Department of Informatics

Technische Universitit Miinchen

Bachelor’s Thesis in Informatics

Scalable Manifold Learning through
Landmark Diffusion

Veselina Vazova

Department of Informatics

Technische Universitit Miinchen

Bachelor’s Thesis in Informatics

Scalable Manifold Learning through Landmark
Diffusion

Skalierbares Lernen von Mannigfaltigkeiten durch
Diffusion auf Untermengen

Author: Veselina Vazova
Examiner: Prof. Dr. Christian Mendl
Assistant advisor: Dr. Felix Dietrich
Submission Date: October 15th, 2021

I hereby declare that this thesis is entirely the result of my own work except where other-
wise indicated. I have only used the resources given in the list of references.

October 15th, 2021 Veselina Vazova

Abstract

Manifold learning by spectral embedding is a technique that can be used for non-linear
dimensionality reduction and clustering. By extracting the spectral properties of high di-
mensional data, the intrinsic manifold where data is presumably located on, can be em-
bedded into a lower dimension.

A newly proposed algorithm in the field of spectral embedding that has the goal of pro-
viding a scalable and robust approach to dimensionality reduction is Roseland by Chao
Shen and Hau-Tieng Wu. The algorithm requires two sets: the data set and the landmark
set and returns an embedding of the data set in a desired lower dimension. To achieve
this, a landmark-set affinity matrix is computed that represents the affinities between the
points in the data set and the points in the landmark set. This matrix is then normalized,
and the singular value decomposition of the normalized matrix is evaluated. Using the
singular vectors and the singular values, the Roseland embedding for a given diffusion
time is finally computed.

At its core, the algorithm is similar to the Diffusion Maps algorithm, whereas the main
differences lie in the affinity matrix and the algorithm for spectral decomposition. In Dif-
fusion Maps, the affinities between the data points themselves are calculated, without first
"detouring” through a landmark set. Instead of the singular value decomposition, the
eigendecomposition is performed. If the number of landmarks is significantly smaller
than the data set, Roseland fits the data set faster than Diffusion Maps.

In this thesis, we describe an efficient implementation of the Roseland algorithm in the
datafold package. We consider different approaches to constructing the landmark set
when it is not provided, and we compare the results. Finally, we evaluate the efficiency of
the novel algorithm by comparing it to the performance of Diffusion Maps.

Vii

Contents

Abstract
1 Introduction
2 State of the art

2.1 Dimensionality reduction oo Lo
211 PCA .
212 Isomap
22 DiffusionMaps
23 Datafold
24 Roseland algorithm o oo o
Scalable manifold learning through landmark diffusion
3.1 TheRoseland algorithm o0 L.
311 Inputandoutput
312 Normalization. L
313 Fitting
314 Embedding
315 Nystrémextension
3.1.6 Computational complexity
32 Thelandmarkset L
321 Acquiring the landmarkset L.
322 Choosingthesize Lo oo
3.3 Implementation
34 Evaluationand Test
341 Unittesting
342 Out-of-sampleembedding
343 ACCUIACY v it
344 Scalability
345 RobustnesstoNoise
Conclusions
41 Summary
42 Discussion

43 OQutlook

41
41
41
42

ix

Contents

Bibliography

43

1 Introduction

Big data poses a challenge not only from the perspective of the large number of examples
there are in a data set, but also in that each data point contained in the set may have a big
number of features. In most situations, however, not all of those features are relevant when
performing a standard machine learning algorithm. In some cases, they might even lead to
misleading results. The number of features corresponds to the dimensionality of the data.
Naturally, the more dimensions there are, the more inefficient it is to process the data sets
in terms of runtime speed. Consequently, there are efforts in reducing the dimensionality.
Some of them, e.g., the Principal Component Analysis take a linear approach. However,
linear approaches assume that data lies on a linear subspace, which is a major drawback
for the embedding of some data sets. In contrast, non-linear approaches can correctly re-
duce the number of dimensions of data that has more complex intrinsic geometry [23].
Manifold learning lands in the latter category, as it assumes that data is sampled from a
manifold with a low intrinsic dimensionality that is embedded into a higher dimensional
space. A d-dimensional manifold is a set that is locally homeomorphic to a d-dimensional
Euclidean space. Manifold algorithms often additionally assume that the manifolds in
question have a certain degree of smoothness [5], or metric structures like Riemannian
metric tensors. Diffusion Maps is an algorithm based on manifold learning. The idea be-
hind it is to compute the similarities (also called affinities) between data points and by
using those similarities to diffuse over the data set in an effort to unravel the connectivity
of the whole manifold. To do so, it needs to compute a Markov matrix using the affini-
ties and to extract the spectral properties, namely eigenvalues and eigenvectors, of this
transition matrix. By using a subset of these properties, we can then compute the coordi-
nates of the manifold in a lower dimension. With a proper normalization of the similarity
matrix, Diffusion Maps can successfully approximate the Laplace-Beltrami operator inde-
pendently from the density of the data points and hence, provide a geometrically accurate
unfolding of the manifold.

However, there are several issues associated with the algorithm, one of them being scala-
bility. In its standard formulation, Diffusion Maps has a cubic complexity. Therefore, ordi-
nary computers struggle with running the algorithm when the size of the data set grows.
A newly proposed algorithm called Roseland [21, 20, 17] aims to improve the scalability
by using a landmark set. The algorithm is closely related to Diffusion Maps: it provides
a spectral embedding of the data by using a diffusion process [20]. The scalability is im-
proved because the similarity matrix contains the affinities between the data points and
the landmarks. Since per definition the number of landmarks is smaller than the size of
the data set, the similarity matrix in Roseland has much fewer elements than the one in

1 Introduction

Diffusion Maps. It is computationally more efficient to extract the spectral properties of
this thin matrix, and since this is the step that dominates the overall complexity in both
algorithms, the runtime of Roseland is lower. There are some drawbacks associated with
Roseland. Diffusion Maps yields more accurate approximations of both the eigenvector
and eigenvalues than Roseland for all landmark set sizes [21], even if the landmark set is
the same as the data set. Another area where Diffusion Maps performs better than Rose-
land is when handling non-uniformly distributed data sets. In Diffusion Maps, the im-
pacts of the non-uniform data sampling can be removed by an additional normalization
with the term o, and approximations of the Laplace-Beltrami operator can be obtained
[7]. In contrast, Roseland can work around non-uniformly distributed data by designing
the landmark set, such that py (z) o % [20]. Here, p stands for the probability density

function, X the data set and Y the landmark set. This is not as straightforward as the nor-
malization with ¢, and additionally, requires knowledge about the density of the data set.
The goal of this thesis is to implement Roseland in the datafold package [16] and evaluate
its performance in terms of scalability and robustness in comparison to Diffusion Maps.
The Python package datafold is a machine learning package that already contains an im-
plementation of Diffusion Maps.

For the implementation, we consider how to acquire the landmark set when it is not pro-
vided by the user. Our approach is to subsample v - n landmarks from the data set, where
n represents the number of data points and y € (0, 1] is a factor controlled by the user. We
choose 0.25 as the default value since we aim at a number of landmarks that is relatively
small but still big enough to ensure good convergence of the kernel matrix to the Laplace-
Beltrami operator. We observe that when the data set size grows, the landmark set can
have a smaller relative size.

Our implementation of Roseland has an implicit cubic complexity because it designs the
landmark set as a subset of the data set (an exception is when the landmarks are provided
when creating the Roseland instance). In this sense, the complexity of Diffusion Maps is
not improved, unless the size of the landmark set is fixed. In that case, Roseland has a
linear computational complexity with respect to the number of data points. Even if we
do not fix the size of the landmark set, Roseland still has a lower runtime than Diffusion
Maps because of the smaller affinity matrix. For this to hold, however, the landmark set
size has to be below a certain threshold in relation to the data set size. We observe that
when the amount of landmarks is equal to or more than 70% of the number of data points,
the runtime of Roseland approaches and surpasses the one of Diffusion Maps. In such
cases, there is no advantage to use Roseland.

We additionally compare Roseland and Diffusion Maps in terms of robustness to noise.
When we use a Gaussian kernel to compute the affinities in Diffusion Maps, Roseland
yields less noisy results than Diffusion Maps in a visual comparison. If we switch the
Gaussian kernel with a Continous k-Nearest Neighbour kernel, Roseland handles noise
better if the landmark set is not noisy. Otherwise, the results are comparable in terms of
how noisy they are.

2 State of the art

In this chapter, we give an overview of popular dimensionality reduction approaches. We
further discuss the manifold learning algorithm, Diffusion Maps, that is closely related to
Roseland. In addition, we provide an overall description of datafold, where we mostly
focus on the parts that have the most relevance in the context of dimensionality reduction.

2.1 Dimensionality reduction

Dimensionality reduction algorithms aim at reducing the number of dimensions while
attempting to keep the intrinsic dimensionality of the data. That is, the minimum number
of features needed to represent the properties of the set [23]. More formally, we have a data
set X with n data vectors = € RY, where g stands for the number of features or dimensions
of the data. The goal is to find a function that maps = to 2/ € R?, where ¢’ < q.

In this section, we present two established algorithms: a linear one and a non-linear one,
that propose a solution to the problem. We highlight their differences and discuss several
advantages and shortcomings of both of them.

2.1.1 PCA

Principal Component Analysis (PCA) [26] is one of the most well-known dimensionality
reduction algorithms. It provides a linear approach at solving the problem by embedding
the data into a linear subspace. The main idea of PCA is to identify a set of orthogonal
vectors along which data varies the most [5]. These vectors are called principal compo-
nents, and they are formed as a linear combination of the original features. To embed the
data we use the first ¢’ principal components that have the biggest variance. Sometimes,
when data does not vary along more than ¢’ principal components or if all ¢ = ¢ prin-
cipal components are used, the embeddings will be exact. Otherwise, there will be some
error. Because the principal components are orthogonal to each other, we compute a new
orthogonal basis for our data and we recalculate the coordinates of the data points in this
new basis.

More specifically, the data set is represented as a matrix X with n x ¢ entries, where n
is the number of data points, and ¢ the number of features. Usually, the first step in the
algorithm is a pre-processing step that makes sure that the mean of each column in this
table is equal to 0 [1]. This step results in the matrix X'. This way, the points are centered

2 State of the art

at the origin. Depending on the type of PCA (covariance or correlation) we want to calcu-
late, there are additional pre-processing steps we need to compute [1]. For example, the
covariance matrix of the matrix with centered columns X"’ is given [14] by
X, = L (Xl)T Xl

“ n-—1 ’
To acquire the principal components, we need to evaluate the singular value decompo-
sition of the centered matrix. Then, a matrix F' is defined as the product of the matrix,
containing the left singular vectors U, and the matrix containing the singular values X.
F holds the factor scores of the data. Each factor score represents the recalculated new
coordinate of a data sample for a feature in the new basis [1]. Note that if we multiply
the original matrix and the matrix containing the right singular vectors V', we obtain the
matrix F [1]:

X'V=FV=Ux.

Consequently, the matrix V' can be interpreted as the mapping matrix, and thus the right
singular vectors represent the principal components. The square of their corresponding
singular values, divided by (n — 1) signifies their variance [14].
If we want to acquire the coordinates of the data in a lower dimension, we can accordingly
only use a subset of the singular vectors. We simply choose the principal components
with the largest variance to obtain the matrix V. After that, we use the selected vectors to
compute the matrix F’, such that

F =XV
Note that if we use the covariance matrix X., we can perform the eigendecomposition of
X_. instead of the singular value decomposition (SVD) of X’, since the two are linked [14].
In that case, the eigenvectors are equal to the right singular vectors, hence, they represent
the principal components. Their corresponding eigenvalues stand for their variances.
The computational complexity of PCA is in O(¢?) [5]. This means that the runtime grows
with the number of dimensions. Advantageously, PCA does not need any parameters
other than the data set itself to infer the new coordinates of the points. In addition, when
we order the principal components by their variance, we can easily choose which ones
to use in the lower dimension, as the principal components with larger variance bring in
more information about the data. Moreover, each principal component contributes a new
direction of variation, unless it has a singular value (eigenvalue for covariance PCA) of 0.
Hence, the true dimensionality of the data is equal to the number of principal components
with non-trivial variances. Furthermore, out-of-sample extension is a straightforward task:
we simply use the principal components (as a mapping matrix) to acquire the projections
of a different (accordingly pre-processed) data set [1].
A drawback of PCA stems from it being a linear algorithm, as it provides a new, truncated
basis using a subset of the singular vectors. Consequently, if the data has a non-linear in-
trinsic geometry, PCA will often not reduce the dimensions in a meaningful way. The ma-
jority of manifolds have in principle, a non-linear intrinsic geometry, as they are “folded”

2.1 Dimensionality reduction

into space. A classical example that highlights this problem of PCA is the swiss roll data
set, see Figure 2.1a. There are points that appear close when measuring their Euclidean
distance, which are in reality far apart when measuring their distance along the manifold.
This phenomenon can also be observed in the s-shaped curve data set pictured in Figure
2.1b.

Swiss roll point cloud S-shaped curve point cloud

(a) The point cloud of the swiss roll data set (b) The point cloud of the s-shaped curve data set

Figure 2.1: Examples of manifolds

2.1.2 Isomap

This drawback of PCA of projecting data into a linear subspace is addressed by non-linear
algorithms. Manifold learning algorithms provide non-linear approaches at dimensional-
ity reduction by assuming that data lies on a low-dimensional manifold.

One such algorithm is Isomap [22]. The idea of Isomap is to measure the geodesic distances
between the points so the geometry of the underlying manifold can be preserved. Since
manifolds locally resemble a Euclidean space, for a small neighbourhood of points, the Eu-
clidean distance is a sufficient approximation of the geodesic distance. However, globally
the Euclidean distance does not represent the geodesic distance (as it is evident in the swiss
roll example given in the previous subsection). There are two ways of defining the “small
neighbourhood” around the point: by k that represents the number of nearest neighbours
of the data point or by e that depicts the neighbourhood radius around the data point. The
estimation of the geodesic distance between points that are not close is equivalent to the
shortest-path problem in a weighted graph. The vertices of the said graph are accordingly
the data points themselves. The edges of the graph are connecting neighbouring points,

2 State of the art

and their weights are the Euclidean distance between the points. Consequently, we can
use Dijkstra’s or Floyd’s algorithm to find the shortest path between all pairs of vertices in
the graph [5].

The last step of Isomap is to embed the data into a lower-dimensional space. The goal
of the algorithm is to find points in the low-dimensional parameter space, that have Eu-
clidean distances that are close to the geodesic distances in the ambient space [5]. This is
done by applying classical Multidimensional Scaling (MDS) to the graph distances. Note
that MDS is a dimensionality reduction algorithm that can be used on its own. The clas-
sical version of MDS is equivalent to PCA when the distances, that we wish to preserve
in the new coordinate system, are Euclidean distances [1]. Since this is not the case in the
Isomap algorithm, we do not compute the PCA. First, we need to double center the matrix
containing the geodesic distances between all pairs of points. Next, we compute the eigen-
decomposition of the resulting matrix. All negative eigenvalues are then set to 0, resulting

in the diagonal matrix A. We finally calculate the matrix X := U Ai/ ?, where U contains
the eigenvectors. It is assumed that eigenpairs are ordered in a descending manner with
respect to the eigenvalues. To obtain the coordinates in the lower dimension ¢/, we simply
keep the first ¢’ columns in the matrix X [5].

The computational complexity of the algorithm is O(n?), where n is the number of data
points. Isomap is shown to perform better than PCA on some non-linear data sets by ei-
ther retrieving the true structure of the underlying manifold or by identifying a non-linear
structure of an unknown manifold [22]. Another advantage of Isomap is that by using
MDS, it can detect the underlying dimensionality of the data that corresponds to the num-
ber of non-zero eigenvalues [5]. With the increase of the number of data points, Isomaps
yields results that resemble the true structure of the manifold more accurately. The intu-
ition behind this is that the geodesic distance between neighbouring points can be more
accurately represented by the Euclidean distance when the points are geodesically very
close. This happens when there is an abundance of points. With the number of points
approaching infinity, the true geometry of the manifold can be captured almost perfectly.
As with most algorithms, there are some setbacks associated with Isomap. It has an opti-
mality guarantee only under certain assumptions [5], e.g, the manifold has to be compact.
A major drawback of Isomap is that it is topologically unstable [2]. The step that approx-
imates the distances between neighbouring points via the Euclidean distances can result
in ”short-circuits”. This means, that if the parameter £ or ¢ has not been chosen properly,
the same problem that Isomap tries to solve might occur: a point that is far away along
the manifold might be interpreted as a neighbour. An error at such an early stage of the
algorithm has drastic effects in later steps and accordingly leads to misleading results. Be-
cause of the same reasoning, Isomap is very sensitive to noise, as noise can make folds
appear “closer” than they are in reality. Setting € to a very small value might not be of an
advantage, as it can fragment the manifold [2]. Consequently, the parameter & or € needs
to be chosen carefully, such that density and noise are taken into account. Furthermore,
out-of-sample embedding is not a straightforward task, and there is no direct approach

2.2 Diffusion Maps

that tackles it. A proposed solution [3] is using the Nystrom extension.

2.2 Diffusion Maps

Diffusion Maps [7, 9] is another manifold learning technique. When compared to the meth-
ods discussed above, it does not directly rely on Euclidean or geodesic distance. Instead,
it requires a connectivity (or affinity) score between pairs of data points. This connectivity
has to be stored in an affinity matrix, that when normalized represents a transition matrix
between all pairs of points. In many cases, the affinity is computed through a Gaussian
kernel, with the local Euclidean distances between pairs of data points, as discussed below.
We can define a Markov random walk on the transition matrix. By diffusing over this ma-
trix, meaning we perform the walk for a number of time steps, we can identify important
properties about the geometry of the underlying manifold.
To be able to compute the proximity between two points, we need to first choose a ker-
nel function that is symmetric and that yields positive values for all inputs. Oftentimes,
oy (12
the chosen kernel is the Gaussian kernel K(z;, z;) = 6_%. The parameter ¢ is the
square of the bandwidth and intuitively represents the radius of the relative neighbour-
hood around a point, similarly to € in Isomap. It is also referred to as the kernel scale.
Using the kernel, we can capture the local affinities and thus, acquire a notion of the local
geometry of the data. The resulting affinities are stored in a square matrix, that can be
interpreted as the matrix containing the edge weights of a graph. We refer to this matrix
as the affinity matrix or kernel matrix.
The normalization in Diffusion Maps consists of two steps. In many cases, the density
of the data is not uniform on the underlying geometry. Therefore, using a data set with
densely distributed regions and other areas, that have a sparse distribution, might result
in misleading approximations of the geometry. Diffusion Maps provides an elegant way
to remove the influences of the density of the data by normalizing the matrix with «. The
normalized affinities then have the form

W = Wi .
J Dg DS,

In the formula above, W;; signifies the affinity between the points ¢ and j that are contained
in the affinity matrix W. The elements in the diagonal matrix D correspond to the degree of
each point (vertex), as they are defined as the sum of all affinities related to the point with
index i: 377, W;;. We need to accordingly recalculate the degrees so they match the new
affinity matrix. To do so, we replace the non-normalized affinities in the sum with the ones
normalized by a. We denote the new degree matrix by D(®). The value of « is a number
between 0 and 1 with three notable cases [7]. When o = 0 the impact of the density is
maximal, no normalization is performed. We are then reduced to the graph Laplacian case.
The value 0.5 results in the Fokker-Planck equation. If o = 1, then we can approximate the
Laplace-Beltrami operator, and (ideally) the effect of the data density is removed. The third

2 State of the art

case is arguably the most important one under the manifold assumption, as we obtain the
underlying geometry of the manifold.
After we make sure that the density of the data does not influence the results (or influences
them as much as we want to) we need to proceed with the random walk. To be able
to define a random walk on our data, we need to transform our matrix in the transition
matrix (©)

o
Dj;
which contains the probability of transition from node i to node j. The resulting transition
matrix is row-stochastic and in contrast to the affinity matrix, not symmetric. The prob-
ability of transition in this matrix is for a single time step. As a side note, if we want to
obtain the transition probability between all pairs of points for ¢ time steps, we need to
calculate P!. This is the intuition behind the ”connectivity” of the data: how probable it
is to reach a data point from another point in a given number of time steps by taking all
possible paths into account. Since the transition matrix is derived from the kernel matrix,
it implicitly contains some information about the local geometry of the data set. Because
we are considering a certain number of time steps we are diffusing over the data points. By
running the random walk forward, we can uncover the geometry of the data on different
scales [7].
The next step of the algorithm is to perform the eigendecomposition of the transition ma-
trix. Using the obtained eigenvectors 1, (7) and eigenvalues \; we can embed the data into
a lower dimension ¢’:

zi = [Ngha (i), As3(i), ooy Ay 0gr41(3)]-

Here, we assume that the eigenvalues are in descending order, and the lower index signi-
fies the place of each eigenvalue in the ordered sequence. The eigenvectors correspond to
the eigenvalues with the same index. The eigenvalue with the largest value (and subscript
1) is trivial, and as such, the eigenpair to which it belongs is not considered for the embed-
ding. The Euclidean distance between two points in the space where they are embedded
is close to the diffusion distance in the ambient space that is defined [7] as

D(z,y) = (Z A (i) — ?/)z(y))2> :

>1

Because the sum is specified over all paths between node 7 and node j with the length
t, Diffusion Maps is more robust against short circuits, which are one of the major issues
related to Isomap. Note that in the sum above we exclude the first trivial eigenvalue and
its eigenvector.

Similarly to Isomap, the computational complexity of Diffusion Maps (with no optimiza-
tions) is O(n?) with n being the number of data points [23]. The most computationally

2.2 Diffusion Maps

expensive process is again the eigendecomposition. Diffusion Maps requires in principle
two hyper-parameters: the kernel scale € and the diffusion time ¢. There are kernel func-
tions that do not require a scale, in which case the algorithm needs one parameter at best.
Note that some of these kernel functions might require other parameters, e.g. the Conti-
nous k-Nearest Neighbour kernel [4]. Furthermore, an out-of-sample extension cannot be
computed directly, instead, methods such as the Nystrom extension can be used [9].

The Nystrom extension is a technique originally proposed to speed up spectral segmen-
tation methods that employ an affinity matrix [10]. The extension follows the idea that
the number of output clusters of the provided data is much smaller than the data points
received as input. As such, it takes a small random sample from the input data set and
runs the clustering algorithm on it, after that it extends it to the rest of the data. Using this
extension, the affinity matrix can be approximated.

In the context of Diffusion Maps, to extend the existing embedding to an unseen data set,
the eigenvectors of this unseen data set have to be calculated by taking into account the
similarities between the already embedded points and the new points [9]. Then, the new
eigenvectors have the form

Upew = K(X, 2)T AL

Here, ¥ denotes the eigenvectors, A the eigenvalues. The “old” eigenvectors represent the
eigenvectors we acquire after the fitting step of the Diffusion Maps algorithm, the "new”
eigenvectors belong to the unseen set Z. K (X, Z) is the component-wisely calculated and
normalized kernel matrix, representing the (normalized) affinities between the embedded
data set X and the new data set Z. Each row j in this matrix contains the proximity of all
embedded points to the j-th new point in Z.

A further issue, associated with algorithms based on the analysis of the Laplace operator,
is the selection of the eigenpairs used for the embeddings [8]. Additional eigenvectors
might not provide new directions in the geometrical representation of the data. Thus, se-
lecting the first ¢’ eigenpairs does not guarantee a meaningful unfolding in the dimension
¢'. A proposed solution to address this problem, (apart from visually comparing possible
embeddings) is to use local linear regression [8]. The overall idea is to fit a function to each
eigenvector. The arguments of this function are the previous eigenvectors. If the function
approximates the eigenvector well, it is assumed that this eigenvector does not contribute
a new direction to the embedding and can be consequently omitted. The function is a local
linear function and we estimate its arguments o and 8 for each point in the data set by
solving an optimization problem [8]. In this problem a kernel function is used that has a
kernel scale which is usually governed by the median of the distances between each pair
of eigenvectors up to the one we are trying to approximate. After that, we calculate the
residual by computing the normalized cross-validation error [8]. The residual represents
how well we can approximate the eigenvector with the estimated local linear function.
Since it is an error term, a small value indicates that the function approximates the eigen-
vector well. Conversely, a large value means that the eigenvector cannot be approximated
by the previous ones. Therefore, when the residual is big, the eigenvector contributes a

2 State of the art

new direction, and we can include it when embedding the data. The residual of the first
eigenvector is set to be 1. When we have knowledge of the intrinsic dimension ¢’ of the
data, we can simply use the ¢’ eigenvectors with the largest residual values. Otherwise, we
can specify a threshold value. If an eigenvector has a residual larger than the threshold,
we select it for the embedding.

An alternative to the standard Gaussian kernel and other kernel functions that compute
the proximity between data points is provided by the Continuous k-Nearest Neighbors
(CkNN) graph construction [4]. The idea of the algorithm is to switch the weighted graph
represented by the affinity matrix with an unweighted graph aimed to depict the topology
of the manifold. The matrix in the CkNN scheme is therefore an adjacency matrix. Data
points are again interpreted as vertices, and then it should be decided which points have
to be connected by an edge. Some standard schemes connect a point to its k£ nearest neigh-
bours, others all points within a region with the radius e. Depending on the density of the
data, said strategies might fail [4]. The proposed approach of CkNN is instead to connect
all points for which

d(.T, y) < (5\/(1(:6, xk)d(y, yk)

holds, where d represents the distance between two points. The parameters £ and ¢ are
specified by the user. However, k can be fixed to a constant, and thus only the unit-
less continuous parameter ¢ should be accordingly adjusted, typically in the range (0,1].
The (unnormalized) graph Laplacian constructed by the CkNN scheme converges to the
Laplace-Beltrami opearator when n — oo and 6 — 0. This consistency to the Laplace-
Beltrami operator holds not only for compact manifolds but also for non-compact ones.
Recall that compactness is a requirement for the optimality guarantee of Isomap [5]. This
makes CkNN suitable for the task of manifold learning. Naturally, an advantage of this
approach is the bigger set of potential manifolds on which it can be applied. The choice
for ¢ is however not obvious. A potential solution is proposed in [4].

2.3 Datafold

Datafold [16] is an open-source Python package that provides data-driven models in the
context of manifolds and dynamical systems. The package has a dedicated webpage that
includes the needed information to get familiar with the package, take a deeper dive into
the specification, and contribute to it, as pictured in Figure 2.2. Datafold has a three-
layered structure, where each layer represents a level of abstraction. The structure forms a
hierarchy, such that lower levels provide services and can be used in higher levels. Addi-
tionally, the modules in each layer can be used individually in an application that includes
datafold as a dependency.

The lowest level datafold.pcfold lays the basis of datafold, as it includes mainly data
structures and algorithms that can be used in more than one models. The two provided
data structures are representative of the goals of the machine learning package. The class
PCManifold signifies a point cloud. This definition closely corresponds to the concept

10

2.3 Datafold

Getting started | Tutorials Software documentation
Contributing References

Figure 2.2: The home page of the website of datafold [16]

of a manifold, since it entails a geometry and a proximity measure between the points.
PCManifold inherits from ndarray provided by NumPy [12]. This corresponds to the
intuitive representation of a point with ¢ features as a ¢g-dimensional array. This array is
contained in the point cloud under the data attribute. In addition to the data itself, a ker-
nel associated with this data is attached to the point cloud. The kernel specifies the prox-
imity measure that is used on the specific point cloud. A notable property that is part of
the keyword arguments dist_kwargs of the class is the cut _of £. It represents the value
over which the proximity is considered to be irrelevant, and is treated as zero. Setting a
non-infinite value for the cut _of f makes the execution of a manifold learning algorithm
less computationally expensive because it can disregard a big portion of the entries in the
kernel matrix. The point cloud class contains methods that can be used for the calcula-
tion of the distance or the kernel (affinity) matrix. The method optimize_parameters,
which is also a part of this class, returns estimations for the kernel scale and the cut _off.
That is an important aspect, since we can use the approximated value for implementations
of manifold learning techniques with a Gaussian kernel that also require knowledge of
the bandwidth. Thereafter, we would only need to provide the time exponent. Another
method that can prove useful is pcm_subsample that returns a uniformly distributed sub-
sample of the given point cloud. This function is of particular importance for algorithms
that cannot remove the impact of the density of the data.

11

2 State of the art

The other main data type specified in datafold is a collection of time series. Time series al-
low the representation and analysis of dynamical data. It is assumed that the phase space
of the time series data lies on a manifold [16]. Datafold provides the class TSCDataFrame
that inherits from DataFrame, which is implemented by pandas [25]. TSCDataFrame
represents a collection of time series data. Therefore, it has an index that contains two
records: one that indicates the ID of the time series and one that represents the time. Ac-
cordingly, the first value must be an integer, the second one a non-negative number. The
attribute t sc_feature_col_name contains the name of the features. A further require-
ment is that the feature names and the time series ID-s are unique. A number of methods
are provided that handle time series or create a TSCDataFrame from a different data rep-
resentation. Similarly to point clouds, time series data frames also have a kernel and allow
the computation of the distance and the kernel matrix.

There are several different kernels implemented in datafold. All kernels are part of the
lowest layer and derive from the base class BaseManifoldKernel that inherits from
gaussian_process.kernels.Kernel class provided by Scikit-learn [19]. The kernels
acting on point clouds inherit from PCManifoldKernel. These kernels provide func-
tionality that computes the kernel matrix which contains the interpoint proximities. Some
examples of kernels inheriting from PCManifoldKernel are the GaussianKernel, the
ContinuousNNKernel [4], and the DmapKernelFixed that wraps another kernel and
provides means of normalizing it, as described in section 2.2. Time series data can work
with both a PCManifoldKernel and a TSCManifoldKernel. In the former case, time
information is not taken into consideration. A class that derives from TSCManifoldKernel
is the class ConeKernel [11].

The package dynfold builds on top of pcfold. The models implemented there can ei-
ther be used in the top layer of datafold, or on their own in a different application. There
are two main classes that extend the BaseMixin class and build the basis for the mod-
els. The first one, TSCTransformerMixin extends additionally the Scikit-learn class
TransformerMixin [19]. In doing so, it supports not only array-like data sets, as the
superclass it extends, but also time series data representations. When a class inherits
from TransformerMixin it has to usually override the method fit_transform. This
method fits the data and then transforms it in some way, specified by the subclass. The
second base class is the TSCPredictMixin. It provides two methods that have to be
overridden: predict, and reconstruct. Transformer classes contained in the package
include DiffusionMaps that transforms points from one coordinate system to another
one, TSCPrincipalComponent that extends the implementation of PCA in Scikit-learn
to time series data representations, and TSCApplyLambdas that transforms the data set
by applying a Lambda function to each element. As it is evident in these examples, the
implemented transformation may vary, above all, in its goal.

The package that represents the highest layer in the architecture of datafold is the appfold
package. Here, the separate modules contain implementations of specific machine learn-
ing algorithms. These implementations can use the data structures and base algorithms
from pcfold, as well as the models from dynfold. Note, that since all transformer

12

2.3 Datafold

classes implement the method fit_transform they can be chained in a pipeline, and
this pipeline can be used in the implementation of some machine learning algorithms.
Diagrams depicting the inheritance structure are provided for all three packages in the
documentation of datafold [16].

The package utils is also worth mentioning, as it provides utility functions that target
a specific task that does not fit in the layered structure, and is mostly thought to be for
internal use. The functions range from methods that are used for plotting, to functions
that verify the presence of a certain property of a given value. For example, if the given
argument is a floating number. Additionally, there are functions that perform operations
on matrices, such as multiplication with a diagonal matrix. The functions that provide
plotting capabilities are contained in a separate module plot .py. Each package (includ-
ing ut11s) accommodates a directory dedicated to tests. Each module is tested with the
provided in this directory test modules.

The Diffusion Maps algorithm is implemented in the middle layer, the dynfold pack-
age. In addition to dimensionality reduction, the model can be used to approximate the
eigenfunction of the Laplace-Beltrami, Fokker-Plank, and graph Laplacian operators. This
is achieved internally by returning an instance of DiffusionMaps with the appropri-
ate value for the attribute alpha. As mentioned above, the class derives from the class
TSCTransformerMixin, and overrides the fit_transform method. Additionally, it
inherits from BaseEstimator from Scikit-learn, and it provides its own implementation
of the fit method. Another method that is specified by TransformerMixin, and over-
riddenby DiffusionMaps is the transformfunction. After creatinga DiffusionMaps
instance, we can call all those three functions on it. The fit-method estimates the eigen-
pairs of the normalized kernel matrix. We can access them as attributes associated with
the instance. After calling t ransform, we obtain the new coordinates of the data set pro-
vided as input, meaning we can additionally use it for out-of-sample extensions. Naturally,
a data set has to have been fitted first. The algorithm used for the out-of-sample extension
is the Nystrom extension [9]. The method fit_transform performs the estimation of the
eigenpairs and the embedding of the fitted data set one after the other. Furthermore, the
implementation of Diffusion Maps in datafold lets the user perform an inverse transfor-
mation from the parameter space into the ambient space. Since it implements all those
methods, DiffusionMaps can be used in a pipeline, and thus, it can be easily integrated
into the layer above (or into a different application). Among others, a useful property of
the implementation is the provided symmetrize_kernel attribute. Recall that the nor-
malized kernel matrix (transition matrix) is not symmetrical. This can lead to numerical
instabilities when performing the eigendecomposition [16]. Consequently, when the value
of symmetrize_kernel is set to True, a symmetric conjugate of the matrix is instead
computed and used.

If we wish to utilize the CkNN scheme described in section 2.2, we need to set the ker-
nel to ContinuousNNKernel when creating the DiffusionMaps instance. Note that
if we additionally set the cut_off to a non-infinite value, all points must have at least
k_neighbor number of neighbours, where the attribute is specified at the time of cre-

13

2 State of the art

ation of the instance. Since this fact poses a challenge, we can work around it by calling
the function pcm_remove_outlier from the pcfold package on the point cloud. This
method removes all points from the set that do not have the specified number of neigh-
bours. The required number of neighbours is passed as the argument kmin.

The class LocalRegressionSelection is provided in the same module as the imple-
mentation of Diffusion Maps and it aims to solve the issue related to the selection of eigen-
pairs for the embedding. The implemented approach is the one discussed in section 2.2
using local linear regression [8]. It is implemented as an estimator and a transformer. In
the fitting step, it infers the indices of the eigenpairs that best unfold the manifold by pass-
ing the eigenvectors approximated by Diffusion Maps as an argument. This is done, as
discussed in section 2.2, by estimating the residual values for each eigenvector. The in-
dices of the selected eigenvectors are stored in the class attribute evec_indices_.. The
strategy for the selection of the eigenpairs can be specified by the user. There are two po-
tential strategies: either dim or threshold. The former is associated with an additional
argument int rinsic_dim that specifies the underlying dimension of the manifold. Then,
the number of eigenvectors selected is equal to the value of intrinsic_dim. This way, the
indices of the eigenvectors with the largest residuals are chosen. Conversely, if the strategy
threshold is used, then all eigenvectors with a residual bigger than the specified value
of the attribute regress_threshold are included in the selection. When transformis
called and all eigenvectors are passed as an argument, the eigenvectors whose indices were
selected in the fitting step are returned. We can then use them to perform the embedding.

2.4 Roseland algorithm

Shen, Chao and Wu, Hau-Tieng proposed a new method of dimensionality reduction
based on probability-driven spectral embedding in 2020 [21]. In their paper, they intro-
duce the Roseland algorithm (RObust and Scalable Embedding via LANdmark Diffusion)
as a less accurate, but computationally faster alternative to Diffusion Maps. They exam-
ine its behaviour and show that the algorithm fits into the manifold setup. Additionally,
they prove the spectral and pointwise convergence to the Laplace-Beltrami operator which
leads to Roseland being a suitable candidate for manifold learning.

In this thesis, we build on their work to implement Roseland in the datafold package.
We aim to reproduce their observations about scalability and robustness by testing both
Diffusion Maps and Roseland under the same setups and comparing the results.

14

3 Scalable manifold learning through
landmark diffusion

In this chapter, we give an overview of the Roseland algorithm. We discuss different meth-
ods of constructing one of the main aspects of the novel algorithm, namely the landmark
set. Taking all the theoretical considerations into account, we implement the algorithm in
the datafold package, and we describe our approach. Finally, we evaluate our implementa-
tion by testing the results under different entry conditions. We evaluate its performance by
comparing the results to the results obtained after running the Diffusion Maps algorithm
under the same settings.

3.1 The Roseland algorithm

Roseland adopts a dimensionality reduction method similar to that of Diffusion Maps.
Both algorithms assume data lies on a manifold that is embedded in a higher dimension.
Their approach to dimensionality reduction is to perform a spectral embedding based on
random walks by using the affinity matrix. However, Roseland does not consider the
proximities between all point pairs in the data set. Instead, by using a landmark set, a
landmark-set affinity matrix is computed, which contains the affinities between the data
points and the landmark points. The matrix is then normalized by the degree matrix of
the data set. The resulting matrix is thin, and as such, eigendecomposition cannot be per-
formed on it. Thus, the more general SVD is calculated and used for the final embedding.
In the following subsections, we describe the Roseland algorithm [21, 17, 20].

3.1.1 Input and output

Similarly to Diffusion maps, the key input is the data set. In Roseland, the data set X’ con-
sists of n data points. Each one of these points has ¢ features. Thus, each point has the
dimension gq.

Unlike in Diffusion Maps, however, there is one more set that is taken as an input in Rose-
land, namely the landmark set). There is no requirement on the landmark set that it should
be a subset of the given data set, but it should be smaller than the data set. The size makes
it possible to reduce the runtime of the algorithm. Like the data set, each point in the
landmark set has the dimension ¢. The landmark set is not a strict requirement as an input
because it can be subsampled from X. We discuss this variation in a later section dedicated
to the landmarks.

15

3 Scalable manifold learning through landmark diffusion

The kernel function can also be provided as an input. By default, the Gaussian kernel is
employed. The kernel function is used to compute the affinity between two points. A re-
quirement for the kernel is to be positive-definite.

Lastly, the (lower) dimension ¢' for the embedding and the diffusion time t are plugged in.
The output of Roseland is the embedding of X in the dimension ¢’ computed by diffusing
for a time ¢ between the data points by first detouring through).

3.1.2 Normalization

The first step of Roseland is to calculate the landmark-set affinity matrix
Wz(l:) = K(:Eu yk) € Rnxm?

which contains the similarity between each point z; in X and each point y;, in). Here, K

los—ygl®
indicates the kernel function, e.g., the Gaussian kernel K (x;,yx) = e~ 2 with a kernel

scale € and || e || a distance metric, e.g., the R? Euclidean norm. Since m < n the resulting
matrix has fewer columns than rows, that is, a thin matrix. Recall that there are n samples
in the data set, X, and m samples in the landmark set).

For the matrix to define a Markov process it needs to be normalized by its degree matrix.
The degree matrix is a diagonal matrix defined as

DY = IWO W1 e R,
Here, e; is the unit vector, containing a 1 as the i-th element, and zeroes as the remaining
elements. The vector 1 is the all-ones vector, containing 1 in all entries. The degree is
accordingly calculated for each data point in X' It is important to note that the degrees are
evaluated from the so-called landmark-affinity matrix

W(R) — W(r) (W(v))T e R™X".

This matrix is similar to the one in Diffusion maps as it represents the similarities between
all data points in X. The difference is that the affinities are not the direct affinities, rather
the proximity from z; to x; by first detouring through the landmark set. If this matrix
is multiplied by the reciprocal of the degree matrix it would result in a row-stochastic
transition matrix. Therefore, this method conforms to the idea of a diffusion process [17].

The normalized matrix then has the form (DgiR))_1/ 2W () € R™*™. That is, each entry w;,
that represents the affinity between z; and yy, is divided by the square root of the degree

of the data point x;.

3.1.3 Fitting

The purpose of the fitting process is to obtain the spectral properties of the normalized
landmark-set affinity matrix. Because this matrix is not square, we cannot compute the

16

3.1 The Roseland algorithm

eigendecomposition. Thus, the singular vector decomposition is used instead:
(DY)~ V2w = UAvT.

Conventionally, U € R"*" is an orthogonal matrix the columns of which are the left singu-
lar vectors. Analogously, VT € R™*™ is orthogonal and contains the right singular vectors
in its rows. A € R™™ "™ is a diagonal matrix with the singular values as the entries on the
diagonal, denoted by o1 > o3 > ... > 0y, > 0.

3.1.4 Embedding

To embed the manifold in the dimension ¢/, we consider o3, ..., 0441 and their correspond-
ing left singular vectors [21]. The Roseland embedding of a point x; from the data sample is
defined by

Q)ER) e e;-qu/(Lq/)t.

This embedding is for the diffusion time ¢ end essentially returns the new coordinates of
z; in the lower dimension ¢'. U is set to be U := (D)2 € R"*", which translates to
the left singular vectors scaled by the square root of the degree of their corresponding data
point. To acqmre U e R"*?, we take the second through (q + 1) column vectors in U.
(Ly)t € RY* isa dlagonal matrix, containing 03! through o o/ +1 as its diagonal entries.
The unit vector is denoted by e; and again has a single 1 as the i-th entry. In short,

— 2t~ 2t = 2t !
Zi > [UQJ' 03, U3,i03 .y U(g+1),i O'(q/+1)] S Rq7

where @;; = —Z—. In other words, the i-th entry of the j—th left singular vector that

\/dJJ

This embedding is similar to the embeddmg of Diffusion Maps where the second through
¢’ + 1 eigenvectors and eigenvalues of the normalized affinity matrix are used.

3.1.5 Nystrom extension

Similarly to Diffusion Maps [7, 9], out-of-sample embedding in Roseland is not a straight-
forward task, because there is no explicit way to acquire the embedding for unseen points
from the already computed SVD of the fitted data set. Again, the approach we choose is
the Nystrom extension, since it can be applied to SVD-approximation as well [18]. In that
case, the extended left singular vectors have the form
Unew = K(y7 Z)VAr_nXm

As a reminder, V contains the right singular row vectors, and U the left ones. A;} , repre-
sents the m x m diagonal submatrix that contains all singular values. Note that originally
A is a thin matrix since we perform the decomposition on a thin matrix. A difference to

17

3 Scalable manifold learning through landmark diffusion

the formula applied in Diffusion Maps is that we calculate the kernel matrix using the
landmarks instead of the data points. The reason for this lies in the dimensions. The right
singular vectors have a dimension of m x m, with m being the number of landmarks. Ac-
cordingly, the matrix K (), Z) has to have a dimension of k& x m, where k is the number of
samples in the new unseen set. We will therefore get a result for the new left singular vec-
tors of shape k x m. Thereafter, to align the coordinates of them to each other, we have to
multiply this matrix by a newly constructed diagonal matrix that corresponds to K (), Z)
that has the same dimensions. This step is equivalent to deriving U during the embedding,
as described in subsection 3.1.4.

3.1.6 Computational complexity

In [21] the size of the landmark set is defined to be m := n® with 3 € (0, 1], and n repre-
senting the size of the data set. Then, the overall complexity of Roseland is O(n!*2%). To
understand how the complexity of Roseland is calculated we consider the complexity of
each of the algorithm steps.

The calculation of the landmark-set affinity matrix is essentially computing the pairwise
kernel function between the points in the two sets. Assuming the computation of the affin-
ity between two points takes only a constant amount of time, this results in a complexity of
O(nm) = O(n'*7). The calculation of the diagonal matrix can be divided into three steps.
First, computing the sum of each column of the landmark affinity matrix. Second, multi-
plying each of the m entries w; ; in each of the n rows of the landmark-set affinity matrix by
the j-th sum computed in the previous step. This results in the landmark matrix W(®we
described in 3.1.2. The third step is to sum each row of W(®) to finally acquire the diagonal
entries. Each of the three steps is O(nm) = O(n!*#). Since they are executed sequentially,
the total complexity of the computation of the diagonal matrix is also O(nm) = O(n'*4).
To normalize the landmark-set affinity matrix, we multiply it by (D%))~1/2. The complex-
ity of this calculation is O(nm) = O(n'*?) as well. When it comes to the complexity of the
SVD, assuming an efficient method is used [6] , a complexity of O(nm?) = O(n!*2??) for
a thin n x m matrix can be achieved. The actual in-sample embedding is O(n) because it
calculates the new coordinates of the n data samples. The term that dominates the rest is
the computation of the SVD. Therefore, the complexity of Roseland in the in-sample case
is in total O(n!*28),

In comparison, the classic Diffusion Maps algorithm has an overall cubic complexity O(n?)
due to the eigendecomposition. If a sparse matrix is computed, this term can be improved
to O(n?™"), where 1 > 0 [21]. We can see that Roseland provides a better complexity than
both of these cases, assuming the size of the landmark set is much smaller than the size of
the data set.

Out-of-sample embedding with the Nystrom extension for Diffusion Maps has a complex-
ity of O(nd) [9], where d = |Z|. Roseland extends the singular vectors of the embedded
set to the ones of the new set Z in a similar manner to Diffusion Maps as we saw in 3.1.5.
We still need to compute the new kernel matrix, that contains the pairwise similarities be-

18

3.2 The landmark set

tween y; €)V and z; € Z. Thus, the complexity is O(md). Therefore, we expect Roseland
to compute the out-of-sample embedding faster than Diffusion Maps, when m < n.

An improvement that can be applied to both algorithms stems from the consideration that
we only need the top ¢’ eigenpairs [13], respectively SVD-pairs. Additionally, an SVD for
sparse matrices can be computed to further improve the computational costs [15].

3.2 The landmark set

The landmark set is a decisive aspect of the Roseland algorithm. Because the landmark
set is assumed to have a much smaller amount of points than the original data set, the
resulting affinity matrix is smaller than the kernel matrix of Diffusion Maps, which con-
tributes to the efficiency of the spectral embedding goal. However, some challenges arise
because of the landmark set, that need further investigation. In this section, we look into
approaches to designing the landmark set.

3.2.1 Acquiring the landmark set

A side of Roseland that might be perceived as disadvantageous is that the landmark set
is required as an additional input This leads to the idea that the landmark set can be sub-
sampled from the data set. To still allow the user some control over the landmarks, an ad-
ditional parameter v € (0, 1] can be provided. We set the size of the landmark set m := yn.
The default value of v is 0.25.

This brings us to the consideration of what the best way would be to subsample the land-
marks. One approach is to use a random subsample. Another choice would be to sub-
sample a uniformly distributed subset. To acquire a meaningful comparison, we test the
two approaches by using the same data set and the same number of points to be subsam-
pled. Additionally, the manifold we use is a uniformly sampled rectangle with 10 000 data
points. To sample the points for the data set we use the function random. uniform from
NumPy. In Figure 3.1 are pictured the results after fitting the data set. We plot pairings
of the singular vectors with the first singular vector with a non-trivial singular value. We
additionally plot the results from Diffusion Maps that has already been implemented in
datafold. For plotting the embeddings we have adapted the code provided in the tutorials
of the webpage of datafold.

In Figure 3.1a the embedding after randomly subsampling m := yn samples from the data
set is portrayed. Figure 3.1b shows the uniform variant. To subsample a randomly dis-
tributed landmark set from the data set, we use the utility function random_subsample
provided in datafold. To acquire a subsample with a uniform density, we rely on the func-
tion pcm_subsample [16]. The function iterates over blocks of points and computes the
distance matrix between all the samples and the samples in the current block. Then, it
constructs a new point cloud by choosing points from the blocks that satisfy one of two
conditions: the point has either no neighbours or the smallest distance of the point to an-

19

3 Scalable manifold learning through landmark diffusion

W, vs. Y, Y, vs. Y,
0.001 A -l
.
w.
0.000 1 1 . . ﬁ
L]
#‘
—0.001 ~ b
T T T T T T
Yy vs. Yy W, vs. Y,
0.001 A q
0.000 q
—-0.001 *‘ 1
T T T T T T
Y, vs. Yg
0.001
0.000
—-0.001

T T T
—0.0005 0.0000 0.0005

(a) with random subsampling of 2500 landmark

T T T
—0.0005 0.0000 0.0005

points

0.02 A

0.00 ~

—0.02 A

0.02 4

0.00 4

—0.02 4

0.02 4

0.00 4

—0.02 -

w]_ VS. wg

W, vs. Yy Y; vs. W,

0.00050
0.00025 b
0.00000

—0.00025

Wy vs. Yy
0.00050

0.00025

0.00000
—0.00025

W, vs. Ys Wy vs. W

0.00050

0.00025
0.00000
—0.00025

T T T T
—0.0002 0.0000 0.0002 -0.0002 0.0000 0.0002

(b) with uniform subsampling of 2500
landmark points

w]_ VSs. ll-|2

T
-0.01 0.00 0.01

T T T
-0.01 0.00 0.01

(c) using Diffusion Maps

Figure 3.1: Potential embeddings of a uniformly sampled (3x5) rectangle with 10 000

points

20

3.2 The landmark set

other one is larger than min_distance. This way, points from scarcely distributed areas
are selected, and densely distributed neighbourhoods bring fewer points into the resulting
set. Therefore, the function does not guarantee a size for the returned point cloud. One
can tweak the argument min_distance. By making it smaller, more points are taken into
the new set. Here, we set the argument to two times the cut_off of the data set that we
acquire after running optimize_parameters on it. We can see that there is no improve-
ment in the embedding, but this may be because the original data set is already almost
uniformly distributed. Furthermore, depending on the size of the data set, the uniform
subsampling can result in significant overhead. Since Roseland aims at efficient embed-
ding, we prefer the random subsampling approach. Random subsampling results in an
additional complexity of O(m) = O(n?), which does not influence the overall computa-
tional complexity of the algorithm.

3.2.2 Choosing the size

As we discussed in subsection 3.1.6, the size of the landmark set directly affects the compu-
tational complexity of Roseland. Since the original idea of Roseland is to provide a scalable
spectral embedding technique for large datasets, e.g., n > 10° [21], a small landmark set
is ideal to achieve this goal. However, the size of the landmark set is directly related to
the convergence rate of Roseland to the Laplace-Beltrami operator: the smaller the set,
the slower the convergence. This is in fact one aspect, where Roseland cannot achieve the
same results as Diffusion Maps. Even when n = m, i.e., the sizes of both sets are equal,
Roseland still has a slower convergence rate than Diffusion Maps [21].

Generally, for the goal of clustering the size of the landmark set is not of the highest impor-
tance in terms of accuracy. As we can see in Figure 3.2 there is no gradual improvement of
the embedding for 7 = 1.0. The most noticeable differences are the rotation and the flip-
ping, which in the context of spectral clustering do not carry high importance. Therefore,
one would rather prefer a smaller 7. In the case depicted in Figure 3.2, we see thata vy of 0.1
achieves a much faster embedding. In the two examples, we use the hand-written digits
dataset from Scikit-learn. We run all examples on a Linux machine with a 4-core 1.8Ghz i7
CPU and 8GB memory.

However, in the case when we want to acquire an approximation of the Laplace-Beltrami
operator and properly display the geometric structure of the manifold in the lower di-
mension we see differences, as evident in Figure 3.3. For these examples we extract 5000
points from the border of the unit circle as our data set and we run the Roseland algorithm
with different entry conditions for . In the end, we plot the first singular vector with a
non-trivial singular value against the second one using. In all three cases, we subsample
the landmark set from the data set and we optimize the parameters for the kernel of the
landmark point cloud using the function opt imize_parameters with its default settings
provided in datafold. It is easy to recognize that a larger landmark set improves the ap-
proximation.

This comes at the cost of efficiency: Roseland loses all advantages of a smaller kernel ma-

21

3 Scalable manifold learning through landmark diffusion

(a) v := 0.1, time of fitting and embedding (b) v := 1.0, time of fitting and
= 0.08s embedding = 0.65s

Figure 3.2: Embeddings of the hand-written digits 0-5 with different landmark set sizes by
using the first and second left singular vectors with non-trivial singular values

circle embedding y= 0. circle embedding y= 0. circle embedding y=1.0
0.003
0.00050 7 0.0010 | 0.002 -
0.00025 1 0.0005 0.001
> 0.00000 > 0.0000 - > 0.000 -
-0.00025 - —0.0005 - —0.001 -
—0.00050 - —0.0010 A —0.002 A

. : . -0.0015 . , : -0.00341 : .
—0.0005 0.0000 0.0005 -0.001 0.000 0.001 -0.002 0.000 0.002
X X X
(@)y:=0.1 (b)v:=0.5 (0)v:=1.0

Figure 3.3: Embeddings of the unit circle with 5000 data points and different entry set-ups
for v by using the first and second left singular vectors with non-trivial
singular values

22

3.2 The landmark set

trix. As mentioned above, Diffusion Maps outperforms Roseland in terms of the rate of
convergence to the Laplace-Beltrami operator. With all these considerations we can con-
clude that when one aims at a highly accurate Laplace-Beltrami operator approximation,
one would still prefer Diffusion Maps over Roseland. By sacrificing some accuracy we
achieve lower runtimes. In 3.3a the fitting takes on average 0.25s, in 3.3b 2.48s, and in 3.3¢
18.12s.

An additional consideration to make is the size of the data set itself. We work under the
assumption that there are enough points in the data set that capture the underlying man-
ifold. The observation that we make is that the more data points there are, the smaller
the relative size of the landmark set needs to be to achieve a more accurate unfolding,
which in turn yields results faster than both Diffusion Maps and Roseland with a bigger
number chosen as «. As it is evident in Figure 3.4 the larger the data set, the more pre-
cisely Roseland unfolds the s-shaped curve provided by Scikit-learn (pictured in Figure
2.1b) with the same fraction chosen for v. We plot the first non-trivial singular vector on

ul vs. l-uo LU] vs. u2 LU] VS, LUO LU] VS, LU2
0.001 -
0.0001 »
0.000 0.0000
- - ' ‘ —0.0001 ‘
W, vs. Wy Wy vs. Wy W, vs. Wy Wy vs. Wy
0.001 1
\ 0.0001
0.000 ‘ g I 0.0000
' -0.0001 ‘
W; vs. Wy W; vs. Yg Y, vs, Ws Y, vs. Wy
0.001 b
0.0001
0.000 ’ 0.0000
W —0.0001
~0.0005 0.0000 0.0005 -0.0005 0.0000 0.0005 ~0.0001 0.0000 0.0001 —0.0001 0.0000 0.0001
(a) 10 000 data points, v = 0.25 (b) 1 000 000 data points, v = 0.25

Figure 3.4: Potential embeddings of the S-shaped curve using a different data set size and
the same fraction for ~.

the x-axis against the other singular vectors (0 through 6) on the y-axis by using the util-
ity function plot_pairwise_eigenvectors provided in datafold. Because Roseland is
aimed at larger data sets, it is sensible to choose a smaller number for the default value of
7. However, we still would want a relatively accurate embedding. These considerations
bring us to the decision that v has a default value of 0.25. The value can be adapted to the

23

3 Scalable manifold learning through landmark diffusion

size of the data set.

3.3 Implementation

In this section, we describe our implementation of Roseland. We implement Roseland in
Python 3.7 in the datafold [16] package. To set up the project it is best to follow the in-
structions provided in the datafold website under the tab “"Getting started”. This way, all
required libraries for Roseland will also be installed and set up. In our implementation,
we utilize the libraries NumPy [12], SciPy [24] and Scikit-learn [19], and we use packages,
classes and functions provided by datafold. The module, roseland.py, resides in the
dynfold package: the location of all models implemented in datafold.

In Figure 3.5 we illustrate the overall structure of Roseland via a class diagram. We omit

TSCTransformerMixin
BaseEstimator .
n_features_in: int
getParams([deep]) n_features_out: int
setParams(**params)])
fit_transform(X, y, **fit_params)

T i

Roseland

kernel: PCManifoldKernel
n_svdpairs: int

time_exponent: float

Y: TransformType _RoselandKernelAlgorithms

gamma: float

solve_svdproblem

dist_kwargs (kernel_matrix, n_svdtriplets)

fit(X, y, **fit_params)
fit_transform(X, y, **fit_params)

transform(X)

set_target_coords(indices)

Figure 3.5: Class Diagram of Roseland

24

3.3 Implementation

some information (methods and class attributes) to keep the diagram readable. In the mod-
ule, we provide two classes: Roseland and _RoselandKernelAlgorithms. The latter
is an internal class, the methods of which are used in the main class of our implementation,
Roseland. The current implementation of the internal class contains one method that is
responsible for the computation of the SVD, and it accordingly returns the singular values,
the left and the right singular vectors.

The main class derives from the classes BaseEstimator and TSCTransformerMixin.
The former is defined by Scikit-Learn, and thus we conform to the guidelines they provide.
In summary, an estimator class must implement a method called fit that is responsible
for fitting the model according to the algorithm. This way, some information about the
data input can be inferred. Mapped to our specific case, we infer the singular vectors and
singular values of the normalized affinity matrix. By doing that, we are able to use a sub-
set of these spectral properties to reduce the dimensionality of the data. Additionally, we
set all the class attributes that do not depend on the data in the __init__ method, and as
required, we define default values for them. The kernel is per default set to None, and
later, during the fitting, set to be a Gaussian kernel with a kernel scale of 1.0, given a differ-
ent kernel and scale are not provided. Similarly, during the initialization, dist_kwargs
has the default value None and during the fitting, some default values are set, e.g., the
cut_off is set to infinity. The default value for the number of singular vectors and val-
ues to be computed n_svdpairs is 10, and the time exponent is with a default value of
0.0. The other two attributes relate to the landmark set. The attribute Y is the set itself
and it is of type TransformType which datafold defines as a union of the two allowed
transformation types: TSCDataFrame and np.ndarray. The current implementation of
Roseland supports only np.ndarray, but we use the more general type in case of a fu-
ture extension. The default value for Y is None. The attribute gamma governs the size of
the landmark set that needs to be subsampled from the data set, given no landmarks have
been provided when creating the Roseland instance. The idea is described in subsecion
3.2.1. Its default value is 0.25. When both of these attributes receive a value upon creating
the instance, gamma is ignored, and the landmark set is not subsampled. Instead, the pro-
vided one is used.

TSCTransformerMixin is defined in datafold and it is a subclass of the Scikit-Learn
class TransformerMixin. As a mixin, TSCTransformerMixin provides a specific
feature for Roseland to inherit, namely the setting of a number of parameters dur-
ing the fitting. The parameters in question are n_features_in_, n_features_out.,
feature_names_in_, and feature_names_out.. Because the current implementation
of Roseland is limited to only point clouds and does not include functionality for time
series, during the fitting, we only set the first two. Since we implicitly derive from
TransformerMixin, we provide a fit_transform method that first fits the data set
(finds the singular vectors and values), and then performs the embedding of the input
data in the lower dimension. The method transform can be used for out-of-sample
embedding using the Nystrom method as described in subsection 3.1.5. This way, in
terms of Scikit-learn terminology, Roseland is not only an estimator, but also a trans-

25

3 Scalable manifold learning through landmark diffusion

former. Inheriting from these classes and implementing the methods fit, transform,
and fit_transform has one crucial advantage, namely pipelining. By utilizing pipelin-
ing, we can chain Roseland and other transformers in a pipeline. When the fit method
is executed on the pipeline, the fit_t ransform method of each transformer is called and
finally the £it method of the final estimator is executed [19]. This way, Roseland can be
performed as a preprocessing step to reduce the dimensionality of the data prior to fitting
it by any machine learning model that conforms to the Scikit-learn guidelines. For exam-
ple, in the code snippet 3.1, we chain Roseland and a logistic regression estimator. We then

pipe = Pipeline(steps=[('roseland', rose), ('logistic', logistic)])
pipe.fit (X_train, y_train)

Source Code 3.1: Pipeline example

call the fit-method on the pipeline. This in turn will call the fit_transform method
of Roseland and then the fit-method of the logistic regression estimator. One can then
make predictions on the pipeline itself. In the example rose is a Roseland instance, and
logistic: alogistic regression instance. Both have been initialized prior to defining the
pipeline.

The simplest way to create a Roseland instance is by executing Roseland (), in which
case the default settings for Roseland will be used. When a landmark set is provided,
we recommend however running the method optimize_parameters from the module
pointcloud.py in the package pcfold on the landmark set first. Then, we can plug in
the calculated values for epsilon and cut_off when creating the instance, as shown in
the code snippet 3.2. This way, a kernel scale can be inferred and by having a value for the

Y.optimize_parameters ()

rose = dynfold.Roseland (
kernel=pcfold.GaussianKernel (epsilon=Y.kernel.epsilon),
Y=Y,
dist_kwargs=dict (cut_off=np.inf)

Source Code 3.2: Instantiating Roseland

cut_off the algorithm is sped up, because the resulting kernel matrix is sparse. In [17]
the kernel scale is required as an input, so by doing this we adhere to the requirement by
first approximating its value.

In the UML diagram 3.5 are given the three most important methods, when using Rose-

26

3.3 Implementation

land: they are responsible for fitting and/or transforming the data. We will now follow
their execution with the help of a few flow charts.

We start with a flow chart of the fitting process. The steps of the algorithm are displayed in
Figure 3.6. The first thing that we check in our implementation is to see if the landmark set

Landmark No

set provided?

Y
Yes
Subsample
landmarks
Compute kernel
matrix

Y

[Normallze.kernel]—)[Solve SVD-problem a
matrix

Figure 3.6: Roseland fitting process

has been provided as input, as it is needed to compute the landmark-set affinity matrix.
If not, we subsample the landmarks as described in the subsection 3.2.1. After that, we
calculate the landmark-set affinity matrix (the kernel matrix). To achieve this, we use the
function compute_kernel matrix provided in the module pcfold.pointcloud. In
contrast to Diffusion Maps, we want to compute it component-wisely by using two ma-
trices. Therefore, we also provide a value for the parameter Y. The resulting matrix will
then be of shape p x r, where p is the number of samples in the parameter v, and r the
number of samples in self. Since our goal is to compute the required thin matrix we call
the specified function on the landmark set point cloud, and pass the data set point cloud
as the parameter.

The next step in the fitting process is to normalize the kernel matrix, as described in 3.1.2.
To achieve this, we first compute the degree matrix. We mentioned above that when we
optimize the parameters of the landmark set before creating the Roseland instance, as
shown in the code snippet 3.2, the resulting kernel matrix will be sparse. The type that of

27

10

11

3 Scalable manifold learning through landmark diffusion

this sparse matrix is then scipy.sparse.spmatrix. Since there are usage differences
between this type and numpy .ndarray, which we obtain in the case of a dense matrix,
the steps to compute the diagonal matrix slightly differ. The idea is however the same: we
calculate the sum of each column, then we multiply the kernel matrix component-wisely
by the column_sums. After that, we calculate the sum of each row. Squaring each element
in the resulting array results in the diagonal matrix. As a side note: since a diagonal matrix
has only one non-zero element per row, we do not need a whole matrix (numpy .ndarray)
to represent it. The final step in this process is to transform the elements into their recipro-
cal. Because some values in the diagonal can be zero or approaching zero, the inverting of
the digonal might result in an infinite number or in overflow. Therefore, we first suppress
the warnings, with which NumPy provides us, by using with np.errstate (). Then,
we set the values that resulted in inf or overflowed (meaning they are now negative) to
0. In the code snippet 3.3, we provide the implementation in the case of a dense matrix.

column_sums = np.sum(kernel_matrix, axis=0)
new_kernel_matrix = np.multiply(kernel _matrix, column_sums)
normalize_diagonal = np.sqrt (np.sum(new_kernel _matrix, axis = 1))

with np.errstate(divide="ignore", over="ignore"):
normalize_diagonal = np.reciprocal (
normalize_diagonal, out=normalize_diagonal)

bool_invalid = np.logical_or(
p.isinf (normalize_diagonal), normalize_diagonal < 0)
normalize_diagonal [bool_invalid] = 0

Source Code 3.3: Computing the degree matrix: dense matrix case

The final step of the fitting is to solve the SVD problem for the normalized kernel matrix.
To do this, we use the function provided by SciPy svds that returns the singular values
and vectors of a given matrix. As required in Roseland, we set the parameter which to
"LM", which means we want to compute the largest singular values and their correspond-
ing vectors. The number of singular values and vectors that are computed is governed
by the argument n_svdpairs that is set when instantiating Roseland. According to the
documentation of SciPy [24], the order in which the singular values are returned is not
guaranteed. Thus, we sort them thereafter in descending order. After that, we rearrange
the singular vectors accordingly. In our implementation, we compute both the right and
left singular vectors. The reason for this is the potential later usage of the Roseland in-
stance for out-of-sample embedding, for which we need the left singular vectors as stated
in subsection 3.1.5. We ignore the imaginary parts of the singular values and vectors,
given they are small enough and, therefore, negligible. To finish with the calculation of the

28

3.3 Implementation

singular vectors, we change their coordinates. This is similar to the normalization of the
eigenvectors in Diffusion Maps, where the vectors are normalized by their norm. Here,
we rather multiply them by the degree matrix used to normalize the kernel matrix. This
step concludes the fitting process. The result is that the singular vectors and values of the
kernel matrix associated with the specific instance have been inferred. This means that we
have the needed properties to embed the data into a lower dimension.

We now continue with the other main step of Roseland: the transformation process, which
in our case is equivalent to out-of-sample embedding. As a reminder, we want to approxi-
mate the left singular vectors of an unseen set Z by using the inferred singular vectors and
the landmark points. The transformation process is illustrated in Figure 3.7.

Start
transformation

No

as a mode
been fitted?

Y
[s Compute out-of- x] [Raise an exception

~

ample kernel matri

J

Y
Normalize out-of-
sample kernel matrix

\ Z Y

[Approxmate singular »| Perform embedding End
vectors

transformation
Figure 3.7: Roseland transformation process

A prerequisite for the execution of this function is that the data set has already been fitted.
To assure this, we take advantage of the method check_is_fitted from the Scikit-learn
package. If the model has not been fitted a exceptions.NotFittedError is raised,
which is one of the requirements for the transformation method. In this case, the trans-
formation ceases. If that is not the case, then the process continues. We compute the out-
of-sample matrix by calculating the affinities between the points in the landmark set and
the unseen set Z. As stated in the formula in subsection 3.1.5, we need this matrix to be

29

3 Scalable manifold learning through landmark diffusion

of shape k£ x m with k being the number of samples in the to-be-transformed data set and
m the number of landmarks. Accordingly, we call the method compute_kernel matrix
on the landmark set and pass the new set as a parameter. We then normalize the resulting
matrix. This step is equivalent to the normalization in the fitting case. To get an approxi-
mation of the new left singular vectors we perform the Nystrom extension, which is essen-
tially calculating the result of the formula given in subsection 3.1.5. As described there, we
acquire an approximation of the left singular vectors. We then change their coordinates by
multiplying them by the diagonal matrix associated with the out-of-sample kernel matrix.
The last step is to perform the embedding. We calculate the new coordinates in the lower
dimension for each point in the unknown set by using the formula presented in subsection
3.1.4. For that, we simply plug in the approximated left singular vectors with the changed
coordinates in the formula. By multiplying them by the singular values that have been
raised to the power of 2 xt ime_exponent.

With this, the transformation ends and it results in an embedding in a lower dimen-
sion in the out-of-sample case. The selection of the dimension of this embedding dif-
fers slightly from the proposed approach in [17]. There, the first ¢’ singular values and
their corresponding vectors are selected. In our implementation, we have an attribute
target_coords. associated with the Roseland instance that is an array of the indices of
the singular vectors and values that should be returned. This attribute is however used
only after fitting and before approximating the singular vectors with Nystrom. Con-
sequently, the singular values and vectors remain with the same size, determined by
n_svdpairs. To be able to adjust the target_coords_, we provide a function named
set_target_coords that takes in the array of the desired indices. If no indices are pro-
vided by using this function, then the first n_svdpairs with the largest singular values
are used. By changing this property of Roseland, we not only make the implementation
more similar to the one of Diffusion Maps in datafold, but we also make the embedding
of Roseland more flexible. This way we can find a set of ¢’ singular pairs that unfold the
manifold into the dimension ¢’ in a more meaningful way than by simply taking the ¢’
pairs with the largest singular values. An option to infer this set is provided by the al-
ready discussed in section 2.3 LocalRegressionSelection class.

To embed the data set X into a lower dimension, we can first call rose. fit (X), and then
rose.transform(X). Alternatively, we can directly call rose.fit_transform(X).
This method executes f£it, after which it directly performs the embedding by using the
inferred singular vectors and values.

3.4 Evaluation and Test

In this section, we present the results from the unit tests of our implementation. Addi-
tionally, we evaluate the scalability and robustness of the algorithm, and we compare the
results to the ones we acquire when using Diffusion Maps.

30

3.4 Evaluation and Test

3.4.1 Unit testing

We use the Unit testing framework for Python to test the independent methods of Rose-
land, as well as how the separate parts of the algorithm work with each other. The tests
and the acquired results after running them are described in Table 3.1. The following tests
cover 94% of the Roseland module, which contains all the implementation code that has
been contributed in the scope of this thesis. We aim to test Roseland for similar test cases
to the ones Diffusion Maps has been tested for. In each test case, we use the same data and
landmark sets to acquire meaningful comparisons. Analogously, the used kernel function,
epsilon and cut_off values are also the same. The column “Pass?” represents if the
given test case passes.

3.4.2 Out-of-sample embedding

In subsection 3.1.5, we discussed how the model fitted by Roseland can be used to deter-
mine the new coordinates of a different set without evaluating its SVD. In comparison to
Diffusion Maps, we do not need the data set to perform the Nystrom extension, but only
the landmarks. As we can see in Figure 3.8, the regions of the computed coordinates for
each digit match the regions from the original embedding. We can therefore conclude that

out-of—samplerc!lqta

training data

3
@ 45k %3@%
01.53 1

. & .
2]]ﬁlé'h

a4
424
4
yd
Gff &
4
(& |
vl

(b) Out-of-sample embedding using the
Nystrom extension

(a) In-sample embedding with v := 0.25

Figure 3.8: In-sample and out-of-sample embeddings of the handwritten digits (0-5) by
using the first and second singular vectors

the Nystrom extension can successfully be used in the context of Roseland for the purpose
of out-of-sample embedding.

31

3 Scalable manifold learning through landmark diffusion

Table 3.1: Unit tests

Test name

Description

Pass?

test_dense._
sparse

The computed kernel matrix when no value for the
cut_off is set (the matrix is dense), and the kernel
matrix with a non-infinite cut _o f f should have
values that are close (rtol=1e-13, atol=1e-14).
The computed eigenvalues should be equal
(compared using the method
assert_equal_eigenvectors by datafold.

test_time_
exponent

The absolute result of the embedding after a very
small time step (t ime_exponent=1e-14) should be
almost identical (rtol=1e-9, atol=1e-13) to the
case when there is no time step at all.

test_nystrom_out._
of_sample_swiss_
roll

After setting the target coordinates, we should still be
able to access all singular vectors, the number of
which is specified by n_svdpairs. Furthermore, the
test provides an argument plot. When it is set to
True, the test case plots the first and fifth singular
vectors of the swiss roll data set after the fitting, and
the new coordinates of the said vectors after the
transformation, as well as the absolute difference
between the two plots. It is labelled ”out-of-sample”
because the original set is treated as the unseen set,
since the method fit_transform isnot being used
directly.

test_set_target._
coordsl

The absolute values of the new coordinates of the
selected target_coords should be close
(rtol=1e-10, atol=1e-14) to the new coordinates

of the said indices when no target_coords were set.

This should hold no matter if set _target_coords
was called before or after fitting the data.
Additionally, the computed singular vectors of the
examples with set target coordinates should be close
(rtol=1e-10, atol=1e-14) to the ones where no
indices for the embedding were provided. The final
condition that must hold is that the attribute
n_features_out_should be 2, so it conforms to the
two dimensions we are outputting.

32

3.4 Evaluation and Test

test_set_target_ | When passing invalid values to set_target_coords v
coords2 as arguments, an exception should be raised. In the
case of floating-point indices, a TypeError should be
raised. Negative indices and indices bigger than the
attribute n_svdpairs should resultin a
ValueError.

test_dist_kwargs | The value of cut_off should be set correctly when v
passing it through dist_kwargs and it should result
in the kernel matrix being sparse.

test_speed Prints the number of seconds the computation of the v
kernel matrix and svds takes, as well as their
combined time, and the total runtime of the fitting.

3.4.3 Accuracy

As we have briefly mentioned, Diffusion Maps always provides more accurate estimations
of the eigenvectors and eigenvalues than Roseland. Shen and Wu provide a numerical
comparison of the results from the fitting step of both algorithms in their work [21],
illustrated (and slightly modified) in Figure 3.9. In Roseland, they use the same number
of landmarks as data points. It is evident that the relative error of both the eigenvectors
and eigenvalues of Roseland is (almost) always bigger. This makes Roseland less suitable
than Diffusion Maps for applications where accuracy is vital.

3.4.4 Scalability

An area where we expect Roseland to outperform Diffusion Maps in the general case is
scalability [20]. The first aspect related to scalability that we look into is the maximal num-
ber of data points we can process with Roseland. We test this by fitting the s-shaped curve
data set on a Linux machine with a 6-core 3.7Ghz Ryzen 5 CPU and 16GB memory. The
maximum amount of data points that can be processed depends as expected on the size
of the landmark set. Another factor that contributes to the speed is the cut _of £ attribute,
because when it has a non-infinite value the kernel matrix is sparse and, in turn, more ef-
ficient to process than a dense matrix. Since calling the function optimize_parameters
on the landmark set is needed to get an approximation for the kernel scale, it makes using
this function almost a requirement before creating the Roseland instance. Another ad-
vantage that results from calling opt imize_parameters is that it always returns a value
for the cut_off. These two arguments are the reasons why in almost all our test cases we
set a value for cut _of f and work with a sparse matrix. As evident in the unit tests above,
the differences between the sparse and dense kernel matrix are negligible.

33

3 Scalable manifold learning through landmark diffusion

0.4
-8-DM inf-norm % ,ﬁ*ﬁ‘z 035 | |=DM
1/*-Rose inf-norm o ¥ 0 B
AN “ Rose
-8-DM 2-norm *#‘n‘%ﬂ:‘&'mfg 03
-#-Rose 2-norm (atcig
08 b 0.25
‘KDE
3 0.2
08 w -
9 b EL] bul
., —E
AT 1B BERE AN
L VATAWERA TR
02| oud 0.05 H/ \ \\z’ AT
ﬁﬁﬁ * Q \ Y] %

N

1 4 7 10 13 16 19 22 25 28 1 7 10 13 16 19 22 25 28
The i th eigenvector The i th eigenvalue

Figure 3.9: Comparison of the relative errors of the eigenvectors and eigenvalues after
fitting 2500 uniformly sampled points with Diffusion Maps (DM) and with
Roseland (Rose) with 2500 landmarks, modified from [21]

With these settings, we reach a limit for gamma=0. 1 of 4 000 000 data points with a runtime
of 15575 seconds, which correspond to roughly 4,3 hours. Beyond that point, the process
is either killed or not enough memory can be allocated for it to continue running. By in-
creasing or decreasing the size of the landmark set, the data set number limit changes. For
example, for gamma=0. 25 we can fit 2 500 000 data points in 14021 seconds or roughly 3,9
hours. The results of both runs are displayed in Figure 3.10. In comparison, on the same
machine, we are able to run Diffusion Maps for up to 550 000 data points from the same
manifold. The fitting in this run takes 3761 seconds, or around one hour.

All the following examples (except in Figure 3.12) are run on a Linux machine with a 4-
core 1.8Ghz i7 CPU and 8GB memory. To evaluate experimentally if the actual complexity
matches the calculated complexity in section 3.1.6 of O(nm?), we first plot the fitting time
against the number of data points from 10 000 to 100 000 with a time step of 10 000. We
use the function t ime it to measure the time and we perform the £it-function 10 times to
lower the effects of the scheduler. It is sufficient to call only fit and not fit_transform
because the fitting dominates the transformation in terms of computational complexity
since it performs the SVD. The landmark set contains 1000 points and its size is constant
for all data sizes. This way, we can assume that m is a constant in the complexity term.
Therefore, we expect the plotted runtime of Roseland against the data set size with a fixed
landmark size to resemble a linear function. It is easy to recognize that this is the case
when comparing it with a first degree polynomial with respect to n, as shown in in Figure
3.11a. Analogously, we fix the size of the data set and only change the values for the land-

34

3.4 Evaluation and Test

1e-s Y1vs. W W, vs. W, W, vs. Wy Yy vs. ¥,
5 q 0.0001 q
- - (\ , « = |\ ,
0 1 0.0000 - g
—5 1 : —0.0001]
le-s WYivs. s W, vs. Wy W, vs, Wy Y vs. W,
5 q 0.0001 4 q
0—, / \ / 0.0000—\ \ \ l
=51 1 —0.0001 - 1
le-5 Y1vs. Y Y, vs. Vg Wy vs. Ws W) vs. W
5 q 0.0001 4 q
01 l 15 0.0000 A 1
=51 1 —0.0001 l 1
T T T T T T T T T T T T
-2 0 2 -2 0 2 -5 0 5 -5 0 5
le-5 le-5 le—-5 le-5

(a) 4 million data points, v := 0.1, fitting time (b) 2.5 million data points, v := 0.25, fitting time
= 155755 = 14021s

Figure 3.10: Potential embeddings of the s-shaped curve with different data and
landmark set sizes

mark set. In that case, the plot is expected to resemble a quadratic function. When fixing
the data set and using varying landmark set sizes we obtain the result illustrated in Figure
3.11b. To be able to compare the plotted runtimes with the expected quadratic function, we
additionally plot the polynomial com? + c¢;m + co. To estimate the values for c; we utilize
the function polyfit from NumPy [12]. We then use poly1ld from the same package to
encapsulate the polynomial and then plot it. As we can see, the runtimes are close to the
plotted function. In both cases, the runtime is improved by working with a sparse matrix.
We additionally plot the runtime when both the data and the landmark set change with
the same factor, meaning we use Roseland for different data sizes but with the same value
for gamma. Because m := 0.1n, we expect the exhibited complexity to be cubic. Therefore,
we plot a function con® + ¢1n? + con + c3 by using polyfit and polyld to visually assess
if the plotted runtimes correspond to the overall complexity. We can see in Figure 3.12 that
the plotted runtimes roughly correspond to the function. Considering all these arguments,
we can conclude that the implementation exhibits the expected complexity.

Because in our implementation m := yn, the complexity is implicitly in O(n?®), which cor-
responds to the complexity of Diffusion Maps. However, fixing the landmark set improves
said complexity gradually to a linear one, as evident in 3.11a. When the landmark set size
is not fixed, Roseland still has a better runtime than Diffusion Maps. The reason for this is

35

3 Scalable manifold learning through landmark diffusion

90 400 .
® Roseland é — yEeOo(im?)

804 — ye€oin) 350 { @ Roseland
8 701 © 300
S 604 S
g ? 250 -
= £
= 50 - —
= £ 200
-
© 40 4 °
E E 150
£ 30 1 e
2 = 100

201

50 4
101 @
T T T T T T T T
20000 40000 60000 80000 20000 40000 60000 80000
data set size (n) landmark set size (m)

(a) Runtimes of fitting 10 times a data set with (b) Runtimes of fitting a data set with 100 000
the size n by using 1000 landmarks points using a landmark with the size m

Figure 3.11: Evaluating the complexity by comparing the runtimes to a polynomial of first
(left) and second (right) degree when fixing one variable and varying the
values of the other one.

50004 ® Roseland e
— y€oin?)
4000

3000

2000 H

runtime of fit (in seconds)

1000 +

T T
0.0 0.5 1.0 1.5 2.0 2.5
data set size (n) le6

Figure 3.12: Evaluating the complexity by comparing the runtimes to a third-degree
polynomial. The relative size of the landmark set is 0.1

36

3.4 Evaluation and Test

the smaller kernel matrix. The runtime comparison between the two algorithms is shown
in Figure 3.13. It is important to note that in both algorithms we use a sparse matrix, mean-
ing they both have improved runtimes as opposed to the dense matrix cases. As expected,
if the landmark set size increases too much, Roseland loses its scalability advantage, and
in some cases results in a worse runtime than Diffusion Maps.

® Roseland b 400 - ®

X DM ®
200 A 350 4

300 4
150 A

250 A
100 ~ 200 -

150 A

runtime of fit (in seconds)
x
runtime of fit {in seconds)

50 4 x e
* 100 -

X & o © o -—- DM

o4 & L s0le @ ® PRoseland

T T T T T T
20000 40000 60000 80000 0.2 0.4 0.6 0.8 1.0
data set size (n) data set size (n)

(a) Varying data set sizes, gamma=0.25 (default (b) 100 000 data samples and varying relative
setting) landmark set sizes

Figure 3.13: Runtime comparisons to Diffusion Maps

3.4.5 Robustness to Noise

Another issue which spectral embedding approaches are facing is noisy data. According
to [20], Roseland can tolerate rather low signal-to-noise ratios. In this subsection, we inves-
tigate the robustness of Roseland to noise by visually comparing the potential embeddings
of the s-shaped curve to the results acquired by Diffusion Maps. For Diffusion Maps, we
use the Gaussian kernel and the CKNN kernel [4]. For Roseland we consider two cases:
noisy data set and noise-free landmark set, and noisy landmark set and noisy data set. We
do not take the case of noise-free data and noisy landmarks into consideration since we
aim to see the behaviour of both algorithms when the data set itself is noisy to be able
to make a meaningful comparison. We use 10 000 data points from the data set, and the
size of the landmark set has a value of 2 500. The noise we add is Gaussian with a stan-
dard deviation of 0.3. We specify the standard deviation when sampling the data set using
the funcion make_s_curve from Scikit-learn. As evident in Figure 3.14, Roseland with a
noise-free landmark set handles noise better than Diffusion Maps with a Gaussian kernel.

37

3 Scalable manifold learning through landmark diffusion

Y, vs. Y Y,vs. Y
Y, vs. Yy Y, vs. W, ! 0 ! 2
0.02 4
- C -
#ﬂ - s N
0.00 j® emr « = J' 0.00 1 U
—0.05 B —0.02 -
T T T T T T T T T T
Y, vs. Y3 Y, vs. Y, wl V. w3 wl Vs. w4
0.02 4 -
(Y
- ™ Y
0.00{® 1 ™ “ Q « ‘
’ * el W ® T4 ¥ 0.00 1/ oy 4
¢ |
—0.05] -0.02 i
T T T T T T T T T T
Y, vs. Yg Y; vs. Yg W, vs. Yy Y; vs. Wg
L4 0.02 :
® ; N 1
0.00 1 il . d’ 'q o 4RI ¥
°® "’ 0.00 ‘).‘ L4 " 4 ‘. v ¢ -‘+
- LI
_OIOS ! T | T T _0‘02 L T T T L T T T :
2.500 ~ 3.001 2.500 3.001 —0.01 000 0.01 -0.01 000 0.01

le—15+1.0000484215e—-2 1e-15+1.0000484215e-2

(b) Diffusion Maps with a Continous NN

(a) Diffusion Maps with a Gaussian kernel kernel wiith 10 neighbours, and § — 6.8

w]_ VS, wo l‘I"l Vs. wZ
W; vs. Yy W vs. W, 0.0005 -
0.002 K. 4| ooo00 A o0 4
0,000 o | e o - »
® - 1
0002 | 0.0005
T T T T T T
T T T T T T w w w w
1 V5. Wa 1 V5. Wy
W, vs. Uy W, vs. W, 0.0005 -
P e ® L P ‘.
i]
00027 I * 0.0000 - ‘
] P i e [] -
0.000 Y, \ b
0,002 -0.0005
T T T T T T
T T T T T T w w w w
1 vs. Wy 1 V5. Vg
W; vs. Yy W; vs. Wg 0.0005
0.002 . _ 0.0000 t ° ., ‘
0.000 o o .
& : ¥ e
0002) ~0.0005

—0.0002 0.0000 0.0002 -0.0002 0.0000 0.0002

—0.002 0.000 0.002 -0.002 0.000 0.002

(d) Roseland with a landmark set (2500
points) with added Gaussian noise with
the same o

(c) Roseland with a noise-free landmark set
with 2500 points

Figure 3.14: Robustness comparisons of Roseland and Diffusion Maps with additive
Gausssian noise with a o = 0.3. The potential embeddings of the s-curve with
10 000 data points are given.

38

3.4 Evaluation and Test

Note that the approximation of the Laplace-Beltrami operator with the same number of
data and landmark points for the s-shaped curve is not accurate even for noise-free sets,
as pictured in section 3.2.2. As expected, the resulting potential embeddings are noisier
when using a noisy landmark set, as pictured in Figure 3.14d. However, they are still more
accurate than those acquired after running Diffusion Maps with a Gaussian kernel. It is
a feasible assumption that in some application areas, collecting a small landmark set that
is not noisy is relatively easy and not as computationally demanding as collecting a large
data set that is not noisy [17]. When comparing the results of Roseland with a landmark
set that is not noisy to the ones of Diffusion Maps with a CkNN kernel that is illustrated in
Figure 3.14b, Roseland yields less noisy results. The results of Diffusion Maps, however,
approximate the Laplace-Beltrami operator better. This is in part due to a well-chosen
value for . When compared to Roseland with noisy landmarks, Diffusion Maps with a
CKkNN kernel looks similar in terms of how noisy the results are.

Another way of evaluating the robustness to noise could be to compare how close the
eigenvalues are to the ground truth. By doing so, we can achieve a numerical comparison
of the error terms for all four described approaches.

39

4 Conclusions

In this thesis, we implement the novel algorithm Roseland in the datafold [16] package.
We evaluate the implementation by comparing the results of Roseland to these of Diffusion
Maps in terms of scalability and robustness to noise.

4.1 Summary

In chapter 2 we discuss the state of the art by describing three approaches to dimension-
ality reduction: PCA (linear), Isomap (manifold learning), and Diffusion Maps (manifold
learning). In addition, we present the Python package datafold and some of its function-
alities. We then continue in chapter 3 by discussing the idea of the Roseland algorithm,
our approach to choosing the landmarks and the size of the landmark set. Furthermore,
we specify how we implement the algorithm in datafold by describing its architecture and
the flow of the main functions. We finally evaluate our results by comparing them to the
ones we acquire from the implementation of Diffusion Maps in the same package. For the
comparisons, we consider the scalability and robustness to noise.

4.2 Discussion

The problem of high dimensionality emerges from the big and complex data sets, with
which machine learning algorithms have to work. There are different approaches, both
linear and non-linear that address the given problem. Here, we describe a manifold learn-
ing algorithm called Roseland that bears similarity to Diffusion Maps. Both algorithms
aim at spectral embedding by a diffusion process. What sets Roseland apart from Dif-
fusion Maps is the landmark set that is used when calculating the affinities between the
data points. In effect, Roseland works with a landmark-set affinity matrix that contains the
proximities between the data points and the landmarks. However, there is no equivalent
to the normalization with o performed in Diffusion Maps that can remove the effects as-
sociated with the density of the data.

Our implementation in datafold provides means of inferring the singular vectors and val-
ues of the normalized kernel matrix (by fitting the data set), in-sample, and out-of-sample
embeddings. The user can specify which singular vectors and values are used for the em-
bedding. The out-of-sample extension is performed similarly to Diffusion Maps, with the
Nystrom extension. In contrast to Diffusion Maps, we do not need the entire data set to
perform it, rather only the landmarks.

41

4 Conclusions

The landmark set is the central part of Roseland. In our implementation, the user can pro-
vide a landmark set or let a landmark set be subsampled from the data set by defining its
relative size gamma. The bigger the landmark set (or gamma) is, the faster the convergence
rate to the Laplace-Beltrami operator is. However, even when the landmark set has the
same size as the data set (gamma:=1.0), Roseland has a worse variance than Diffusion
Maps, making it less accurate [21]. This brings us to the conclusion that using a large
landmark set is not beneficial. Since Roseland is rather aimed at scalability it is best to
keep the landmark set small. This can positively affect the runtime performance. When
the landmark set size is fixed even the computational complexity is improved. Roseland
exhibits better runtimes than Diffusion Maps in the majority of cases. Additionally, it is
able to process data sets with more points than Diffusion Maps. In our implementation,
Roseland can handle point cloud data sets. Depending on the hardware, the number of
points used in the landmark set, and if the cut_off attribute is set to some non-infinite
value, a large number of points can be processed, e.g., 4 000 000 data points with 400 000
landmarks. On the same machine, Diffusion Maps runs for up to 550 000 data when using
a sparse matrix. An exception to the better scalability is when the landmark set has a large
number of points. If the relative size of the landmark set surpasses 0.7, the runtime of the
algorithm worsens significantly. In some particularly unfavourable cases, it is higher than
the runtime of Diffusion Maps.

Another area where Roseland performs better than classical Diffusion Maps is the robust-
ness to noise. The landmarks implicitly act as the “true” neighbours in the kNN scheme
[17], and thus Roseland yields less noisy results. When visually compared to Diffusion
Maps with CkNN kernel, the results of Roseland exhibit similar (or better in the case of
not noisy landmark set) signal-to-noise ratios.

4.3 Outlook

The implementation needs further testing on different data sets, in particular, with real-
world data. To be able to be fully integrated in the datafold package, the implementation
of Roseland needs to provide support for time series. Additionally, to be able to be used
in the same contexts as Diffusion Maps in all cases, the inverse transformation for Rose-
land has to be researched and implemented. The inverse transformation has the goal of
mapping the coordinates from the (lower-dimensional) parameter space of the manifold
to the (higher-dimensional) feature space of the original data set. A further improvement
of the implementation is associated with a better design of the landmark set. To be able
to remove the impact of a non-uniformly distributed data set, the landmark set should be

sampled such that py (z) —1— [20], where p signifies the probability density function.

P (z)
There is currently ongoing research into how to best design the landmark set.

42

Bibliography

[1] Hervé Abdi and Lynne] Williams. Principal component analysis. Wiley interdisci-
plinary reviews: computational statistics, 2(4):433-459, 2010.

[2] Mukund Balasubramanian, Eric L. Schwartz, Joshua B Tenenbaum, Vin de Silva, and
John C Langford. The isomap algorithm and topological stability. Science, 295(5552):7—
7,2002.

[3] Yoshua Bengio, Jean-frangcois Paiement, Pascal Vincent, Olivier Delalleau, Nicolas
Roux, and Marie Ouimet. Out-of-sample extensions for lle, isomap, mds, eigenmaps,
and spectral clustering. Advances in neural information processing systems, 16:177-184,
2003.

[4] Tyrus Berry and Timothy Sauer. Consistent manifold representation for topological
data analysis. arXiv preprint arXiv:1606.02353, 2016.

[6] Lawrence Cayton. Algorithms for manifold learning. Univ. of California at San Diego
Tech. Rep, 12(1-17):1, 2005.

[6] Alan Kaylor Cline and Inderjit S Dhillon. Computation of the singular value decom-
position. 2006.

[7] Ronald R Coifman and Stéphane Lafon. Diffusion maps. Applied and computational
harmonic analysis, 21(1):5-30, 2006.

[8] Carmeline J Dsilva, Ronen Talmon, Ronald R Coifman, and Ioannis G Kevrekidis. Par-
simonious representation of nonlinear dynamical systems through manifold learning;:
A chemotaxis case study. Applied and Computational Harmonic Analysis, 44(3):759-773,
2018.

[9] Angela Fernidndez, Ana M Gonzélez, Julia Diaz, and José R Dorronsoro. Diffusion
maps for dimensionality reduction and visualization of meteorological data. Neuro-
computing, 163:25-37, 2015.

[10] Charless Fowlkes, Serge Belongie, Fan Chung, and Jitendra Malik. Spectral grouping
using the nystrom method. IEEE transactions on pattern analysis and machine intelli-
gence, 26(2):214-225, 2004.

[11] Dimitrios Giannakis. Dynamics-adapted cone kernels. SIAM Journal on Applied Dy-
namical Systems, 14(2):556-608, 2015.

43

Bibliography

[12] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli
Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J.
Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew
Brett, Allan Haldane, Jaime Ferndndez del Rio, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi,
Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature,
585(7825):357-362, September 2020.

[13] Jingtian Hu and Andrew L Ferguson. Global graph matching using diffusion maps.
Intelligent Data Analysis, 20(3):637-654, 2016.

[14] Ian T Jolliffe and Jorge Cadima. Principal component analysis: a review and recent
developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 374(2065):20150202, 2016.

[15] Rasmus Munk Larsen. Lanczos bidiagonalization with partial reorthogonalization.
DAIMI Report Series, (537), 1998.

[16] Daniel Lehmberg, Felix Dietrich, Gerta Koster, and Hans-Joachim Bungartz. datafold:

data-driven models for point clouds and time series on manifolds. Journal of Open
Source Software, 5(51):2283, 2020.

[17] Yu-Ting Lin, Hau-Tieng Wu, and Chao Shen. Robust and scalable manifold learning
via landmark diffusion for long-term medical signal processing. bioRxiv, 2020.

[18] Arik Nemtsov, Amir Averbuch, and Alon Schclar. Matrix compression using the
nystrdom method. Intelligent Data Analysis, 20(5):997-1019, 2016.

[19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825-2830, 2011.

[20] Chao Shen. Robust and Scalable Unsupervised Learning via Landmark Diffusion, From
Theory to Medical Application. PhD thesis, Duke University, 2021.

[21] Chao Shen and Hau-Tieng Wu. Scalability and robustness of spectral embedding;:
landmark diffusion is all you need. arXiv preprint arXiv:2001.00801, 2020.

[22] Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric frame-
work for nonlinear dimensionality reduction. science, 290(5500):2319-2323, 2000.

[23] Laurens Van Der Maaten, Eric Postma, Jaap Van den Herik, et al. Dimensionality
reduction: a comparative. | Mach Learn Res, 10(66-71):13, 2009.

44

Bibliography

[24]

[25]

[26]

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy,
David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Niko-
lay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey,
[lhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perk-
told, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M.
Archibald, Anténio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.
Nature Methods, 17:261-272, 2020.

Wes McKinney. Data Structures for Statistical Computing in Python. In Stéfan van der
Walt and Jarrod Millman, editors, Proceedings of the 9th Python in Science Conference,
pages 56 — 61, 2010.

Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis. Chermo-
metrics and intelligent laboratory systems, 2(1-3):37-52, 1987.

45

	Abstract
	Introduction
	State of the art
	Dimensionality reduction
	PCA
	Isomap

	Diffusion Maps
	Datafold
	Roseland algorithm

	Scalable manifold learning through landmark diffusion
	The Roseland algorithm
	Input and output
	Normalization
	Fitting
	Embedding
	Nyström extension
	Computational complexity

	The landmark set
	Acquiring the landmark set
	Choosing the size

	Implementation
	Evaluation and Test
	Unit testing
	Out-of-sample embedding
	Accuracy
	Scalability
	Robustness to Noise

	Conclusions
	Summary
	Discussion
	Outlook

	Bibliography

