
Transcriptomic and Drug Discovery
Analyses Reveal Natural Compounds
Targeting the KDM4 Subfamily as
Promising Adjuvant Treatments in
Cancer
Aylin del Moral-Morales1†, Marisol Salgado-Albarrán1,2†, Elizabeth Ortiz-Gutiérrez1‡,
Gerardo Pérez-Hernández1* and Ernesto Soto-Reyes1*

1Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City, Mexico, 2Chair
of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany

KDM4 proteins are a subfamily of histone demethylases that target the trimethylation of
lysines 9 and 36 of histone H3, which are associated with transcriptional repression and
elongation respectively. Their deregulation in cancer may lead to chromatin structure
alteration and transcriptional defects that could promote malignancy. Despite that KDM4
proteins are promising drug targets in cancer therapy, only a few drugs have been
described as inhibitors of these enzymes, while studies on natural compounds as possible
inhibitors are still needed. Natural compounds are a major source of biologically active
substances and many are known to target epigenetic processes such as DNAmethylation
and histone deacetylation, making them a rich source for the discovery of new histone
demethylase inhibitors. Here, using transcriptomic analyses we determined that the KDM4
family is deregulated and associated with a poor prognosis in multiple neoplastic tissues.
Also, by molecular docking and molecular dynamics approaches, we screened the
COCONUT database to search for inhibitors of natural origin compared to FDA-
approved drugs and DrugBank databases. We found that molecules from natural
products presented the best scores in the FRED docking analysis. Molecules with
sugars, aromatic rings, and the presence of OH or O- groups favor the interaction with
the active site of KDM4 subfamily proteins. Finally, we integrated a protein-protein
interaction network to correlate data from transcriptomic analysis and docking
screenings to propose FDA-approved drugs that could be used as multitarget
therapies or in combination with the potential natural inhibitors of KDM4 enzymes. This
study highlights the relevance of the KDM4 family in cancer and proposes natural
compounds that could be used as potential therapies.
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INTRODUCTION

Histone methylation is the addition of methyl groups to the
arginine (R) and lysine (K) residues on histone tails (Portela and
Esteller, 2010). The methylation and demethylation of the
different lysines in each histone tail allow a dynamic
regulation of the chromatin state (Jambhekar et al., 2019) that
affects transcription depending on the residue and the number of
methyl groups added (lysines can be mono, di, and
trimethylated). Histone lysine methylation marks are regulated
by two sets of enzymes: histone lysine methyltransferases and
histone lysine demethylases (KDMs) (García et al., 2016). KDMs
can be divided into two families according to their mechanisms of
action (Sterling et al., 2020). The lysine-specific demethylases
(LSD) family is characterized by its catalytic site, which requires
an available pair of electrons in the nitrogen atom from the lysine
that is going to be demethylated; thus, they can only remove
mono and dimethyl groups (Stavropoulos et al., 2006). On the
other hand, the Jumonji-C domain-containing (JMJC) family is
dependent on Fe2+ and 2-oxoglutarate and does not require an
available pair of electrons for its catalytic activity, which is why it
can target mono, di, and trimethylated lysines (Tsukada et al.,
2006a); for further reaction mechanism details, see (Guerra-
Calderas et al., 2015); (Ramanan et al., 2020), and (Cortopassi
et al., 2015). Besides, in vitro studies have detected arginine
demethylase activities for KDM4A and KDM4E (Walport
et al., 2016), even though molecular dynamics simulations
combined with quantum mechanical and molecular
mechanical calculations suggest that KDM4E demethylase
activity is more efficient when an arginine residue is the
substrate rather than a lysine residue (Ramanan et al., 2021).
KDMs are also divided into eight subfamilies (KDM1-8)
according to the similarity of their catalytic domain and their
substrate specificity (Sterling et al., 2020).

The KDM4 subfamily is part of the JMJC group. It is
composed of five functional members (KDM4A-E) that mainly
target the trimethylation of H3K36 and H3K9, which are
associated with active transcription and heterochromatin
(transcriptional repression), respectively (Katoh and Katoh
2004; Shin and Janknecht 2007b; Labbé et al., 2013; Zhao and
Garcia 2015). The KDM4 proteins are of great interest as drug
targets due to their oncogenic potential (Rotili and Mai, 2011;
Agger et al., 2019). For instance, KDM4A is overexpressed and
sometimes amplified in several neoplasms such as leukemia, lung,
prostate, colorectal, and breast cancer (Guerra-Calderas et al.,
2015). It has also been reported that the inhibition or
downregulation of KDM4A causes a decrease in the
proliferation of acute myeloid leukemia (Massett et al., 2021),
breast cancer (Metzger et al., 2017), and prostate cancer (Mu
et al., 2019). KDM4B promotes carcinogenesis in estrogen
receptor-positive breast cancer (Yang et al., 2010; Kawazu
et al., 2011) and has also been associated with poor outcomes
in gastric cancer (Wu et al., 2019), castration-resistant prostate
cancer (Sha et al., 2020) and osteosarcoma (Liu et al., 2020).
KDM4C promotes malignancy in multiple neoplasms, such as
multiple myeloma (Lv and Liu, 2021), glioblastoma (Lee et al.,
2021), and squamous cell carcinoma (Labbé et al., 2013).

Only a few studies have explored KDM4D and E’s role in
cancer; these proteins are shorter than KDM4A-C because they
lack the C-terminal PHD and Tudor domains, required for
histone recognition and binding (Labbé et al., 2013). In non-
neoplastic tissues, KDM4D is mainly expressed in the testis
(Iwamori et al., 2011); a few reports suggested that it
contributes to the establishment of androgen-independent
prostate cancer (Shin and Janknecht, 2007a), acts as a
repressor of p53 in colorectal cancer (Li et al., 2020) and
promotes liver cancer progression (Deng et al., 2021). On the
other hand, until recently, KDM4E was considered a pseudogene
due to its low expression levels; however, recent reports point out
that it encodes an active enzyme involved in H3K9me3
demethylation (Hillringhaus et al., 2011; Liu et al., 2018);
nevertheless, KDM4E’s role in cancer has not been explored yet.

Although the KDM4 proteins are promising targets for cancer
therapy, currently there are few reports of KDM4 small-molecule
inhibitors [see (Lee et al., 2020) for a comprehensive review].
Nevertheless, all of them target more than one family member
due to the similarity of their catalytic domains. For example,
disulfiram and ebselen are metal cofactor disruptors that inhibit
KDM4A through the obstruction of the Zn2+ ion at its catalytic site;
however, those drugs target other zinc-binding proteins as well,
including other KDMs (Rotili and Mai, 2011). Other known
KDM4A inhibitors are 2-oxoglutarate analogs, these molecules act
as competitive inhibitors but, since 2-oxoglutarate is a cofactor for
several other enzymes including all the JMJC family, these molecules
have low specificity (Baby et al., 2021). Because there are cancer types
that show dysregulation of only one family member (Sterling et al.,
2020), it is important to achieve specific and effective inhibitors for
each enzyme. Moreover, most of the KDM4 inhibitors reported to
date have only shown in vitro activity (Chin and Han, 2015),
consequently, there is still a lack of validated drugs that could be
used in cancer therapy.

Natural compounds have always been a major source of
biologically active substances, and many are known for their
effect on epigenetic processes such as DNA methylation, histone
marks and lncRNAs (Yang et al., 2018). The KDM enzymes are
no exception; for example, several natural products like
resveratrol, curcumin and melatonin have been reported as
inhibitors of the LSD1 enzymes (Fang et al., 2020). Tripartin,
a compound produced by a bacteria found in dung beetles, is the
only natural inhibitor reported for the KDM4 subfamily (Kim
et al., 2013). However, another study showed that tripartin and its
analogs increased H3K9me3 levels but did not directly interact
with KDM4 proteins, suggesting that their mechanisms of action
could involve other enzymes (Guillade et al., 2018).

Currently, drug repurposing allows the use of medications,
previously indicated to certain diseases, as new therapeutic
alternatives for other diseases by identifying the protein targets of
these drugs. It is cost-effective and has been reinforced by
computational approaches such as molecular docking (Pushpakom
et al., 2019). In this work, we evaluated the KDM4 subfamily’s role in
cancer and searched for natural and previously FDA-approved
compounds that could potentially inhibit the KDM4 proteins. Our
work highlights the value of the KDM4 subfamily as therapeutic
targets and, using a combination of transcriptomic and structural
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biology approaches, we provide a set of compounds with high
inhibitory and clinical potential in cancer.

MATERIALS AND METHODS

Gene Expression Datasets
Survival information and gene expression levels of non-neoplastic
and tumor samples (the “TCGA TARGET GTEx” dataset) were

downloaded from Xena Browser (Vivian et al., 2017; Goldman
et al., 2020). RSEM expected counts
(TcgaTargetGtex_gene_expected_count) were used as input for
differential expression analysis. Only cancer types with associated
normal tissue available were considered for analysis.

Survival Analysis
Event and time-to-event information was used to evaluate the
association between expression of the KDM4 subfamily genes and

FIGURE 1 | KDM4 family expression in cancer. (A) The number of samples used for the transcriptomic and survival analysis. Samples were obtained from TCGA,
TARGET and GTEx databases. (B) Gene expression and survival analysis for each KDM4 protein. The first panel shows the differential expression analysis of the tumor
samples vs. the non-neoplastic tissue. The second panel shows the CoxPH and Kaplan Meier survival analysis as adjacent columns for each KDM4 protein. For CoxPH
analysis (first column), the tile color indicates if high levels of the KDM4 are of bad or good prognosis (p value <0.05). For the Kaplan-Meier analysis (second column),
tumor samples were divided into two groups according to their KDM expression: Low-KDM and patients with High-KDM (p value <0.05). White tiles represent non
significant association. (C)Significant KaplanMeier curves of the KDM4 protein overexpressed in the cancer typewhere only a bad prognosis relationship was foundwith
p value <0.05.
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Overall Survival of patients using the Survival v3.2-11 package
(Grambsch and Therneau, 2000). For COX Proportional Hazards,
association was considered significant if p value <0.05. COXPH
estimate <0 was labeled as “good prognosis” and COXPH
estimate >0 as “bad prognosis”. Kaplan Meier plot and Log Rank
Test were performed using patients with KDM expression < Q1
(Low-KDM) and patients with KDM expression >Q3 (High-KDM).
Difference in overall survival between groups was considered
significant with p value <0.05.

Differential Expression Analysis
Normalized RSEM expected counts from Xena Browser were
converted to RSEM expected counts (RSEM expected counts =
2∧(normalized RSEM expected counts) -1) and used as input for
DESeq2 v1.32.0 to compare neoplastic vs. non-neoplastic samples
(Love et al., 2014). Differential expression analysis was also
performed within a specific cancer type by comparing two
groups: patients with KDM expression > Q3 (High-KDM)
versus patients with KDM expression < Q1 (Low-KDM).
Genes with abs (log2FoldChange) > log2 (1.5) and padj <0.05
were selected as Differentially Expressed Genes (DEGs). For this
last analysis samples were chosen if they were labeled as “bad
prognosis” by the COXPH test or if they had a significant Log-
rank test between the groups used for the Kaplan Meier plot
where the High-KDM group had a lower survival expectancy
than the Low-KDM group.

DEGs Enrichment Analysis
Enrichment analyses for DEGs were performed with gProfiler2
(Kolberg et al., 2020) using the Hallmark Gene Set Collection gmt
file from the Molecular Signatures Database (MSigDB) (Liberzon
et al., 2015). The correction method used was g:SCS and an
adjusted p value significance threshold of 0.05. All the genes
expressed in each sample were used as background.

Ligand Libraries Preparation
Virtual ligand screening studies were performed against three
databases: DrugBank (Wishart et al., 2018), the FDA-approved
and passed phase I drug library (obtained from www.
selleckchem.com), and COCONUT (Sorokina et al., 2021).
The databases contained 9131, 3034, and 406,747 compounds,
respectively. The libraries were filtered using OpenEye’s
FILTER algorithm (OpenEye Scientific Software, 2021); the
filters applied can be found in Supplementary File S1. The
ionization state was established through OpenEye’s FIXPKA
algorithm. Charges were calculated with OpenEye’s molcharge
tool and the AM1-BCC method (Jakalian et al., 2002). Ten
low-energy conformers were generated for each molecule with
the OMEGA algorithm.

Target Preparation
The crystallographic structures for KDM4 active sites were
downloaded from Protein Data Bank (PDB). The accession
numbers and references for all the models used are available
in Table 1. The missing portions of the molecules were modeled
with SWISS-MODEL (Waterhouse et al., 2018). The structures
(using the active site of KDM4 as target) were prepared for

docking with the SPRUCE program included in OpenEye’s
OEDocking distribution.

Molecular Docking
The KDM4 structures were fitted by structural alignment to
maintain the same active site orientation. Different reports
have established that KDM4 is active in the presence of Fe2+

and Zn2+ as cofactors in the active site; crystallographic
reports have also shown the presence of Ni2+ as a cofactor,
with no significant differences in KDM conformation. Since
the development of a competitive inhibitor must consider the
effect of the metal in the active site, in this work, Zn2+ was
considered as the representative metal for the functional
activity of KDM4. For the docking study, the
representation of coordination bonds between metals and
the active site is not necessary, so we consider this as a
good representation of the electrostatic potentials for the
metal in the force field used. The conserved residue
GLU190 of the active site was defined as the anchor point
for the search docking box. Amber ff94 force field was used for
protein and Zn2+ partial charges calculation.

Two systems were implemented to understand the metal
influence over KDM4 proteins’ active site, HOLO and APO.
The HOLO form included the Zn2+ cofactors in the active site of
each KDM4. For the APO system, any metal cofactor was
removed for the analysis. Each cured chemical database was
docked to the receptor in APO as GLU190 residue as
reference of binding site, while for the HOLO form we used
GLU190 and Zn2+ as reference for the FRED program from
OpenEye Scientific software. The Chemgauss4 scoring function
was used, and the top 100 scoring molecules for each case were
considered possible hits.

Flexophore Similarity Analysis Between
Compounds
The 3D-pharmacophore similarity analysis between compounds was
performed with DataWarrior (Sander et al., 2015) using the
Flexophore descriptor. Two compounds were considered similar if
their similarity relationship surpassed a threshold of 95%. For each
protein and database evaluated, the top 100 scoring compounds were

TABLE 1 | Structures used for the molecular docking screenings.

Enzime PDB accession References

KDM4A 5F32 Bavetsias et al. (2016)
KDM4B 4LXL Chu et al. (2014)
KDM4C 2XML Hillringhaus et al. (2011)
KDM4D 4HON Krishnan and Trievel (2013)
KDM4E 4HOO Krishnan and Trievel (2013)

5F5C Bavetsias et al. (2016)
5FP4 Westaway et al. (2016)
5FP7
5FP8
5FPA
5FPB
6H10 Małecki et al. (2019)
2W2I Hillringhaus et al. (2011)
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analyzed. As nine different PDB structures were used for KDM4D, a
random sample of 100 compounds from each database were chosen.

Molecular Dynamics Simulations and
Absolute Binding Energy Calculations
Molecular docking methods are efficient tools for large database
screening; however, their main limitation is inaccurate binding
energy estimations. The molecular mechanics
Poisson–Boltzmann surface area (MM-PBSA) method was
used to estimate the absolute binding energy (ΔGPBSA) of the
ligands. Since this approach requires a large amount of
computational resources, we performed the ΔGPBSA calculation
for only a subset of molecules according to the following criteria:

a) Molecules that bind only to one KDM4
b) Molecules that bind to some or all the significantly

overexpressed KDM4s in a cancer type.
c) The best 10 molecules for each KDM4 according to their

FRED/Chemgauss4 score, regardless of the source database.

Briefly, each protein-ligand complex was subjected to 20 ns of
molecular dynamics simulations usingGROMACS 5.1.15 (Abraham
et al., 2015). The files were processed by pdb2gmx, setting
AMBER99SB as the force field and TIP3P as the water model.
Due to the difficulty of simulating Zn coordination states, all the
simulations were performed using the APO form. Partial charge
AM1BCC obtained with MOLCHARGE for each ligand was
conserved. The van der Waals and topology parameters of the
ligands were generated with ACPYPE setting GAFF as the force
field (Silva and Vranken, 2012). The complexes were enclosed into a
dodecahedral box with a minimum box-solute distance of 1.0 nm,
and the cell was filled with water. Each systemwas equilibrated using
the conditions previously described by Kumari et al. (2014). After
equilibration, a 20 ns production run was carried out. The ΔGPBSA

was calculated with GROMACS g_mmpbsa (Kumari et al., 2014).

Network Analysis
The network analysis was performed with a selection of input
genes which were selected as follows:

- The starting point were the top 100 drugs from the
DrugBank database for each KDM as evaluated through
the molecular docking analysis, which were used to retrieve
their target proteins using the protein-drug interactions
integrated in NeDRex (Sadegh et al., 2021).

- Only upregulated genes identified in the comparisons
between High-KDM and Low-KDM were selected.

The protein-protein interaction network used as reference was
obtained from IID version 2021-04 (Kotlyar et al., 2019), only the
experimentally validated edges (“exp”, “exp;ortho”, “exp;ortho;
pred” or “exp;pred”) were used. The networks were assembled
with KeyPathwayMiner (K = 3 and L = 0) (Alcaraz et al., 2020).
Only the upregulated proteins targeted by the top 100
compounds from the DrugBank database for each KDM were
used as input. The differentially expressed KDM4s in each tumor

were defined as positive nodes. Protein-drug and protein-protein
interaction networks were merged and edited using Cytoscape
3.8.2 (Shannon et al., 2003).

RESULTS

KDM4 Subfamily Expression is of Bad
Prognosis in Cancer
To address the KDM4 subfamily’s role in cancer, we carried
out gene expression analysis on a broad set of publicly
available tumor and non-neoplastic tissue samples
(Figure 1A). The differential expression analysis of the
tumor samples vs. the non-neoplastic tissue showed that
KDM4A-D subfamily members are deregulated in several
tumors and there are several combinations of differentially
expressed KDM4s for each tumor type. KDM4D and KDM4A
are the most notable genes since they are mostly
overexpressed while KDM4B and C are usually
downregulated compared to non-neoplastic tissue
(Figure 1B). To further characterize the clinical
significance of the KDM4 subfamily members, two survival
analyses were conducted; CoxPH and Kaplan Meier
(Figure 1B). For the last one, samples were divided into
two groups according to their KDM expression: low (first
quartile) and high (fourth quartile, Figure 1C). KDM4A
overexpression indicates a bad prognosis for Uterine
Corpus Endometrioid Carcinoma, Liver Hepatocellular
Carcinoma, Adrenocortical Cancer, Brain Lower Grade
Glioma, and Uterine Carcinoma. KDM4B overexpression is
a bad prognosis for Adrenocortical Cancer and Thyroid
Carcinoma. KDM4C expression is related to a bad
prognosis for Rectum Adenocarcinoma and
Pheochromocytoma and Paraganglioma. KDM4D is related
to a bad prognosis for Lung Adenocarcinoma, Adrenocortical
Cancer, and Liver Hepatocellular Carcinoma. Finally, since
KDM4E expression is low in most of the samples evaluated,
we do not report the differential expression analysis or the
survival analysis for this gene.

We next seek to evaluate the relevance of the KDM4 proteins
in a selected group of cancer types, the selection considered the
fact that we are interested in inhibitor molecules; thus, the
tumors used for further evaluation are the ones where the
overexpression is related to bad prognosis. We conducted a
differential expression analysis comparing only the tumor
samples ranked by KDM expression: high-KDM (fourth
quartile) vs. low-KDM (first quartile). The log2 Fold Change
(log2FC) of each KDM4 protein and the number of differentially
expressed genes (DEGs) in each comparison are shown in
Figure 2A. Enrichment analysis of the DEGs against the
GSEA Hallmarks database showed that, in cancer, the genes
regulated by the KDM4 family are involved in processes such as
TNFα signaling by NFlB, interferon-gamma response,
inflammatory response, G2M checkpoint, and p53 pathway
(Figure 2B). Overall, our data suggest that KDM4 proteins
are relevant targets to screen for specific inhibitors that could be
beneficial in the treatment of neoplasms.
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FIGURE 2 | Differential expression and enrichment analysis of the KDM4 family. (A) The left panel of squares represents the 12 types of tumors
where the deregulation of the KDM4 subfamily is of bad prognosis. The differential expression analysis was performed comparing High-KDM vs. Low-
KDM samples. Color intensity is related to the log2(FC). The right panel represents the number of differentially expressed genes (DEG) for each
comparison. (B) Hallmarks of Cancer enrichment analysis for the DEG in each sample. Color intensity represents the pvalue and size of the
intersection size.
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Natural Compounds as Promising Potential
KDM4 Subfamily Inhibitors
Since we observed that KDM4 proteins are deregulated in several
neoplasies and that their expression is related to several processes
associated with cancer, we next used molecular docking to screen for
potential inhibitory compounds. In order to explore the scaffold for
inhibition specificity, we docked a total of 418,912 compounds from
three different databases (DrugBank, FDA, and COCONUT) against
the active sites of each KDM4; the protein targets used are
disclosed in Table 1. Previous to the molecular docking
analysis, the available PDB structures for each of the
KDM4 proteins were superimposed; no significant changes
in the catalytic sites were found between them. Only KDM4D
showed important structural variations between the different
models available in PDB, mainly in the loops surrounding the
active site entrance. For this reason, a single structure was

used for KDMs 4A, B, C, and E while we kept 9 for KDM4D to
have a representative sample of its different conformations.
The Root Mean Square Fluctuation (RMSF) for the KDM4
structures used in this work indicates that overall, the
catalytic site’s structure conformation is similar between
the different KDM4s, although there is a peak around
residue 150 (amino acid numbers are relative to KDM4A)
which belongs to the outer loop region with higher mobility
(Figure 3A).

For docking analysis, both HOLO and APO forms of 13 KDM4
structures were prepared; thus, a total of 26 structures were sampled
for FRED/Chemgauss4 docking. The 100 best-scored results were
selected, recording a total of 7,800 protein-ligand interactions
(Supplementary File S2). Figure 3B shows the score distribution
of the 7800 compounds related to the number of different structures
that could be targeted by each ligand. Note that the FRED/
Chemgauss4 score is related to the binding energy of the protein-

FIGURE 3 |Molecular docking against the KDM4 subfamily. (A) Structural 3D alignment (upper panel) and root mean square fluctuation (RMSF, lower panel) for the
aminoacid residues of the KDM4 subfamily structures used in this work. The red arrow indicates the location of the residues with the highest RMSF. (B) FRED/
Chemgauss4 score distribution for the top 100 compounds from each database (COCONUT, FDA, and DrugBank) that were predicted to bind to each of the KDM4
family members. The fill indicates the enzyme system used, APO (without metal cofactors), and HOLO (with all metallic ions). Size is proportional to each
compound’s number of targets according to our docking analysis. (C) FRED/Chemgauss4 score distribution for each of the three databases evaluated. Outlier points are
shown in gray.
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ligand complex; thus, large negative values stand for stronger
interactions and suggest that a molecule has a higher binding
potential. For all the KDM4 enzymes, COCONUT compounds
had the best favorable binding score, set between −21 and −15,
meanwhile, most of the FDA and DrugBank values trend to locate
near less favorable scores (between −16 and −11) and have a notable
proportion of outlier ligands with scores greater than −10

(Figure 3C). As shown in Figures 3A,B high protein-ligand
interaction count is related to high ligand promiscuity for
different KDM4 proteins, whereas the values near to zero suggest
that the ligand binding is specific for an enzyme, which is desirable for
drug design (Supplementary Files S3, S4). We also observed that the
best scores were achieved with the HOLO system in comparison to
the APO system, suggesting that the ligands can provide functional

FIGURE 4 | Similarity flexophores map for COCONUT, DrugBank, and FDA top hits. (A) Similarity flexophores map. Each node represents a compound, the node
color depicts its FRED/Chemgauss4 score. The node shape indicates which KDM4 the ligand binds. The network edges indicate a relationship of at least 95% of
flexophore similarity between compound pairs (neighbors). Black dots represent the compounds from Baby et al., 2021. (B) Node distribution for the compounds
belonging to each of the databases evaluated (COCONUT, DrugBank, and FDA). (C) 2D structure for a representative compound from each of the chosen clusters.
Clusters were selected based on their size, and edge number.
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groups that act as chelating agents that form coordination bonds with
the divalent metal in the active site of the HOLO form of KDM4.

Flexophore-Based Scaffold Suggests
Phenols and Sugars as Key for the Design of
Potential KDM4 Inhibitors
Next, we seek to further explore whether structural similarities
exist among the compounds predicted to bind the KDM4
subfamily members; such findings could be important for
understanding the molecular signatures involved in the
protein-ligand interactions and for the future development of
KDM4 subfamily inhibitors. To address this idea, we evaluated
the chemical scaffold of the top 100 hits for each KDM4 from
FDA, DrugBank, and COCONUT databases (1,500 molecules
total) using a similarity flexophores map. This graphical method
tests whether the conformational flexibility of a molecule plays a
significant role as a potential inhibitor of proteins (von Korff
et al., 2009). Usually, ligands adopt subtle conformations to
achieve geometric complementarity with their targets, allowing
them to reorganize the attractive and repulsive forces required
during their binding. Thus, a molecule with several rotatable
bonds (higher flexibility) is more likely to adapt to a binding site.
Our flexophore analysis retrieved clusters with maximized edges
and nodes that match similar compounds. We analyzed 15
representative clusters, arbitrarily numbered, while isolated
nodes (436 out of the 1,500 compounds evaluated) represent
ligands with no similar molecules according to the criteria used
(Figure 4A). In the literature had been reported molecules
experimentally validated as inhibitors of the KDM4 subfamily;
thus, for the flexophore analysis, we included 16 compounds cited
by (Baby et al., 2021) whose IC50 is of micro to nanomolar range
(nodes in bold in Figure 4A). We observed that most of these
molecules remained as isolated nodes whose floxophores did not
share similarities with the compounds from COCONUT,
DrugBank, and FDA databases.

The molecules’ distribution by library is shown in
Figure 4B. The node color represents the Fred/Chemgauss4
score, and the shape indicates to which KDM4 the compound
potentially binds. It is noticeable that the two central clusters
(numbers 14 and 15) contain mainly COCONUT compounds.
Clusters 1, 6, 7, 11, and 12 have a mixture of DrugBank and
FDA molecules; cluster 5 has mainly DrugBank compounds,
and clusters 1 and 3 contain a combination of the three
databases, while the remaining clusters are composed
primarily of compounds from the FDA database. A
representative molecule for each cluster is displayed in
Figure 4C. Clusters with better Fred/Chemgauss4 score and
highest node density like clusters 14 and 15, contain molecules
composed of 3–4 rings of phenol or pyranose group
combinations joined by glycosidic bonds that increase
flexibility to the molecules. A similar composition was
observed for the molecules from cluster 3, although this set
had more members with lower score values than the ones
previously mentioned, this can be due to the ketone group
joining the rings instead of a glycosidic bond, and the carbonyl
of ketone can influence the dipolar moment and flexibility of

the molecule altering the possible pi-interactions with the
receptor. In general, molecules with fewer than 3 rings (as
well as linear molecules), tend to have a lower score. The
former indicates that rings from sugars and aromatic
molecules favor the interaction with the binding site of
KDM4 proteins. We also noticed that OH and O- groups
are essential for the interaction between the ligand and KDM4
to doing coordination bonds with their metal cofactors, such as
Zn2+, Ni2+ or Fe2+; thus, in drug design, the inclusion of sugars
and phenols represents an advantage for the achievement of a
competitive inhibitor.

Active Site of KDM4 is Stabilized by
Pi-Stacking Aromatic Residues and Favor
Flavonoid-Carbohydrates Ligand Binding
Docking algorithms are powerful tools for the identification of
potentially inhibitory molecules; however, since their main
purpose is to narrow down large compound databases, the
protein-ligand binding affinity calculations are often
sacrificed to achieve higher calculation speeds. The scoring
functions used by these algorithms have serious limitations
to adequately estimate binding energies, in addition, they do
not consider the conformational changes of ligands and targets.
To overcome this challenge, we validated the affinity of Protein-
Ligand complexes through molecular dynamics simulations.
The absolute binding energy (ΔGPBSA) was calculated with
the MM-PBSA method for a representative subset of
molecules (20 from FDA, 16 from DrugBank and 25 from
COCONUT). Because performing molecular dynamics with
HOLO systems represents a computational challenge
(Vidossich and Magistrato, 2014), it was decided to calculate
the ΔGPBSA only for the APO systems.

The FRED/Chemgauss4 score vs. the calculated ΔGPBSA for
each ligand were compared; in both cases, a negative value means
that the protein-ligand interaction is favorable; if both values were
negative, the hit was considered a success. A successful Protein-
Ligand complex means that the interaction predicted by the
docking algorithm could be replicated through molecular
dynamics simulations, thus there is a high possibility for that
ligand to be a KDM4 inhibitor. Since we observed a success rate
higher than 60% in all the compounds evaluated (Figure 5A), we
considered the predictions obtained by the FRED algorithm as
potential KDM4 family inhibitors.

Since the KDM4A-CNP0371131 complex had the more
negative FRED/Chemgauss4 score out of all of the protein-
ligand complexes evaluated, it was chosen as a representative
example for the conformational changes observed during the
molecular dynamics simulations. The per residue RMSF values
showed that the loop areas surrounding the KDM4A cavity
(residues 170, 225, and C-terminal) are the most flexible areas.
It is also noticeable that the ligand is vibrating inside the protein’s
active site (Figure 5B). KDM4A’s cavity area is 753.5 A2, its
volume is 824 A3, and has an exclusively negative electrostatic
potential (Figure 5C). Due to its size, the KDM4A binding site
could fit molecules twice the size of structures 14 or 15 in
Figure 4C, which have an area of 320 A2 or 303 A2,
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respectively. The former suggests that only half of the cavity is
occupied by the ligand, leaving the other half to the metallic
cofactors and the solvent. Therefore, the molecule’s size is not a
limitation for the design of a competitive inhibitor; instead, it is
the functional groups that coordinate the metallic cofactors and
the interactions with the catalytic site’s residues that determines
the specificity of the ligand-receptor binding.

A remarkable characteristic of the KDM4A binding site is the
presence of several aromatic amino acids (Y, F, W, and H) which
not only stabilize the binding site but also contribute to the
protein-ligand binding through pi stacking interactions with
other aromatic groups. The residues that most frequently
interact with the ligands are I71, Q84, N86, Y132, A134,
D135, G170, V171, Y175, Y177, F185, H188, E190, D191,

FIGURE 5 | Molecular dynamics simulations and absolute binding energy calculation. (A) FRED/Chemgauss4 vs ΔGPBSA correlation for the best scoring ligands
from each database. Ligands that showed a favorable binding energy (<0 kcal/mol) and negative FRED/Chemgauss4 score were considered as successful (red dots).
The success percentage represents the proportion of successful molecules for each database. (B) Upper panel: Graphical representation (20 frames) of the molecular
dynamics simulation for KDM4A (PDB ID: 5F32) in complex with the CNP0371131 ligand from COCONUT. Lower panel: RMSF value for each residue. (C)
Electrostatic potential for the KDM4A-CNP0371131 complex. (D) Graphical representation of the CNP0371131 molecule (green) bound to KDM4A’s catalytic site. The
residue numbers correspond to PDB structure 5F32. (E) Average per residue MM-PBSA binding free energy contribution for the KDM4A-CNP0371131 complex.
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S196, N198, W208, L241, and S288. Figure 5D shows an example
for CNP0371131 binding to KDM4A, since it is the best scoring
complex. H188 stands out because it establishes two coordination
bonds with the metallic cofactors (Zn2+, Ni2+, or Fe2+). It was also
observed that, although the E and D residues in the catalytic site
do not directly interact with the ligands, they do contribute to the
overall negative microenvironment of the cavity. For example,
epigallocatechin gallate (EGCG), a molecule belonging to cluster
number 3, establishes one coordination bond with KDM4Ametal
through the flavonoid group, meanwhile, the secondary catechol
bends in the opposite direction of the metal due to repulsive
forces effect between them. Additionally, compounds in clusters
14 and 15 exhibit a favorable orientation of the OH groups of the
sugar on the flavonoid that allows the formation of 2–3
coordination bonds with the metal (Figure 5D); although in
this case the number of coordination bonds increases, they are
not provided by catechol but by the carbohydrates. The former is
due to the reduced availability of electrons in the oxygen from the
OH of the secondary catechol to form coordination bonds in
comparison with those of the sugars that show a higher electron
availability and thus, capacity to form more coordination bonds
with the Zn2+ at the active site of KDM4A. This is a possible
explanation as to why molecules with sugars and phenol groups
achieved the best FRED/Chemgauss4 scores.

To study the ΔGPBSA energy distribution through the protein,
we calculated the per residue binding energy contribution of the
KDM4A-CNP0371131 complex. We observed that the binding
energy is mainly driven by long-range electrostatic interactions
and it is distributed along all the residues, not only the ones
present in the cavity (Figure 5E). In general, the attractive forces

(negative values) compensate for the repulsion forces (positive
values), and although some peak repulsion forces can be found
(such as the one for residue 180), these are compensated by other
stabilizing interactions (such as residues 78, 172, 228, 298 and
300), leading to an overall favorable ΔGPBSA energy. The former
indicates that the complex is stable; thus the ligand has
probabilities of showing KDM4A inhibition activity in vitro.
The binding energy is achieved by the contribution of the
favorable intrinsic interaction energy (ΔEMM) and the
nonpolar interaction energy (ΔEnonpolar), while an unfavorable
penalty is applied by the polar interaction energy (ΔEpolar),
mainly due to the solvation effect of both the ligand and the
active site (Supplementary Figure S4). Together, these results
provide an insight into the molecular interactions between the
KDM4A catalytic site and small molecules, which could assist in
the present and future design of small inhibitors. As an example,
Table 2 lists the top molecules obtained from COCONUT,
DrugBank, and FDA databases.

KDM4 Subfamily Inhibitors are Potential
Multitarget Therapies in Cancer
Since our data show that there are some cancer types where more
than one KDM is involved, we suggest that a drug that targets all
the significant KDM4 proteins in a neoplasm could be highly
effective as a therapy. To integrate all this information (KDM4
gene expression, drug inhibitors, and transcriptomic profiles of
each cancer with KDM4 overexpression), facilitate interpretation
and explore the applicability of the results, we constructed a
protein-drug-disease network containing the five KDM4s and the

TABLE 2 | List of the top molecules with potential inhibitory activity of KDM4 subfamily proteins determined with molecular docking using COCONUT, DrugBank and FDA
databases.

Target Database Ligand

KDM4A COCONUT CNP0058667, CNP0150788, CNP0216191, CNP0002425, CNP0371131, Pulchellidin 3-Glucoside (CNP0359043),
CNP0223133, CNP0258703 (Epigallocatechin gallate)

DrugBank 6-O-capryloylsucrose, Zanamivir, Acteoside, DB04211, DB03249, DB07719, DB12116
FDA Glucosamine, Glucosamine sulfate, Doripenem, Neohesperidin, Sulisobenzone, Verbascoside

Wedelolactone, Epigallocatechin gallate
KDM4B COCONUT CNP0322725, CNP0216191, CNP0098686, CNP0316754, CNP0107391, CNP0239128, Crispine D (CNP0119105)

DrugBank Carba-glucotropaeolin, Ascorbyl glucoside, Zanamivir, Iodo-Willardiine, beta-D-arabinofuranose 5-phosphate,
DB03250,DB02488

FDA Methazolamide, Sulisobenzone, Baricitinib, Lanraplenib, Pentostatin
KDM4C COCONUT CNP0187735, CNP0417860, CNP0226084, CNP0298305, CNP0289146, CNP0350449, CNP0106665

DrugBank Peramivir, DB03717, Edotecarin, 3′-Uridine Monophosphate
FDA Cynarin, Quercitrin, Chlorogenic acid, (-)-Epigallocatechin gallate, Hyperoside, Gastrodin, Polydatin

KDM4D COCONUT 6-C-Glucosylorobol (CNP0299696), CNP0002425, CNP0362352, CNP0243580, CNP0216191, Isovolubilin
(CNP0151675), CNP0397301

DrugBank 6-O-Capryloylsucrose, Balanol, 10-hydroxycamptothecin, DB07102, 2′-Deoxycytidine-5′-Monophosphate, Cidofovir,
Levoglucose

FDA Glucosamine, Glucosamine Sulfate, Oleuropein, Sulpiride, Sulisobenzone, Levosulpiride (Levogastrol),
Hydroxycamptothecin

KDM4E COCONUT CNP0131606, CNP0186792, CNP0125603, 4-hydroxy-2-ketoarginine (CNP0433705), CNP0295348, Quercetin 5-
Glucuronide (CNP0081446), CNP0249133

DrugBank Azacitidine, Meglumine, Balanol, Levoglucose, Ascorbic acid, L-Xylulose 5-Phosphate, 5-phospho-D-arabinohydroxamic
acid

FDA Glucosamine, Glucosamine Sulfate, Minoxidil Sulphate, Sulfamonomethoxine, Sulpiride, Xylitol, Orotic Acid (6-
Carboxyuracil)

*For long compound names only the database ID is provided.
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FIGURE 6 | Top potential inhibitors of the KDM4A family. The network represents the Drug-Protein and Disease-Protein relationship between the members of the
KDM4 family. The Drug-Protein edge width and color intensity represents the FRED/Chemgauss4 score. For long compound names only the database ID is provided.
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FIGURE 7 | Integrative network analysis of KDM4 potential inhibitors in different cancer types. A network enriched with differentially expressed genes obtained from
each cancer type selected is shown. The circular nodes represent proteins, and the edges the interactions between them. The color of the circular nodes represents the
fold change in gene expression between tumors with high and low KDM4 expression. Drugs targeting the proteins are represented by diamond nodes, where dark green
is used for Drugbank drugs and light green for natural compounds (Coconut database). The Drugbank drug and protein target interactions were retrieved from
curated databases (NeDRex platform), while the natural compound interactions with proteins are predicted by the in silico analysis performed previously. The colored
shadow highlights the proteins that participate in a cellular process according to g.Profiler enrichment. Overall, the network depicts the KDM4 proteins, their protein
interaction context and shared interactions with known drugs and natural compounds.
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top seven hits for each KDM4 from the three databases evaluated.
We also included the neoplasms related to each enzyme; a
neoplasm was included if a KDM4 was overexpressed or if it
was of bad prognosis in any of the two survival analyses. When
integrating these data we observed that according to their KDM4
expression pattern, a different drug set for each neoplasm can be
found (Figure 6); for example, KDM4E and D are of importance
for Lung Adenocarcinoma, therefore, sulpiride and balanol are
FDA-approved drugs that could be considered for the treatment
of that cancer. Moreover, KDM4A, B, and D are relevant for
Adrenocortical Cancer and Thyroid Carcinoma; thus the
COCONUT CNP0002425, CNP0299696, and CNP216191
compounds are prominent candidates for the treatment of
those neoplasms. For the therapy of Acute Myeloid Leukemia,
since KDM4A, D and E are involved, the CNP0131606 is
promising given the fact that it could target those three
enzymes. As for the KDM4A-CNP0371131 complex (which
had the highest FRED/Chemgauss4 score) we observed that
CNP0371131 was exclusive for KDM4A; thus, could be used
as a treatment for cancers where only KDM4A is deregulated,
such as Uterine Corpus Endometrioid Carcinoma and Testicular
Germ Cell Tumor.

A detailed example of the usefulness of this analysis is the
network extracted for uterine corpus endometrioid carcinoma
(Figure 7), which shows that KDM4D and KDM4A are
overexpressed and both interact with DNMT1 (a DNA
methyltransferase involved in gene regulation); our docking
analysis shows that there are 5 COCONUT compounds able
to target KDM4D and 5 DrugBank compounds targeting
KDM4A. However, the DrugBank compounds target other
proteins in the network in addition to KDM4; for instance,
DB07602 targets KDM4A and EGFR; and Azacitidine inhibits
KDM4A and DNMT1, which suggests that Azacitidine could
modulate essential proteins involved in the negative regulation of
histone H3K9 methylation (as depicted by the light blue shadow
in Figure 7). This same approach to interpret the results can be
applied for the other networks specifically generated according to
the expression profiles shown in Figure 2A.

This analysis also allows us to observe that KDM4 proteins,
when overexpressed, trigger expression changes that affect genes
involved in various cellular processes. For example, the network
detected for pheochromocytoma and paraganglioma shows that
the proteins are involved in the positive regulation of gene
expression, which is also closely related to the negative
regulation of H3K9 methylation function found in networks
adrenocortical cancer (KDM4A overexpression), lung
adenocarcinoma (KDM4A overexpression) and uterine corpus
endometrioid carcinoma. Furthermore, we found that some
druggable processes are related to monoamine GPCRs or
closely related to cocaine addiction pathways, in thyroid and
uterine carcinomas (Figure 7), this is highly relevant given the
fact that proteins involved in these metabolic processes have
previously been demonstrated to be affected in some cancer; such
as lymphoma, prostate, lung cancer and some brain cancers
(Rybaczyk et al., 2008; Shih, 2018). Thus, these results suggest
that targeting KDM4 proteins can also be a promising therapeutic
approach because the drugs targeting them can potentially

modulate cellular processes that contribute to the neoplastic
phenotype.

DISCUSSION

Epigenetic processes play an important role in the regulation of
gene transcription. The discovery of histone demethylases has
contributed to understanding the dynamic process of histone
marks establishment where the deregulation of these enzymes can
contribute to the development of several diseases including
cancer (Guerra-Calderas et al., 2015). These types of enzymes
can affect the expression of multiple genes such as oncogenes, cell
cycle genes and tumor suppressor genes (Sterling et al., 2020).
Many of these demethylases have been involved in cancer, such as
KDM1A, related to the maintenance of clonogenicity and the
inhibition of differentiation (Harris et al., 2012). As well as
KDM2A and KDM2B, which have K3K36me2 and H3K4me3
as their substrate, where its deregulation is associated with
increased proliferation of stem cells and tumor growth and
metastasis (Harris et al., 2012; Wagner et al., 2013) among
other processes such as cell proliferation and drug resistance,
among others. In the present work we focus on the role of KDM4
subfamily members since they have been involved in cancer
development for their ability to alter the chromatin’s state and
influence gene expression (García et al., 2016). KDM4A, B, C, and
D’s expression is tightly regulated in non-neoplastic tissues but
often deregulated in several neoplasias such as prostate, liver,
bladder, colorectal, squamous cell carcinomas, acute myeloid
leukemia, breast, lung and ovarian cancer (Guerra-Calderas
et al., 2015, 2018; Lu et al., 2015; Lin et al., 2019; Chen et al.,
2020; Wu et al., 2021). KDM4E’s expression has only been
detected in testis, however, its physiological role remains
unknown (Hillringhaus et al., 2011). In this study, using large
RNAseq tumor and non-neoplastic tissue datasets, we show that
KDM4 proteins are relevant in different neoplasias and potential
drug targets for therapy. One of the widest sources of novel
biologically active molecules are natural compounds. These have
been used for centuries to treat a wide range of diseases, including
cancer (Gómez-Cansino et al., 2017; Gutiérrez-Rebolledo et al.,
2017; Fang et al., 2020). Importantly, plenty of natural
compounds are known to interfere with epigenetic processes;
for example, flavonoids are compounds found in black raspberry
(and many other plants) which inhibit DNA methyltransferase 1
(DNMT1) activity and enhance the expression of tumor
suppressor genes (Wang et al., 2013). Nevertheless, although
there are reports about natural molecules that could interfere
with KDM4 subfamily activity, no direct natural inhibitors are
known so far (Guillade et al., 2018).

Since ourmain interest is to propose natural KDM4 inhibitors, we
used the COlleCtion of OpenNatural Products (COCONUT), which
gathers 406,744 natural products from over 50 different databases,
where nearly half the compounds come mainly from plants, fungi,
bacteria, and to a lesser extent, from animal or marine origins
(Capecchi and Reymond, 2021; Sorokina et al., 2021). Most of
these compounds (Sorokina et al., 2021) have been used as
traditional medicine in China, India (Ayurveda), Japan (Kampo),
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Korea, Mexico, among other countries (Yuan et al., 2016; Gutiérrez-
Rebolledo et al., 2017) and come from Asia, Africa, Brazil, and
Mexico (Sorokina et al., 2021). The former indicates that this database
is a very powerful bioinformatic tool for natural compound screening.
Also, in this work, we included the DrugBank and FDA databases,
which have been the first-line source for drug repurposing. When
compared against the FDA and DrugBank compounds, the
molecules from the COCONUT database stood out in the
molecular docking analyses against the KDM4 subfamily, which
further suggests that natural compounds could be a rich source of
anticancer therapies (Pushpakom et al., 2019).

However, a challenge faced during the development of specific
inhibitors is the resemblance of JMJC family members’ catalytic
sites. Since these proteins share a catalytic mechanism, their
active sites have a high resemblance, which complicates the
design of ligands that could be specific for a single enzyme
(Markolovic et al., 2016). The KDM4 subfamily active site
consists of a TIM-barrel fold (16 beta-sheets and 15 alpha
helix), which is a usual structural pattern in proteins that
allows a wide assortment of functions (Romero-Romero et al.,
2021). Thus, the TIM-barrel fold pattern is a challenge for drug
design since ligands could bind to different proteins. In this sense,
it is relevant that a specific binding mechanism with a competitive
inhibitor is established for one or some KDM4 proteins. In fact,
most of the KDM4 inhibitors reported are known to target other
KDMswhich limits their use for cancer treatment (Chin andHan,
2015; Baby et al., 2021). Furthermore, we showed that the KDM4
subfamily’s expression is heterogeneous among different cancer
types, which adds another layer of complexity to the search for
inhibitor molecules that could favor the treatment of neoplasms
where the KDM4 proteins are relevant.

Since the KDM4 subfamily is a promising therapeutic target for
drug design, a wide number of synthetic and nature-inspired
molecules have been explored. Among them, it has been proposed
that catechol and flavonoids as structural scaffolds, these kinds of
molecules have gained attention because of their high content of OH
with redox capacity that can also act as free radical regulators (Baby
et al., 2021). Such functional groups can favor their interaction with
high electronegative residues located in the active site of KDM4
proteins, as shown in this study. Furthermore, the metallic cofactors
in KDM4 active sites, assist the catalytic mechanism of electrons
transfer during lysine methylation, thus OH groups can form
coordination bonds that compete with KDM4’s natural substrates
and allow a greater affinity than the substrate itself (Warshakoon
et al., 2006). It has been reported that coordination bonds between
catechol-containing groups (such as flavonoids, or phenols) and
KDM4 metal cofactors lead to an enhancement of interaction
forces (Xu, 2013). An example of the former is the
epigallocatechin gallate (EGCG), a secondary metabolite derived
from the tea plant (Camellia sinensis) that contains catechol and
whose effect has been studied in various epigenetic processes (Fang
et al., 2003; Choi et al., 2009). EGCG is a compound included in FDA
and COCONUT databases which showed a favorable FRED/
Chemgauss4 score on its interaction with KDM4 (Figure 4C,
compound 3), this suggests that it may be a promising inhibitor
candidate for these enzymes. On the other hand, it has been reported
that EGCG chelates divalent metals, including zinc, and it has been

proposed inmany clinical assays as an adjuvant in multiple processes
(Shirakami and Shimizu, 2018). Another variant of catechol,
pyrogallol, which contains 3 OH groups instead of 2, has been
studied as a therapeutic agent in lung cancer cell lines showing
cytotoxic effects (Yang et al., 2009).

In addition to the contribution of coordination bonds that favor
specificity, there are other non-covalent binding forces that can also
have an impact on specificity and binding affinity such as salt bridges,
hydrophobic interactions, hydrogen bonds, and pi-stacking
interactions. In particular, pi-stacking interactions among aromatic
rings are an important factor in the protein-ligand complex
formation; in such interactions, the geometric orientation of the
rings change the dipole attraction forces among them as well as the
hydrophobic and van der Waals forces rearrange (Churchill and
Wetmore, 2009;Wilson et al., 2014;Houser et al., 2020). The presence
of five aromatic residues and one histidine in KDM4 active sites
promotes a favorable environment to design specific inhibitors
(Churchill and Wetmore, 2009; Brylinski, 2018). The former is
evident for linear molecules (such as the ones in clusters 1, 2, 5,
and 6 in Figure 4C), since those obtained a lower score due to their
interaction with the metal through ionic groups of amines, carboxyl,
or phosphates groups and pi-stacking interactions are not present.
While, molecules of clusters 3, 14, and 15 have higher scores due to
the presence of aromatic rings that favor pi-stacking interaction.
Similar results have been reported for KDM4 proteins and tetrazolyl
hydrazide inhibitors which have an aromatic ring and amine
functional groups that interact with the protein’s metal cofactors
(Małecki et al., 2019).Metal coordination capability of sugars coupled
with flavonoids favors the physicochemical properties of the KDM4
active sites and provides an opportunity for the development of a new
generation of de novo molecules for cancer treatment. One of the
limitations of our study is that it is not supported by experimental
assays, but its strength is that this work is the first step towards an
experimental approach that could contribute to the treatment of
different neoplasms.

Our results also show that members of the KDM4
subfamily are promising drug targets for the development
of therapeutic alternatives in different types of cancer. Since
specificity is hard to achieve for KDM inhibitors, we aimed to
use this to our advantage searching for ligands that could
target all the KDM4s relevant for a specific neoplasm without
altering the others. We highlight the importance of natural
compounds against KDM4 subfamily members, not only
because of their high potential as inhibitors but also
because these compounds could contribute to an
integrative cancer treatment. As shown in this work the
identified molecules could have an amplified therapeutic
effect by modulating, not only KDM4 functions but entire
cellular processes, by modifying the activity of proteins
involved in the same pathways. This mechanism of action
has been proposed for other diseases and protein targets
before (Cheng et al., 2019); however, the study of KDM4
inhibitors remains approached without considering the
molecular context required for their proper function (Chin
and Han, 2015; Baby et al., 2021). Overall, our data suggest
that natural compounds could be used as adjuvant therapies
in cancer, which opens a new window of opportunities for the
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search of KDM4 subfamily inhibitors and contributes to the
search of novel cancer therapies.
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