the hyper-parameters Q and R , would be used to develop an MPC-
based controller. For the initialization of controller, the constraints relating to spaceship
dynamics outlined in ( 3.20 ) ( 3.21 ) ( 3.22 ) would be applied to the system. The landing
reference trajectory should be built using the following information: the final state (0,0)
position, 0 velocities, and an orientation of π/2. With this, we can obtain ukoop, which
determines the spaceship’s control strategy after applying MPC. The reference trajectory
would then be compared to the Koopman MPC trajectory to assess how well the Koopman
MPC performed.

49



4 Conclusions

4.1 Summary

The Koopman operator was used to design a Model Predictive Control paradigm for
nonlinear systems in this study. The underlying concept is to incorporate nonlinear dy-
namics in a higher-dimensional environment where their evolution is roughly linearly
predictable. The predictors developed in this manner outperform conventional linear pre-
dictors (e.g., local linearization [ 23 ] ) and is easily used for feedback control with MPC in
a purely convex manner. In this study, the Koopman-based predictors were generated for
controlling a pendulum on a cart.

While the Koopman operator framework is gaining popularity in the control world,
there are still areas of study and issues that have yet to be addressed. As mentioned
in [  27 ], there are a few outstanding questions in the context of the Koopman operator
paradigm applied to control theory. One of the main challenges is dealing with the infinite-
dimensional nature of the operator and the inherent approximations of numerical tech-
niques, which is a cost of developing linear methods for nonlinear systems.

4.2 Discussion

The experimental results show that the results from the dense Koompan MPC are sim-
ilar to the nonlinear MPC, and in terms of time complexity, Koopman MPC is superior
to the nonlinear MPC. The computational complexity of dense form MPC is independent
of the number of states and only depends on the number of control inputs. Both open-
and closed-loop control show that the Koopman MPC cannot exactly reach the reference
trajectory. One of the explanations for the mismatch could be the weighing variables be-
tween the cost of the control and the cost of how quickly the Koopman trajectory should
approach the reference. To achieve better outcomes, the hyperparameters should also be
tuned appropriately.

Importantly, the entire control design approach is based on data, with only input–output
measurements being required. The choice of the lifting functions and number of lifting
parameters played a vital role in the control of the pendulum cart system. From the exper-
imental results, inverse quadratic-based lifting functions were more suited for the task.
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4.3 Outlook

4.3 Outlook

The MPC based on Koopman’s theory was thoroughly investigated and applied to a non-
linear dynamical system, and the future directions to take for improvement of the study
can be outlined below.

• Implementation of control of spaceship dynamics: Koopman operator theory and
Koopman-based MPC can both be used to control a spaceship using similar princi-
ples. This study has only outlined the problem statement and cost function related to
space dynamics control; therefore, implementation of this technique should be done
as part of future research.

• Investigation and use of different constraints: Several relevant constraints can be
investigated and implemented in the Koopman MPC. In our implementation, we
used constraints on input and lifted state. However, several other constraints should
be investigated and applied to the system.

• Investigate Lifting functions: The use of lifting functions is one of the most impor-
tant aspects of Koopman MPC. The accuracy of the algorithm is strongly reliant on
the availability of a collection of basis functions that can reflect the underlying sys-
tem’s nonlinear dynamics. RBFs were used in our research, but different embedding
functions should be investigated and applied to the system. In the domain of control
of the inverted pendulum on cart, trigonometric embedding can be explored [ 16 ].

• Use of Koopman eigenfunctions: One of the shortcomings of the DMD-type meth-
ods is that it is based on linear measurements and does not span a Koopman in-
variant subspace for many nonlinear systems. Koopman eigenfunctions provide a
systematic linear embedding of nonlinear dynamics that results in an intrinsic coor-
dinate system that can be closed using the Koopman operator. The eigenfunctions of
the Koopman operators can also be generated for prediction and control as discussed
in [ 24 ]. These eigenfunctions are optimization-based and no dictionary selection is
required for them. This approach exploits the richness of the Koopman operator’s
spectrum to construct a collection of eigenfunctions such that the state is within the
span of these characteristic functions, so is linearly predictable. A new algorithm
is proposed to construct these Koopman eigenfunctions from the data. Then, these
predictors are readily applied to an MPC framework for control. As part of future
work, such an approach should be investigated and applied to implementation.
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