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Due to their antioxidant properties, secondary plant metabolites can scavenge

free radicals such as reactive oxygen species and protect foods from oxidation

processes. Our aim was to study structural influences, like basic structure, number

of hydroxyl groups and number of Bors criteria on the outcome of the oxygen

radical absorbance capacity (ORAC) assay. Furthermore, similarities and differences

to other in vitro antioxidant assays were analyzed by principal component analysis.

Our studies confirmed that the antioxidant behavior in the ORAC assay is dominated

by the number and types of substituents and not by the Bors criteria, as long as

no steric hindrance occurs. For example, morin (MOR) with five hydroxyl groups

and two Bors criteria reached an area under the curve of (3.64 ± 0.08) ×105,

which was significantly higher than quercetin-7-D-glucoside (QGU7) (P < 0.001), and

thus the highest result. Principal component analysis showed different dependencies

regarding structural properties of Folin-Ciocalteu (FC)- and 2,2-diphenyl-1-picrylhydrazyl

(DPPH)-assays or 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)- and

ORAC-assays, respectively. Therefore, we conclude that they are based on different

reaction mechanisms. The number of hydroxyl groups showed a stronger influence on

the antioxidant activity than the Bors criteria. Due to these differences, the correlation of

these rapid tests to specific applications should be validated.

Keywords: area under the curve, antioxidant effect, flavonoids, phenolic acids, structure-activity relationship

1. INTRODUCTION

Secondary plant metabolites are responsible for various functions in plants, such as protection
against herbivores, UV radiation, pests and pathogens (1–3). Since these compounds are found
more abundantly in the edible parts of plants and are also known for their health-promoting
and disease-preventing properties, they are of particular interest to the food and pharmaceutical
industries. Due to their antioxidant properties, they can scavenge free radicals such as reactive
oxygen species and protect foods from oxidation processes, significantly improving their storage
stability and quality (1, 4–8). Phenolic compounds, which are prominent representatives of
secondary plant metabolites, are among the most important naturally occurring antioxidants
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FIGURE 1 | Schematic representation of Bors criteria using QUR. Bors 1:

catechol group on the B-ring; Bors 2: double bond between C-2 and C-3 and

a carbonyl group at C-4 on the C-ring; Bors 3: hydroxyl groups at C-3 and C-5

on the A- and C-rings and 4-oxo group on the C-ring (reproduced from Platzer

et al. (11)).

and can be classified into different subgroups based on their
structural properties. In addition to low-molecular compounds
such as phenolic acids, there are several, more complex
representatives including the group of flavonoids (9, 10). The
strength of the antioxidant effect of these compounds has
been described in numerous publications and depends on their
structural properties, such as the Bors criteria (Figure 1) (11–14).

Analytical methods, such as the 2,2’-azino-bis (3-
ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-
1-picrylhydrazyl (DPPH), oxygen radical absorbance
capacity (ORAC) or Folin-Ciocalteu (FC) assays are often
used to measure the antioxidant activity (15–18). These rapid
tests can be distinguished based on the underlying reaction
mechanism, the single electron transfer (SET) and the hydrogen
atom transfer (HAT), which run both in parallel, but at different
rates (19–24).

SET-based assays, such as ABTS, DPPH, and FC (18, 19, 25–
27), measure the electron loss of a free radical (R·) resulting
in a radical anion and the reaction mechanisms were described
elsewhere (11, 14). In the HAT-based mechanism (Reaction 1) a
hydrogen atom is delivered from the antioxidant (AOH) directly
to a radical to interrupt the oxidative chain reaction.

R· + AOH− > RH + AO· (1)

Abbreviations: AAPH, 2,2’-azubis-(2’-methylpropionamidine) dihydrochloride;
ABTS, 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid); AOH, antioxidant;
AUC, area under the curve; CAA, caffeic acid; CAT, (+)-catechin; DBA,
3,4-dihydroxybenzoic acid; DPPH, 2,2-diphenyl-1-picrylhydrazyl; EPC, (−)-
epicatechin; FC, Folin-Ciocalteu; FEA, ferulic acid; GAA, gallic acid; HAT,
hydrogen atom transfer; HBA, 4-hydroxybenzoic acid; HES, hesperetin; IRT,
isorhamnetin; KAE, kaempferol; MOR, morin; MYR, myricetin; NAG, naringin;
NAN, naringenin; NAR, narirutin; ORAC, oxygen radical absorbance capacity;
PCA, p-coumaric acid; PHD, phloridzin; PHT, phloretin; QGU3, quercetin-3-D-
glucoside; QGU7, quercetin-7-glucoside; QUR, quercetin; SIA, sinapic acid; SET,
single electron transfer; SRA, syringic acid; TAF, taxifolin.

The ORAC assay is a popular example of a HAT-based
assay and is particularly used in the food industry (18, 19,
25–27). In contrast to the ABTS, DPPH, and FC assays, the
measurement principle is not based on a color loss or color
change, but on a decrease in fluorescence (19, 28–30). The
presence of antioxidants neutralizes the peroxyl radicals by
either a hydrogen atom transfer or a radical addition, which
results in the fluorescence decrease being slowed down (30, 31).
This decrease is measured as a function of time and evaluated
subsequently as area under the curve (AUC) (30, 31). The AUC
represents the antioxidant effect of a substance and, in contrast
to other evaluation methods, combines the inhibition time and
the amount of free radicals neutralized by antioxidants (32–34).
Therefore, the test is suitable for antioxidants with or without
a pronounced lag phase, which is particularly useful for food
samples that often consist of several different ingredients (30, 35).
Furthermore, the assay is suitable for both hydrophobic and
hydrophilic substances (31). Although the ORAC assay is a
widely used method, little is known about structural properties
that have an impact on the measurement results. In the literature,
there are mainly theoretical studies (20, 23, 24, 36–43) on
the commonalities of the two reaction mechanisms and less
systematic experimental studies on the correlations of different
assays in terms of influence of the basic structure, number
of hydroxyl groups and number of fulfilled Bors criteria. In
addition, not much is reported on whether the same structural
properties are crucial for SET- and HAT-based assays and how
they differ from each other.

Therefore, we investigated the influence of structural
properties of phenolic compounds on the outcome of the ORAC
assay. For this purpose, different standard references belonging
to the subgroups of phenolic acids, flavonols, flavanones,
dihydrochalcones, and flavanols were analyzed. Furthermore,
we compared these results to those from ABTS, DPPH and FC
assays to investigate common trends and differences regarding
structural properties leading to high antioxidant behavior.
To investigate this in more detail, the results were clustered
according to different criteria and presented in a principal
component analysis. Special attention was paid to the subgroup,
the number of hydroxyl groups, the number of fulfilled Bors
criteria as well as the reaction mechanism in the respective assay.

2. MATERIALS AND METHODS

Chemicals and reference standards (see Table 1 slightly modified
from Table 1 in Platzer et al. (11, 14)) were obtained
from Sigma-Aldrich (Steinheim, Germany): 2,2’-azubis-(2’-
methylpropionamidine) dihydrochloride (AAPH), caffeic acid
(CAA), (+)-catechin (CAT), 3,4-dihydroxybenzoic acid (DBA),
(−)-epicatechin (EPC), ferulic acid (FEA), fluorescein, gallic
acid (GAA), 4-hydroxybenzoic acid (HBA), hesperetin (HES),
kaempferol (KAE), morin (MOR), myricetin (MYR), naringenin
(NAN), p-coumaric acid (PCA), phloridzin (PHD), phloretin
(PHT), quercetin-3-D-glucoside (QGU3), quercetin-7-glucoside
(QGU7), quercetin (QUR), sinapic acid (SIA), syringic acid
(SRA), taxifolin (TAF) and Folin-Ciocalteu (FC) reagent. The
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standard reference narirutin (NAR) was obtained from K&J
Scientific (Marbach am Neckar, Germany) and isorhamnetin
(IRT) and naringin (NAG) from Carl Roth (Karlsruhe,
Germany). Stock solutions were prepared by dissolving the
reference standards in analytical grade ethanolabsolute and
diluting each of them in seven steps (2E-4 to 1E-1 mM) for
the measurements.

The AUC was determined using the ORAC assay according
to the procedure of Huang et al. (44) with slight modifications.
The stock solution of fluorescein was prepared by dissolving
1.33 mg in 100 ml 75 mM phosphate buffer and stored in the
dark at 4 ◦C. The working solution, which was made freshly
every day, was prepared by diluting the stock solution 1:1,000
with 75 mM phosphate buffer. For the AAPH solution, which
was also freshly prepared daily, we dissolved 414 mg in 10 ml
of the 75 mM phosphate buffer and stored the solution at 4◦C
until use. For the measurement, a 96-well plate was used, where
the outer cells were filled with water. 25 µl of each sample
together with 150µl of fluorescein stock solution were added
to the wells and incubated for 30 min at 37◦C in a microplate
reader (Infinite 230 PRO, TECAN (Männedorf, Switzerland).
The reaction was started by addition of 25µl AAPH solution and
fluorescence was recorded every 60 s, after shaking the plate for
10 s, as kinetics over time (excitation wavelength 485 nm, 20 nm
bandpass, emission wavelength 535 nm, 20 nm bandpass). Each
sample was measured in triplicate.

The raw data were evaluated following Cao and Prior (45)
with some modifications. The obtained curves were normalized
to their initial value and subsequently integrated to obtain
the AUC. Net AUC (AUCsample - AUCblank) was plotted as a
function of AOH concentration. To calculate the value of a
1 mM solution, a linear regression equation was used. In order
to not underestimate the AUC, only the concentrations below
saturation were used as already described in Platzer et al. (14).

The results from the ABTS, DPPH and FC assays are shown
here for comparison only and do not represent new results.
Therefore, the corresponding method descriptions can be found
in the literature and are not repeated here (11, 14).

For statistical analysis, a one-way analysis of variance
(ANOVA) was performed using Sigma Plot (Systat Software, San
Jose, CA, USA), equivalent to an unpaired t-test. If a significant
difference was found, an additional paired test using the Holm-
S̆ídák method was added. The significance level for both tests
was at P < 0.05. Statistical analysis was always performed with
all significant decimal places. The performance of the statistical
analyzes was carried out for all measured substances. To
investigate significant differences within the phenolic subgroups,
the statistical analysis was additionally performed within the
respective group and reference was included at the corresponding
positions in the text. A multivariate analysis was performed by
principal component analysis using OriginPro2018.

3. RESULTS AND DISCUSSION

Table 1 shows the phenolic compounds used in this study and
their five different subgroups (slightly modified from Table 1 in
Platzer et al. (11, 14)).

FIGURE 2 | Boxplot of the mean values of AUC of different subgroups of

phenolic compounds (phenolic acids, flavonoles, flavanones,

dihydrochalcones, flavanoles) in the ORAC assay. The range within standard

errors (1.5 interquartile range) is represented by error bars.

3.1. Consolidated Analysis of Phenolic
Subgroups in the ORAC Assay
In order to investigate the antioxidant behavior of the phenolic
subgroups, the results of each subgroup were averaged and are
presented in Figure 2 as boxplot.

The phenolic acids, the flavanones and the flavanols obtained
lower mean values and the flavonols and dyhydrochalcones
slightly higher mean values. The low mean values of the phenolic
acids and the flavanones could be explained by their low number
of hydroxyl groups (phenolic acids 1–3, flavanones 2–5). The
substances used, with exception of TAF, do not meet any Bors
criteria. The flavanols also reached a low mean value, but it
should be noted that only two substances were measured in this
group. As those two substances have five hydroxyl groups and
fulfill the first Bors criterion, a higher value was expected. The
dihydrochalcones having three or four hydroxyl groups reached
the second highest mean value. Here, a lower value was expected
because the substances do not fulfill any of the Bors criteria and
also have a lower number of hydroxyl groups than the flavanols.
The flavonols reached the highest mean value, which could be
explained by their high number of hydroxyl groups (4–6) and
by the fact that most of the Bors criteria are fulfilled. Thus, the
result in the ORAC assay seems to depend on both the number of
hydroxyl groups and the fulfilled Bors criteria. In order to analyze
this influence in more detail, the results were rearranged and are
discussed later (see Section 3.3).

The mean values of the substances that do not fulfill any of
the Bors criteria is not significantly different from those that
fulfill one, two or three criteria. Considering the influence of
the number of hydroxyl groups on the molecule, the mean value
increased with increasing number of hydroxyl groups. However,
substances with five hydroxyl groups partially showed a lower
antioxidant behavior, with the exception of MOR, which also
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TABLE 1 | Phenolic compounds analyzed in this study (phenolic acids and subgroups of flavonoids) along with reference standard names, sample codes and

substituents (reproduced and slightly modified from this table in Platzer et al. (11, 14)).

Subgroups Reference standards Code Position and substituents

Phenolic acids 1 3 4 5

Caffeic acid CAA (CH2)2COOH OH OH H

3,4-dihydroxybenzoic acid DBA COOH OH OH H

Ferulic acid FEA (CH2)2COOH OCH3 OH H

Gallic acid GAA COOH OH OH OH

4-hydroxybencoic acid HBA COOH H OH H

p-coumaric acid PCA (CH2)2COOH H OH H

Sinapic acid SIA (CH2)2COOH OCH3 OH OCH3

Syringic acid SRA COOH OCH3 OH OCH3

Flavonols 2’ 3’ 4’ 5’ 3 5 7

Isorhamnetin IRT H OCH3 OH H OH OH OH

Kaempferol KAE H H OH H OH OH OH

Morin MOR OH H OH H OH OH OH

Myricetin MYR H OH OH OH OH OH OH

Quercetin-3-D-glucoside QGU3 H OH OH H Gal OH OH

Quercetin-7-D-glucoside QGU7 H OH OH H OH OH Glc

Quercetin QUR H OH OH H OH OH OH

Flavanones 3’ 4’ 3 5 7

Hesperetin HES OH OCH3 H OH OH

Narirutin NAR H OH H OH 2 Glc

Naringin NAG H OH H OH Rham, Glc

Naringenin NAN H OH H OH OH

Taxifolin TAF OH OH OH OH OH

Dihydrochalcones 4 2’ 4’ 6’

Phloridzin PHD OH OH OH Glc

Phloretin PHT OH OH OH OH

Flavanols 3’ 4’ 3 4 5 7

(+)-catechin CAT OH OH OH H OH OH

(−)-epicatechin EPC OH OH OH H OH OH

explains the outlier in the graph. MYR, which has six hydroxyl
groups showed a significantly lower value. From these results we
assume that steric hindrance could lead to a reduction of the
antioxidant potential.

To analyze the structural properties of the phenolic
compounds in more detail, the individual results of each
substance are discussed in the following.

3.2. Analysis of Individual Reference
Standards in the ORAC Assay
The AUCs of all reference standards, divided into their
subgroups, are shown in Figure 3. The results of the significance
analysis using all reference standards are shown by squares
in Figure 4. The ranking of reference standards was partly in
agreement with previous studies (39, 46–49). In the following,
the results of the individual subgroups are discussed, which is
why the significance test was performed additionally within the
respective group, as shown by circles in Figure 4.

When comparing the results of the phenolic acids, similar
values were found, which did not differ significantly from
each other. The presence of a catechol group had the

strongest influence, which is why CAA and DBA achieved
the highest values. PCA and HBA, which both have only one
hydroxyl group, achieved lower values, which is consistent
with literature (48, 50). The presence of a catechol group
confers more stability to the B-ring by participating in electron
delocalization thereby increasing the antioxidant activity (36, 43,
51–53). Due to resonance stabilization, para-meta hydroxylated
substances exhibit enhanced antioxidant activity compared to
monohydroxylated substances (50). However, if the molecule
possesses a hydroxyl group in addition to the catechol group
(galloyl group), this has a negative effect on the antioxidant
activity in the ORAC assay, which is why GAA reached the lowest
value and was partially in agreement with literature (54, 55). A
lower value for a substance with a galloyl group compared to the
catechol group was also shown in other studies, even if a different
result was expected, due to the three hydroxyl groups on the
aromatic ring (39, 54, 56–60). This can probably be attributed to
steric hindrance.

The presence of additional methoxy groups to a hydroxyl
group also leads to a lower value, which is why SIA, FEA and
SRA achieved lower values than HBA and PCA. Again, steric
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FIGURE 3 | AUC of all standard reference compounds determined by

ORAC assay.

FIGURE 4 | Results of the statistical analysis of the ORAC results with a

significance level at P < 0.05. Squares indicate the results, which were not

significantly different (P > 0.05) using all standard references. Circles indicate

the results of the statistical analysis within the subgroups, which were not

significantly different (P > 0.05).

hindrance is the propable cause for these results, just as with
GAA, SIA, which also have three substituents, obtained a lower
value than FEA. This has also been shown in other studies (39,
56–60). Furthermore, the replacement of a hydroxyl group by a
methoxy group leads to a lower antioxidant activity, which can

be explained by the fact that methylation leads to a decrease in
active electron- and hydrogen-donating groups (50, 58, 61–63).
In contrast to the hydroxycinnamic acids, the hydroxybenzoic
acids have a higher antioxidant effect, which is why DBA and
SRA achieved higher values than CAA and SIA. This result
was expected to be different, because the additional conjugated
double bond between the benzene ring and the carboxyl group
leads to extended electron delocalization and should stabilize the
resulting radical (50, 58, 61–63). HBA and PCA are exceptions
here, as they do not differ significantly.

In contrast to the phenolic acids, the presence of a catechol
group on the B-ring for the flavonols did not have the highest
influence on the result. In their case, the substitution of the B-
ring plays a minor role, contrary to what might be assumed
from the first Bors criterion. KAE with only one hydroxyl group
on the B-ring did not obtain a significantly different result as
QUR, which has a catechol group. This result was expected to
be different, since the B-ring of flavonoids is considered to be
the most reactive group and the delocalization of the unpaired
electron preserves the stability of the phenoxyl radical. Moreover,
an intramolecular hydrogen bond is formed by a catechol group,
which should further enhance the π-delocalization in the B-ring
(38, 43, 58, 64–66). MOR, which has two hydroxyl groups, but
not a catechol group, obtained the highest result in this study. A
possible explanation could be the rotation of the B-ring leading
to a stabilization of the O-radical at C-2’ by a intramolecular
hydrogen bond with 3-OH (42, 67). MYR, which has a galloyl
group on the B-ring, showed a lower value in comparison to KAE
with only one hydroxyl group and no significant different result
when compared to QUR. We assume that steric hindrance of
the molecule may occur if the substituents are adjacent to each
other, leading to a reduction of the antioxidant behavior of these
compounds in the ORAC assay. In addition to hydroxyl groups,
C/O-glycosides and O-methylation also have a negative influence
on the results, as shown by some studies (39, 56–60). There
was also a negative effect with IRT, KAE, and QUR, although
it should be noted that an additional hydroxyl group instead
of O-methylation does not improve the antioxidant behavior
either (QUR=IRT). The work of Kang et al. (68) also showed
lower values for substances that have a methoxy group instead
of a hydroxyl group on the benzene ring. Different results were
also obtained for O-glycosylation. Thus, no significant difference
was obtained for the substances QGU7 and QUR. Therefore,
the presence of a sugar residue at C-7 seems not to have any
influence on the result. This does not apply for QGU3 and QUR,
where the sugar at C-3 has a prooxidative effect. A hydroxyl
group at C-3 supports the reaction with the free radical, which
is further favored by the presence of a hydroxyl group at C-
5 and C-7 by electron donating effect (69, 70). The presence
of Bors 2 and a 3-OH group on the C-ring also affected the
antioxidant behavior in previous studies (39, 71). The presence
of both structural properties additionally benefits the electron
delocalization increasing the antioxidant activity (58, 64–66).

Also the presence of a galloyl group had no influence on
the result, which is why MYR and QUR also did not achieve
a significantly different value, which is not consistent with
literature (72). MOR, having two hydroxyl groups, obtained
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a higher value than KAE with only one hydroxyl group and
QUR with a catechol group. This result is consistent with
the studies of Promden et al. (73), who also showed that the
presence of a hydroxyl group at 3’ and 5’ strongly increases
the result in the ORAC. The presence of a hydroxyl group in
ortho position results in stabilization of the phenoxyl radical
due to intramolecular hydrogen bonding leading to increased
antioxidant activity (58, 74, 75). The results are also partially in
agreement with those of Žuvela et al. (37) and not in agreement
with Cao et al. (47). Again, KAE showed a higher value than
MYR and QUR, which was in agreement with the work of
Ishimoto et al. (49). Thus, two hydroxyl groups on the B-ring
seem to improve the result as long as they are not adjacent to
each other. Furthermore, the result of the ORAC assay was not
negatively influenced by a methoxy group at C-3’ of the B-ring
instead of a hydroxyl group, leading to similar results for IRT
and QUR, which was also shown in literature (49). The influence
of the second Bors criterion cannot be assessed on the basis of
our measurements, since it is fulfilled by all substances used.
The only substance that does not fulfill the third Bors criterion
(QGU3) achieved the lowest value. Therefore, the third Bors
criterion seems to be the decisive one. Additionally, a sugar
residue in place of a hydroxyl group at C-7 of the A-ring had no
influence on the AUC, which is why QGU7 and QUR achieved
similar values.

For the flavanones, just as for the flavonols, the presence
of a hydroxyl group at C-7 of the A-ring had no effect on
the antioxidant activity, which is why NAN and NAG, as
well as NAN and NAR did not show a significant difference
in AUC. In contrast to the phenolic acids and the flavonols,
substances with two substituents on the B-ring obtained the
highest values. However, it does not seem to matter whether
this is a hydroxyl or a methoxy group, which is why TAF
and HES achieved similar results and HES had a higher value
than NAN. One possible explanation is the increase of the
electron accessibility of the carbon atoms in the aromatic ring
leading to a high antioxidant behavior for electron donating
groups such as a methoxy group in para position (76, 77). The
influence of a hydroxyl group at C-3 of the C-ring is not clear
from these results, since only TAF has this group. Since TAF
achieved a higher value than NAN, it is possible that there
is a positive influence. However, since the structures differ in
other features, these could have an additional influence. Since
HES reached a higher value than NAN, a hydroxyl group in
para-position does not have any influence on the result in the
ORAC assay, although this property is considered to promote
an antioxidant behavior (11, 13, 14, 78, 79). The influence of
a hydroxyl group at C-3 of the C-ring is also not clear from
our results.

The results of the dihydrochalcones were significantly
different from each other, with PHT obtaining a higher value than
PHD. Thus, a hydroxyl group at C-6’ of the A-ring instead of a
sugar residue had a positive influence on the result.

There was no significant difference for the flavanols, which
was expected since CAT and EPC are structural isomers and was
also shown in literature (49).

FIGURE 5 | The AUC of all standard reference compounds measured in the

ORAC assay in comparison to FC, DPPH and ABTS assays, which are

reproduced from Platzer et al. (11, 14). Equal letters indicate that there is no

significant difference between the results with an significance level at P > 0.05.

3.3. Comparison of the ORAC Assay With
the DPPH, ABTS and FC
According to literature, there are different results on the
correlation of different antioxidant in vitro methods (11, 14, 18,
19, 25–27). To investigate this in more detail, our ORAC assay
results and structure activity relationships are compared to three
SET-based assays (ABTS, DPPH and FC), which were published
previously by Platzer et al. (11, 14). The results of the individual
standard references are presented in Figure 5. In the following
section, we discuss similarities and differences of the influences of
structural properties leading to high values in the ABTS, DPPH,
FC and ORAC assays.

No clear correlation can be found, when comparing the results
of the four assays. This suggests that the assays are influenced
by different structural properties. According to literature, the
antioxidant behavior depends on both, number and position of
hydroxyl groups and other substituents of a molecule (13).

For the group of phenolic acids, all assays showed
higher values for the hydroxycinnamic acids than for
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the hydroxybenzoic acids, with exception of the DPPH assay.
In the ABTS, DPPH and FC assays, in contrast to the ORAC
assay, the results were not increased by an additional methoxy
group. In the ABTS assay, substances with one hydroxyl and one
methoxy group showed even higher values than substances with
one catechol group. An increasing number of hydroxyl groups,
also increased the results of a phenolic acid in the DPPH and
FC assays. In the ABTS and ORAC assays, substances with a
galloyl group showed significantly lower values, which could be
explained by steric hindrance. In some cases, substances with
one or two hydroxyl groups did not show significantly different
values. For the DPPH and FC assays, the Bors criteria play a
crucial role especially in the group of flavonols, with the first
Bors criterion having the strongest influence. This effect was
not seen for the ABTS or the ORAC assay. Substances with a
galloyl group instead of a catechol group only achieved higher
values in the DPPH. Again, steric hindrance may reduce the
antioxidant behavior in the other assays. In all four assays, the
third Bors criterion had an influence on the results, which is
why QUR achieved higher values than QGU3. Substances which
have an additional hydroxyl group in ortho position showed
an increased value only in the ORAC assay. In the case of the
flavanones, the second and the third Bors criterion had a positive
influence on the results in the ABTS, DPPH and FC assays and
also partially in the ORAC assay. A hydroxyl group in para
position increased the results in all assays, with exception of the
ORAC assay. The influence of a sugar residue in the four assays
was either negative or there was no influence on the results. For
the dihydrochalcones, PHT reached a higher value than PHD in
all four assays, which can be explained by the additional hydroxyl
group. PHD showed no reaction in the DPPH assay. For the two
structural isomers EPC and CAT, which belong to the group of
flavanols, similar values were reached in all four assays and it
can be concluded that the three-dimensional arrangement of
the molecules has no influence on the reaction in the in vitro
methods (11, 14).

In order to compare the influences of the Bors criteria and
the number of hydroxyl groups on the results of the flavonoids
in each assay (Figures 6-13) are presented. The number of Bors
criteria had only a significant influence on the results of the
FC assay. The results of the DPPH are not influenced by the
number, but by the type of Bors criteria, with the first and the
third Bors criterion having the strongest influence. The ABTS
and the ORAC assays showed no clear correlation to the number
or type of Bors criteria. In contrast to the ABTS assay, the
results of the other assays appear to depend on the number of
hydroxyl groups, with the values in the ORAC assay decreasing
to some extent, if more than five hydroxyl groups are present
(11, 14).

3.4. Principal Component Analysis of the
DPPH, ABTS, FC and ORAC Results
In order to identify the possible correlations between the assays
and analyze structural properties relationship in more detail, a
principal component analysis was performed and the results are
shown in Figures 14, 15.

FIGURE 6 | Boxplot of the mean values of results according to their number of

fulfilled Bors criteria in the ORAC assay. The range within standard errors (1.5

interquartile range) is represented by error bars.

FIGURE 7 | Boxplot of the mean values of results according to their number of

fulfilled Bors criteria in the FC assay. The range within standard errors (1.5

interquartile range) is represented by error bars.

Both principal components cover 78.69% of the initial
variance of the original dataset. Principal component 1 represents
the antioxidant behavior and depends on the results of all four
assays. The higher the loading value of principal component 1
was, the higher the antioxidant effect was considering all four
assays. The loading value of the FC assay is mostly correlated
with principal component 1. This might be caused by affecting
all subgroups equally well and therefore, we conclude that the
FC assay is the most suitable to determine the antioxidant
effect of the measured substances as previously reported (11).
Furthermore, the FC and DPPH assays proceed in opposite
direction to the ABTS and ORAC assays regarding principal
component 2 and accordingly are influenced by different
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FIGURE 8 | Boxplot of the mean values of results according to their number of

fulfilled Bors criteria in the DPPH assay. The range within standard errors (1.5

interquartile range) is represented by error bars.

FIGURE 9 | Boxplot of the mean values of results according to their number of

fulfilled Bors criteria in the ABTS assay. The range within standard errors (1.5

interquartile range) is represented by error bars.

structural properties. The loading plots of the FC and DPPH
assays point in the same direction, which can be explained as
they follow the same reaction mechanism, i.e., SET. Since the
loading plots of the ABTS and ORAC assays are very similar,
it is possible that they follow the same reaction mechanism in
our study. Also in the literature it is often not clear to which
reaction mechanisms the ORAC and the ABTS can be assigned,
since this depends above all also on the polarity of the solvent
used (30, 31, 37, 38, 80, 81).

The score values of the different antioxidants show a clustering
according their subgroups in the principal component analysis.
Compared with the loading values of the four different assays
the ABTS and ORAC seem to be particularly sensitive to the

FIGURE 10 | Boxplot of the mean values of results according to their number

of hydroxyl groups in the ORAC assay. The range within standard errors (1.5

interquartile range) is represented by error bars.

FIGURE 11 | Boxplot of the mean values of results according to their number

of hydroxyl groups in the FC assay. The range within standard errors (1.5

interquartile range) is represented by error bars.

group of dihydrochalcones and rather to detect the substances of
the flavanones and flavanols subgroups. For their determination,
the FC and DPPH assays seem to be best suited. The substances
also arrange with increasing number of hydroxyl groups along
principal component 1 and therefore, this structural feature has a
strong influence on the antioxidant behavior. With an increasing
number of hydroxyl groups, the antioxidant effect increased.
The influence of the fulfilled Bors criteria was also analyzed
but no clear trend was shown. Nevertheless, an additional Bors
criterion could have a positive influence, since for example
QUR achieved a higher value than MOR despite having the
same number of hydroxyl groups, but different number of
Bors criteria.
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FIGURE 12 | Boxplot of the mean values of results according to their number

of hydroxyl groups in the DPPH assay. The range within standard errors (1.5

interquartile range) is represented by error bars.

FIGURE 13 | Boxplot of the mean values of results according to their number

of hydroxyl groups in the ABTS assay. The range within standard errors (1.5

interquartile range) is represented by error bars.

4. CONCLUSIONS

In order to investigate the structural influence of phenolic
compounds on the outcome of the ORAC assay, we measured
standard references belonging to five different subgroups, namely
phenolc acids, flavonols, flavanones, dihydrochalcones, and
flavanols. These results were compared to those from the ABTS,
DPPH and FC assays, previously published by Platzer et al.
(11, 14).

According to literature, the antioxidant behavior of the
abovementioned substances is dominated by the substituents,
whereas their backbone plays a minor role. This is also true for
our results, where the results were similar for subgroups with

FIGURE 14 | Principal component analysis of results from ABTS, DPPH, FC,

and ORAC assays presented as a function of subgroups.

FIGURE 15 | Principal component analysis of results from ABTS, DPPH, FC,

and ORAC assays presented as a function of number of hydroxyl groups.

different backbones. The number of hydroxyl groups present in
the substances had the highest influence on the AUC. The more
hydroxyl groups, the better the result, except for molecules with
two or more hydroxyl groups next to each other. This may be due
to steric hindrance. The influence of additional methoxy groups
could not be clarified conclusively. A sugar residue at C-7 seems
to have no influence on the result, whereas sugar residues at C-3
or C-5 reduced the antioxidant effect. Although, the importance
of Bors criteria on the antioxidant behavior is often described in
literature, their effect could not be clearly shown in our studies.
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Only the second Bors criterion showed a positive effect in the
ORAC assay in some cases.

By comparison to the ABTS, DPPH and FC assays, no clear
correlation was found and therefore, no general statements can
be drawn for all assays. An increasing number of hydroxyl groups
had a positive influence on the results of the DPPH, FC and
ORAC assays, as long as no steric hinderance occurred. Hydroxyl
in para position increased the results in the ABTS, DPPH and
FC assays, but had a negative influence on the ORAC value. The
same applied for a methoxy substitution. In all four assays a sugar
residue had either no influence on the results or slightly reduced
the antioxidant effect. The three-dimensional structure had no
influence on any assay result. The DPPH and FC assays most
likely correlated with the Bors criteria, in contrast to the ORAC
and ABTS assays, where their effect was not found. Finally, the
DPPH was the only assay where some substances did not react
at all. The differences in the assays can be explained by the
different reaction mechanisms and the use of different evaluation
methods, solvents, pH values and model radicals.

Principal component analysis showed the dependence of all
four assays on the antioxidant behavior. Furthermore, the FC
and DPPH assays depended on different structural properties
than the ABTS and ORAC assays and accordingly we assume
that they follow different reaction mechanisms. In addition,
the number of hydroxyl groups had a strong influence on the
antioxidant activity, while an influence of the Bors criteria was
only shown partially and in combination with the number of
hydroxyl groups.

In summary, our studies revealed the influence of structural
properties of substances belonging to the subgroups of phenolic
acids, flavonols, flavanones, dihydrochalcones, and flavanols
on their antioxidant activities. Little was known about the
structural properties of standard references that have an
impact on experimental results, especially for ORAC assay. The
commonalities of SET- and HAT-based reaction mechanisms

were mainly studied theoretically and they were only partly
in agreement with our experimental findings. The principal
component analysis additionally showed the suitability of the
different assays for different subgroups and can be used in
further studies to select the appropriate assays for the specific
application. For example, the DPPH should be used for flavanol-
rich samples, whereas the ABTS andORAC assays are suitable for
dihydrochalcones and non-glycosylated flavonols. The FC assay
is the only assay that evaluates all subgroups equally and best
represents total antioxidant activity.
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