

Carbon Dioxide Solubility in Nonionic Deep Eutectic Solvents Containing Phenolic Alcohols

Ahmad Alhadid¹*[†], Javid Safarov²*[†], Liudmila Mokrushina³, Karsten Müller² and Mirjana Minceva¹

¹Biothermodynamics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany, ²Institute of Technical Thermodynamics, University of Rostock, Rostock, Germany, ³Institute of Separation Science and Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany

Deep eutectic solvents (DES) are a new class of green solvents that have shown unique properties in several process applications. This study evaluates nonionic DES containing phenolic alcohols as solvents for carbon dioxide (CO₂) capture applications. Potential phenolic alcohols and the molar ratio between DES constituents were preselected for experimental investigations based on the conductor-like screening model for realistic solvation (COSMO-RS). CO₂ solubility was experimentally determined in two different DES, namely, L-menthol/thymol in 1:2 molar ratio and thymol/2,6-xylenol in 1:1 molar ratio, at various temperatures and pressures. CO₂ solubility in the studied systems was higher than that reported in the literature for ionic DES and ionic liquids. This study demonstrates that nonionic DES containing phenolic alcohols can be excellent, inexpensive, and simple solvents for CO₂ capture.

Keywords: CO₂ capture, COSMO-RS, ionic liquids, hydrophobic deep eutectic solvents, green solvents

INTRODUCTION

An increasing relevance has developed in removing carbon dioxide (CO_2) from gas mixtures, such as flue gas or biogas. Absorption in liquid solvents, in addition to membrane and absorption-based processes, is a major technology in this field. For many years, aqueous solutions of amines have been used for CO_2 absorption. However, they suffer from some drawbacks, such as high vapor pressure, which causes evaporation during solvent regeneration. Recently, ionic liquids (IL) have drawn attention for CO_2 capture application because of their negligible vapor pressure (Albo et al., 2010; Shiflett et al., 2010). Furthermore, the properties of IL can be tailored to the requirements of the specific application by combining different cations and anions (Jork et al., 2005). Although the hygroscopicity of IL can be overcome by using polymerized IL to prepare membranes for CO_2 capture applications (Kammakakam et al., 2020; Galiano et al., 2021), the issues of IL cost, instability, and purity remain (Sowmiah et al., 2009).

Nevertheless, owing to the aforementioned problems of IL, researchers have focused on an alternative solvent class that has some similarities to IL, while avoiding some of their drawbacks. Deep eutectic solvents (DES) are eutectic mixtures with a large depression in the eutectic temperature obtained by mixing a hydrogen bond acceptor and donor. DES are a new class of designer solvents, which can also be prepared by simple mixing of natural and nontoxic components, usually referred to as Natural DES (NADES) (Smith et al., 2014; van Osch et al., 2020). Similar to IL, physicochemical properties of DES can be tuned by selecting their constituents and additionally molar ratios of those. Moreover, DES are easier and less expensive to prepare compared to IL. Therefore, more attention is directed to their use in several process

OPEN ACCESS

Edited by:

Manoj B. Gawande, Palacky University Olomouc, Czechia

Reviewed by:

Andrea Mezzetta, University of Pisa, Italy Alessandro Triolo, Italian National Research Council, Italy

*Correspondence:

Ahmad Alhadid ahmad.alhadid@tum.de Javid Safarov javid.safarov@uni-rostock.de

[†]These authors have contributed equally to this work and share first authorship

Specialty section:

This article was submitted to Green and Sustainable Chemistry, a section of the journal Frontiers in Chemistry

> Received: 28 January 2022 Accepted: 08 March 2022 Published: 22 March 2022

Citation:

Alhadid A, Safarov J, Mokrushina L, Müller K and Minceva M (2022) Carbon Dioxide Solubility in Nonionic Deep Eutectic Solvents Containing Phenolic Alcohols. Front. Chem. 10:864663. doi: 10.3389/fchem.2022.864663

1

TABLE 1	Prepared	eutectic	mixtures,	their	molar	ratio,	and	water	content.
---------	----------	----------	-----------	-------	-------	--------	-----	-------	----------

Eutectic mixture	Mole ratio	Water content/ppm
L-menthol/thymol	1:2	144.2 ± 2.1
Thymol/2,6-xylenol	1:1	108.4 ± 6.7

applications, for example, in liquid–liquid chromatography (Roehrer et al., 2016; Bezold and Minceva, 2019; Cai and Qiu, 2019), extraction of bioactive compounds (Kalhor and Ghandi, 2019; Makoś et al., 2020; Perna et al., 2020; Rodríguez-Llorente et al., 2020; Fernández et al., 2022), and crystallization (Emami and Shayanfar, 2020; Hall et al., 2020; Hamilton et al., 2020; Potticary et al., 2020).

CO₂ capture is one application that can benefit from DES. Existing studies have demonstrated the potential of DES for CO₂ capture (Krishnan et al., 2020; Song et al., 2020; Wazeer et al., 2021a; Wazeer et al., 2021b). However, most studies investigating CO₂ capture in DES proposed using ionic DES, which has the same drawbacks as those related to IL, especially in terms of hygroscopicity. Recently, hydrophobic DES based on natural and inexpensive nonionic constituents has attracted much attention (van Osch et al., 2019). Hydrophobic DES containing L-menthol possess outstanding properties, such as low viscosity and eutectic temperatures, especially when L-menthol is mixed with phenolic alcohols, such as thymol or carvacrol (Alhadid et al., 2020a; Alhadid et al., 2020b; Alhadid et al., 2021a; Alhadid et al., 2021b). Phenolic IL are good solvents for CO₂ capture applications (Vafaeezadeh et al., 2015). Therefore, hydrophobic DES containing phenolic alcohols are assumed to be promising candidates for CO₂ capture applications.

Nevertheless, the large pool of substances that can form DES can make selecting the DES constituents challenging. Furthermore, the ratio between the constituents can be tuned, which is an additional degree of freedom during the selection of DES constituents. Therefore, a predictive screening method could noticeably assist in preselecting DES constituents for CO_2 capture applications. The conductor-like screening model for realistic solvation (COSMO-RS) is a predictive thermodynamic model based on quantum mechanics and statistical thermodynamics (Klamt, 1995; Klamt et al., 1998; Eckert and Klamt, 2002). COSMO-RS successfully provides qualitative predictions for screening IL and ionic DES for gas capture applications (Völkl et al., 2012; Song et al., 2020; Liu et al., 2021; Qin et al., 2021).

This study investigates nonionic DES containing phenolic alcohols as potential solvents for CO_2 capture. COSMO-RS was used to screen a list of possible DES containing L-menthol and phenolic alcohols to preselect those with the highest CO_2 solubility. Further, CO_2 solubility was experimentally investigated for selected DES systems at various temperatures and pressures using an isochoric method.

MATERIALS AND METHODS

Eutectic Mixture Preparation

Pure components (L-menthol, purity \geq 99%, Sigma Aldrich; thymol, purity \geq 99%, Sigma Aldrich; 2,6-xylenol, purity 99%,

Acros Organics), was mixed under continuous stirring and gentle heating until a clear homogenous liquid was formed. The water content of the prepared eutectic mixtures was measured in triplicate using Karl Fischer Coulometer (Hanna Instrument, United States), and the results are shown in **Table 1**.

Carbon Dioxide Solubility Experiments

Before measurements, DES were degassed under vacuum for 48 h at a temperature of T = 413.15 K. After degassing, no mass loss was observed for the DES, indicating that there was no change in the stoichiometry between constituents and their negligible volatility under the experimental conditions. CO₂ from Westfalen AG, Germany, with a purity of 99.995% (quality 4.5), was used without further purification. The experiments were performed using a pressure-drop isochoric method at various temperatures and pressures. The apparatus and operational procedures of solubility measurements are described in detail in previous studies (Safarov et al., 2013; Safarov et al., 2014). For the current measurements, the installation was used without modification. The temperature in the measuring cell was held constant (at T = 293.15 - 323.15 K) with an uncertainty of u(T) = 0.030 K. A pressure transducer with an accuracy of 0.1% was used to measure the pressure of CO_2 filled in the gas reservoir. The temperature inside the gas reservoir was measured with an uncertainty of u(T) = 0.015 K. The initial amount of CO2 in the gas reservoir was determined from its pressure and temperature using the Span and Wagner equation of state (Span and Wagner, 1996).

To determine the concentration of CO_2 in the solution, liquid and gas densities under experimental temperature and pressure were required. The density of DES was measured using a density meter (Density meter Easy D40, Mettler-Toledo GmbH, Germany), and the results are indicated in **Table 2**. The mass of CO_2 in the gas phase was calculated using its density and volume. The gas volume in the cell was found by deducting the liquid volume from the total cell volume. The increase in the liquid volume because of dissolved CO_2 was neglected (Safarov et al., 2013).

Correlation of the Gas Solubility

Henry's law for a binary system (liquid $+ CO_2$) for a non-ideal gas phase can be given as (Prausnitz and Shair, 1961)

$$y_{\rm CO_2} \cdot \phi_{\rm CO_2}(T, p) \cdot p = x_{\rm CO_2} \cdot H_{\rm CO_2} \tag{1}$$

$ ho/kg m^{-3}$			
L-menthol/thymol (1:2)	Thymol/2,6-xylenol (1:1)		
947.6	992.2		
940.0	983.9		
932.5	975.6		
924.8	967.2		
	p/kg L-menthol/thymol (1:2) 947.6 940.0 932.5 924.8		

^aStandard uncertainty $u(\rho) = 0.05 \text{ kg m}^{-3}$

TABLE 3 | Experimental carbon dioxide (CO₂) solubility (both in weight percent w_{CO_2} and in mole fraction x_{CO_2}) in the L-menthol/thymol (MTH) eutectic system and calculated CO₂ fugacity coefficient (ϕ_{CO_2}) at various temperatures T and pressures p.^a

T/K	<i>р/</i> МРа	w _{CO2} , %	x_{CO_2} /Mole fraction	$\phi_{\rm CO_2}{}^{\bf b}$
323.11	4.1939	11.410	0.3082	0.8453
313.12	4.1543	12.090	0.3224	0.8295
303.18	4.0967	13.409	0.3488	0.8121
293.15	4.0201	15.769	0.3931	0.7931
323.15	3.5059	9.290	0.2616	0.8701
313.16	3.4703	10.173	0.2815	0.8570
303.13	3.4247	11.780	0.3159	0.8426
293.13	3.3691	13.335	0.3474	0.8265
323.14	2.5790	7.090	0.2088	0.9039
313.18	2.5541	7.615	0.2219	0.8942
303.13	2.5229	8.347	0.2395	0.8835
293.14	2.4860	9.297	0.2617	0.8716
323.02	1.6819	4.644	0.1442	0.9369
313.18	1.6662	5.027	0.1547	0.9305
302.98	1.6478	5.436	0.1659	0.9235
293.15	1.6281	5.937	0.1792	0.9155

 a Standard uncertainties u are: u(T) = 0.030 K, u(p) = 0.1%, u(w) = 0.01 wt%, and u(x) = 0.0001 mol fraction.

^bCalculated using the Span and Wagner equation of state (Span and Wagner, 1996) implemented in ThermoFluids (Springer, V. 1.0).

where y_{CO_2} and x_{CO_2} are the mole fraction of CO₂ in the gas and liquid phases, respectively; ϕ_{CO_2} is the fugacity coefficient of CO₂ in the gas phase, and H_{CO_2} is Henry's constant. Due to the negligible vapor pressure of the studied eutectic mixtures at studied temperatures (Xin et al., 2021) (see also **Supplementary Table S1** in **Supplementary Material** for calculations), the gas phase can be assumed as pure CO₂, i.e., $y_{CO_2} = 1$ (see also **Supplementary Table S1** in

Supplementary Material for calculations). Henry's constant can be defined using the following equation.

$$H_{\rm CO_2} = \lim_{p \to 0} \left[\frac{\phi_{\rm CO_2}(T, p) \cdot p}{x_{\rm CO_2}} \right]$$
(2)

COSMO-RS Calculations

The solubility of CO_2 in eutectic mixtures was screened a priori by evaluating CO_2 activity coefficients at infinite dilution. The

TABLE 4 | Experimental carbon dioxide (CO₂) solubility (both in weight percent w_{CO_2} and in mole fraction x_{CO_2}) in the thymol/2,6-xylenol (T26X) eutectic system and CO₂ calculated fugacity coefficient (ϕ_{CO_2}) at various temperatures T and pressures p.^a

<i>Т/</i> К	p/MPa	w _{CO2} , %	x_{CO_2} /Mole fraction	$\phi_{\rm CO_2}{}^{\bf b}$
322.90	4.0853	11.549	0.2878	0.8492
313.13	4.0441	12.563	0.3078	0.8339
303.17	3.9840	14.856	0.3506	0.8172
293.22	3.9057	17.093	0.3895	0.7990
323.14	3.3380	9.512	0.2455	0.8762
313.15	3.3029	10.417	0.2646	0.8638
303.13	3.2563	11.456	0.2859	0.8502
293.14	3.1988	13.073	0.3176	0.8352
323.13	2.6988	7.477	0.2000	0.8995
313.15	2.6696	8.022	0.2125	0.8895
303.16	2.6344	9.205	0.2388	0.8784
293.15	2.5932	10.284	0.2619	0.8661
323.14	1.6670	4.462	0.1263	0.9375
313.15	1.6500	4.909	0.1377	0.9313
303.16	1.6300	5.398	0.1501	0.9243
293.15	1.6070	6.057	0.1663	0.9166

 aStandard uncertainties u are: u(T) = 0.030 K, u(p) = 0.1%, u(w) = 0.01 wt%, and u(x) = 0.0001 mol fraction.

^bCalculated using the Span and Wagner equation of state (Span and Wagner, 1996) implemented in ThermoFluids (Springer, V. 1.0).

activity coefficients of CO_2 at infinite dilution in different pure constituents and eutectic mixtures were calculated using the COSMO-RS model (BIOVIA COSMOtherm X19, Dassault Systèmes) and BP_TZVP_19. ctd parameters. Molecular conformations of components were obtained using BIOVIA COSMOconf 17 (Dassault Systèmes). The geometry optimization and screening charge density were determined by density functional theory calculations using BP86 functional and def-TZVP basis set by Turbomole version 6.6 (TURBOMOLE GmbH).

RESULTS AND DISCUSSION

Screening With COSMO-RS

To enable the usage of a DES in CO₂ capture applications, the DES should 1) be liquid in the appropriate temperature range, i.e., approximately room temperature; and 2) be a good solvent for CO₂. A number of nonionic DES containing phenolic alcohols can satisfy these two criteria. The phenolic alcohols considered in this study are phenol, methylphenols (cresols), dimethylphenols (xylenols), trimethylphenols, and two natural phenolic terpenes, thymol (2-isopropyl-5-methylphenol) and carvacrol (5isopropyl-2-methylphenol). Phenolic alcohols with higher molecular weights or dihydroxy benzenes were not considered because they are not expected to form liquid DES at room temperature because of their high melting temperature and enthalpy (Alhadid et al., 2019). When phenolic alcohols are mixed with L-menthol, a significant negative deviation from the ideal behavior is expected (Alhadid et al., 2020b; Alhadid et al., 2021a). The negative deviation from the ideal behavior results in the formation of DES with a sufficiently low melting temperature. Thus, it is desirable to have L-menthol as a DES

TABLE 5 Calculated carbon	dioxide Henry's constant	$(H_{\rm CO_2})$ in the studied
systems.		

T/K	H _{CO₂} /MPa			
	L-menthol/thymol (1:2)	Thymol/2,6-xylenol (1:1)		
293.15	8.52 ± 0.13	9.45 ± 0.32		
303.15	8.98 ± 0.13	10.45 ± 0.23		
313.15	9.61 ± 0.25	11.46 ± 0.15		
323.15	10.51 ± 0.30	12.52 ± 0.17		

constituent. First, the activity coefficients of CO₂ at infinite dilution were calculated using COSMO-RS in pure constituents at 293.15 K because the physicochemical properties of pure constituents influence the physicochemical properties of DES (Alhadid et al., 2021b), and the results are shown in Figure 1. As COSMO-RS is based on quantum mechanical calculations, the calculated activity coefficients implicitly include the atomistic rationalization and quantify the intermolecular interactions between CO₂ and the constituents in the liquid phase. The low CO2 activity coefficient values indicate strong intermolecular interactions between CO₂ and the constituents and, accordingly, high CO₂ solubility. The calculated CO₂ activity coefficients in all phenolic alcohols are lower than in L-menthol (cyclohexyl alcohol) (Figure 1), proving that CO₂ solubility is relatively high in phenolic alcohols.

Figure 1 shows that the limiting activity coefficients decrease with the addition of methyl groups to phenolic alcohols. The general order of the CO₂ activity coefficients in phenolic alcohols is phenol > methylphenol (cresol) > dimethylphenol (xylenol) > trimethylphenols. Furthermore, compared to thymol and carvacrol, substituting a methyl group with an isopropyl group, i.e., 2,5-xylenol, decreases CO₂ limiting activity coefficients. By comparing different isomers, the limiting activity coefficients are lower in isomers with methyl groups at position 2, i.e., close to the hydroxyl group. Furthermore, the lowest values of CO2 activity coefficients are observed in dimethyl and trimethyl isomers with a methyl group on the two and six positions, respectively. The CO₂ activity coefficient in thymol is lower than that in carvacrol, as the isopropyl group is nearer to the hydroxyl group in thymol than to carvacrol. Therefore, the structure of the phenolic alcohol influences CO₂ solubility. The four marked phenolic alcohols with the lowest limiting activity coefficient values in CO2 were considered potential DES constituents for further screening.

Further, potential DES containing L-menthol with 2,6-xylenol, thymol, 2,3,6-trimethylphenol, and 2,4,6-trimethylphenol were screened using COSMO-RS. The calculated activity coefficients of CO₂ at infinite dilution in five different DES and ratios between the constituents at 293.15 K are shown in **Figure 2**. CO₂ activity coefficients in L-menthol-based DES at any molar ratio are in the order L-menthol:thymol (MTH) > L-menthol:2,6-xylenol (M26X) > L-menthol:2,4,6-trimethylphenol (M246) > L-menthol:2,3,6-trimethylphenol (M236) (**Figure 2**), which is consistent with the order of CO₂ activity coefficients in the pure phenolic alcohols present in the DES (see **Figure 1**).

Moreover, increasing the molar ratio of the phenolic alcohol to L-menthol decreases CO_2 activity coefficients. Therefore, it is logical to select L-menthol-based DES containing trimethylphenols in a 1:2 ratio between the constituents as potential solvents for CO_2 capture. However, melting properties of pure constituents influence the melting temperature of the DES (Alhadid et al., 2019). M236 and M246 in 1:2 ratio are solid at room temperature, which is attributed to the high melting temperature of 2,3,6- and 2,4,6-trimethylphenols ($T_m = 331.2$ and 342.15 K, respectively) (Verevkin, 1999). MTH and M26X in 1:2 ratio are liquid at room temperature (Alhadid et al., 2021a), which indicates that both can be considered for further experimental investigation. CO_2 activity coefficients in MTH and M26X at 1:2 ratio are of

similar values (**Figure 2**). However, MTH is considered a better option because of the low toxicity of thymol compared to 2,6-xylenol. Therefore, MTH was chosen for measurements.

Next, eutectic mixtures containing two phenolic alcohols were considered. These eutectic mixtures are expected to show ideal solution behavior with no significant decrease in the melting temperature of the mixture relative to pure constituents (Alhadid et al., 2019). For such mixtures, the melting temperature of the DES at any ratio between constituents can be obtained from the solid-liquid phase diagram based on the pure constituent melting properties. A brief explanation of solid-liquid equilibrium calculations is given in the Supplementary Material. Based on the ideal solution model calculations, thymol: 2,6-xylenol (T26X) eutectic system should form a liquid mixture at room temperature. The calculated eutectic composition and temperature for T26X are $x_{e,thymol} = 0.46$, and $T_e = 292.8$ K, respectively (see Supplementary Material for details about the calculations). Altering the ratio between constituents in T26X does not influence CO₂ activity coefficients (Figure 2), in contrast to what is observed in L-menthol-based DES. Thus, the molar ratio close to the eutectic ratio of the T26X system (~1:1 ratio) was selected to ensure that the mixture is liquid at room temperature. Eventually, the two DES, MTH in 1:2 ratio, and T26X in 1:1 ratio were selected for the solubilty measurements.

Experimental Solubility

CO₂ solubility in the two DES was measured based on the pressure-drop isochoric method at four different pressures (~4, 3, 2, and 1 MPa) and four different temperatures (293.15, 303.15, 313.15, and 323.15 K). The CO₂ solubility in weight percentage (w_{CO_2}) and mole fraction (x_{CO_2}) , as well as its fugacity coefficient (ϕ_{CO_2}) calculated using Span and Wagner equation of state for the MTH and T26X system are shown in **Tables 3**, **4**, respectively. The values of Henry's constant at different temperatures calculated using **Eq. 2** are shown in **Table 5**. As one would expect, the solubility of CO₂ in the two studied systems decreases as temperature increases.

Further, the CO₂ solubility in the studied DES was compared with that in some ionic DES and IL reported in the literature. The comparison was made in terms of molality, i.e., moles of CO₂ absorbed per mass of solvent. The results are shown in **Figure 3**. CO₂ solubility at 303.15 K in two ionic DES, namely, choline chloride (ChCl)/urea and ChCl/ethylene glycol in 1:2 molar ratio, is compared with the two DES from this study in **Figure 3A**. As seen, CO₂ solubility is significantly higher in nonionic DES than in ionic DES, especially at high pressures (**Figure 3A**). The CO₂ solubility in MTH and T26X is also higher than in the two IL (BMIM) (BF4) and (BMIM) (TfO), as shown in **Figure 3B**. In addition to good CO₂ solubility, nonionic DES are more stable, less hygroscopic, and less expensive than IL and ionic DES.

The solvent capacity to absorb CO_2 is not the only selection criterion to consider when selecting a solvent for CO_2 capture applications. The temperature dependence of CO_2 solubility is critical as well because CO_2 should be absorbed with high solubility and desorbed from the solvent at a higher temperature for solvent regeneration. Thus, a strong temperature dependence is required for CO_2 solubility to reduce the energy demand for desorption. The temperature dependence of CO_2 solubility in the two DES being studied is shown in **Figure 4**. The T26X system shows a slightly higher CO_2 solubility than the MTH system. Furthermore, the T26X system has a stronger temperature dependence. Therefore, the T26X system can be identified as a very promising candidate for CO_2 capture applications.

CONCLUSION

This study examines the use of nonionic DES for CO_2 capture applications. DES were designed to contain phenolic alcohols for improving CO_2 solubility and L-menthol to decrease the melting temperature of the DES. COSMO-RS was used to preselect the DES constituents from a pool of possible phenolic alcohols and to tune the molar ratio between the constituents. It was found that the structure of phenolic alcohols can influence CO_2 solubility. Furthermore, increasing the phenolic alcohol molar content in the DES can enhance the CO_2 solubility. However, the selection of the constituents and their molar ratio was restricted by the melting temperature of the DES. The COSMO-RS screening results identified two potential DES: MTH in 1:2 molar ratio and T26X in 1:1 molar ratio.

REFERENCES

- Aki, S. N. V. K., Mellein, B. R., Saurer, E. M., and Brennecke, J. F. (2004). High-Pressure Phase Behavior of Carbon Dioxide with Imidazolium-Based Ionic Liquids. J. Phys. Chem. B. 108 (52), 20355-20365. doi:10.1021/jp046895+
- Albo, J., Luis, P., and Irabien, A. (2010). Carbon Dioxide Capture from Flue Gases Using a Cross-Flow Membrane Contactor and the Ionic Liquid 1-Ethyl-3-Methylimidazolium Ethylsulfate. *Ind. Eng. Chem. Res.* 49 (21), 11045–11051. doi:10.1021/ie1014266
- Alhadid, A., Jandl, C., Mokrushina, L., and Minceva, M. (2021a). Experimental Investigation and Modeling of Cocrystal Formation in L-Menthol/Thymol Eutectic System. Cryst. Growth Des. 21 (11), 6083–6091. doi:10.1021/acs.cgd.1c00306

In the two preselected DES, the CO_2 solubility was studied experimentally using a pressure-drop isochoric method at various temperatures and pressures. The high experimentally determined CO_2 solubility in the two DES validated the COSMO-RS preselection, demonstrating the model's advantage as a screening tool. CO_2 solubility in the DES proposed in this study is significantly higher than in ionic DES and IL proposed in the literature. Furthermore, the temperature dependence of CO_2 solubility in DES proves their suitability for CO_2 capture applications. The high solubility of CO_2 at lower temperatures and its high decrease at higher temperatures make the two DES promising candidates for CO_2 capture. This study shows that simple and widely available organic substances can be used to form novel solvents with unique properties.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/**Supplementary Material**, further inquiries can be directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

Conceptualization: AA; Investigation: AA and JS; Formal Analysis: AA, JS, and LM; Writing–Original Draft: AA and JS; Writing–Review and Editing: LM, KM, and MM; Supervision: KM and MM.

FUNDING

This work was supported by the German Research Foundation (DFG) and the Technical University of Munich (TUM) in the framework of the Open Access Publishing Program.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fchem.2022.864663/full#supplementary-material

- Alhadid, A., Mokrushina, L., and Minceva, M. (2020a). Design of Deep Eutectic Systems: A Simple Approach for Preselecting Eutectic Mixture Constituents. *Molecules* 25 (5), 1077. doi:10.3390/molecules25051077
- Alhadid, A., Mokrushina, L., and Minceva, M. (2020b). Formation of Glassy Phases and Polymorphism in Deep Eutectic Solvents. J. Mol. Liquids 314, 113667. doi:10.1016/j.molliq.2020.113667
- Alhadid, A., Mokrushina, L., and Minceva, M. (2021b). Influence of the Molecular Structure of Constituents and Liquid Phase Non-ideality on the Viscosity of Deep Eutectic Solvents. *Molecules* 26 (14), 4208. doi:10.3390/ molecules26144208
- Alhadid, A., Mokrushina, L., and Minceva, M. (2019). Modeling of Solid-Liquid Equilibria in Deep Eutectic Solvents: A Parameter Study. *Molecules* 24 (12), 2334. doi:10.3390/molecules24122334

- Bezold, F., and Minceva, M. (2019). A Water-free Solvent System Containing an L-Menthol-Based Deep Eutectic Solvent for Centrifugal Partition Chromatography Applications. J. Chromatogr. A 1587, 166–171. doi:10. 1016/j.chroma.2018.11.083
- Cai, T., and Qiu, H. (2019). Application of Deep Eutectic Solvents in Chromatography: A Review. *Trac Trends Anal. Chem.* 120, 115623. doi:10. 1016/j.trac.2019.115623
- Eckert, F., and Klamt, A. (2002). Fast Solvent Screening via Quantum Chemistry: COSMO-RS Approach. Aiche J. 48 (2), 369–385. doi:10. 1002/aic.690480220
- Emami, S., and Shayanfar, A. (2020). Deep Eutectic Solvents for Pharmaceutical Formulation and Drug Delivery Applications. *Pharm. Develop. Techn.* 25 (7), 779–796. doi:10.1080/10837450.2020.1735414
- Fernández, A., Longo, M. A., Deive, F. J., Álvarez, M. S., and Rodríguez, A. (2021). Effective Lipase Extraction: Designing a Natural Liquid Support for Immobilization. Separat. Purif. Techn. 278, 119601. doi:10.1016/j. seppur.2021.119601
- Galiano, F., Mancuso, R., Guazzelli, L., Mauri, M., Chiappe, C., Simonutti, R., et al. (2021). Phosphonium Ionic Liquid-Polyacrylate Copolymer Membranes for Improved CO2 Separations. J. Membr. Sci. 635, 119479. doi:10.1016/j.memsci. 2021.119479
- Hall, C. L., Potticary, J., Hamilton, V., Gaisford, S., Buanz, A., and Hall, S. R. (2020). Metastable Crystalline Phase Formation in Deep Eutectic Systems Revealed by Simultaneous Synchrotron XRD and DSC. *Chem. Commun.* 56 (73), 10726–10729. doi:10.1039/d0cc04696e
- Hamilton, V., Andrusenko, I., Potticary, J., Hall, C., Stenner, R., Mugnaioli, E., et al. (2020). Racemic Conglomerate Formation via Crystallization of Metaxalone from Volatile Deep Eutectic Solvents. *Cryst. Growth Des.* 20 (7), 4731–4739. doi:10.1021/acs.cgd.0c00497
- Jork, C., Kristen, C., Pieraccini, D., Stark, A., Chiappe, C., Beste, Y. A., et al. (2005). Tailor-made Ionic Liquids. *The J. Chem. Thermodynamics* 37 (6), 537–558. doi:10.1016/j.jct.2005.04.013
- Kalhor, P., and Ghandi, K. (2019). Deep Eutectic Solvents for Pretreatment, Extraction, and Catalysis of Biomass and Food Waste. *Molecules* 24 (22), 4012. doi:10.3390/molecules24224012
- Kammakakam, I., Bara, J. E., Jackson, E. M., Lertxundi, J., Mecerreyes, D., and Tomé, L. C. (2020). Tailored CO2-Philic Anionic Poly(ionic Liquid) Composite Membranes: Synthesis, Characterization, and Gas Transport Properties. ACS Sustain. Chem. Eng. 8 (15), 5954–5965. doi:10.1021/ acssuschemeng.0c00327
- Klamt, A. (1995). Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena. J. Phys. Chem. 99 (7), 2224–2235. doi:10.1021/j100007a062
- Klamt, A., Jonas, V., Bürger, T., and Lohrenz, J. C. W. (1998). Refinement and Parametrization of COSMO-RS. J. Phys. Chem. A. 102 (26), 5074–5085. doi:10. 1021/jp980017s
- Krishnan, A., Gopinath, K. P., Vo, D.-V. N., Malolan, R., Nagarajan, V. M., and Arun, J. (2020). Ionic Liquids, Deep Eutectic Solvents and Liquid Polymers as Green Solvents in Carbon Capture Technologies: A Review. *Environ. Chem. Lett.* 18 (6), 2031–2054. doi:10.1007/s10311-020-01057-y
- Leron, R. B., and Li, M. H. (2013). Solubility of carbon dioxide in a choline chloride–ethylene glycol based deep eutectic solvent. *Thermochimica Acta* 551, 14-19. doi:10.1016/j.tca.2012.09.041
- Leron, R. B., Caparanga, A., and Li, M. H. (2013). Carbon Dioxide Solubility in a Deep Eutectic Solvent Based on Choline Chloride and urea at T = 303.15-343.15K and Moderate Pressures. *J. Taiwan Inst. Chem. Eng.* 44 (6), 879–885. doi:10.1016/j.tca.2012.09.041
- Liu, Y., Dai, Z., Zhang, Z., Zeng, S., Li, F., Zhang, X., et al. (2021). Ionic Liquids/ deep Eutectic Solvents for CO2 Capture: Reviewing and Evaluating. *Green. Energ. Environ.* 6 (3), 314–328. doi:10.1016/j.gee.2020.11.024
- Makoś, P., Shupek, E., and Gębicki, J. (2020). Hydrophobic Deep Eutectic Solvents in Microextraction Techniques-A Review. *Microchemical J.* 152, 104384. doi:10. 1016/j.microc.2019.104384
- Perna, F. M., Vitale, P., and Capriati, V. (2020). Deep Eutectic Solvents and Their Applications as Green Solvents. *Curr. Opin. Green Sustain. Chem.* 21, 27–33. doi:10.1016/j.cogsc.2019.09.004

- Potticary, J., Hall, C., Hamilton, V., McCabe, J. F., and Hall, S. R. (2020). Crystallization from Volatile Deep Eutectic Solvents. *Cryst. Growth Des.* 20 (5), 2877–2884. doi:10.1021/acs.cgd.0c00399
- Prausnitz, J. M., and Shair, F. H. (1961). A Thermodynamic Correlation of Gas Solubilities. Aiche J. 7 (4), 682–687. doi:10.1002/aic.690070430
- Qin, H., Wang, Z., Zhou, T., and Song, Z. (2021). Comprehensive Evaluation of COSMO-RS for Predicting Ternary and Binary Ionic Liquid-Containing Vapor-Liquid Equilibria. *Ind. Eng. Chem. Res.* 60 (48), 17761–17777. doi:10. 1021/acs.iecr.1c03940
- Rodríguez-Llorente, D., Cañada-Barcala, A., Álvarez-Torrellas, S., Águeda, V. I., García, J., and Larriba, M. (2020). A Review of the Use of Eutectic Solvents, Terpenes and Terpenoids in Liquid-Liquid Extraction Processes. *Processes* 8 (10), 1220. doi:10.3390/pr8101220
- Roehrer, S., Bezold, F., García, E. M., and Minceva, M. (2016). Deep Eutectic Solvents in Countercurrent and Centrifugal Partition Chromatography. J. Chromatogr. A 1434, 102–110. doi:10.1016/j.chroma.2016.01.024
- Safarov, J., Hamidova, R., Stephan, M., Kul, I., Shahverdiyev, A., and Hassel, E. (2014). Carbon Dioxide Solubility in 1-Hexyl-3-Methylimidazolium Bis(trifluormethylsulfonyl)imide in a Wide Range of Temperatures and Pressures. J. Phys. Chem. B 118 (24), 6829–6838. doi:10.1021/jp5012044
- Safarov, J., Hamidova, R., Stephan, M., Schmotz, N., Kul, I., Shahverdiyev, A., et al. (2013). Carbon Dioxide Solubility in 1-Butyl-3-Methylimidazolium-Bis(trifluormethylsulfonyl)imide over a Wide Range of Temperatures and Pressures. J. Chem. Thermodynamics 67, 181–189. doi:10.1016/j.jct.2013. 08.008
- Shiflett, M. B., Drew, D. W., Cantini, R. A., and Yokozeki, A. (2010). Carbon Dioxide Capture Using Ionic Liquid 1-Butyl-3-Methylimidazolium Acetate. *Energy Fuels* 24 (10), 5781–5789. doi:10.1021/ef100868a
- Smith, E. L., Abbott, A. P., and Ryder, K. S. (2014). Deep Eutectic Solvents (DESs) and Their Applications. *Chem. Rev.* 114, 11060–11082. doi:10.1021/cr300162p
- Song, Z., Hu, X., Wu, H., Mei, M., Linke, S., Zhou, T., et al. (2020). Systematic Screening of Deep Eutectic Solvents as Sustainable Separation Media Exemplified by the CO2 Capture Process. ACS Sustain. Chem. Eng. 8 (23), 8741–8751. doi:10.1021/acssuschemeng.0c02490
- Sowmiah, S., Srinivasadesikan, V., Tseng, M.-C., and Chu, Y.-H. (2009). On the Chemical Stabilities of Ionic Liquids. *Molecules* 14, 3780–3813. doi:10.3390/ molecules14093780
- Span, R., and Wagner, W. (1996). A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa. J. Phys. Chem. Reference Data 25 (6), 1509–1596. doi:10.1063/1.555991
- Vafaeezadeh, M., Aboudi, J., and Hashemi, M. M. (2015). A Novel Phenolic Ionic Liquid for 1.5 Molar CO2 Capture: Combined Experimental and DFT Studies. *RSC Adv.* 5 (71), 58005–58009. doi:10.1039/C5RA09845A
- van Osch, D. J. G. P., Dietz, C. H. J. T., van Spronsen, J., Kroon, M. C., Gallucci, F., van Sint Annaland, M., et al. (2019). A Search for Natural Hydrophobic Deep Eutectic Solvents Based on Natural Components. ACS Sustain. Chem. Eng. 7 (3), 2933–2942. doi:10.1021/acssuschemeng.8b03520
- van Osch, D. J. G. P., Dietz, C. H. J. T., Warrag, S. E. E., and Kroon, M. C. (2020). The Curious Case of Hydrophobic Deep Eutectic Solvents: A Story on the Discovery, Design, and Applications. ACS Sustain. Chem. Eng. 8 (29), 10591–10612. doi:10.1021/acssuschemeng.0c00559
- Verevkin, S. P. (1999). Thermochemistry of Phenols: Buttress Effects in Sterically Hindered Phenols. J. Chem. Thermodynamics 31 (11), 1397–1416. doi:10.1006/ jcht.1999.0466
- Völkl, J., Müller, K., Mokrushina, L., and Arlt, W. (2012). A Priori Property Estimation of Physical and Reactive CO2 Absorbents. *Chem. Eng. Technol.* 35 (3), 579–583. doi:10.1002/ceat.201100319
- Wazeer, I., AlNashef, I. M., Al-Zahrani, A. A., and Hadj-Kali, M. K. (2021a). The Subtle but Substantial Distinction between Ammonium- and Phosphonium-Based Deep Eutectic Solvents. J. Mol. Liquids 332, 115838. doi:10.1016/j.molliq. 2021.115838
- Wazeer, I., Hadj-Kali, M. K., and Al-Nashef, I. M. (2021b). Utilization of Deep Eutectic Solvents to Reduce the Release of Hazardous Gases to the Atmosphere: A Critical Review. *Molecules* 26 (1), 75. doi:10.3390/ molecules26010075

Xin, K., Roghair, I., Gallucci, F., and van Sint Annaland, M. (2021). Total Vapor Pressure of Hydrophobic Deep Eutectic Solvents: Experiments and Modelling. J. Mol. Liquids 325, 115227. doi:10.1016/j.molliq.2020.115227

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Alhadid, Safarov, Mokrushina, Müller and Minceva. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.