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Abstract: Annotating microscopy images for nuclei segmentation by medical experts is laborious
and time-consuming. To leverage the few existing annotations, also across multiple modalities,
we propose a novel microscopy-style augmentation technique based on a generative adversarial
network (GAN). Unlike other style transfer methods, it can not only deal with different cell assay
types and lighting conditions, but also with different imaging modalities, such as bright-field and
fluorescence microscopy. Using disentangled representations for content and style, we can preserve
the structure of the original image while altering its style during augmentation. We evaluate our
data augmentation on the 2018 Data Science Bowl dataset consisting of various cell assays, lighting
conditions, and imaging modalities. With our style augmentation, the segmentation accuracy of the
two top-ranked Mask R-CNN-based nuclei segmentation algorithms in the competition increases
significantly. Thus, our augmentation technique renders the downstream task more robust to the test
data heterogeneity and helps counteract class imbalance without resampling of minority classes.

Keywords: style transfer; data augmentation; nuclei segmentation

1. Introduction

The evaluation of cell-level features is a key task in the histopathological workflow.
Features, such as nuclei shape and distribution, are used to determine cell, tissue, and
cancer types and are therefore relevant for the clinical diagnosis of cancer, e.g., for cancer
identification, grading, and prognosis [1]. Deep learning serves as a promising tool to
quantify these features in an automated manner [2]. However, the performance of these
models depends heavily on the quality and quantity of training data since they require
accurate and time-consuming segmentation masks. To tackle this, the Kaggle competition
2018 Data Science Bowl (DSB) (https://www.kaggle.com/c/data-science-bowl-2018 (ac-
cessed on 15 January 2022)) was initiated to find segmentation algorithms that are robust
and effective in various microscopy set-ups, cell lines, and, most significantly, types of light
microscopy. The nuclei presented in the images are from a variety of creatures, including
humans, mice, and flies. In this dataset, most of the images are stained primarily with
DAPI or Hoechst. Hematoxylin and eosin-stained tissue samples are also included in
the dataset. Among 3891 submissions during the challenge, the top-performing methods
were mostly based on the common segmentation network architectures, Mask R-CNN [3]
and U-Net [4]. The most important factors influencing the competition ranking were the
amount of training data (some teams also used private training data aside from the data
provided by the challenge organizer), complex pre-processing and post-processing, and
ensemble learning. A common problem that encumbers the performance is the dataset’s
bias: while segmenting fluorescent images, which make up most of the training set, is
relatively easy and accurate, segmenting less-represented image types, such as bright-field
images of stained tissue sections, is difficult and inaccurate [5].
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Style transfer has been widely used for image synthesis from one modality to another,
e.g., from computed tomography (CT) to magnetic resonance imaging (MRI) [6], from MRI
to CT [7], from MRI to Positron Emission Tomography (PET) [8]. It has also been shown to
be effective for histological images, e.g., for stain color augmentation [9]. In terms of style
transfer architectures, conditional GAN (cGAN) [10] can be used for aligned image pairs
and its generator can generate images of a certain class. For instance, Pix2pix [11] is a type
of cGAN for paired image translation, in which the input image is conditional on the output
pair. It receives a whole image as input rather than noise and class vector. The discriminator
of Pix2Pix [11], called PatchGAN, generates a matrix of classifications instead of a single
output for optimization. Additionally, Pix2pix [11] changed the generator to a U-Net [4]
architecture. CycleGAN [12], on the other hand, introduces the cycle-consistency loss to
overcome the dependency of paired images. It can be trained on two independent datasets.
Unlike CycleGAN which uses a single encoder, DRIT++ [13] introduces a structure with
two encoders and is capable of decomposing the image into domain-invariant content
and domain-specific feature encoding. Another well-known architecture is StyleGAN [14],
which increases the diversity of outputs and has more control over image features by better
disentangling the latent factors of variations.

Among the top-25 submissions in the competition, the team BIOMAGic introduced
the only approach using style transfer. They refined their approach after the competition
and named it NucleAlzer [15]. In addition to the DSB dataset, they included annotated
data from twelve data sources increasing the number of training images from 735 to 1102
and the number of annotated nuclei from 33,814 to 80,692. For style transfer, they trained
a Pix2pix [11] style transfer network (from the original image to segmentation mask) for
each cluster of similar images in the unannotated data, resulting in a total of 134 networks.
With these, 20 synthetic image/mask pairs of each style with nuclei at certain places are
generated and added to the training set to train Mask R-CNN [3] for instance segmentation.
The winner [5] of the competition used an ensemble technique of a total of 32 models
based on eight different model architectures. Pretrained Resnets, Dual Path networks, and
Inception-Resnets are used as encoders and U-Net or feature pyramid networks (FPN) [16]
as decoder architectures. The second-best approach used a single pretrained FPN-based
neural network model and two customized output layers. A multitask framework is used
to train the customized output layers. Additionally, they introduced a new loss function
that penalizes the instance errors based on the object’s size.

In this paper, we propose to facilitate network training by a GAN-based style transfer
data augmentation technique. By synthesizing less-represented image types from well-
represented ones, our style augmentation increases the number of images of minority types
in the training set. More specifically, we use disentangled representations in the style
transfer, i.e., we decompose the input into its content and style representations and only
alter the style without changing the content. Since the structure is thereby preserved, the
style augmented images have the same nuclei locations and shapes as the original image.
Therefore, our augmentation technique presents the segmentation network a multitude
of styles already during training, rendering it more robust to the heterogeneity in the
test data. Our experiments on the DSB challenge dataset demonstrate that by increasing
the variety in the training dataset, our augmentation technique improves the overall
segmentation accuracy.

2. Materials and Methods

Our nuclei segmentation workflow consists of three steps: data augmentation (split into
clustering and training of a style transfer network), training of an instance segmentation net-
work, and evaluating the segmentation network with test time augmentation (see Figure 1).
In the following, we detail each of the three steps.
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Figure 1. (a) Overview of our nuclei segmentation pipeline with multi-modality style transfer as data
augmentation, Mask R-CNN as instance segmentation network, and test time augmentation for the
final prediction. (b) Our style transfer GAN is trained with a cross-cycle consistency loss that does
not need paired data. The right box shows how it is applied for data augmentation during training of
the nuclei segmentation network.

2.1. Dataset

The dataset was provided by the competition organizers and is publicly available in
the Broad Bioimage Benchmark Collection with access number BBBC038 (https://bbbc.
broadinstitute.org/BBBC038 (accessed on 15 January 2022)) . It is divided into three sets:
a training set of 670 images with nuclei segmentation masks provided (29,464 nuclei), a
first-stage test set of 65 images (4152 nuclei), and a second-stage test set, which includes
3019 images (37,333 nuclei). The evaluation of nuclei segmentation for the annotated first-
stage test set was disclosed later by the organizers. However, the official evaluation and
ranking of a segmentation algorithm are based on the performance of the second-stage test
set, which hides the annotated nuclei masks from the participants. Both training and test
images are highly varied in terms of large experimental settings such as lighting conditions,
cell lines, nuclei densities, and microscopy imaging modalities (with a few examples shown
in Figures 1a and 2). It is worth noting that the test set is not only substantially larger than
the training set, but also includes novel image modalities rendering the segmentation task
extremely challenging.

Figure 2. (a) PCA decomposition of hue saturation values of all training images and their class
distribution. Each point represents one image, colored according to the corresponding cluster.
(b) Exemplary images for each cluster.

https://bbbc.broadinstitute.org/BBBC038
https://bbbc.broadinstitute.org/BBBC038
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2.2. Data Augmentation Step I: Clustering Training Images into Different Modalities

Since the dataset does not contain any metadata that can be used to determine the
image modalities, we first divide our training images into multiple domains to perform
image style transfer. Each cluster should ideally correspond to one imaging modality.
We used the classic K-means algorithm to divide the training images into six distinct
clusters based on their hue saturation value (HSV). Furthermore, we observed that the
fluorescent images are typically dark and have low contrast. So we use the Contrast Limited
Adaptive Histogram Equalization (CLAHE) (https://scikit-image.org/docs/dev/auto_
examples/color_exposure/plot_equalize.html (accessed on 15 January 2022)) for contrast
enhancement. For each section of an image, CLAHE computes a contrast histogram and
adjusts the local contrast accordingly if that section is darker or brighter than the rest of
the image.

2.3. Data Augmentation Step II: Multi-Modality Style Transfer

As shown in Figure 1b, for two exemplary images from different domains, the modality
transfer model based on [13] first decomposes each image into a domain-invariant content
encoding using the content encoder Ec and a domain-specific attribute encoding using
the attribute encoder Ea, respectively. The content encoding and the attribute encoding,
together with the domain information, can then be used to generate a synthetic image,
where the structure is preserved. To create various synthetic images as augmentation
during training of the segmentation network, we sample attribute encoding and domain
vector randomly, while leaving the content-encoding fixed (see Figure 1b). We apply this
augmentation technique randomly to half of the training images additionally to standard
augmentations.

The underlying assumption of the style-transfer model is that the content space
is shared across the domains. Therefore, during training, the content vector zc can be
exchanged between the modalities. Since the dataset is unpaired, i.e., we do not have
ground truth for the style transfer, we use a cross-cycle consistency loss Lcc for training
(see Figure 1b): The content encoding of two images from different modalities is swapped
and a first image translation is generated. Subsequently, the translation is repeated, again
by computing the encodings and then swapping the content encoding. The second image
translation should resemble the original input, which is enforced by applying a loss based
on the L1-norm. A classical adversarial loss Ld to enforce realistic synthetic images and
an adversarial loss on the content encoder Lc to eliminate domain-specific information in
the content encodings are also applied. Additionally, an L1-loss for image reconstruction,
Lrecon, is applied: the original image is decomposed into its content and attribute encodings
and then reconstructed using those representations. To enable sampling from the latent
space, Llatent is an L1-loss for latent space reconstruction, and the loss LKL enforces the
latent attribute space to be distributed according to a prior Gaussian distribution. Please
refer to [13] for a detailed explanation of each loss. The final objective function is given by

Ltotal = wccLcc + wcLc + wdLd + wreconLrecon + wlatentLlatent + wKLLKL, (1)

where the parameters w are used to weight the loss terms.
Since the content encoding is fixed during augmentation, the augmented image has

the same nuclei locations and shapes as the input image and thus inherits the nuclei
segmentation mask from the original image. This is a key difference between our approach
and a common CycleGAN-based image style transfer [12], as there is no guarantee of
content invariance after the CycleGAN style transfer.

2.4. Mask R-CNN for Instance Segmentation

For nuclei segmentation, we used two implementations published in the competi-
tion leaderboard (https://github.com/Lopezurrutia/DSB_2018 (accessed on 15 January
2022)) (https://github.com/mirzaevinom/data_science_bowl_2018 (accessed on 15 Jan-

https://scikit-image.org/docs/dev/auto_examples/color_exposure/plot_equalize.html
https://scikit-image.org/docs/dev/auto_examples/color_exposure/plot_equalize.html
https://github.com/Lopezurrutia/DSB_2018
https://github.com/mirzaevinom/data_science_bowl_2018
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uary 2022)) as baselines. Both teams use Mask R-CNN [3] for segmentation. The imple-
mentations differ in the image pre-processing and preparation of the network training.
We choose these two methods because of their publicly accessible code, sufficient doc-
umentation, excellent performance (both methods were ranked among the top-5 in the
leaderboard), as well as relatively simple network training (only one model needs to be
trained, by contrast, the top-1 approach trained 32 models, which would consume con-
siderably more training time and resources). Notably, the second approach developed by
the team mirzaevinom. used additional data beyond the data provided by the organizer.
However, we only used the annotated training data provided by the organizer to train our
model, so our model performance differs slightly from their results reported in the leader-
board. For each method, we train two models, one with and one without multi-modality
style transfer as augmentation technique.

2.5. Test Time Augmentation

In the inference stage, we use test time augmentation (TTA). TTA applies simple
augmentations on the test images, e.g., rotating, flipping, color jittering, and image rescaling,
and aggregates the model predictions on the augmented images. Thereby, TTA improves
the robustness of Mask R-CNN without any additional training cost, leading to an increase
in segmentation accuracy when compared to predicting only on the original image [17].

2.6. Implementation Details

All models were trained on Intel Xeon 6230 system with 128 GB of RAM and a Tesla
V100 graphics card. The style transfer model is trained with batch size two and a learning
rate of 0.0001 for 600 epochs. For the optimizer, we used the Adam optimizer with β1
0.5 and β2 0.999 and a weight decay of 0.0001. We trained the model on five domains
and applied the style transfer augmentation with probability 0.5 in the segmentation
downstream task.

3. Results
3.1. Clustering into Modalities

Figure 2b shows that the training set can be clustered into six sets that correspond
indeed to the different imaging modalities present in the dataset. These clusters can also
be seen in the low-dimensional principal component analysis (PCA) embedding of the
training data visualized in Figure 2a. We observe that the training set is highly imbalanced:
over 75% of all training images are fluorescent images, whilst the remaining bright-field
images are grouped into five distinct, partly very small clusters.

3.2. Improved Segmentation Performance by Style Transfer Augmentation

Figure 3 shows a few examples of images created by our multi-modality style transfer
GAN from one domain to the others. Visual assessment reveals that our generated images
resemble real ones, implying that they are well suited for the augmentation task.

We quantify the add-on value of our proposed augmentation method by training
models with and without augmentation of the multi-modality style transfer GAN. The final
evaluation score is based on the object-level errors. If the predicted mask and segmented
object have an Intersection-over-Union (IoU) score greater than a predefined threshold,
they are regarded as correctly identified. The official competition metric S computes a
precision score for semantic segmentation by evaluating true positives (TP), false positives
(FP), and false negatives (FN) at several IoU thresholds t and then averaging over these, i.e.,

S =
1
|T| ∑

t∈T

TP(t)
TP(t) + FP(t) + FN(t)

, where T = {0.1, 0.15, . . . , 0.95}. (2)

After that, the average of all the score is calculated over all images. By submitting
our segmentation results of the second-stage test dataset to the Kaggle competition (https:

https://www.kaggle.com/c/data-science-bowl-2018/submit
https://www.kaggle.com/c/data-science-bowl-2018/submit
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//www.kaggle.com/c/data-science-bowl-2018/submit (accessed on 15 January 2022)), we
obtain the final evaluation score. As shown in Table 1, including style transfer augmentation
in the method increased the nuclei segmentation accuracy from 53.2% to 60.9% for the
method Deep Retina and 59.9% to 61.3% for method Inom Mirzaev, respectively. Notably,
a score around 61% was ranked among the top-5 and almost only achieved by using
additional datasets. In Figure 4, we can observe that our augmentation technique using
the multi-modality style transfer GAN improves the segmentation results, especially in
less-represented image modalities such as bright-field images of stained tissue sections and
fluorescent images of large nuclei (most fluorescent images in the training set contain only
small nuclei).

Figure 3. Examples of the outcome of multi-modality style transfer. First column: original images.
Remaining columns: result of each domain’s multi-modality style transfer with self-reconstruction
on the diagonal, highlighted in blue boxes.

Figure 4. Nuclei segmentation results without (first row) and with (second row) our augmenta-
tion. Agreeing mask contours are shown in blue. Yellow contours in the second row show the
improvements compared to the first row.

https://www.kaggle.com/c/data-science-bowl-2018/submit
https://www.kaggle.com/c/data-science-bowl-2018/submit
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Table 1. Evaluation scores of different segmentation methods.

Method Score [↑]
BIOMAGic 0.570

Deep Retina w/o our augmentation 0.532
Deep Retina w/ our augmentation 0.609

Inom Mirzaev w/o our augmentation 0.599
Inom Mirzaev w/our augmentation 0.613

In addition to the above two baseline methods, we also quote the result from the
team BIOMAGic (57.0% IoU), as it was the only one to use style transfer among the top-25
submissions during the competition. Unlike our style transfer between multiple microscopy
image modalities, BIOMAGic (and its successor nucleAIzer [15]) performed style transfer
between images and their segmentation masks, which can be trained only by annotated
images. In contrast, our method can be trained in an unsupervised fashion using images
without annotated segmentation masks. In particular, their style transfer approach required
training 134 networks for fine-grained image clusters for the same competition, whereas
our approach only required the training of one network.

4. Discussion

Although our approach is effective in transferring style across the majority of modali-
ties, it also has limitations. When using our style transfer GAN from image modalities that
only show nuclei to another modality where both nuclei and cytoplasm are visible, unre-
alistic images are generated as demonstrated in Figure 5. This is because the underlying
assumption of our model is violated. In particular, these two modalities do not only differ
in style, but also in content; hence, the content and style cannot be efficiently disentangled.

Our style transfer model is built based on the DSB dataset, which mostly consists
of images from fluorescence microscopy, primarily stained with DAPI or Hoechst, but
also includes tissue samples stained with hematoxylin and eosin. Currently, our model is
able to transfer the style between the five modalities contained in this dataset. Generally,
it can be trained on all kinds of imaging modalities that share the same morphological
structure and thereby fulfill our training assumption. Apart from the standard microscopy
approaches above, our work can also be applied to images acquired by alternative mi-
croscopy technologies such as lens-free microscopy, a more cost-effective option that does
not require expensive optical lenses and has a wider field of view. As a result, a much more
affordable microscopy technique capable of monitoring cells continuously within an incu-
bator and ideal for low-cost point-of-care devices aiming at resource-limited settings [18].
Our future work will involve transferring the style of lens-free microscopy images to the
existing modalities.

Figure 5. The style transfer GAN fails when images at two modalities contain different content.

5. Conclusions

In summary, we developed an augmentation technique using a multi-modality style
transfer GAN to transfer microscopy nuclei images from one modality to another. During
training a Mask R-CNN for nuclei segmentation, this augmentation strategy facilitates the
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training by increasing the diversity of the training images, hence making it more robust to
the test data heterogeneity and resulting in better segmentation accuracy.
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