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Robotic manipulators are widely used in modern manufacturing processes. However, their
deployment in unstructured environments remains an open problem. To deal with the
variety, complexity, and uncertainty of real-world manipulation tasks, it is essential to
develop a flexible framework with reduced assumptions on the environment
characteristics. In recent years, reinforcement learning (RL) has shown great results for
single-arm robotic manipulation. However, research focusing on dual-arm manipulation is
still rare. From a classical control perspective, solving such tasks often involves complex
modeling of interactions between two manipulators and the objects encountered in the
tasks, as well as the two robots coupling at a control level. Instead, in this work, we explore
the applicability of model-free RL to dual-arm assembly. As we aim to contribute toward an
approach that is not limited to dual-arm assembly but dual-armmanipulation in general, we
keep modeling efforts at a minimum. Hence, to avoid modeling the interaction between the
two robots and the used assembly tools, we present a modular approach with two
decentralized single-arm controllers, which are coupled using a single centralized learned
policy. We reduce modeling effort to a minimum by using sparse rewards only. Our
architecture enables successful assembly and simple transfer from simulation to the real
world. We demonstrate the effectiveness of the framework on dual-arm peg-in-hole and
analyze sample efficiency and success rates for different action spaces. Moreover, we
compare results on different clearances and showcase disturbance recovery and
robustness when dealing with position uncertainties. Finally, we zero-shot transfer
policies trained in simulation to the real world and evaluate their performance. Videos
of the experiments are available at the project website (https://sites.google.com/view/
dual-arm-assembly/home).
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1 INTRODUCTION

In recent years, robotic manipulation has been an active field of research. However, work
focusing on dual-arm manipulation is still rare and limited. A second robotic arm enhances
dexterity but also introduces new challenges and extra modeling efforts, such as additional
degrees of freedom and interactions between manipulators. Thus, it is common to use a complex
task-specific control structure with multiple control loops (Suomalainen et al., 2019; Zhang et al.,
2017; Park et al., 2014). However, such methods are usually restricted to certain classes of tasks
that often assume access to accurate models of the objects involved in the task and the interaction
dynamics between the two robots (Pairet et al., 2019; Caccavale and Villani, 2001; Caccavale
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et al., 2008; Erhart et al., 2013; Heck et al., 2013; Ren et al.,
2015; Bjerkeng et al., 2014). In this work, we focus on task-
agnostic methods for dual-arm manipulation. Hence,
throughout this work, we restrict task-related modeling to a
minimum. As real-world robot learning experiments could be
very expensive, we only experiment with dual-arm assembly,
but restrict ourselves from including or modeling any kind of
knowledge specific to this task.

To this end, deep reinforcement learning (RL) is a promising
approach to tackle this problem. Thereby, manipulation tasks
can be learned from scratch by interaction with the
environment. However, deep RL alone would require a lot of
training samples, which are expensive to collect in a real-world
setup (Zhu et al. 2020, Dulac-Arnold et al. 2020, Ibarz et al.
2021). Instead, it is preferable to introduce inductive biases into
our architecture as to facilitate the learning process. Namely, we
train a policy network only to generate high-level trajectories
and use well-established control techniques to track those
trajectories. Such a modular architecture also allows for zero-
shot sim-to-real transfer. This enables us to do all the training in
simulation.

In general, we distinguish between decentralization and
centralization on both the control level and policy level. On a
control level, centralized control requires large modeling efforts
and is not task agnostic (Caccavale and Villani, 2001; Caccavale
et al., 2008; Erhart et al., 2013; Heck et al., 2013; Bjerkeng et al.,
2014; Ren et al., 2015), hence our work considers a decentralized
approach. With that in mind, two general paradigms are
conceivable: the first one involves two separate decoupled RL
agents that can be trained in a multi-agent RL setting, and the
second one utilizes a single policy controlling both arms. The
latter is more feasible as it couples control of both manipulators
through a policy network, resulting in an overall centralized
method, and thus increases precision and efficiency. Our
method is based on the latter approach and attempts to learn
a single policy using off-policy RL. Intuitively, such an approach
can be thought of as a way to centralize decentralized control
based on RL.

This paper aims at exploring the applicability of deep RL to
dual-arm assembly. Hence, we propose a framework to learn a
policy for this task based on a combination of recent advances
in RL and well-established control techniques. To reduce the
need for task-specific knowledge and to avoid introducing
additional bias in the learning process, we test our methods
solely with sparse rewards. Nevertheless, only receiving a
reward after successfully solving the task provides less
guidance to the agent as no intermediate feedback is given.
Thus, the already challenging task of dual-arm manipulation
becomes more complicated and sample-inefficient. That is,
why we rely on simulation to train our policy and transfer the
results to the real-world (Figure 1). Moreover, we design our
framework with the goal of avoiding elaborate sim-to-real
transfer procedures.

To demonstrate the effectiveness of our approach we evaluate
our method on a dual-arm peg-in-hole task, as it requires high
dexterity to manipulate two objects with small clearances under
consideration of contact forces. We first use PyBullet (Coumans
and Bai, 2016) to create a real-time physics simulation
environment and analyze the proposed approach with a
focus on sample efficiency, performance and robustness. We
then test the learned behavior in a real-world setup with two
Franka Emika Panda robots and demonstrate the feasibility of
our method under minimized sim-to-real transfer efforts. Our
contributions can be summarized as follows:

• We explore and formulate a new paradigm for learning
dual-arm assembly tasks.

• We compare the performance of different action spaces and
controllers on the success and robustness of the learned
policies.

• We show that it is possible to zero-shot transfer policies
trained in simulation to the real-world, when using a
suitable and abstract action space.

• To our knowledge, our work is the first to explore the
applicability of model-free RL to contact-rich dual-arm
manipulation tasks.

FIGURE 1 | Simulation-to-real transfer. The policy is trained in simulation (A) to perform dual-arm peg-in-hole and transferred to the real world (B)without additional
training.
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2 RELATED WORK

Dual-arm manipulation is a challenging area of research, which
can be divided into decentralized and centralized approaches.
The first one utilizes independent controllers for each robot with
explicit (Petitti et al., 2016) or implicit (Wang and Schwager,
2014; Tsiamis et al., 2015) communication channels and is often
combined with leader/follower behavior (Suomalainen et al.,
2019; Wang and Schwager, 2014). Despite the resulting
improvements in scalability and variability, decentralized
control hardly reaches the efficiency and precision of
centralized control, which integrates the control of both
manipulators in a central unit. Among feasible manipulation
objectives, peg-in-hole insertion can be seen as a benchmark
since it requires accurate positioning, grasping, and handling of
objects in contact-rich situations. Therefore, we select the task of
dual-arm peg-in-hole to evaluate the performance of our
approach.

2.1 Single-Arm Peg-in-Hole
As research focusing on dual-arm peg-in-hole assembly is rare
and mostly limited to extensive modeling (Suomalainen et al.,
2019; Park et al., 2014; Zhang et al., 2017), research on classical
peg-in-hole assembly with a single robotic arm provides a
perspective on model-free approaches based on reinforcement
learning. Vecerík et al. (2017) and Schoettler et al. (2019) show
that sparse rewards are sufficient to successfully learn a policy
for an insertion task if combined with learning from
demonstrations. The work in Schoettler et al. (2019) uses
residual reinforcement learning to leverage classical control,
which performs well given sparse rewards only and provides a
hint that the choice of action space can be crucial. An
evaluation of action spaces on the task of single-arm peg-in-
hole with a clearance of 2 mm and a shaped reward function is
presented in Varin et al. (2019), where Cartesian impedance
control performs best. Moreover, Beltran-Hernandez et al.
(2020) apply position-force control with model-free
reinforcement learning for peg-in-hole with a focus on
transfer-learning and domain randomization.

2.2 Decentralized Dual-Arm Manipulation
In the work by Suomalainen et al. (2019), a decentralized
approach for the dual-arm peg-in-hole task is proposed.
The method is based on a leader/follower architecture.
Hence, no explicit coupling between both manipulators is
required. The leader would perform the insertion, and the
follower would hold its position and be compliant with the
applied forces. Similar to the previously mentioned work,
Zhang et al. (2017) utilizes a decentralized approach, where
the hole keeps the desired position with low compliance and
the peg is steered in a spiral-screw motion toward
insertion with high compliance. However, despite reducing
the necessity to model their interaction, both approaches lack
dexterity, i.e., there is only one robot actively acting in the
environment. In a general pipeline, there should be enough
flexibility for both arms to be actively contributing toward the
objective. Furthermore, Park et al. (2014) present a method

based on decomposing the task into phases and utilizing a
sophisticated control flow for the whole assembly process.
Despite reducing efforts in modeling the interaction
explicitly, the control flow is only engineered for one
specific task and lacks dexterity as movements are bound to
the preprogrammed procedure.

2.3 Centralized Dual-Arm Manipulation
Work on centralized dual-arm manipulation focuses on
cooperative single object manipulation; hence, the applicability
is limited to a few use-cases. Pairet et al. (2019) propose a
learning-based approach and evaluate their method on a
synthetic pick-and-place task. A set of primitive behaviors are
demonstrated to the robot by a human; the robot combines those
behaviors and tries to solve a given task. Finally, an evaluator
measures its performance and decides if further demonstrations
are necessary. The approach has promising potential toward
more robust and less task-specific dual-arm manipulation.
However, besides the required modeling efforts, it is limited by
the human teaching process, which introduces an additional set
of assumptions, limiting its applicability to semi-structured
environments. Besides that, classical methods for cooperative
single object manipulation with centralized control highly rely
on accurate and complex modeling of the underlying system
dynamics (Caccavale and Villani, 2001; Caccavale et al., 2008;
Erhart et al., 2013; Heck et al., 2013; Bjerkeng et al., 2014; Ren
et al., 2015).

2.4 Sim-to-Real Transfer
Sample inefficiency is one of the main challenges of deep RL
algorithms. The problem is even worse for robotic tasks, which
involve high-dimensional states and actions as well as complex
dynamics. This motivates the use of simulation for data collection
and training. However, due to the inaccuracies in the physics
modeling and image rendering in simulation, policies trained in
simulation tend to fail in the real world. This is usually referred to
as the “reality gap.” The most popular paradigm to approach this
problem is domain randomization (Tobin et al., 2017). The main
goal of domain randomization is to subject the agent to samples
based on diverse simulation parameters concerning the object
(Tobin et al., 2017) and the dynamics properties (Peng et al.,
2018). By doing so, the learned policy is supposed to be able to
generalize to the different physical properties of real-world tasks.
Recent work has explored active parameter sampling strategies as
to dedicate more training time for troublesome parameter
settings (Mehta et al., 2020). Another approach for sim-to-real
transfer is system modularity (Clavera et al., 2017). Here, a policy
is split into different modules responsible for different objectives
such as pose detection, online motion planning, and control. Only
components that will not suffer from the reality gap are trained in
simulation and the rest is adapted or tailor-made for the real-
world setup. This comes in contrast to the most common end-to-
end training in deep RL (Levine et al., 2016). In our work, we use a
modular architecture to enable zero-shot sim-to-real transfer.
Namely, we parameterize the controllers differently in simulation
compared with the real world to allow using the same high-level
policy network.

Frontiers in Robotics and AI | www.frontiersin.org March 2022 | Volume 9 | Article 8300073

Alles and Aljalbout Learning to Centralize Dual-Arm Assembly

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


2.5 Hierarchical Reinforcement Learning
Hierarchical reinforcement learning (HRL) is very frequently
used in robotics (Beyret et al., 2019; Bischoff et al., 2013; Jain
et al., 2019). These methods typically introduce policies at
different layers of abstractions and different time resolutions
to break down the complexity of the overall learned behavior.
Model-free HRL approaches can either attempt to formulate
joint value functions over all the policies such as in Dietterich
(2000) or rely on algorithms for hierarchical policy gradients,
such as Ghavamzadeh and Mahadevan (2003). Furthermore,
Parr and Russell (1998) illustrate how the modularity of HRL
methods could enable transferring learned knowledge through
component recombination. End et al. (2017) propose a
method for autonomously discovering diverse sets of
subpolicies and their activation policies. In this work, we
design a method with two levels of abstractions. The first
one is a learned model-free policy outputting high-level
control commands/targets that are carried out by the low-
level policy, which is a well-defined controller. Note that the
policy used at the second layer of abstraction is not learned but
instead designed based on well-established control methods.
This enables sample-efficient learning and simple sim-to-real
transfer.

Despite various contributions toward a general framework for
dual-arm manipulation, we do not know of any work that is task
agnostic, does not require explicit modeling of interaction
dynamics, and is centralized. Therefore, this work aims at
proposing a unified pipeline for dual-arm manipulation based
on a minimal set of assumptions. To the best of our knowledge,
no prior work exists on contact-rich dual-arm peg-in-hole with

model-free reinforcement learning or centralized dual-arm
control for non-single object manipulation tasks in general.

3 LEARNING TO CENTRALIZE

In this section, we introduce our framework for dual-arm
manipulation. We intend to reduce the required modeling
effort to a minimum, which is why our approach is based
on model-free reinforcement learning with sparse rewards.
Figure 2 illustrates our overall approach. In the first phase, we
perform training in simulation. Our architecture includes a
high-level policy outputting control targets (e.g., changes in
end-effector position or joint angles, or additional changes in
controller parameters). These targets are then followed by a
lower-level policy represented by two hand-designed single-
arm controllers. These controllers would then transform these
control targets into joint torques, based on the robots’ states
and in certain cases using their dynamics models. In the second
phase after successfully training the policy in simulation, we
deploy it on the real-world setup without any further training
in the real world (zero-shot transfer). This transfer requires a
minor adaptation of the low-level controllers’ parameters to
ensure safety and smooth operation. The approach does not
require a specific dual-arm controller since control is only
coupled at a policy level.

3.1 Controller
The classical approach in centralized dual-arm control strategies
is to model the manipulator’s and the object’s dynamics explicitly

FIGURE 2 | The diagram gives an overview of our method by showing the interaction between policy, controllers, robots, and the environments (simulation and real
world). Our framework uses two decentralized single-arm controllers to avoid modeling the task-specific system dynamics and relies on a centralized policy to account
for the overall interaction. Based on this architecture, we train our policy in simulation and zero-shot transfer it to the real-world environment. The sim-to-real transfer
requires only minor adaptations of the controller parameters, as illustrated by the dashed line.
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and achieve coupling of both robotic arms by using multiple
control loops. The system dynamics of the ith manipulator can be
described by joint space equations of motion:

Mi qi( )€qi + Ci qi, _qi( ) _qi + gi qi( ) � τi − τexti (1)
τexti � Ji

T qi( )hi (2)
where qi is the vector of joint positions, Mi(qi) is the inertia

matrix, Ci(qi, _qi) is the Coriolis/centrifugal matrix, gi(qi) is
gravity vector, τi is the vector of joint torques, and τexti
represents external torques, which can be further
decomposed into the external wrench hi as in (2). As both
robots interact with each other directly or through
manipulation of objects, the respective external wrenches
have to include all forces and moments, which are applied
to the robot. Hence, to create a valid dynamic chain, the rigid-
body dynamics of the jth object are described by the following
equation:

Mj €xj + Cj _xj( ) _xj + gj � hj − hextj (3)
where Mj is the inertia matrix, Cj is the Coriolis/centrifugal
matrix, gj is the gravity vector, hj the wrench exerted on the
environment, and hextj is the external wrench exerted by a, e.g.,
manipulator. In case that manipulators and objects form a closed
dynamical chain, the system dynamics can be described by
concatenating the respective external wrenches. Thereby, the
dynamic equations need to be adapted to the specific
manipulation task, but are not universally valid. For example,
single object manipulation with two manipulators can be
described as follows:

hobject ≈ G1hrobot1 + G2hrobot2 (4)
Whereas, dual-arm peg-in-hole could be defined by

hpeg ≈ G1hrobot1
hhole ≈ G2hrobot2

ContactDynamicsModel hpeg, hhole( ) (5)

with Gi as respective grasp matrices, and
ContactDynamicsModel as placeholder for contact
modeling and of course with strongly simplified
assumptions (e.g., neglecting mechanical stresses, no
environment interactions, assuming force closure,
neglecting object geometries, etc.).

Under considerations of simplified assumptions and various
constraints, centralized single object manipulation can be tackled
by classical control: Based on the dynamics model, commonly a
hierarchical control strategy through multiple loops is applied,
where the outer loops realize the main objective such as desired
object movements and the inner loop accounts to generate a firm
grasp and bounded internal forces (Caccavale and Villani, 2001;
Caccavale et al., 2008; Erhart et al., 2013; Heck et al., 2013; Ren
et al., 2015; Bjerkeng et al., 2014). The particular control loops can
utilize any control strategy. Nevertheless, impedance control is a
common choice to achieve compliant behavior (Caccavale and
Villani, 2001; Caccavale et al., 2008; Heck et al., 2013; Ren et al.,
2015), as contact forces are limited by coupling the control torque

with position p and velocity v (Eq. 6). The control torque is
calculated by multiplying the gains Kp and Kv with the difference
of desired and actual position and velocity, respectively:

τ � f0 Kp pdes − p( ) + Kv vdes − v( )( ) + f1 p, v( ) (6)
The principle can be applied in joint space or task space. f0 and

f1 are generic functions to account for the variety of control laws
and their additions (e.g., Eq. 8). Besides the success in dual-arm
cooperative single object manipulation tasks, to our knowledge,
no method exists for solving general assembly tasks with
centralized control. Methods to explicitly model contacts and
complex geometries are so far not powerful enough to formulate
closed-loop dynamics and use a centralized controller. Even if
control by classical methods would be feasible, an explicit set of
dynamic equations, constraints, and adapted control loops for
each task would be required. Hence, a general framework for
dual-arm robotic manipulation needs to be based on a different
approach.

An alternative way to bridge the gap is to use learning-based
methods. Especially learning through interactions with the
environment as in deep RL provides a promising way to
facilitate complex manipulation tasks without the need for
labeled data or human demonstrations. A learning signal is
solely provided by rewarding the intended behavior. Deep RL
then tries to maximize the accumulated reward, leading to
policies/controllers that are compliant with the incentivized
behavior.

Our approach is based on the idea of combining classical
control with deep RL: We merge a policy network as high-level
control and two independent low-level controllers. We thereby
dispose of the need of designing a coupled control method in the
classical sense. The controllers can be designed in a
straightforward way without the need for purpose-built dual-
arm control algorithms, allowing the use of any single-arm
action space. The policy learns to inherently compensate for
the constraints resulting from dual-arm interactions and
provides individual action inputs for each controller.
Furthermore, coupling at policy level is convenient to
implement as the policies action space can simply be
extended to include a second controller. The overall system is
illustrated in Figure 2.

Besides the so far mentioned advantages of our framework, the
method enables improved sim-to-real transfer: Both low-level
controllers can be adjusted to the specifics of the real-world,
whereas the high-level policy can be zero-shot transferred from
simulation. Thereby, the need for expensive and difficult real-
world experiments can be reduced to a minimum and the benefits
from classical methods and learning-based approaches are
combined.

3.2 Action Space
Classical control approaches for manipulation are often based
on impedance control, as it comes with the previously
mentioned advantages. However, since our method tries to
compensate for interaction forces at a trajectory level, we
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explore different control laws as action spaces and study their
effect on the task success.

Joint Position Control
First of all, we use joint position control (Eq. 7) to compute a
torque command: Both gains, kp and kv, are set to a constant
value, qactual and _qactual evaluated at run-time and qdesired inferred
by the policy.

τ � kp · qdesired − qactual( ) + kv · _qactual (7)

Cartesian Impedance Control
Second, we implement Cartesian impedance control (Ott, 2008):
The action space allows to move control from joint space to
Cartesian space and includes model information such as the
Cartesian inertia matrix Λ(x) and the Jacobian matrix J(q) as well
as the gravity compensation term τgc. As the degrees of freedom
exceed the number of joints, nullspace compensation τns is added.
Instead of xdesired, Δx = xdesired − xactual is directly passed in as
action input.

τ � J q( )TΛ x( ) · kp · Δx + kv · _xactual( ) + τgc + τns (8)

Variable Cartesian Impedance Control
Variable Cartesian impedance control (Martín-Martín et al.,
2019) is based on classical Cartesian impedance control,
although adds kp to the action space making control more
variable to react with higher or lower stiffness if needed. We
use anisotropic gains and couple velocity gains via kv � 2

��
kp

√
to

achieve critical damping.

3.3 Reinforcement Learning
In our method, the policy is responsible for generating high-level
trajectories, which are later on tracked by the chosen controller.
We train the policy network using model-free RL. The policy
receives the robot states to infer a control signal (action) for the
aforementioned control laws (action spaces). We combine joint
positions qi, joint velocities _qi, and joint torques τi of both robotic
arms, respectively, as well as Cartesian positions and orientations
of the end-effectors as state input
s � [q0, _q0, τ0, eepos0, eeori0, q1, _q1, τ1, eepos1, eeori1]. Nevertheless,
the state might need to be adjusted if the framework is applied
for a different task, which for instance includes additional objects.

The proposed method is not restricted to a specific model-free
RL algorithm, although an off-policy algorithm is desirable to
facilitate high sample efficiency and allows the use of experience
replay. Thus, we use Soft Actor-Critic (SAC) (Haarnoja et al.,
2018) as the algorithm presents state-of-the-art performance and
sample efficiency, but could potentially be replaced by others such
as Deep Deterministic Policy Gradients (DDPG) (Lillicrap et al.,
2016) or Twin Delayed Deep Deterministic Policy Gradients
(TD3) (Fujimoto et al., 2018).

To enhance sample efficiency, the environment is
implemented in a goal-based way. Thereby, the achieved goal

goalachieved is returned alongside the environment state and can
easily be compared with the desired goal goaldesired to compute a
reward r. Reward engineering is not necessary as we use a sparse
reward (9).

r � 1, if ∑n
i�1

goalachievedi − goaldesiredi

∣∣∣∣ ∣∣∣∣< δ
0, else

⎧⎪⎨⎪⎩ (9)

In Zuo et al. (2020), a similar setup is combined with the
concept of Hindsight Experience Replay (HER) (Andrychowicz
et al., 2017) for the single-arm robotic manipulation tasks push
as well as pick-and-place. Their results point out that HER is
sufficient to enhance the performance if only sparse
rewards are available. Hence, to counteract the more
challenging training task when using sparse compared with
dense rewards, we use HER to augment past experiences.
By replaying experiences with goals that have been
or will be achieved along a trajectory, the agent shall
generalize a goal-reaching behavior. Hence, unsuccessful
experiences still help to guide an agent, as a sparse reward
otherwise does not provide feedback on the closeness to the
desired goal.

3.4 Implementation
We implement the general training and evaluation procedure in
the following way: During each epoch, one full episode is
gathered by interacting with the environment followed by
1,000 optimization steps. Moreover, we calculate the success
rate every fifth epoch by averaging over 10 test cycles. We use
ADAM (Kingma and Ba, 2017) as optimizer with a learning rate
of 1e − 5 and a batch size of 256. The experience replay memory
size is set to 800k and training starts after storing 10,000
samples. The q-network and policy-network consist of 4 and
3 linear layers, respectively, with a hidden dimension of 256 and
ReLU (Agarap, 2018) activation functions. A visualization of
both networks can be found in Supplementary Figures S2, S3.
To update the target networks, we set an updating factor of
0.005. HER is set to use the strategy “future” with sampling of 6
additional experiences (Andrychowicz et al., 2017). All hyper-
parameters are tuned manually and kept fixed for all
experiments.

4 EXPERIMENTAL SETUP

We design experiments to answer the following questions:

• Can a central policy successfully learn dual-arm
manipulations skills based on a decentralized control
architecture?

• What action space leads to the highest success rate and the
most robust policies?

• Is our method robust against disturbances and position
uncertainty?

• Is a modular design enough to zero-shot transfer policies
from simulation to the real world?
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To answer these questions, we evaluate the proposed method on
the task of peg-in-hole assembly with two Franka Emika panda
manipulators both in simulation (Figure 1A) and in the real world
(Figure 1B). The simulation environment is created using PyBullet
(Coumans and Bai, 2016). We design it to match the real-world
setup as closely as possible. Both setups are similar except for the
environment frequency, which is 240 Hz in simulation and 1 kHz in
the real world. The policy is operating at 60 Hz. Nevertheless, the
robots only obtain the last state for control. To exclude the process of
gripping and restrict movements of peg and hole, both are fixed
to the end-effector of the respective robot arm. In the real-
world experiments, this corresponds to the peg and hole being
attached to the gripper of each manipulator. Furthermore, to
enable an evaluation with increasing difficulty, pairs of pegs
and holes have been created with a clearance of 2 and 0.5 mm.
Moreover, we define the goal state as the relative distance
between the positions of peg and hole. Both robots start with a
significant distance and varying orientation with an offset
around the initial joint position of qinit = [0.0, −0.54, 0.0,
−2, −0.3, 3.14, 1.0]. We restrict robot movements by their joint
limits, whereas the workspace is not bounded. Furthermore,
the robot bases are positioned on a table with a distance of
1.3 m and both oriented to the same side. Respective stiffness
values for each action space and applied joint limits can be
found in the Supplementary Tables S1, S2. We use PyTorch
(Paszke et al., 2019) to implement the models and train them
on a single workstation equipped with an NVIDIA GeForce
RTX 2080 GPU.

5 SIMULATION RESULTS

We use the simulation to train the policy as well as to perform
ablation studies and robustness tests. As can be seen in the
Supplementary Video S1,1 the policy can be trained in

simulation to learn a successful peg-in-hole insertion strategy.
In addition to the video, Supplementary Figure S1 shows that
both manipulators move toward each other without any bigger
diversion. The upper row in Supplementary Figure S1 displays
the achieved goals for all control variants. Two phases are clearly
distinguishable: In the first phase, the end-effector’s move quickly
toward each other and in the second phase exact alignment and
insertion takes place. All graphs in the second and third row
display the sum of changes of end-effector positions and
orientations and sum of changes of end-effector wrenches,
respectively. It can be seen that both manipulators are
involved in the process of aligning the end-effectors and
pushing the peg inside. Hence, the approach does not lead to
any leader/follower behavior where one end-effector just keeps its
position similar to a single-arm solution. Although that is not the
focus of this work, it is important to note that, when desired, our
approach could theoretically lead to a leader/follower behavior by
introducing an additional reward function incentivizing and
punishing large actions taken by the leader and follower
robots, respectively.

We design the experiments to start with an offset of ±10%
from the initial joint positions and average all results over 4
seeds. All successful runs up to a clearance of 0.5 mm converge
to a success rate above 90% in-between 10,000 and 14,000
epochs (Figure 3). As we use sparse rewards, no intermediate
information about the task success is available. Hence, the
success rates of a single run tend to converge either to 100%
or stay at 0%, which can be easily seen for Cartesian impedance
control and a clearance of 0.5 mm, where only 1 out of 4 runs
converges in the given time frame. Overall, variance and
training duration is increasing with smaller clearances, which
confirms that the task becomes more challenging as clearances
decrease.

Since our approach can be seen as an alternative to classical
control methods and vanilla RL solutions, comparisons with both
methods would be conceivable: Starting with vanilla RL solutions,
we experimented with end-to-end policies that infer joint torques
from states. As the policies did not converge to any successful

FIGURE 3 | Training results in simulation using different action spaces (joint position control, Cartesian impedance control, and variable Cartesian impedance
control) on the task of dual-arm peg-in-hole assembly separated for different clearances [2 mm (A) and 0.5 mm (B)].

1https://sites.google.com/view/dual-arm-assembly/home
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behavior, leading to a success rate of 0% in all experiments, we
refrain from comparing our approach with this class of solutions.
As for classical control methods, we mention in the introduction
and related work sections how these approaches are not task
agnostic, limited to leader/follower behaviors, or require
extensive modeling of interaction dynamics. Our method leads
to a policy where both robots are involved and does not require an
interaction dynamics model. Hence, because of different
assumptions and solutions, a comparison with classical control
methods is not feasible.

5.1 Ablation Studies
We compare the following control variants to study the effect of
different action spaces: joint position control, Cartesian
impedance control, and variable Cartesian impedance control
as introduced in Section 3.2. Figure 3A shows the results when
using a clearance of 2 mm, where policies trained in all three
action spaces converge in a comparable manner. Moreover, to
analyze the effect of smaller clearances, we conduct the same
experiments using a 0.5-mm clearance between peg and hole
(Figure 3B). However, only joint position control converges in
the respective time frame. Overall, the results are different to
Varin et al. (2019), where Cartesian impedance control
converges faster than joint position control for single-arm
peg-in-hole, and Martín-Martín et al. (2019), where variable
Cartesian impedance control performs best in contact-rich
manipulation tasks.

As peg-in-hole manipulation requires stiffness adaption,
variable impedance control should theoretically perform best
among the evaluated action spaces. In our experiments, this is
only the case in the 2-mm environment, but does not seem to
persist when the clearance is decreased. We suspect that this is
due to the increased size of the action space, which makes
learning the task more challenging, but could be partially
decreased by introducing isotropic gains. In the case of
Cartesian impedance control, we suppose that the under-
performance could be attributed to the sub-optimal stiffness
values. Utilizing more complex decentralized controllers
comes with the downside that large effort is required for

optimal parameter tuning. Hence, the results point out that
even though our framework alleviates the need to model the
coupling of both manipulators manually, both decentralized
controllers still require specific system knowledge. Thus, future
work should investigate ways to separate the stiffness
adaptation from the learning process. That way, we could
have sample efficient learning while keeping the stiffness
values variable.

5.2 Robustness
First, we showcase the robustness by evaluating disturbance
recovery, and second, we demonstrate the robustness against
positioning errors.

5.2.1 Disturbance Recovery
To investigate the robustness to unforeseen events, such as
collision or active manipulation by humans, we evaluate the
success rate after being disturbed from time step 10 until 40,
resulting in an end-effector offset. Figure 4A shows the results.
Each episode duration, with a maximum of 400 steps, is
averaged over 60 random disturbances, 3 test cycles, and all
seeds. Afterwards, we compare their trajectories with a
reference and calculate the disturbance as the difference
between end-effector positions. Comparing all action spaces,
it turns out that in our framework all variants can recover from
external disturbances. Joint position control yields faster
success, but episode durations increase proportionately
more with higher external disturbances. Overall, the ability
to recover depends mostly on the available time frame; hence,
increasing the maximum time steps could allow handling
larger disturbance offsets. Figure 5 visualizes trajectories of
desired joint positions given by the policy network when using
joint position control. Two time steps after the external
disturbance are applied; the policy starts to adapt to the
external influence, varying on the disturbance magnitude.
These results show that the policy network is actively
reacting to the disturbance and not purely relying on the
controller.

FIGURE 4 | Robustness when using different action spaces (joint position control, Cartesian impedance control, and variable Cartesian impedance control) on the
task of dual-arm peg-in-hole assembly in simulation separated for different clearances. (A) Average episode durations when applying a random disturbance to the peg
during a fixed time frame in the beginning of each episode. (B) Average success rates when applying a random position offset to the peg. (C) Average success rates
when applying a random orientation offset to the peg.
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5.2.2 Position and Orientation Uncertainties
Furthermore, to show that the agent does not simply learn the
underlying kinematics, but a peg insertion behavior, we
evaluate the performance under position and orientation
uncertainties. As peg and hole positions are fixed during
all training runs, the agent could learn to exploit the
kinematics. Such a behavior is undesirable for sim-to-real
transfer, as slight differences between simulation and real
world would make a successful deployment impossible.
Hence, by introducing offsets during testing, we can show
the opposite. Moreover, position and orientation
uncertainties will naturally occur in the real world, for
instance, caused by grasping the peg in an earlier phase or
inaccuracies during calibration. The given offset is the
resulting value, which is randomly distributed in all
directions, and is applied as the relative location of the peg
to the end-effector. Figures 4B,C show the success rates for
three position and orientation offsets, respectively. We
average each result over 50 different offsets and all seeds.
In general, the success rates decrease with higher offsets and
smaller clearances. Cartesian impedance control turns out to
be less robust compared with joint position control and
variable Cartesian impedance control ends up last, which
is comparable with the previous robustness evaluation of
disturbance recovery. Nevertheless, joint position control
and Cartesian impedance control are capable to handle
large position offsets up to 10 mm with high success rates,
which should already be sufficient for most applications and
is significant considering that no randomization has been
applied during training. Orientation offsets are even more
challenging as they also introduce a position offset at the top
of the peg. Still, joint position control has high success rates
up to an offset of 10°. The evaluation under position and
orientation uncertainties shows that the policy does not

simply learn the underlying kinematics since peg and hole
positions and orientations are fixed during training, but infers
a peg insertion behavior based on the state information.

5.3 Real-World Results
To evaluate the approach in the real world, we transfer the
policies trained in simulation without taking further measures
to improve transferability such as domain randomization or
domain adaption. We explicitly evaluate the performance
without any additional steps targeting sim-to-real transfer, to
precisely investigate if the policy is robust enough to be applied in
reality and both decentralized controllers can compensate to
bridge the gap between simulation and reality.

To enable zero-shot transfer of the approach, the simulation
environment has been adapted to match the real world as close as
possible. However, to ensure safe deployment in real-world

FIGURE 5 | Desired joint positions as inferred by the policy network (joint position control) after applying a random external disturbance.

FIGURE 6 | Success rates when transferring a policy from simulation to
reality with a random deviation of 5% from the initial joint positions qinit.
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experiments, additional torque, velocity, and stiffness
limitations need to be applied to establish joint limits and
avoid large forces or high velocities. The taken precautions to
guarantee observability and non-critical behavior come with
the downside of further increasing the sim-to-reality gap and
thereby affecting the final performance. All stiffness values and
joint limits can be found in Supplementary Tables S1, S2. For
all real-world experiments, we use a 3D printed peg and hole
(material: polylactic acid), with a size of 26 mm × 26 mm ×
30 mm and 30 mm × 30 mm × 32 mm, respectively. We choose
a clearance of 2 mm since all action spaces have been
successfully trained in simulation when using that clearance.

Figure 6 shows the success rates for each action space when
starting with a random deviation of 5% for each joint from the
initial joint positions qinit. Using Cartesian impedance control
leads by far to the highest success rate as the action space helps
to compensate for the sim-to-reality gap and is robust to the
applied parameter changes for safe operation. Variable
impedance control confirms the results of previous
robustness evaluations as the variant cannot reach a high
success rate in real-world evaluations. One reason for the
performance decrease might be that the variable stiffness led
to overfitting to the system dynamics in simulation instead of
learning a generalized stiffness adaption. Joint position control,
which performed best in simulation, is not able to keep up in
reality at all. The action space is not robust to joint torque and
joint velocity limitations, thus would require additional
retraining using the applied limitations. Overall, the results
show that a well-chosen action space can help to enhance
robustness and transfer the approach from simulation to
reality without applying further methods to target sim-to-real
transfer. Moreover, the modular design helped to incorporate
adaptions after training the policy, which would not have been
possible in an end-to-end approach. Nevertheless, the proposed
method leaves room for improvements: Among them, the
impact of domain randomization and domain adaption
should be explored in the future as well as fine-tuning in the
real world to adapt the policy to the additionally applied safety
constraints.

6 CONCLUSION

We introduce a framework for dual-arm assembly with the goal
to compensate for constraint and interaction modeling of
traditional centralized control. The approach explores the
applicability of reinforcement learning by utilizing a policy
network to couple decentralized control of both robotic arms
without any explicit modeling of their interaction. The policy is
trained through model-free reinforcement learning and can be
combined with various well-established single-arm controllers.
As we aim to explore a framework with a minimal set of task-
specific assumptions, we only use sparse rewards. We evaluate the
approach in simulation on the task of dual-arm peg-in-hole and
show that joint position control provides good results up to an

investigated clearance of 0.5 mm. Furthermore, we point out that
in simulation the approach can recover from external
disturbances and prove that the method learns a general peg
insertion behavior by evaluating position uncertainties. Lastly, we
zero-shot transfer the policy trained in simulation to the real
world and show that a well-chosen action space can help to
overcome the sim-to-reality gap. The framework can be seen as a
first step in the direction of reducing modeling efforts for dual-
arm manipulation and leaves lots of room for further research
including the investigation of methods to improve sim-to-reality
transferability and the evaluation of further dual-arm
manipulation tasks. Moreover, sample efficiency needs to be
enhanced for higher precision tasks such as peg-in-hole with
smaller clearances; therefore, we plan to further optimize
exploration, and experience replay and action spaces in the
future.
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