
Formal Verification of Real-Time
Autonomous Robots: An
Interdisciplinary Approach
Mohammed Foughali 1* and Alexander Zuepke2*

1Université Paris Cité, IRIF, CNRS, Paris, France, 2Chair of Cyber-Physical Systems in Production Engineering, Technical
University of Munich, Garching, Germany

Due to the severe consequences of their possible failure, robotic systems must be
rigorously verified as to guarantee that their behavior is correct and safe. Such
verification, carried out on a model, needs to cover various behavioral properties (e.g.,
safety and liveness), but also, given the timing constraints of robotic missions, real-time
properties (e.g., schedulability and bounded response). In addition, in order to obtain valid
and useful verification results, the model must faithfully represent the underlying robotic
system and should therefore take into account all possible behaviors of the robotic
software under the actual hardware and OS constraints (e.g., the scheduling policy
and the number of cores). These requirements put the rigorous verification of robotic
systems at the intersection of at least three communities: the robotic community, the
formal methods community, and the real-time systems community. Verifying robotic
systems is thus a complex, interdisciplinary task that involves a number of disciplines/
techniques (e.g., model checking, schedulability analysis, component-based design) and
faces a number of challenges (e.g., formalization, automation, scalability). For instance, the
use of formal verification (formal methods community) is hindered by the state-space
explosion problem, whereas schedulability analysis (real-time systems) is not suitable for
behavioral properties. Moreover, current real-time implementations of robotic software are
limited in terms of predictability and efficiency, leading to, e.g., unnecessary latencies. This
is flagrant, in particular, at the level of locking protocols in robotic software. Such situation
may benefit from major theoretical and practical findings of the real-time systems
community. In this paper, we propose an interdisciplinary approach that, by joining
forces of the different communities, provides a scalable and unified means to efficiently
implement and rigorously verify real-time robots. First, we propose a scalable two-step
verification solution that combines formal methods and schedulability analysis to verify
both behavioral and real-time properties. Second, we devise a new multi-resource locking
mechanism that is efficient, predictable, and suitable for real-time robots and show how it
improves the latter’s real-time behavior. In both cases, we show, using a real drone
example, how our approach compares favorably to that in the literature. This paper is a
major extension of the RTCSA 2020 publication “A Two-Step Hybrid Approach for
Verifying Real-Time Robotic Systems.”

Keywords: robotics, real-time systems, formal methods, timed automata, locking protocols

Edited by:
Nicola Capodieci,

University of Modena and Reggio
Emilia, Italy

Reviewed by:
Andoni Amurrio,

Ikerlan, Spain
Alessio Masola,

University of Modena and Reggio
Emilia, Italy

Mehrnoosh Askarpour,
McMaster University, Canada

*Correspondence:
Mohammed Foughali

foughali@irif.fr
Alexander Zuepke

alex.zuepke@tum.de

Specialty section:
This article was submitted to

Robotic Control Systems,
a section of the journal

Frontiers in Robotics and AI

Received: 08 October 2021
Accepted: 03 January 2022

Published: 13 April 2022

Citation:
Foughali M and Zuepke A (2022)
Formal Verification of Real-Time

Autonomous Robots: An
Interdisciplinary Approach.
Front. Robot. AI 9:791757.

doi: 10.3389/frobt.2022.791757

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 7917571

ORIGINAL RESEARCH
published: 13 April 2022

doi: 10.3389/frobt.2022.791757

http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2022.791757&domain=pdf&date_stamp=2022-04-13
https://www.frontiersin.org/articles/10.3389/frobt.2022.791757/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.791757/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.791757/full
http://creativecommons.org/licenses/by/4.0/
mailto:foughali@irif.fr
mailto:alex.zuepke@tum.de
https://doi.org/10.3389/frobt.2022.791757
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2022.791757


1 INTRODUCTION

1.1 Context and Addressed Problem
Robotic systems are being increasingly deployed in human
environments (e.g., home assistants, robotic surgery,
autonomous-driving cars) and costly missions (e.g., space
exploration). Most modern robotic systems are thus safety
critical, due to the severe consequences of their possible
failure, ranging from considerable economic losses to human
injuries. This notion of “safety critical” is oftentimes tied to the
real-time capabilities of the robot. For instance, obstacle
avoidance, a classical ingredient of autonomous navigation,
must be realized in real time, i.e., the robot must stop or
navigate away soon enough not to collide with, e.g., a human
on the field. In this paper, we focus on autonomous robots in this
scope, which we simply refer to as real-time robots.

A real-time robot results from a tight coupling between
software and hardware. The software, inherently complex, is
mostly component-based [e.g., MAUVE (Gobillot et al., 2019),
OROCOS (Soetens and Bruyninckx, 2005), and GenoM3 (Mallet
et al., 2010)]. The software components, commonly known as
functional components, collaborate while interacting with the
hardware, typically a multi-core embedded computer, which we
abbreviate as “MEC” hereafter, and a set of sensors and actuators.
Each functional component implements complex algorithms,
often organized in tasks, to perform some computations using
the resources provided by the MEC. Computations results are
communicated between components to close the
perception–action loop and fulfill the robot’s missions.

Due to their safety-critical nature, exemplified above, it is
crucial to guarantee that real-time robots behave safely and
correctly w.r.t. the real-time constraints of the robotic mission,
considering both their software implementation and MEC’s
capabilities. The latter are usually limited, featuring only a
small number of cores on which a large number of software
tasks are assigned. These hardware limitations are due to the size,
weight, and power (SWaP) considerations. For instance, we can
see this in autonomous drones used in advanced research, e.g.,
Kamel et al. (2015); Khedekar et al. (2019); Chermprayong et al.
(2019) (two cores) and Walter et al. (2018); Jeong et al. (2021)
(four cores) and industry, e.g., the Quanser QDrone1 (four cores).
The complexity and constraints of the software–hardware couple,
as introduced above, render providing sufficient guarantees on
the correctness and safety of real-time robots a particularly hard
research problem as explained hereafter.

The first major issue pertains to the “verification” practices
within the robotic community. Roboticists usually rely on
scenario-based testing, carried out in the field, or, to avoid field
testing costs, by means of robotic simulators such as Gazeebo
(Koenig andHoward, 2004) andMORSE (Echeverria et al., 2012).
Unfortunately, scenario-based testing is inherently unreliable, as
faulty scenarios may remain uncovered even by the heaviest and
longest testing campaigns. Many examples in the literature
corroborate the previous statement. For instance, Pecheur

(2000) gave the details of a full-year test failing to detect a bug
in a NASA experiment. Another example is reported by Kress-
Gazit et al. (2011), where a software bug, while never occurring
during thousands of hours of simulations and over 450 km of field
tests, disqualified the autonomous vehicle Alice from the 2007
Defense Advanced Research Projects Agency (DARPA) urban
challenge. More details on these two examples, as well as further
examples, may be found in Foughali (2018), Chapter 1.

Besides, even if one assumes some sound verification
approaches may efficiently replace scenario-based testing in
robotics, a second major issue arises: mainstream robotic
frameworks have little focus on real-time capabilities in the
rigorous sense of the expression, making them unsuitable for
real-time applications. The conclusions ofMaruyama et al. (2016)
provide a prominent example of this unsuitability w.r.t. the
Robotic Operating System (ROS) (Quigley et al., 2009), the
most popular robotic framework today. Recent attempts are
made to switch to ROS2 which is under development2 with
real-time issues still being investigated (Blass et al., 2021; Choi
et al., 2021).

Two questions then immediately follow: What should
scenario-based testing be complemented with in order to
provide rigorous guarantees on the safety of real-time robots?
And what should be done to provide acceptable real-time
capabilities within robotic frameworks? The answer to either
question requires multidisciplinary approaches at the crossroads
of the robotic, formal methods, and real-time systems
communities. We first give, for each question, a proposition
that takes into account the interdisciplinarity of the question
and discuss the related problems (Section 1.2). Then, we explain,
through our contributions, how we concretize such propositions
(Section 1.3).

1.2 Propositions and Difficulties

Proposition 1.Using rigorous verification techniques in robotics.
Scenario-based testing should be accompanied by

mathematically sound approaches where important behavioral
properties (e.g., liveness and safety) and real-time properties (e.g.,
schedulability and bounded response) are rigorously verified
against a model faithfully representing the software–hardware
couple that is the real-time robot. Formal verification and
schedulability analysis belong to such approaches. Formal
verification can deal with both behavioral and real-time
properties, but its use in robotics is impeded by scalability
issues. Indeed, if the formal technique is exhaustive (e.g.,
model checking), the state-space explosion problem is observed
in real-world robotic systems, i.e., their state spaces are intractable
because of their sheer complexity. On the contrary, if the formal
technique is non-exhaustive, such as statistical model checking
(SMC) (Legay et al., 2010), the properties can no longer be
evaluated with certainty, but with some probability, which is
not sufficient in critical missions [e.g., if a task in a component is
hard real-time (HRT), its schedulability must be verified with

1https://www.quanser.com/products/qdrone 2https://docs.ros.org/en/rolling/Roadmap.html

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 7917572

Foughali and Zuepke Formal Verification of Real-Time Autonomous Robots

https://www.quanser.com/products/qdrone
https://docs.ros.org/en/rolling/Roadmap.html
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


certainty]. Finally, the literature on formal verification of robotics
ignores MEC and operating system (OS) constraints, which
restricts the results’ validity (Section 10). Likewise, the
applicability of schedulability analysis to robotic systems is
limited. First, its theoretical results are hardly generalizable to
robotic tasks because the latter models are much more complex
than the task models used in the real-time systems’ literature
(Section 2). Second, schedulability analysis leaves other
important properties such as behavioral properties unattended.
The core of this proposition is to develop an approach that
combines the advantages of both formal verification and
schedulability analysis for a rigorous verification of real-time
robots.

Proposition 2. Adapting real-time algorithms to robotic
frameworks.

Typically, tasks in a real-time robotic application are
dependent on each other, where the dependency stems from
their need to perform computations and exchange data, and
thus access the MEC’s resources concurrently. The way the
exclusive access to resources is handled, i.e., the real-time
locking protocol (Brandenburg, 2020) (the algorithm used to
lock and unlock the MEC’s resources3 when accessed
concurrently by real-time tasks), has a direct effect on
schedulability and therefore real-time performance (more in
Section 2 through Section 10). Mainstream robotic
frameworks lack predictable (bounded blocking) and efficient
(low-overhead) locking protocols (Section 2, Section 10). In
other words, there is an urgent need to use a real-time locking
algorithm that is (1) efficient, (2) predictable, and (3) suitable for
robotics. Such suitability refers to, inter alia, managing resources
in a fine-grained, multi-resource, read/write fashion with possible
mixed read–write requests (Section 6.2). State-of-the-art fine-
grained multi-resource protocols (from outside the robotic
community) are promising candidates, yet none satisfies all
the above three requirements. In particular, DGL, the multi-
resource version of the real-time nesting locking protocol (RNLP)
family (Ward and Anderson, 2012; Ward and Anderson, 2013;
Ward and Anderson, 2014; Ward, 2016), suffers from efficiency
drawbacks and does not support mixed read–write requests,
whereas MRLock (Zhang et al., 2013) shows degraded
predictability in corner cases (Section 6.3). The core of this
proposition is to benefit from the advantages of DGL and
MRLock in order to propose a new implementation of a
predictable-and-efficient locking protocol that is suitable for
real-time robots.

1.3 Contributions
From the analysis and observations made in Section 1.2 above,
we establish a dependency between Propositions 1 and 2. Indeed,
a predictable, efficient, and suitable locking protocol (Proposition
2) has, due to its direct effect on real-time performance, a direct

consequence on Proposition 1 (e.g., a protocol with lower
overheads and lower blocking bounds may lead to better
schedulability, more in Section 8 and Section 9). Therefore,
we depict our first contribution as an overall verification
approach that remedies the problems discussed under
Proposition 1. Then, we explain our second contribution as a
solution to the problems discussed under Proposition 2 and show
how we integrate such a solution in the overall verification
approach in order to obtain better verification results
(essentially better schedulability and tighter blocking bounds).

Our first contribution is the two-step verification approach
presented by Foughali (2020), of which the current paper is an
extension. We combine formal methods and schedulability
analysis, where neither of the two is sufficient alone (Section
1.1). Our approach enables verifying both real-time and
behavioral properties while taking into account the actual
specificities of the robotic platform (mainly the MEC’s number
of cores and scheduling policy). Furthermore, we provide a high
level of automation, which makes our approach suitable for
robotic programmers with no particular knowledge of formal
methods or schedulability analysis. Step one focuses on
guaranteeing schedulability with certainty. We develop a
schedulability test for HRT robotic tasks, which belong to a
(mixed-)critical application, under a fixed-priority (FP)
preemptive policy and where resource sharing is handled
using the global real-time locking protocol MSRP (Gai et al.,
2001). If the original application, or a modified version achievable
by, e.g., modifying tasks’ deadlines, together with the MEC’s
number of cores satisfies this test, then schedulability of HRT
tasks is guaranteed. This will be the basis of step two, where we
verify, up to a high probability, other important properties less
crucial than schedulability of HRT tasks. Such verification is done
with SMC on formal models that we automatically generate from
the robotic application, the number of cores, and the FP scheduler
(altogether proven to satisfy schedulability for HRT tasks in step
one). The approach is applied to a real autonomous drone system,
developed using the robotic framework GenoM3, and the
verification in step two is carried out using the formal
framework UPPAAL-SMC (David et al., 2015).

Our second contribution boils down to LLAB, a lock-less
array-based implementation of DGL, and R/W LLAB, its task-
fair multi-resource reader–writer variant, as new asymptotically
optimal and efficient real-time locking implementations that are
suitable for robotics.We conduct a set of experiments on different
platforms to show how the LLAB (resp., R/W LLAB)
implementations have lower overheads than both DGL and
MRLock while guaranteeing the same (resp., providing better)
blocking bounds than DGL. Finally, we reiterate the two-step
verification approach on the same drone system where we replace
global MSRP with R/W LLAB and show how the new verification
results confirm a better schedulability and tighter blocking
bounds in the verified real-time robot.

1.4 Outline
The rest of this paper is organized as follows. In Section 2, we
provide background on real-time robots and exemplify through
presenting GenoM3 and an autonomous drone case study. Then,

3“Resources” here, and throughout this paper, relate to memory and possible input/
output devices and not to processor cores, the concurrency over which is handled
through scheduling algorithms.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 7917573

Foughali and Zuepke Formal Verification of Real-Time Autonomous Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


we present our first contribution in Section 3 through Section 5.
In Section 3, we give examples of crucial properties in robotics
and analyze the problems preventing their verification with
formal methods or schedulability analysis independently. In
Section 4, we detail our verification approach, where resource
sharing is handled using global MSRP. Section 5 shows and
discusses the results of applying our verification approach to the
drone case study. Afterward, we present our second contribution in
Section 6 through Section 9. In Section 6, we rely on the
background given in Section 2 to show the limitations of the
current locking choices in robotic frameworks and derive
accordingly a set of requirements w.r.t. to the real-time locking
protocol needed in robotics. Then, we show why new
implementations of algorithms like DGL may fulfill such
requirements while performing better than global MSRP. In
Section 7, we present our LLAB implementation and its
reader–writer variant R/W LLAB. Section 8 experimentally
evaluates LLAB and R/W LLAB and compares their performance
to that of other real-time locking protocols including DGL. We
reiterate afterward the verification process on the same drone case
study on new models integrating R/W LLAB and formally show the
gains in schedulability and blocking bounds (Section 9). Finally, we
compare our work to the state-of-the-art in Section 10 and conclude
with possible directions of future work (Section 11).

This paper is an extension of the RTCSA 2020 publication “A
Two-Step Hybrid Approach for Verifying Real-Time Robotic
Systems” (Foughali, 2020). In particular, the second contribution
and its integration in the verification process (Section 6 through
Section 9) are new material.

2 BACKGROUND

Robotic software is typically developed using dedicated
component-based frameworks (Kortenkamp and Simmons,
2008). Each framework is coupled with a middleware (Elkady
and Sobh, 2012), in charge of low-level primitives of, e.g.,
communicating with the OS. Though ROS (Quigley et al.,
2009), the most popular robotic framework today (using its
own middleware, called ROS-Com), is unsuitable for real-time
robots4, a number of frameworks provide “real-time support”
such as OROCOS (Bruyninckx, 2001), MAUVE (Gobillot et al.,
2019), and GenoM3 (Mallet et al., 2010). Such support is
provided through middleware where, contrary to ROS-Com,
some real-time aspects are considered and analyzed: the
OROCOS-RTT middleware (Soetens and Bruyninckx, 2005)
for both MAUVE and OROCOS and the PocoLibs5

middleware for GenoM36. In the remainder of this paper, we

omit the term “middleware” to alleviate writing and reading alike
and refer to the couple framework/middleware simply using the
name of the framework and the term “framework,” which will
thus include both the framework and its proper middleware. For
instance, OROCOS will refer to the OROCOS framework using
the OROCOS-RTT middleware, whereas GenoM3 refers to the
GenoM3 framework using the PocoLibs middleware.

In this paper, all our models, analyses, and results are carried
out on GenoM3 specifications. This is due to the main advantage
of GenoM3 having automatic translations toward formal
verification frameworks [e.g., to Fiacre/TINA (Foughali, 2017)
and UPPAAL-SMC (Foughali et al., 2019b)] the soundness of
which is mathematically proven (Foughali et al., 2019b), and that
GenoM3 was the basis of our work in Foughali (2020) of which
the present article is an extension. We will still point out the
similarities between GenoM3 and the other real-time–oriented
robotic frameworks throughout this section and discuss more
their common limitations and how our contributions may apply
to any of them in Section 10.

2.1 Robotic Software Specificities
We briefly present robotic software specificities using GenoM3
and a quadcopter case study.

A robotic software, which we call a system, is made of
communicating components (Section 1.1). To account for
timing constraints, a component encapsulates periodic tasks, in
charge of its complex algorithms. The latter are organized within
services. Because services are heavy and share resources, they are
broken into small pieces of code, each attached to a state in a finite-
state machine (FSM), hence the popularity of FSMs in robotics.
Thus, there are four “levels” in a system (from the lowest to the
highest): pieces of code, services (FSMs), tasks, and components.

Though not unanimous in robotics, the above organization is
used by most real-time–oriented robotic frameworks with subtle
differences (e.g., while MAUVE and OROCOS confound
components with tasks, i.e., a component is a task, GenoM3
preserves both levels). Note that since there is no standard
terminology for most levels, the one we use is that of GenoM3.

We provide a generic informal description of GenoM3 with a
focus on concurrency and real-time aspects. A more formal
example using timed automata is given in Section 4.1. Note
that this description is simplified for readability and to remain in
the scope of this paper (e.g., control tasks and aperiodic tasks are
excluded).

The organization of a component is shown in Figure 1 (left),
where we can see the three component “levels” described above.
Pieces of code are called codels. Each codel, attached to a state of a
service FSM, has a worst case execution time (WCET). By abuse of
terminology, FSM states are simply called codels. Each task t,
featuring a period, is in charge of a set of services St. We say that
each service s ∈ St is a service of t, and t is the task of s (s cannot
belong to any St′with t′ ≠ t). To perform their computations, codels
share the internal data structure (IDS) of the component. Finally,
ports are used to communicate with other components and are thus
accessible by the codels in all components that use them.

Codels are thus critical sections that usually have short
execution times (see the drone example in Section 2.2). The

4A number of references are provided in Section 1 where this claim was initially
made. Following a consensus in both the robotic and real-time systems
communities, this claim is the initial motivation of other articles such as Saito
et al. (2018), referred to in Section 10.
5https://www.openrobots.org/wiki/pocolibs
6Actually, both MAUVE and GenoM3 support also the ROS-Com middleware but
recommend using OROCOS-RTT and PocoLibs, respectively, for real-time
applications.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 7917574

Foughali and Zuepke Formal Verification of Real-Time Autonomous Robots

https://www.openrobots.org/wiki/pocolibs
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


execution of a codel is subject to a prior locking of a set of
resources (multiple resources), each resource being an IDS
fragment or a port. A resource may be locked in shared (read-
only) or exclusive (write) mode.

2.1.1 Behavior
We briefly explain how a component evolves in a top-down
fashion (from tasks to codels), following the scheduler-agnostic
semantics developed by Foughali et al. (2019b).

The component is piloted by an external client that requests
services. Each task t, at each period, executes only the services
previously requested by the client (among services in St) sequentially.
When a service finishes executing, the task informs the client by
sending a report. Communication between clients and tasks is
abstracted in the rest of this paper for readability and simplicity.

Each service FSM has at least two codels: start (at which the
first execution begins) and ether (the termination point). A
service execution ends when either (i) codel ether is reached
(service is terminated) or (ii) another codel c is reached after
taking a pause transition, i.e., a transition labeled pause [see the
abstract FSM in Figure 1 (left)]; we say then the service is paused
and refer to c as a pause codel. In the latter case, the service is
resumed, at the next period of its task, starting from c.

2.1.2 Concurrency
Tasks (in a system), each of which executes its requested services
sequentially (see the previous paragraph), are run as parallel
threads (assuming enough cores are available). To maximize
parallelism, access to shared resources is handled at the codel

level: resources (ports or fields of the IDS) that a codel needs for
its execution are statically defined, so two codels in conflict (using
at least the same port or the same IDS fragment) may not execute
in parallel (simultaneous readings are allowed). Thus, while
executing its requested services, a task needs to busy-wait
(spin) when one of such services reaches a codel in conflict
with another codel, in another service being executed by
another task concurrently. Following this low-level
concurrency model, a codel may be either thread safe (TS)
(not in conflict with any codel) or thread unsafe (TU)
(otherwise). Because of ports sharing, codels in conflict may
belong to different components (example in Section 4.1).

2.1.3 Specification and Templates
While we content with graphical illustrations of GenoM3
systems, the latter are actually specified textually. Each
component is written in a dotgen (.gen) file, in which tasks,
services, and codels are specified. A system may be then built by
#-including the dotgen files of the different components in
another dotgen file.

Templates transform dotgen specifications into Tool
Command Language (Tcl) structures for automatic generation
purposes. The robotic programmer can access all information in
the dotgen file (e.g., task periods, FSM, and codel WCET),
manipulate it, and generate a text file in any format
accordingly. We have used this mechanism in previous work
to automatically generate formal models (Foughali, 2018). In
Section 4, we give examples of templates developed to automatize
the two-step approach presented in this paper.

FIGURE 1 | A drone example showing some services of the quadcopter case study (right) and a generic GenoM3 component (left).

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 7917575

Foughali and Zuepke Formal Verification of Real-Time Autonomous Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


2.2 Case Study
To validate our approach, we use the quadcopter case study from
LAAS-CNRS. Figure 1 (right) shows its GenoM3 organization in
which some names are modified for simplicity. The system
contains five components collaborating to achieve autonomous
aerial navigation. We give a high-level description (in terms of
components and ports) on how these components collaborate
[the interested reader may refer to Foughali (2017) for more
details on each component].

Component MIKROKOPTER processes data from the inertial
measurement unit (IMU) and the propellers’ sensors and uses
them to write the current IMU and velocity to ports IMU and
Velocity, respectively. Component OPTITRACK processes data
from the Optitrack motion capture system and writes them to
port Mocap. Component POM reads the IMU and captures
position from, respectively, ports IMU (MIKROKOPTER) and
Mocap (OPTITRACK), to which it applies an unscented Kalman
filter (UKF) to compute the estimated position of the drone that it
writes to port Pose. Such position is fed to (i) MANEUVER, which
uses it to compute an intermediary goal position that it writes to
port Goal, and (ii) NHFC, which uses it, together with the current
Velocity (from MIKROKOPTER), to compute and update, in port
Cmd, the velocity to reach the intermediary goal position (from
Goal in MANEUVER). Finally, the perception–action loop closes as
MIKROKOPTER reads the updated velocity in Cmd (NHFC) and
applies it to the drone propellers.

In the quadcopter case study, tasks run at high frequencies
(most at 1 kHz), and critical sections, typically short (less than
50 μs), share more than 30 resources (IDS fragments and ports).
Hardware-wise, the drone is controlled by an ODROID-XU3
MEC, featuring an ARM-based quad-core CPU. This low number
of cores is dictated by the SWaP considerations as explained in
Section 1.1.

3 THE VERIFICATION CHALLENGE

In this section, we explain the importance of rigorous verification
of real-time robots and detail their challenges using the drone
example presented in Section 2.2.

If the drone software fails, the drone may crash, inducing
economic costs and/or human injuries. We give examples of
crucial properties that must be verified to avoid such failure and
explain why their verification is particularly challenging.

3.1 Properties of Interest
The drone system has three critical components: MIKROKOPTER,

NHFC, and POM. That is, tasks in these components are HRT: each
must always finish executing within its period; otherwise, the
drone may crash. It follows that the schedulability property must
be proven always true for these tasks, for all possible scenarios. In
the remaining components (less critical), tasks are allowed tomiss
their deadlines. However, it is still important to verify that they
are, e.g., exempt of starvation, that is, being, at some point,
delayed forever by critical tasks monopolizing resources. For
example, in tasks in MANEUVER, such starvation would make
the drone hover forever without fulfilling its mission (as it

may not navigate to a final goal position). These tasks must
thus not starve, but also, ideally, respect their deadlines for a
timely fulfillment of the mission.

3.2 Difficulties
Now, in order to verify these properties, using model checking (or
SMC) or schedulability analysis independently proved insufficient
in robotics in general and on this drone system in particular.

3.2.1 With Model Checking/SMC
Model checking does generally not scale with complex robotic
applications. For instance, we show in Foughali et al. (2019b) that
although it performs well on the stationary flight application
(i.e., component MANEUVER is excluded), model checking with
state-of-the-art tools fails to scale on the navigation application
involving all the five components (Figure 1), with eight tasks and
over 20 services broken into more than 80 codels. In the same
work (Foughali et al., 2019b), we use SMC to verify properties up
to a high probability. Though SMC provides better guarantees
than scenario-based testing, it is not suitable for the schedulability
property of HRT tasks which must be proven with certainty.

Another problem of model checking (and generally formal
verification) in robotics is that extending formal models with
scheduling algorithms usually penalizes their scalability because of
(i) preemption and/or (ii) the necessity to create largemodels to handle
schedulers (Foughali and Hladik, 2020). For the drone navigation
application, the integration of schedulers in formal models (which
already do not scale as explained above) produces new formal models
that still do not scale, even when preemption is not allowed.

3.2.2 With Schedulability Analysis
From a real-time analysis point of view, we focus on three levels in
GenoM3 (and generally robotic) systems: the tasks level, the services
level, and the codel level (components are abstracted as tasks map to
cores). Robotic task models are thus more complex than those
usually considered in real-time analysis: a robotic task executes, at
each period, a sequence of services each comprising a sequence of
codels with possible spinning and/or preemption between them,
rather than one job whose WCET is known. A particular problem is
the computation of the WCET of tasks, which is practically
intractable. Indeed, besides the fact that a TU codel (Section
2.1.2) may remain infinitely blocked waiting for resources
(robotic frameworks do not guarantee the absence of starvation),
the sequence of codels to execute in services by a taskmay differ from
a period to another depending on, e.g., which services are requested
(Section 2.1.1). Another problem is that even if such sequences’
WCETs are somehow obtained, theoretical results of schedulability
analysis in the literature are still unusable because the preemption
model in robotics is also different (more in Section 4.1). Finally,
schedulability analysis provides no guarantees on other properties
excluding schedulability.

4 A TWO-STEP HYBRID APPROACH

Our approach combines both formal verification, by means of
SMC, and schedulability analysis to achieve scalable rigorous

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 7917576

Foughali and Zuepke Formal Verification of Real-Time Autonomous Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


verification of crucial properties in robotics. We divide properties
into two types: Type I covers properties that must be verified with
certainty (schedulability of all HRT tasks), while Type II
comprises properties that may be verified with a high
probability (e.g., absence of starvation in less critical tasks).
On that basis, the key idea is the following. Since model
checking does not scale, we may use SMC for Type II

properties, but only once properties of Type I are verified with
certainty. Thus, we first check whether we can guarantee properties
of Type I using schedulability analysis. This is the first step of our
approach, which takes into account the actual number of cores on
the MEC and a scheduling policy (Section 4.1). If step one is
conclusive, an UPPAAL-SMCmodel of the considered application,
number of cores, and scheduler (already proven to satisfy
properties of Type I in step one) is generated. On such formal
model, we verify by means of SMC properties of Type II, which
concludes the second step of our approach (Section 4.2).

4.1 Step One: Schedulability Analysis
Our approach is based on response time analysis (RTA). First, we
compute the tasks’WCETs, taking into account delays caused by
mutual exclusion over resources (Section 4.1.1). Then, we
compute the tasks’ worst case response time (WCRT)
considering the concurrency over cores (Section 4.1.2).

4.1.1 Computing Tasks’ WCET
In the following, we explain more where the difficulty of
computing task WCET (Section 3.2) comes from using the
UPPAAL formal model of the GenoM3 task main (component
MIKROKOPTER) of the drone (Figure 1) shown in Figure 2. This
model, automatically generated, is proven correct w.r.t. GenoM3
semantics (Foughali et al., 2019a; Foughali et al., 2019b). The
model is simplified for readability purposes.

Each timed automaton (TA) in UPPAAL, made of locations
and edges connecting them, and possibly having a clock x, is called
a process. Time invariants (in purple) may be associated with
locations, and edges may have guards (in green) and operations
(in blue). Processes are arranged to fit with the “layers” view given
in Section 2.1: the task layer, composed of processes timer and
manager, the service layer, where each underlying GenoM3
service FSM is mapped to an UPPAAL process, and the codel
layer, where codels are locations in service processes. Figure 2
shows that task main has two services: Init and Apply.

Shared variables and functions are used by processes to
communicate. The array tab_t holds the names and “statuses”
of all services of task t. Each of its cells contains two fields: n, a
service name, and st, the service status that may be either R
(requested by a client) or V (for “Void,” otherwise). The timer of t
gives at exactly each period a signal, through variable tick_t, to the
manager to start execution, by taking the edge start → manage.
The operation of such edge searches, through function next(), for
the index of the next requested service in tab_t (having status R)
starting at index i_t (initially 0) and stores the result in i_t (the
size of tab_t if such service does not exist). At location manage,
the manager executes the requested services sequentially:
variables lock_t and turn_t are used to pass the control to the
next service to execute (computed previously through function
next()). When such service finishes execution, by either
terminating7 (e.g., edge end_exec → ether in service Apply) or
pausing (e.g., edge run_exec → run_pause in service Init), it

FIGURE 2 | Simplified UPPAAL model of task main in component
MIKROKOPTER. Process Urgency does not belong to any component and is
added to enforce urgencies, i.e., prevent unnecessary lazy waits (the receiver
edge “exe?” is always ready).

7In this case, there is an additional operation: V is assigned to the service status in
tab_t to prevent t from executing it again at its next period.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 7917577

Foughali and Zuepke Formal Verification of Real-Time Autonomous Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


computes the index of the next service to execute and gives the control
back to the manager. And so, the control passes back and forth
between themanager and the requested services until each of the latter
has executed once (detected when next() hits the bottom of tab_t), so
the manager transits back to start and awaits the next period.

Now, at the codel level, a codel c in a service s is represented by
either one location c (if it is TS) or two locations c and c_exec
(otherwise) plus a location c_pause if such codel is targeted by a
pause transition in the underlying GenoM3 specification. The
WCET of c is represented with an invariant x ≤ wcet[c_s_t] on
location c (c_exec if c is TU), where wcet is an array of all codels’
WCETs indexed with unique identifiers. The array of Booleans
mut is used to handle concurrency: it tracks the execution of TU
codels in the system. Therefore, guards on edges c → c_exec
ensure c does not start executing unless no codel in conflict with c
is currently executing, witnessed by the falseness of the
corresponding fields in mut. For instance, codel run of service
Apply is in conflict with codel recv (in service Connect, executed
by the other task comm in MIKROKOPTER), and codel start (in
service servo of task control in component NHFC), which explains
the guard on the edge run → run_exec in process Apply. If such
guard is true, codel run starts executing by taking run →
run_exec through which it turns its own field in mut to true
to prevent, in turn, codels in conflict with it to execute.

This example shows the complexity of GenoM3 (and generally
robotic) tasks. From a real-time analysis perspective, we identify
two problems. First, the WCET of a sequence of codels (which a
task executes) is possibly infinite because we do not know
beforehand how long a TU codel needs to wait to secure the
resources it needs (the blocking time). Second, even if we bound
such blocking time, it is practically infeasible to compute by hand
the WCETs of all possible sequences: for instance, summing the
WCETs of all codels in all services in a task (assuming we bound
and include blocking bounds in TU codels’ WCETs) would be a
naive solution (such sum would be a coarse overapproximation
that will likely prevent finding a feasible schedule). We propose a
solution for both problems by, respectively, (i) an implementation
to bound blocking times for TU codels and (ii) an algorithm to
compute the WCET of a task by traversing all possible codel
sequences. We explain how the solution can be automated.

4.1.1.1 Bounding TU Codels’ WCET
We propose an implementation to enable computing a blocking
bound Bc (on the time needed to acquire resources, i.e., IDS or
ports) of any TU codel c. Then, we get the actual WCET of c by
summing its WCET (from the GenoM3 specification) with Bc.

Listing 1: Generating the largest WCET of TU codels per task.

The implementation is inspired frommultiprocessor resource-
sharing protocols. Brandenburg (2011) reviewed a number of
such protocols, mainly categorized into spin-based (busy-waiting)
and suspension-based, and pointed out that the former are easier
to implement and perform better than the latter when durations
of critical sections are short. As we explained in Section 2, FSMs
in robotics are designed to reduce the times of locking shared
resources, which makes spin-based protocols suitable to our case.
Actually, the previous reasoning fits with the reality of spinlocks
being widely used in robotics (e.g., ROS and GenoM3 systems).
At first, we use the global MSRP protocol (Gai et al., 2003). In a
nutshell, a TU codel c appends itself to an FIFO queue, and its
thread is spinlocked until c gets access to shared resources, and
spinlocked threads are non-preemptible. TS codels are not
concerned as they are in conflict with no other codel in the
system (Section 2.1.2). The direct disadvantage of this approach
is that all TU codels compete for the shared resources as a whole,
which reduces the overall parallelism of the system (it is possible
for a TU codel c to be blocked by another TU codel c’ in the
FIFO queue even though c and c’ are not in mutual conflict). In
Section 9, we will use our new fine-grained algorithm R/W LLAB
(which we devise and evaluate in Section 6 through Section 8)
which efficiently and predictably overcomes this disadvantage.

Let us compute Bc of a TU codel c in a service s in a task t. We
assume there are n tasks and m cores (m<n). In worst case
scenarios, the thread trying to execute c spins after alreadym − 1
threads are in the spinlock FIFO queue (for accessing shared
resources). Since each thread corresponds to a GenoM3 task that
(i) is sequential and (ii) spins only when trying to execute a TU
codel, the first m − 1 entries of the FIFO are occupied by TU
codels each in a distinct GenoM3 task, different from t. In the
worst case, each t′ of the m − 1 tasks already spinlocked is trying
to execute TU codel c’ with the largest WCET among the TU
codels of all services in t′. Thus, Bc is upper-bounded by the sum
of the WCET of codels c’. To get that sum, we proceed as
follows: (1) For each task t′ ≠ t, we find, within all its services, the
largest WCET of all TU codels. (2) We sort, in decreasing order,
the values found in (1). (3) Bc is equal to the sum of the firstm − 1
values sorted in (2).

Once Bc is computed, we sum it with WCETc (the WCET of
codel c given in the GenoM3 specification) to get the actual
WCET of c (including the blocking bound). To make codels’
actual WCET computations accessible to robotic programmers,
we make use of the template mechanism (Section 2.1.3). We give
in Listing 1 an example that performs steps (1) and (2) of the
algorithm above and then writes (to a file) the list output by (2)
for any TU codel in any service in task t. The template generator
evaluates everything enclosed in < ‘ ’> (resp., < “ ”> ) in Tcl
without output (resp., and outputs the result) and outputs the rest
as is. Line 4 excludes task t, and line 8 conditions considering
codel c only when it is TU through the non-emptiness of the field
[$c mutex], a ready-to-use list containing all codels in conflict
with c. The last line writes to a file the list after sorting it in
decreasing order.

Thus, at the end of these computations, we have the actual
WCET of all codels, which we call simplyWCET in the remainder

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 7917578

Foughali and Zuepke Formal Verification of Real-Time Autonomous Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


of this section and throughout the following section with the
verification results (that is, theWCET provided by GenoM3 if c is
TS or summed with Bc if c is TU). Our approach to compute Bc is
generic and may thus be pessimistic in some cases. For instance, if
the scheduler is partitioned, some of them − 1 largest elements of
wcets_max (Listing 1) may belong to tasks allocated to the same
core as t, and thus, Bc is overestimated. However, this genericity
brings a valuable advantage. Indeed, since the computation is
affinity-independent, the roboticist performs this step only once
and, if some HRT tasks do not pass the schedulability test
(Section 4.1.2), may try to find a better affinity by reallocating
tasks based on the timing constraints already computed (the
affinity does not affect such constraints). This is explained further
in Section 5.

4.1.1.2 Deducing Tasks’ WCET
We call each possible (full) codel sequence executed by task t a
hyperjob. The largest WCET of all hyperjobs in t is then simply
the WCET of t.

Therefore, to compute the WCET of t, we proceed as
follows: (1) For each service s in task t, we sum the WCETs
of codels involved in each possible path (starting at either codel
start or some pause codel and ending at either ether or
some pause codel). (2) We find, for each s, the value of the
largest among the sums computed in (1). (3) We sum the
values found in (2). (4) We repeat (1), (2), (3) for all tasks in the
GenoM3 system. Thus, this algorithm will give the maximum
time to execute the longest possible path in all services in t,
which corresponds to the largest WCET of all possible
hyperjobs in t (i.e., the WCET of t).

The above algorithm being classical in model checking, the
idea is to benefit from the already existing UPPAAL template
(Foughali et al., 2019b) to achieve it. Yet, we know that the overall
UPPAALmodel of this application does not scale. The good news
is, however, we do not need to consider the system as a whole:
since WCETs are now known for all codels, we may adapt service
processes of task t to allow computing the maximum time of their
possible paths [step (1) above] without considering the rest of the
system.

First, locations c_exec are no longer needed: location c is
enough, the invariant bound of which is the WCET of codel c
(Section 4.1.1.1). That being done, interactions of each service
with services outside t cease to exist (since bounds Bc are now
included in TU codels’ WCET, all guards and operations
involving the mut array are removed). Then, we (i) make all
ether and c_pause locations urgent (time cannot progress at them)
and add, to each service process of t, a clock y reset to 0 at all edges
leaving ether or c_pause locations. This way, y tracks the time of
each possible path from location start (or any c_pause location) to
location ether (or any c_pause location). We have thus what we
need for step (1) of the algorithm above and may remove all the
remaining non-clock guards and operations in the services of t. It
follows that there are no more interactions between any service
process in t and the rest of the system, whichmeans we can obtain
the WCET for each possible path in each service separately.

Figure 3 shows the result of these changes to the UPPAAL
process of service Apply (Figure 2). Now, all we need to do is ask
UPPAAL for the maximum value of clock y at location ether and
each location c_pause using the UPPAAL query pattern sup{p.l} :
p.y (with p being the process name and l the location name), store
the results, and repeat the operation for each service in task t,
which corresponds to step (1) of the algorithm above. Then, we
perform (2) and (3) and then repeat the whole process for all
other tasks [step (4)] to get the WCET of all tasks in the GenoM3
system.

4.1.2 Analysis
Once the tasks’ WCETs are computed, we compute their WCRT
for RTA.We recall that schedulability tests from the literature are
not applicable to robotic tasks even when they take memory-
sharing into account. For instance, standard task and scheduling
models assume a task executes only one job at each release. This
means that if we use available tests, we should treat each hyperjob
in each task t as a regular job and, since such hyperjob is likely to
include a TU codel, make it non-preemptible (Section 4.1.1.1).
Consequently, we will most likely end up with a set of non-
preemptible tasks, which renders preemptive scheduling useless.

Thus, we need to perform schedulability analysis based on the
model in Figure 4: each hyperjob may be preempted at the end of
each codel. The reason for this is rather straightforward: in
robotics, elementary pieces of code (codels in GenoM3) are
designed by roboticists as the smallest pieces (of the algorithm
they belong to) that must be performed with no intermediary
perturbations. TU codels present another feature that
consolidates the rationale of codels’ non-interruptibility: their
interruption may compromise their memory-dependent
computations.

FIGURE 3 | Modified process of Apply for WCET task computation.

FIGURE 4 | Hyperjob model.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 7917579

Foughali and Zuepke Formal Verification of Real-Time Autonomous Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


4.1.2.1 Scheduling Assumptions
We use a partitioned FP scheduler. There are two main reasons.
First, partitioned FP is very popular in domains related to
robotics, such as automotive systems [e.g., in AUTOSAR
(Wieder and Brandenburg, 2013)], since it removes the cost of
task migration. Second, global schedulers are known to perform
poorly compared to partitioned ones, even though this might
result from over-pessimism of tests in global approaches (Gracioli
et al., 2013).

For the sake of analysis, we introduce a first real-time model
on which we will carry out schedulability analysis. The task set
of the robotic system is the union of HRT and less critical tasks
τ = τh ∪ τl. There are two priorities: prh (resp., prl), the high
(resp., low) priority, assigned to all tasks in τh (resp., τl). The
platform featuresm cores C1. . . Cm (m < |τ|). Let Affi ⊆ τ be the
affinity of core Ci, that is, the set of tasks allocated to it. Then,
Affi = Affil ∪ Affih where Affil = τl ∩ Affi (resp., Affih = τh ∩ Affi)
is the set of low (resp., high) priority tasks allocated to Ci. Since
the algorithm is partitioned, each task is statically allocated
to only one core, that is, ∀i, j ∈ 1..m, i ≠ j: Affi ∩ Affj = ∅. The
size of the queue of Ci is equal to the cardinality of its affinity
|Affi|.

Following the model in Figure 4, a task is a set of
hyperjobs t = {hj1. . .hj|t|}. A hyperjob is an ordered set of
codels hj = {c1. . .c|hj|}. If a codel c belongs to a hyperjob in t, we
may say simply that c belongs to t. When needed, we use the
superscript (t) to denote that a hyperjob or a codel belongs to
task t and the double subscript jk to denote that a codel cj
belongs to hyperjob hjk. Superscripts/subscripts are omitted
when unnecessary, unimportant, or clear in the context.

This real-time model is deliberately specific to our approach,
as it integrates the bounding of blocking times performed in this
step. Further in this paper (Section 6), we will introduce a generic
real-time and locking model for GenoM3 based on which we
devise a new locking mechanism to replace MSRP.

4.1.2.2 Computing Tasks’ WCRT
At each period Pt, one (depending on the evolution of the system)
of the hyperjobs in t is to be executed. The WCRT of t defines an
upper bound on the time separating the moment ai, at which a
hyperjob hji is activated (arrives in a core queue), and themoment
fi, at which it finishes its execution and frees the core, that is,
WCRTt = maxi∈1‥|t|(fi − ai) (Eq. 1). Let ri ∈ [ai, fi) be the moment
hji is released, that is, a core is given to it and it starts to execute (fi
is excluded because hji cannot execute in zero time). By inserting
ri in Eq. 1, we get WCRTt = maxi∈1‥|t|(fi − ri + ri − ai) which we
may upper boundWCRTt ≤ (maxi∈1‥|t|(fi − ri) +maxi∈1‥n(ri − ai))
(Ineq. 2). Now, we know that the left-hand operand of the right-
hand side of Ineq. 2 is theWCET of t which we already computed
in Section 4.1.1. We call the remaining operand the worst case
waiting time WWTt = maxi∈1‥|t|(ri − ai) (Eq. 3). Therefore,
WCRTt ≤ WWTt + WCETt (Ineq. 4).

A hyperjob hj of a high-priority task t allocated to core Ci

(t ∈ Affih) worst position in the prioritized queue of Ci is equal
to |Affih|. The worst waiting time of hj corresponds to this very
position (hyperjobs of tasks in Affih, having the same priority
prh as t, are already in the queue, so hj has to wait for them to

finish). Now, in this worst situation, the worst case is when the
hyperjob at the head of the queue cannot start immediately as a
low-priority task hyperjob hj′ is still not preempted (we recall
that preemption points are set at the end of each codel,
Figure 4). It follows that the worst waiting time for hj is
equal to the sum of the WCET of all |Affih| − 1 hyperjobs (each
belonging to a task t′ ∈ Affih\{t}) in the queue plus theWCET of
the codel of hj′ being currently executed. We maximize such
worst waiting time for all hyperjobs in t to get WWTt (see Eq.
3). To account for the waiting needed for high-priority
hyperjobs, we maximize the WCETs of all hyperjobs in each
task t′ ∈ Affih\{t} and sum them (1). Then, we add to the value
obtained in (1) the waiting for preemption by maximizing the
WCET of codels in low-priority tasks t″ ∈ Affil (2). (1) is simply
the sum of the WCET of tasks t′ ∈ Affih\{t}, and in (2), we add
the WCET of the longest codel in tasks t″ ∈ Affil, which gives us
the following bound for any task t allocated to core Ci:

WWTt ≤Σt′∈Affih\ t{ }WCETt′

+maxt′′∈Affil

l∈1‥|t′′ |
k ∈ 1‥|hjt′′

l
|

WCET
ct
′′
kl

( ) Ineq. 5( ).

We sum WWTt with WCETt to upper bound WCRTt (see Ineq. 4).
Finally,we state the schedulability test forHRT tasks∀t∈ τh:WCRTt≤Pt
(Ineq. 6).

While pessimistic, this test is sufficient: if the maximum time a
task t needs from its activation to its end is less than its deadline
(period), then t is schedulable. We trade off optimism for
sustainability: Burns and Baruah (2008) showed that RTA-
based FP schedulability tests are sustainable in the sense that
they remain valid even if some tasks manage to execute in less
than their WCET.

4.2 Step Two: Formal Verification
If all HRT tasks in the GenoM3 system pass the schedulability test
in step one, we may verify other—less critical—properties using
SMC.We automatize the generation of UPPAAL-SMCmodels by
extending the template presented by Foughali et al. (2019b).

First, we make sure that the WCET computations, made with the
help of UPPAAL (Section 4.1), still hold in UPPAAL-SMC models.
This is a simple proof. As shown by Foughali et al. (2019b), the only
difference between UPPAAL-SMC and UPPAAL models is at the
level of services, where non-deterministic edges may have custom
probabilities. To give an example, let us get back to Figure 2. In
process Init, there are two edges out of location run_exec. In
UPPAAL, these edges are equiprobable (chances to take one or
the other are equal). In UPPAAL-SMC, one may use custom
probabilities (that sum to one) on such edges, a mechanism which
we exploited in Foughali et al. (2019b) to insert experiment-based
probabilities. Now, w.r.t. the computations made in Section 4.1, this
difference has no impact since, for HRT tasks, we need to explore all
paths anyway, no matter how big or small is the probability to take
each of them. Second, we need to integrate the global MSRP protocol
in the verifiedmodel and use the originalWCETs of codels. Third, we
need to integrate the FP scheduler in the UPPAAL-SMC model and
automatize it in the template.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 79175710

Foughali and Zuepke Formal Verification of Real-Time Autonomous Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


For readability, the technical details on how (i) the UPPAAL-
SMC model is extended with the FP scheduler and (ii) the
obtained formal model is automatized in a template are
omitted in this paper, but the interested reader may refer to
Foughali (2020) (Section III.B).

5 RESULTS

We apply our approach to verify important properties on the drone
navigation under a partitioned FP policy and the number of cores on
the drone MEC (quad-core ODROID-XU3, Section 2.2).

5.1 Step One
We comply with the notation given in Section 4.1:m = 4 (number of
cores), τh = {main, comm, io, filter, control} (the set of HRT tasks,
i.e., high-priority tasks, those of the critical components MIKROKOPTER,

POM, and NHFC), and τl = {publish, plan, exec} (the set of low-priority
tasks, those of components OPTITRACK and MANEUVER). Following the
steps given in Section 4.1.1, we compute the actual WCET of all TU
codels in the system, update such WCET accordingly, and then
compute theWCETof the fiveHRT tasks in the system (Table 1). For
each of the remaining three tasks, we identify the codel having the
largest WCET (Table 2)8. We recall task periods in Table 3.

An issue that arises is how to allocate tasks to cores. It stems
from the bin-packing problem, known to be NP-hard. In this
paper, the way we allocate tasks is inspired by the first-fit
decreasing heuristic. We start by allocating m high-priority
tasks (in τh) to the m cores and then repeat until all tasks in
τh are allocated. Then, we do the same for low-priority tasks (thus
allocation is by decreasing priority). The first-fit part is left to after
running the schedulability test on HRT tasks (if such test fails).
This allocation is not exactly what the original heuristic does,
but in our case, it intuitively tends to reduce the WCRT of
HRT tasks in the application. Indeed, such WCRT increases
with the number of HRT tasks allocated to the core (Ineq. 5),
and so allocating first HRT tasks minimizes the maximum
number of HRT tasks allocated to a core Ci, upper-bounded by
�τh/m�. The (decreasing) affinity we start with is given in
Table 4.

We are now ready for schedulability analysis: we apply Ineq. 5
(using the values in Tables 1, 2) for each task t to upper bound
WCRTt and then compare the latter with the period Pt in Table 3
(Ineq. 6). The results (Table 5) show that all HRT tasks pass the
schedulability test except for task io, whose WCRT is 80 μs larger
than its period.

At this point, we may try to change the affinity without
modifying the decreasing pattern (no more than two HRT
tasks per core). Here, the genericity of the approach in
Section 4.1.1.1 allows us to reason only using the timing
constraints in Tables 1, 2, which remain valid regardless of
the chosen affinity. We notice that, by permuting the
allocation of low-priority tasks publish and plan, all HRT tasks
pass the schedulability test (Table 6). This new affinity guarantees
schedulability for all HRT tasks in the system (Table 7) and will
be thus the basis of step two.

5.2 Step Two
We generate, from the affinity in Table 6, the number of cores,
and the GenoM3 system, an UPPAAL-SMC model. In the latter,
schedulability for HRT tasks (Section 9.3) is guaranteed by
construction (step one).

TABLE 1 | WCET of HRT tasks.

HRT task WCET (ms)

main 0.51
comm 0.47
io 0.68
filter 0.55
control 0.52

TABLE 2 | Longest-codel WCET in low-priority tasks.

Task WCET of longest codel
(ms)

publish 0.3
plan 0.4
exec 0.4

TABLE 3 | Task periods.

Task Period (ms) Task Period (ms)

main 1 control 1
comm 1 publish 4
io 1 plan 5
filter 1 exec 5

TABLE 4 | Initial affinity.

Core Affinity

C1 {main, comm}
C2 {io, plan}
C3 {filter, publish}
C4 {control, exec}

TABLE 5 | WCRT of HRT tasks considering the initial affinity (Table 4).

HRT task WCRT (ms)

main 0.98
comm 0.98
io 1.08
filter 0.85
control 0.92

8Note how codels’ WCETs in Table 2 are much larger than the general trend of
codels’WCETs being short, less than 50 μs, Section 2.2. This is because WCETs in
Table 2 include the blocking bounds Bc as explained in Section 4.1.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 79175711

Foughali and Zuepke Formal Verification of Real-Time Autonomous Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Now, using UPPAAL-SMC, we guarantee, up to a high
probability, that low-priority tasks never starve, a less critical,
yet important property (Section 3.1). To do so, we reason as
follows. We know that, in any task manager (Figure 3), location
manage denotes that a hyperjob is being executed. Thus, the
absence of starvation means that (i) locationmanage is reachable
and (ii) whenever it is reached, location manage is eventually left
(back to location start). (i) is a reachability property, while (ii) is a
leadsto (special type of liveness) property which UPPAAL-SMC
does not support. This is a limitation of the tool and not intrinsic
to SMC.

Fortunately, there is a simple workaround if we augment the
manager model (Figure 3) with a clock x that is reset to 0
whenever any location is left. Thus, if the value of x is upper-
bounded, then manage (i) is reachable (otherwise x would be
unbounded at start or ask) and (ii) is eventually left
(otherwise x would be unbounded at manage), which
correspond to the same (i) and (ii) above. We may thus
transform the two-step reachability–leadsto property into a
safety property as we query the UPPAAL-SMC verifier to
estimate the probability of x being bounded by value x_max,
e.g., for task plan: Pr[ ≤ b]([]manager_plan.x ≤ x_max) (with
b being a time bound for SMC simulations). We call probt the
probability of satisfying this property by a task t.

We set the statistical parameters to a high confidence (α =
0.02) and precision (ϵ = 0.002), which means that the highest
probability we can obtain for probt is 99.8% ±ϵ, i.e., probt ∈ [0.996,
1] with a confidence 100% − α = 98%. For each task t, we set
x_max to Pt and raise it until such highest probability is reached.

Table 8 gives the results for all low-priority tasks: each is
starvation-free with a 99.8% probability as soon as x_max = 7 ms.
This means that, for any value smaller than 7 ms, some low-
priority tasks have a very low probability to complete given any
execution scenario. For instance, as shown in Table 8, the
probability that task exec will always execute in less than
x_max = 6 ms is comprised between 0 and 4 percent, a value
that increases significantly to the maximum possible probability
given the precision (99.8% ± 2%) when x_max is increased to

7 ms. In sum, we have a high confidence that the time separating
the activation and the end of execution of any low-priority task is
upper-bounded by the value 7 ms.

UPPAAL-SMC takes up to 25 min to verify each property, a
value that grows exponentially if we try to tighten the precision
further: with ϵ tending toward zero, SMC tends toward classical
model checking, and thus, scalability is threatened as we noticed
in Foughali et al. (2019b).

5.3 Discussion
We prove, with certainty, the schedulability for all HRT tasks in
the application while proposing a scheduling policy on the drone
platform. Also, we prove with a high probability that low-priority
tasks never starve for cores. Thus, considering the real robotic
platform and the affinity and scheduling algorithm we propose,
the GenoM3 system of the drone guarantees the latter does not
crash because HRT constraints are not met and is highly likely to
fulfill its navigation missions (Section 3.1).

However, schedulability tests of HRT tasks barely pass (the
WCRT of each task is quite close to its deadline, Table 7). This
means that, in reality, tasks may still miss their deadlines due to,
e.g., the overhead induced by the global MSRP implementation.
Since the overheads of locking protocols are hard to quantify
and upper bound in the general case, it would be better if tasks’
WCRTs were significantly smaller than their respective
deadlines. Also, though a lower priority task missing its
deadline is not safety critical (i.e., will not lead to a crash), it
is still mission critical (will likely cause a larger time for the
drone to fulfill a navigation mission). These results may be
enhanced by replacing global MSRP with a fine-grained locking
protocol to tighten the blocking bounds (due to spinning for
resources) and improve schedulability, as we will see in the rest
of this paper.

6 SETTING THE REQUIREMENTS FOR
REAL-TIME LOCKING IN ROBOTICS

As we have explained in Section 2 and Section 4, the locking
model used in GenoM3 is not exempt of starvation and not
necessarily fair, which makes it unpredictable. In Section 4
and Section 5, we proposed to use a predictable (fair and
starvation-free) global locking protocol, namely, global
MSRP. As we explained in the same sections, global MSRP
introduces larger blocking bounds because all resources are
locked at once, making TU codels wait for other TU codels
that do not necessarily use the same set of resources. What we
need is a fine-grained real-time locking protocol that is

TABLE 6 | New affinity (by permuting tasks in blue in the initial affinity in Table 4).

Core Affinity

C1 {main, comm}
C2 {io, publish}
C3 {filter, plan}
C4 {control, exec}

TABLE 7 | WCRT of HRT tasks considering the new affinity (Table 6).

HRT task WCRT (ms)

main 0.98
comm 0.98
io 0.98
filter 0.95
control 0.92

TABLE 8 | Verification results (step two).

probt ∈

t xmax = 4 xmax = 5 xmax = 6 xmax = 7

publish [0, 0.004] [0, 0.004] [0.996, 1] [0.996, 1]
plan [0, 0.004] [0, 0.004] [0.996, 1] [0.996, 1]
exec [0, 0.004] [0, 0.004] [0, 0.004] [0.996, 1]

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 79175712

Foughali and Zuepke Formal Verification of Real-Time Autonomous Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


predictable, suitable for robotics, and, ideally, efficient (low
overheads). Before we set more precisely the requirements for
such needed protocol, we first formalize a generic real-time
model for GenoM3 systems (based on the one given in Section
4) including a formalization of the locking model of GenoM3
explained informally in Section 2.

6.1 Real-Time Model
From a real-time point of view, a GenoM3 system is made of a
set of dependent tasks, a set of shared resources, and a set
of cores.

6.1.1 Task Model
The set of tasks is τ = {t1. . .t|τ|}, where |τ| is the number of tasks in
all components. Each task ti is defined as a set of jobs
ti � {Ji1 . . . Ji|ti|}, where each job (called hyperjob earlier) Jik is
an ordered set of critical sections Jik � {csik,1 . . . csik,|Jik|}, with each
critical section being simply a codel. Contrary to the model
introduced in Section 4, we refer to hyperjobs simply as jobs
and use the subscript of a task as superscripts in jobs and critical
sections belonging to such a task (as before, superscripts/
subscripts are omitted when unnecessary, unimportant, or
clear in the context). We may thus obtain J �
∪i∈1‥|τ|(∪k∈1‥|ti|Jik) and CS � ∪i∈1‥|τ|(∪k∈1‥|ti|(∪l∈1‥|Jik |cs

i
k,l)),

respectively, for the set of all jobs and all critical sections in
the system.

The same notations as in Section 4 are used for task periods
and priorities and WCETs of critical sections (codels). The set of
shared resources is L = {l1. . .l|L|}. The function R: CS ↦ P(L)
(where P(L) is the power set of L) associates each critical section
with all the resources it needs for its execution, regardless of the
mode (read-only or write mode, Section 2) in which such
resources are accessed. Finally, the set of cores is C �
{C1 . . .C|C|}.

6.1.2 Behavior
Except for a more complex notion of jobs, the above model is
essentially equivalent to the generic sporadic task model
(Brandenburg, 2011). However, the behavior is constrained by
two specificities of the robotic context (regardless of the used
scheduler): (i) spinning is favored over suspension and (ii)
preemption is disallowed during both spinning and execution
of a critical section and may thus be viewed as a kind of limited
preemption model (Buttazzo et al., 2012).

At each period Pti, task ti is activated. When released, ti
executes job Jim (chosen at runtime) by sequentially executing
its ordered set of critical sections csim,1 . . . cs

i
m,|Jim|, where each

critical section cs is executed iff no other critical section cs′ that
is in conflict with cs (see below) is being executed; otherwise, ti
spins non-preemptively. ti terminates when the execution of
Jim ends, i.e., when it finishes executing csi

m,|Jim|, the last critical
section in Jim. If the scheduler is preemptive, preemption is
allowed only between critical sections: regardless of its
priority, ti is non-preemptible from the moment it starts
spinning or executing a critical section cs to the moment it
finishes executing cs.

6.1.3 Resource Conflicts
Locking in GenoM3 is handled at the critical sections’ level
using statically defined conflicts. To formalize the model given
in Section 2, we first introduce a new function
Rw: CS ↦ P(L) that returns for each critical section cs the
set of resources that cs accesses exclusively in write mode.
Therefore, Rw(cs) ⊆ R(cs), and Rr(cs) = R(cs) \ Rw(cs) is the set
of resources accessed by cs in read-only mode. Accordingly,
the locking model of GenoM3 marks two critical sections cs
and cs′ (in two different tasks) as in conflict iff there is at least
one resource used by both cs and cs′ that is accessed in write
mode by cs or cs′, i.e., either the intersection R(cs) ∩ Rw(cs′)
(between all resources used by cs and resources used by cs′ in
write mode) or the intersection R(cs′) ∩ Rw(cs) is not empty.
Formally,

cs and cs′ are in conflict iff (R(cs) ∩ Rw(cs′)) ∪ (Rw(cs) ∩
R(cs′)) ≠ ∅ (Equivalence 1).

Note how this model is multi-resource and nesting-free in
accordance with the “elementary code” design in robotics
(Section 10). This locking model is also reader/writer.
However, this model is underspecified and unpredictable, as
neither fairness nor starvation freedom is guaranteed (though
deadlock freedom is).

The real-timemodel given in this section covers all we need for
real-time analysis. Therefore, whenever possible, we will drop
terms such as codels and services and stick to the notation of this
real-time model.

6.2 Requirements
Following the observations made in Section 2 and the real-time
model above, we define a set of requirements w.r.t. the real-time
locking implementation needed in robotics. We recall that the
objective is to devise a predictable and efficient fine-grained
implementation which will allow us to obtain shorter blocking
bounds and thus improve schedulability and other real-time
properties (Section 5.3).

Let us first summarize our observations:

• Locking in robotic software suffers from predictability and/
or efficiency issues (this is not the case for GenoM3 only,
more in Section 10).

• Resources are typically accessed in a multi-resource fashion
(lock and unlock at once all the resources needed by a
critical section).

• Multi-resource locking in robotics can be refined using
knowledge on the mode each resource is accessed in by a
critical section (reader/writer locking), where multiple
resources in different modes may be locked
simultaneously (mixed read–write).

• Typically, critical sections have short WCET, which
explains in part favoring spinning over suspension.

• The number of resources is relatively large (e.g., over 30 in
the drone application, Section 2.2).

• The number of cores is small due to SWaP considerations
(Section 1.1), e.g., four in the drone application
(Section 2.2).

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 79175713

Foughali and Zuepke Formal Verification of Real-Time Autonomous Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Thus, what we need is a real-time locking implementation that
is as follows:

• Multi-resource, nesting-free, reader/writer (mixed
read–write).

• Predictable: fair and starvation-free, ideally with the
smallest blocking bounds possible (e.g., asymptotically
optimal blocking bounds).

• Efficient in the context of small number of cores and large
number of resources: low overheads.

We analyze below existing state-of-the-art multi-resource
locks and show why we need a new implementation to
comply with all the requirements above. Such new
implementation is then presented in the next section (Section 7).

6.3 Analysis of Existing Multi-Resource
Locks
Multi-resource locking protocols acquire exclusive ownership of
multiple resources R(cs) in a single request operation and
conversely release these resources in a single operation as well.
To comply with the requirements above, we assume non-
preemptive execution during a critical section and spinning.

We assume that an implementation of a multi-resource
locking protocol uses resource bitmasks as representation for
R(cs), i.e., individual resources are denoted by a bit in an array
of integers. All discussed multi-resource locking mechanisms
expose such an interface.

One way to implement a multi-resource locking mechanism is
a multi-bit test and test-and-set (TATAS) lock. Each bit in a
machine word9 represents one resource, and a lock operation
succeeds if all bits of requested resources can be changed from 0
to 1 atomically. However, TATAS locks do not support any
ordering of concurrent requests, thus showing the risk of
starvation and unbounded spinning.

Considering FIFO ordering of concurrent resource requests
for fairness, two fundamentally different approaches can be used
by a locking protocol: (i) Use one FIFO queue to order all resource
requests. A later resource request is blocked by earlier conflicting
request until all earlier conflicting resource requests have released
their resources. Alternatively, (ii) use multiple per-resource FIFO
queues, one for each resource, and acquire the requested
resources in a nested fashion and in total order. A request to
multiple requested resources is granted when all individual nested
requests succeed. Still, both approaches have exactly the same
blocking bounds, if we neglect implementation overheads.

This duality between multi-resource locks and nested locking
allows the real-time nesting locking protocol (RNLP) family
(Ward and Anderson, 2012; Ward and Anderson, 2013; Ward
and Anderson, 2014; Ward, 2016) to provide a solution in both
use cases. Dynamic group locks (DGLs) (Ward and Anderson,
2013; Ward, 2016) are the multi-resource lock variant of RNLP,

and reader–writer RNLP (R/W RNLP) (Ward and Anderson,
2014) provides a reader–writer extension to DGL. With
contention-sensitive RNLP (C-RNLP) (Jarrett et al., 2015),
there is also an extension to RNLP that relaxes the strict FIFO
ordering and tries to dynamically eliminate transitive blocking
chains. The RNLP family provides the tightest blocking bounds
known in the real-time literature, proven to be asymptotically
optimal.

Conceptually, RNLP locks are always presented by using
dedicated queues per resource in the literature (Ward and
Anderson, 2012; Ward and Anderson, 2013; Ward and
Anderson, 2014; Ward, 2016). However, later work of the
authors gives a hint to single-queue implementations of the
non-reader–writer variants (Jarrett et al., 2015). R/W RNLP
cannot be implemented using a single queue, as its complex
arbitration rules require multiple queues.

All RNLP implementations have a similar structure. One or
more internal locks protect internal state (one or many queues),
and the locks must be taken in both request and release
operations. Also, there is a Boolean blocking condition outside
any internal critical sections where a lock request operation
performs busy-waiting on resource conflicts.

Another notable multi-resource is Zhang et al.’s MRLock,
based on a single lock-less queue that tracks all resource
requests in FIFO order (Zhang et al., 2013). Requests can
comprise an arbitrary number of resources, and insertion into
and removal from the queue happen in a lock-free manner.
MRLock is thus conceptually similar to single-queue
implementations of DGL but replaces the lock-based queue by
a lock-less one, making it remarkably efficient (as it eliminates the
overheads of locking and unlocking the queue itself). However,
MRLock is designed for best-effort use cases without real-time
scenarios in mind, e.g., preemptive high-performance computing.
Therefore, its design tolerates preemption of lock or unlock
operations at any time. This makes MRLock unsuitable for
real-time applications, as it suffers from a degraded
predictability in corner cases. In particular, MRLock loses its
fairness and/or starvation freedomwhen it reaches the limits of its
internal queue, e.g., when too many new short-running requests
arrive and complete, but previous older long-running requests are
still busy. This drawback may be viewed as a structural side-effect
of the lock-less queue (Zhang et al., 2013, Section 4.2).

Multi-resource locks can be extended to reader–writer
multi-resource locks to further tighten the blocking bounds.
For this, we distinguish between resources requested for
shared read access Rr(cs) and resources requested for
exclusive write access Rw(cs) and require that an
implementation provides an interface to specify both Rr(cs)
and Rw(cs) in lock and unlock operations.

The precedence by FIFO ordering works well for exclusive
multi-resource locks and results in fair ordering of all requests.
However, when extending exclusive multi-resource locks to
reader–writer locks, we must also consider the ordering of
read and write requests to each other. Note that the standard
reader-preferring and writer-preferring reader–writer lock
variants are unsuitable for real-time systems, as they starve
either writers or readers.

9A machine word is typically the largest unit in memory that can be changed
atomically. The size of the machine word limits the number of resources.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 79175714

Foughali and Zuepke Formal Verification of Real-Time Autonomous Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Task-fair reader–writer locks order arriving requests in FIFO
order but allow adjacent read requests to form a concurrent group
until the next write request arrives (Mellor-Crummey and Scott,
1991b). Note that strictly alternating read and write requests
define the worst case for task-fair reader–writer locks where the
locks degrade to fair non-reader–writer locks in behavior. Task
fairness emerges automatically if an implementation follows the
formalization of conflicts in Section 6.1.3 and ensures FIFO
ordering of all requests.

Another mechanism suitable for real-time systems is phase
fairness (Brandenburg and Anderson, 2010), where requests are
queued in either read or write request queues, and reader and
writer phases alternate. Then, on a phase switch to readers, all
waiting readers are released. This improves the throughput of
read requests at the cost of write requests.

To the best of our knowledge, R/W RNLP and fast R/W RNLP
are the only real-time reader–writer multi-resource locks described
in the literature (Ward and Anderson, 2014; Nemitz et al., 2019a).
R/W RNLP provides phase fairness. Its extension fast R/W RNLP
distinguishes between nested and non-nested requests and
provides a fast-path for non-nested requests, which request only
a single resource. However, R/W RNLP and fast R/W RNLP
provide an interface with explicit lock and unlock operations
for Rr(cs) and explicit lock and unlock operations for Rw(cs),
but not a combined interface that allows to specify both Rr(cs)
and Rw(cs) at the same time. The authors discuss the possibility of
such a “mixed mode” interface but provide no implementation
(Ward and Anderson, 2014). We assume that an implementation,
if possible, would be non-trivial due to the overall complexity of the
entitlement mechanisms. Hence, both R/W RNLP and fast R/W
RNLP are useless for mixed read–write requests. We skip the fast
R/W RNLP in the remainder of this work, as the fast-path to
request a single resource does not help in the robotic use case.

Opposing the requirements presented in Section 6.2 to the
analysis made in this section leads to the following conclusion.
Predictable (with asymptotically optimal blocking bounds) multi-
resource real-time locking protocols exist, namely, DGL, but no
suitable reader–writer variant is available for mixed read–write
needed in robotics. Also, DGL efficiency may be improved
through the use of a lock-less structure, such as in MRLock, to
eliminate internal overheads. Therefore, in the next section, we will
present an implementation that exactly tackles these two limitations.
Indeed, our R/W LLAB implementation features the predictability of
DGL with the same asymptotically optimal bounds (and better
blocking bounds in practice because of its reader/writer nature). At
the same time, it (i) is suitable for mixed read–write requests and (ii)
has lower overheads than DGL as it uses a lock-less implementation,
as we will see throughout Section 7 and Section 8.

7 LOCK-LESS ARRAY-BASED
MULTI-RESOURCE READER–WRITER
LOCKS
We present an efficient-and-predictable multi-resource lock that
supports task-fair reader/writer locking with mixed read–write
requests.

The analysis in Section 6 shows different design techniques for
queuing and internal locking. First, we stick to a design of using
resource bitmasks, like in the other approaches. This helps to handle a
large number of resources. Second, we opt for a single-queue design
that orders all requests logically in FIFO order. The single-queue
approach allows to use simple checks if older requests on the queue
are in conflict with newer requests, and the number of requests on the
queue is bounded by the number of CPU cores. Also, a check for
conflict based on resource bitmasks is agnostic to the actual number of
requested resources. Third, we aim for a lock-less design. But instead
of using a lock-less queue as in MRLock, we use a design based on a
fixed-size array (number ofCPUcores)where a core’s ID relates to the
index in the array.We then establish an FIFOorder on the requests by
using a ticket mechanism, similar to ticket spinlocks. This allows to
use the relative difference of drawn tickets to distinguish newer from
older requests. Also note that checks for conflicts do not exactly need
to happen in the FIFO order. A request just needs to ensure to visit all
older requests on the queue for correctness. For efficiency, we iterate
the fixed-size array in order, identify older requests based on the
relative age of their ticket, and then check and spin on conflicting
requests. Lastly, we must handle race conditions that can happen on
concurrent insertion of requests.We aim for a design that shows a low
overhead for non-conflicting but concurrent requests.

7.1 Task-Fair Conflict Check for
Multi-Resource Reader–Writer Locks
Task-fair reader–writer locking follows the rules explained in
Section 6.1.3. To alleviate notations, we use an abuse of
terminology, as we let R(cs) denote both the set of requested
resources and the request itself preceding the execution of critical
section cs. We also extend the term “conflict” to include sets of
resources as well (two sets of resources R(cs) and R(cs′) are in
conflict if critical sections cs and cs′ are in conflict, Section 6.1.3).
Therefore, a lock request R(cs) = Rr(cs) ∪ Rw(cs) (Rr(cs) for reading
andRw(cs) for writing)made by a task t (to execute critical section cs)
is in conflict with an older request R(cs′) = Rr(cs′) ∪ Rw(cs′) made by
task t′ (to execute critical section cs′) iff Equivalence 1 is satisfied
(Section 6.1.3). From an implementation point of view, Equivalence
1 uses the corresponding bitmasks to both R(cs) and R(cs′) in the
conflict check. Since these bitmasks include bits of all resources
requested by cs and cs′, it is desirable to use them the least possible in
the checks.Wemay therefore redefine Equivalence 1 to include only
R(cs′) as follows:

cs and cs′ are in conflict iff (Rr(cs) ∩ Rw(cs′)) ∪ (Rw(cs) ∩
Rw(cs′)) ∪ (Rw(cs) ∩ R(cs′)) ≠∅ (by replacing R(cs) in Equivalence
1 with Rr(cs) ∪ Rw(cs) and then distributing union over
intersection).

Then, we obtain the following:
cs and cs′ are in conflict iff (Rr(cs) ∩ Rw(cs′)) ∪ (Rw(cs) ∩ R(cs′))

≠∅ (Equivalence 2) (by getting rid of (Rw(cs) ∩ Rw(cs′)) since it is
included in (Rw(cs) ∩ R(cs′))).

We therefore store R(cs) = Rr(cs) ∪ Rw(cs) for each request in
the array. Then, checking for the absence of conflicts
(Equivalence 2) becomes a conjunction of two bitwise AND
operations, each operating on each integer in two resource
bitmasks (see the explanation of the listing below).

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 79175715

Foughali and Zuepke Formal Verification of Real-Time Autonomous Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


7.2 Implementation
Listing 2 shows the implementation of the lock-less array-based
(LLAB) multi-resource lock with task-fair reader–writer locking,
named “R/W LLAB,” in C language. The presented
implementation is suitable for architectures with a relaxed
memory model, such as ARM. Atomic load/store operations
are annotated with relaxed, acquire, or release semantics
following the C11/C++11 memory model but must be adapted
to the OS or runtime environment. For brevity, the presented
version uses 64-bit integers for resource bitmasks. The non-
reader–writer variant LLAB can be derived from R/W LLAB
by assuming that all resources are write requests. A commented
and extended version of Listing 2 can be found in our git
repository10. We discuss the implementation below.

With the number of cores known at compile time (line 1), the
FIFO queue is implemented as an array of nodes statically
assigned to cores in a one-to-one exclusive mapping (line 12).
Each node comprises a drawn ticket and two bitmasks of
resources for reading and writing (lines 5 to 8). Bitmasks of
known size (line 3) track the requested resources, and tickets
ensure FIFO ordering of tasks through drawing from a global
ticket counter. The global data of the lock object comprise thus a
global ticket counter and the array of nodes (lines 10 to 13).

Listing 2: Implementation of R/W LLAB.

To address race conditions on insertion, the implementation
uses two least significant bits of the drawn ticket recorded in the
array node of core C to capture the status of the request:

• If ticket mod 4 = 0, then the request by core C is inactive,
i.e., no task is currently trying to execute, or a task just
finished executing a critical section on core C,

• if ticket mod 4 = 1, then the request by core C is in
preparation (see below), and

• if ticketmod 4 = 2, then the request by core C is active, i.e., a
task is executing or spinning to execute a critical section on
core C.

Accordingly, the global ticket is always incremented by 4 (line
24) to keep the two least significant bits free.

The basic workflow of a lock operation is as follows: (i) prepare
a request (lines 19 to 21), (ii) set the drawn ticket number to 1 to
indicate the request as in preparation (line 22), (iii) draw a unique
ticket (line 24), (iv) store the drawn ticket in C’s node with the
active bit set (line 26) and then (v) iterate all other cores’ requests
(lines 28 to 43), (vi) spin on requests in in preparation state (lines
32 to 34), (vii) check for potential conflicts (lines 36 to 39), and
(viii) spin on resource conflicts (lines 41 to 42).

Note that the lock operation comprises two different spinning
points. In step (vi), spinning on requests in in preparation state if
the ticket counter is 1 (lines 32 to 34) ensures correctness in case a
race condition happens when a lock operation is delayed between
steps (iii) and (iv), e.g., by an interrupt, as drawing a ticket (line
24) and storing the ticket and thus marking the request as active
(line 26) is not an atomic operation. This ensures that the later
checks in step (vii) correctly observe the drawn ticket of that
request. The second spinning happens on actual resource
conflicts (lines 41 to 42). But first, the lock operation checks
that the request of another one is active (line 36), that this request
is older than its own request (lower relative ticket number) (line
37), and that the request is in conflict (resource bitmasks conflict)
(line 38). If all conditions are met, the lock operation then spins
until the requests’ ticket number changes. The unlock operation
simply sets the ticket number to zero (line 51), which marks its
former request as inactive.

In the following, we provide some important implementation
details that are however not necessary to understand the behavior
described above.

First, ordering memory accesses is crucial in this algorithm.
Setting a node to in preparation state (line 22) must become
visible to the other cores before drawing a new ticket, i.e., before
the store of the fetch-and-add completes (line 24), as the
algorithm explicitly spins on this state (lines 32 to 34), and
the store of the drawn ticket in the node (line 26) must happen
afterward. Likewise, the requested resources of a node (lines 20
and 21) must be visible before checking them (line 38). Both
properties are ensured by drawing the ticket atomically with
acquire and release semantics (line 24). This operation enforces
a global ordering of the three steps (ii) to (iv) of the algorithm
and allows to use relaxed semantics before and afterward. Note
that this ordering between a node’s resource bitmask and its
ticket value is only guaranteed for resource requests that10https://gitlab.com/azuepke/llab/

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 79175716

Foughali and Zuepke Formal Verification of Real-Time Autonomous Robots

https://gitlab.com/azuepke/llab/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


happened before drawing the ticket, i.e., all previous resource
requests, but not for newer requests that happen later. However,
the algorithm does not depend on an exact ordering for newer
requests, as it skips newer nodes solely on their ticket number.
The final acquire barrier in the lock operation (line 45) pairs
with the store release in the unlock operation (line 51). Note also
that spinning for changes of the ticket value (lines 41 and 42)
using acquire semantics would not be a sufficient replacement
for the final acquire barrier (line 45), as other cores might
release the shared resources (line 51) briefly before the check of
the ticket state (lines 36 and 37).

Second, the global ticket counter can overflow; therefore,
the implementation must check the relative age of drawn
ticket numbers (line 37). Additionally, for any ticket number
that is recorded in a node, the related critical section must
complete before the same ticket number is withdrawn again.
A 32-bit counter incremented by 4 provides 230 unique
tickets, and the relative age changes sign after 229

unique tickets, so recurring tickets are not a problem on
real systems.

Our design for LLAB and R/WLLAB draws on techniques found
in ticket locks (Mellor-Crummey and Scott, 1991a) to establish an
FIFO order between requests and on the idea to wait on other nodes
to complete internal operations found in the unlock path of MCS
locks (Mellor-Crummey and Scott, 1991a). The idea to encode
additional state in the ticket counter can also be found in phase-
fair reader–writer locks (Brandenburg and Anderson, 2010).

Conceptually, LLAB and R/W LLAB behave exactly as the
single-queue implementation of DGL, thus preserving the same
theoretical blocking bounds, but come with two additional
advantages. First, their lock-less structure removes the internal
overheads found in DGL, making them more efficient. Second,
R/W LLAB is reader/writer and supports mixed read–write
requests, thus tightening further the blocking bounds by
allowing some simultaneous readings (Section 8). To the best
of our knowledge, R/W LLAB is the first real-time multi-resource
locking protocol that supports mixed read–write requests.

8 EVALUATION

We perform two different types of experiments to evaluate LLAB
and R/W LLAB among the other multi-resource locks. The first
type evaluates any internal overheads in the uncontended case
(Section 8.1), where we use two hardware platforms: an ARM
system with four cores (Raspberry Pi 2B running an RTOS) and
an Intel system with 2x 16 cores/64 hardware threads (2x Intel
Xeon Silver 4216 running Linux). The ARM system is
representative of real-time robots, where MECs feature a low
number of cores (Section 6.2), whereas the Intel system allows for
an evaluation in a more generic multi-core setting. The second
type of experiment measures the overheads of an execution
scenario with mixed reader–writer workloads using
randomized critical sections on the ARM platform (Section
8.2). In each experiment, we compare the presented locking
mechanism LLAB resp. R/W LLAB with other multi-resource
locks, namely, DGL (Ward and Anderson, 2013), R/W DGL (our

task-fair reader–writer variant of DGL), R/W RNLP (Ward and
Anderson, 2014), MRLock (Zhang et al., 2013), and a multi-bit
test and test-and-set (TATAS) lock. The implementation of DGL
uses a single queue and is obtained from Nemitz et al. (2019a). A
fast-path optimization allows non-conflicting requests to bypass
the queue11. R/W DGL is our own task-fair reader–writer
extension of DGL. It is based on a single queue as well and
uses the conflict check described in Section 7.1. But due to the
nature of reader–writer locks, it cannot use the fast-path to
bypass the queue12. Our implementation of R/W RNLP that
uses phase fairness follows the pseudocode from Ward and
Anderson (2014). As resources are managed in dedicated
queues and the resource bitmasks in our benchmark are
typically only sparsely populated, we use an efficient
iterator for bitmasks (see Table 9). A naive
implementation of a for-each-bit operation based on
a loop over all bits in a machine word causes too much
overheads. Fortunately, modern processor architectures
provide instructions to count leading or trailing zeros in
machine words, so we use compiler intrinsics such as
GCC’s __builtin_ctz() for efficient iteration. Any
internal locking in our experiments is based on MCS locks
(Mellor-Crummey and Scott, 1991a) and phase-fair
reader–writer ticket locks (Brandenburg and Anderson,
2010). For MRLock and TATAS, we use the example code
from Zhang et al. (2013). We instantiate MRLock with an
internal queue of 256 nodes (cells13) on Intel and 16 nodes
on ARM.

TABLE 9 | Average execution time overhead (CPU cycles) of different iterators and
locks in isolation.

Test or lock Resources ARM Intel

CPU cycles in 1μs 600 2400

Naive bit iterator 1 537 151
(Bitwise shift and &) 64 594 93

Efficient bit iterator 1 11 5
(__builtin_ctz()) 64 342 193

TATAS 1..64 87 37

MRLock 1..64 172 51

DGL 1..64 278 67

R/W DGL 1..64 290 66

R/W RNLP read lock 1..64 166 35
Write lock 1 649 196

64 3713 857

LLAB 1..64 136 199
R/W LLAB 1..64 154 224

11A non-conflicting lock operation simply marks the requested resources as locked.
12Read requests are accumulative. During an unlock operation, one cannot decide if
other requests still have the same resources read-locked without checking all other
requests in detail.
13In MRLock, queue nodes are denoted as cells (Zhang et al., 2013).

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 79175717

Foughali and Zuepke Formal Verification of Real-Time Autonomous Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


We added memory barriers with load-acquire or store-release
semantics where needed for the weak memory model on ARM
and pause instructions on x86 to yield to other hardware
threads when spinning. Locks and core-specific internal data
are aligned to cachelines to prevent false sharing. All lock types
support up to 64 resources, i.e., resource bitmasks are 64-bit
sized. We provide implementations of all locks in our git
repository.

8.1 Internal Overheads in the Uncontended
Case
In the first experiment, we measure the overhead in the
uncontended case. For this, we let a thread lock and unlock an
increasing number of exclusive (i.e., write) resources in a tight
loop and measure the execution time of 1024 lock → unlock
sequences. This shows the performance impact of the number of
requested resources in a lock or unlock request as vertically
stacked data points for the different types of locks. The results
show the average execution time of a single lock → unlock
sequence, including any outliers. Additionally, we run this test on
a number of cores in parallel. Each core locks and unlocks
resources private to the core (so they are uncontended), but in
the same shared lock. This exposes the overhead of any internal
synchronization (e.g., internal locks or CAS-loops) of the
different locking mechanisms. Figure 5A shows the results for
the ARM system and Figure 5B for the Intel system. As the data
points on a single core are next to each other, Table 9 shows the
results on a single core in detail for both architectures.

At first, it becomes visible in Figure 5A that R/W RNLP shows
an execution time that is sensitive to the number of requested
resources in each lock → unlock sequence, during which the

lock implementation iterates the resources three times. This is
easily explained by the design choice in R/W RNLP to use
dedicated queues per resource. In contrast, TATAS, MRLock,
DGL, R/W DGL, LLAB, and R/W LLAB are insensitive to the
number of requests. It also becomes visible that R/W RNLP is
exceptionally slow compared to the rest. This is mostly due to the
internal locking overhead. The R/W RNLP lock operation
comprises three internal critical sections, adding much static
overhead.

On a single core and with just a few resources, the performance
of all locks is next to each other, as shown in Table 9. But with an
increasing number of cores, internal overhead increases and
scalability decreases. On Intel, for a larger number of cores
until the number of physical cores on the first CPU (16) is
reached (red box in Figure 5B), TATAS scales best,
immediately followed by LLAB and R/W LLAB; then, DGL,
MRLock, and R/W DGL follow next with already more than
twice the execution time when using 16 cores. The trend amplifies
when crossing the boundary to the second CPU from core 17 on.
Beyond the 32 available physical cores, the Linux kernel starts to
schedule the tasks on each core’s hardware thread sibling as well.
Then, the performance of TATAS drops significantly. LLAB and
R/W LLAB become the fastest lock implementations, followed by
TATAS and DGL. With a large gap, MRLock and R/W DGL
follow. In all cases, R/WRNLP is the lock with the most overhead.
The performance of DGL shows that it runs in fast-path mode
with an empty queue. Its performance characteristics relate to two
consecutive MCS lock → unlock operations. R/W DGL and
MRLock additionally need to search the queue for conflicts. We
were surprised that LLAB scales better than MRLock on the Intel
system, as our initial results on ARM showed that both were next
to each other. We assume that the extra overheads in MRLock are

FIGURE 5 | Average execution time of a lock → unlock sequence for a variable number of uncontended resources on different hardware architectures in parallel.
Each lock type supports 64 resources. (A) shows results for ARM Cortex-A7 at 600 MHz with four physical cores. The stacked data points represent the results for an
increasing number of requested resources, i.e., from 1 to a limit of 16 resources per core. (B) shows results for dual Intel Xeon Silver 4216 at 2.1 GHz. Here, cores 1 to 16
are physical cores on the first CPU, and cores 17 to 32 are physical cores on the second CPU. Cores 33 to 48 are hardware thread siblings of the cores on the first
CPU and cores 49 to 64 of the cores on the second CPU. Each core requests one resource related to its core ID. The red box zooms in on the results of the first 16 cores.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 79175718

Foughali and Zuepke Formal Verification of Real-Time Autonomous Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


caused by reading head and tail pointers to queue nodes in each
internal loop, while LLAB and R/W LLAB scan their queues
linearly from front to back. With this, MRLock shows one
additional level of pointer indirection than R/W LLAB. Also,
the memory layout of LLAB and R/W LLAB is more compact
than that for MRLock.

Overall, LLAB and R/W LLAB have a visible performance
advantage (as one can see from Figure 5), which matches our
expectations of Section 7.

8.2 Mixed Reader–Writer Workloads
As a second benchmark, we evaluate the locks in an experiment
using randomly generated critical sections with synthetic mixed
reader–writer workloads similar to the case study presented in
Section 2.2. On the ARM systemwith four cores, we run a task set
with one periodic task per core (period 1 ms). Each task locks and
unlocks a random number of critical sections (1 to 8, following a
square distribution) comprising randomized read and write
requests for up to 32 shared resources. The critical sections
comprise 4.1 read and 1.9 write requests on average. The time
spent in the critical sections follows a power function (1 to 17 μs),
but mostly favoring short critical sections. Our selected
parameters and their distribution follow the execution scenario
of the real drone example in Foughali (2020) and our
observations on other GenoM3 systems such as the
autonomous terrestrial robot used in Foughali et al. (2020).
For instance, our quad-core ARM system is similar to the
ARM-based quad-core ODROID, and the critical sections’
execution times are upper-bounded with the WCETs of the
critical sections in Foughali (2020).

To remove any differences in the tasks’ release times
introduced by the hardware or the operating system, we let
the tasks synchronize at each period on a barrier before
executing the critical sections and then add a random release
jitter of up to 0.1 μs. We then measure the execution time from
before acquiring the first critical section to after releasing the last
critical section and then sum the execution times of all tasks on all

cores for 20 periods (20 ms) into a single score. Figure 6 shows
the results for different lock types in 30 generated task sets. As
references, we also show the accumulated execution time inside
the critical sections (minimum possible execution time without
any blocking, “just WCET”) as well as a run using global MSRP
implemented with an MCS lock (maximum blocking time) as
lower and upper bounds. Here, we did not include R/W RNLP, as
it provides no interface to lock both reader and writer requests at
the same time (more in Section 8.3). This leaves R/W DGL and
R/W LLAB as the only reader–writer locks. All other locks handle
read requests as exclusive requests.

The results for short task sets with a low number of critical
sections are next to each other. But for more complex task sets,
three trends emerge. First, the generated critical sections favor the
reader–writer locks R/W DGL and R/W LLAB over exclusive
multi-resource locks. This hints the potential benefits of using
reader–writer locks in such scenarios. Second, TATAS is one of
the fastest locks. We expected this due to the simplicity of TATAS
and the low number of resources. But note that TATAS locks do
not guarantee FIFO queuing of conflicting requests. Third and
lastly, the lock-less design of R/W LLAB beats the lock-based
design of R/W DGL. But the other locks are next to each other
without a clear winner. We also expected this, as there is not
much internal contention on the lock due to the randomized time
spent inside critical sections.

8.3 Discussion
Summarizing the benchmark results of Section 8, we can observe
two major trends. First, reducing static overhead, e.g., the use of
internal locks, matters for good performance. Second, the
execution time of internal critical sections can be either
sensitive to the number of requested resources, or insensitive.
This sensitivity comes from the effect of using multiple queues,
which requires iterating over resources instead of iterating over
potential conflicts from other cores. We argue that insensitivity
with itsO(1) dependency on the number of resources andO(n)
dependency on the number of conflicts scales better in the long

FIGURE 6 | Synthetic mixed reader–writer workload scenario with four periodic tasks executing in parallel on ARM using a randomized set of critical sections
requesting multiple resources. The dataset “just WCET” shows the nominal execution time inside the critical sections (without blocking). The dataset “global lock” shows
the overhead when using a global lock instead of multi-resource locks.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 79175719

Foughali and Zuepke Formal Verification of Real-Time Autonomous Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


term, as the number of resources usually grows faster than the
number of cores that can cause conflicts. In a nutshell, when the
number of cores is small and the number of resources is large,
which is typically the case for real-time robots (Section 6.2), it is
better to spin on conflicts rather than on resources. Our locks
combine both trends (i) by spinning on conflicts instead of
resources and (ii) by eliminating internal locks using a lock-
less array (LLAB and R/W LLAB).

Compared to DGL, LLAB is predictable with exactly the same
theoretical blocking bounds as DGL, but with lower overheads, as
shown in our experiments. Furthermore, since conflicts may
change at runtime, LLAB preserves the dynamicity of DGL,
therefore making the locking in any application using the
latter implementable in the former. Yet, DGL (and RNLP in
general) also supports suspension, whereas LLAB is presented for
a spin-based context.

Compared to R/W RNLP, our presented R/W LLAB provides
task fairness, while R/W RNLP provides the better phase fairness
(Brandenburg and Anderson, 2010). However, this is not visible
in the evaluation, as R/W RNLP does not provide an interface to
acquire mixed sets of read and write resources in the nesting-free
multi-resource context, making R/W RNLP impractical to use in,
e.g., robotic software. We assume that this is due to the structure
of R/W RNLP that uses different types of internal locks for read
and write requests to protect the internal state (Ward and
Anderson, 2014).

It is worth mentioning that the way R/W LLAB works is
somewhat similar to concurrency groups (Nemitz et al., 2019b).
Yet, concurrency groups are computed offline, prior to the system
execution, which makes them unsuitable for resource requests
that may change from one execution to another. Lastly, we must
note that DGL can be extended to a task-fair variant as well, as
shown in our experiment with R/WDGL. In this case, R/W LLAB
may be viewed as, essentially, a more efficient (lock-less)
implementation of R/W DGL.

Compared to MRLock, both MRLock and LLAB map the
single queue to an array. However, LLAB relies on non-
preemptive locking in a real-time system for correctness,
whereas MRLock also supports preemption at any time, which
is inevitable in non-real-time best-effort systems. This adds
additional complexity to the implementation, as the evaluation
shows that LLAB scales better than MRLock on a larger number
of cores. Additionally, MRLock has a different design of the array.
While the array size in LLAB is limited by the number of available
cores |C|, MRLock allows the user to configure a larger array to
support more than |C| nodes at a time.When enqueuing requests,
MRLock guarantees fairness as long as the array has free space.
But when the next free node in the array is busy, e.g., because
its lock-holding task was preempted, new requests start to spin
for this task to finish and free its position in the queue.
MRLock then loses its fairness guarantees (Zhang et al.,
2013, Section 4.2). While this problem could be solved by
selecting an array bound that is large enough to prevent this
corner case, determining such bound may be hard for a real-
time system using sporadic tasks. This is because we must at
least ensure that the array is large enough so that the longest
running critical section never collides with all possible

combinations of shorter critical sections that run in the
mean time.

As any locking algorithm, LLAB and R/W LLAB still have
their drawbacks. One downside that does not become visible in
the presented experiments is that the lock-less array design
requires to scan the full array for potential conflicts. For a
larger number of cores, the array-based designs must access a
larger (constant) number of consecutive cachelines than the other
lock implementations. For example, R/W LLAB uses 25
cachelines of 64 bytes on the Intel system with 64 cores/
hardware threads. In contrast, the number of cachelines
needed by the other lock implementation varies from 2 to 65,
depending on the size of the queue, and because queue nodes are
kept on distinct cachelines. However, the effect is practically
invisible on systems with a small number of cores such as the
ARM system with four cores that requires two cachelines to
manage 64 resources with R/W LLAB, and thus, this downside is
harmless in the case of real-time robots. Also, the linear memory
accesses when iterating the array benefit from the prefetch units
implemented in today’s CPUs.

To wrap up our discussion, the proposed LLAB and R/W
LLAB fulfill our requirements (Section 6.2) for real-time robotic
systems, or any other real-time system with non-preemptive
critical sections as defined in Section 6.1. Our evaluation
(Section 8) shows that LLAB, implemented as a lock-less
array variant of DGL, excels in efficiency over the other
solutions. Second, its task-fair reader–writer lock variant R/W
LLAB addresses the use cases of robotic frameworks: it (i) is spin-
based, multi-resource, nesting-free, and reader/writer with
support for mixed read–write requests and (ii) is suitable for
systems with a small number of cores and large number of
resources. Third, LLAB and R/W LLAB use resource bitmasks,
which may be updated at runtime, for both read and write
requests, making them easier to use and less error prone than
nested lock requests (no risk of deadlocks) and suitable for
applications where conflicts between critical sections may
change at runtime. Finally, both implementations have a
simple configuration preventing any additional complexity as
in MRLock. With this, LLAB and R/W LLAB can help improve
the locking situation in today’s robotics frameworks (Section 2,
Section 10). Also, they show promising scalability beyond the low
number of cores found in real-time robots.

9 A TWO-STEP HYBRID APPROACH
(REVISITED)

As seen in Section 5, applying our two-step verification approach
(Section 4) to the drone system (Section 2.2) gives acceptable
results: all HRT tasks are schedulable and lower-priority tasks do
not starve with upper-bounded execution times. However, as we
point out in the discussion in Section 5.3, it is still desirable to
have a model where such results correspond to better
schedulability for both HRT and lower-priority tasks to
account for the overheads of the locking protocol. Therefore,
in this section, we assume that the concurrency in our drone
system is handled using R/W LLAB, the new algorithm we

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 79175720

Foughali and Zuepke Formal Verification of Real-Time Autonomous Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


devised in Section 7, and reiterate the verification approach. Since
R/W LLAB is fine-grained and supports reader/writer locking, we
are likely to obtain smaller blocking bounds and therefore tighter
WCRTs and better schedulability. Furthermore, due to the low
overheads of R/W LLAB (Section 8), tighterWCRTs will give us a
higher confidence that our verification results will be preserved in
practice, as the negligible overhead of R/W LLAB will likely not
cause deadline misses when it adds to tasks’WCRTs, in particular
HRT tasks.

Listing 3: Generating the largest WCET of TU codels per task
(following the R/W LLAB protocol).

9.1 Step One: Schedulability Analysis
The only difference in this step compared to what we have seen in
Section 4.1 is that the bounds Bc for each TU codel c are computed
following the fine-grained reader–writer specificities of R/W LLAB
instead of the single-memory nature of global MSRP. Therefore, a
new algorithm to compute the bound Bc for a TU codel c in task t is
summarized next. (1) For each task t′ ≠ t, we find, within all its
services, the largest WCET of all TU codels in conflict with c
(following the reader/writer conflict definition in Section 7). (2)
We sort, in decreasing order, the values found in (1). (3) Bc is
equal to the sum of the first |C| − 1 values sorted in (2). This
gives the Tcl code in Listing 3. Contrary to Listing 1 (Section 4), here
we need to compute Bc for each TU codelc in t separately because the
set of codels in conflict with c may differ from one codel to another
(loop starting in line 1). Then, the algorithm considers only the codels
c’ in conflict with codelc in the computation (through thefirst literal
of the conjunction in line 10) and ignores the rest. The rest of step one
remains unchanged, where the new tighter bounds Bc, computed
using the new algorithm above, are used to compute tasks’ WCETs
and WCRTs. One important remark is that this algorithm could not
have been used with the original multi-resource reader/writer locking
model of GenoM3 which, contrary to R/W LLAB, guarantees neither
fairness nor starvation freedom (Section 6.1.3).

9.2 Step Two: Formal Verification
The only change in this step is that concurrency handling is
managed through R/W LLAB encoding in the UPPAAL-SMC
model. This is trivial in UPPAAL-SMC using a classical queue14.

The remaining details are unchanged since we use the same
scheduler as in Section 4.

9.3 Results
We apply the same two-step approach with the changes indicated
above (to comply with the R/W LLAB implementation) to the
same drone case study (Section 2.2). We consider the same
affinity in Table 6, and the same properties are verified with the
same statistical parameters for step two as in Section 5.

9.3.1 Step One
The newWCETs of the five HRT tasks (resp., largest codelWCET
in the three lower-priority tasks) in the system are given in
Table 10 (resp., Table 11). The new WCRTs of HRT tasks are
given in Table 12.

Notice how each HRT task passes the schedulability test with a
WCRT comfortably lower than its deadline. This is a direct effect
of using a predictable fine-grain reader/writer locking protocol

TABLE 10 | New WCET of HRT tasks.

HRT task WCET (ms)

main 0.32
comm 0.26
io 0.33
filter 0.29
control 0.42

TABLE 11 | New WCET of largest codel in low-priority tasks.

Task WCET of longest codel
(ms)

publish 0.22
plan 0.19
exec 0.17

TABLE 12 | New WCRT of HRT tasks considering affinity in Table 6.

HRT task WCRT (ms)

main 0.58
comm 0.58
io 0.55
filter 0.46
control 0.59

TABLE 13 | New verification results (step two).

probt ∈

t xmax = 2 xmax = 3 xmax = 4 xmax = 5

publish [0, 0.004] [0.996, 1] [0.996, 1] [0.996, 1]
plan [0, 0.004] [0.996, 1] [0.996, 1] [0.996, 1]
exec [0, 0.004] [0, 0.004] [0.996, 1] [0.996, 1]

14Needless to use a lock-less queue here because timed automata provide a higher-
level model where switching between states (aka taking transitions) is considered
timeless, so blocking times do not include overheads unless the latter are specified
explicitly in intermediate states.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 79175721

Foughali and Zuepke Formal Verification of Real-Time Autonomous Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


instead of a global one in this type of application, which confirms
our observations in Section 8.2.

9.3.2 Step Two
We generate, from the affinity in Table 6, the number of cores, and
the GenoM3 system, an UPPAAL-SMCmodel where concurrency is
handled using R/W LLAB. Then, we verify the same bounded
response properties as in Section 5. The verification results are
given in Table 13.

Here, we notice that lower-priority tasks are most likely
schedulable as well, with a 99.8% probability as soon as
x_max = 3 ms for tasks publish (period 4ms) and plan (period
5ms) and x_max = 4ms for task exec (period 5ms). Here also, the
tighter bounds induced by R/W LLAB lead to a highly likely
comfortable schedulability of lower-priority tasks, thus conforming,
up to a high probability, with mission criticality as well.

9.4 Discussion
Using R/W LLAB allowed to improve the verification results in
Section 5, where global MSRP was used instead. This
improvement coincides with our expectations following the
improved blocking bounds of R/W LLAB and our evaluation
in Section 8. The new model, considering R/W LLAB instead of
global MSRP, guarantees schedulability of all tasks, therefore
complying with both safety and mission criticality, which was
unverifiable in the original model (because of the scalability issues
of the original GenoM3 system including an unpredictable
locking model) and insufficient using global MSRP. The
verified model does not take R/W LLAB implementation
overheads into account (that is, we would have exactly the
same results with lock-based R/W DGL). We argue, however,
that the low overheads of R/W LLAB compared to other locks
including R/W DGL, experimentally evaluated in Section 8,
combined with the significant difference between tasks’
WCRTs and their deadlines (Section 9.3), would lead to the
schedulability of all tasks preserved in the runtime setting.

However, it is possible, for other applications, that step one is not
conclusive, that is, we fail to find an affinity that allows all HRT tasks
to pass the schedulability tests. In this case, we may consider
redesigning the application by, e.g., changing the periods, which is
nevertheless not always feasible because periods may be dictated by
hardware constraints (e.g., sensor frequency).

10 RELATED WORK

In this section, we review the state-of-the-art on both verification
of real-time robots (Section 10.1) and locking choices in real-
time–oriented robotic frameworks (Section 10.2).

10.1 Rigorous Verification of Real-Time
Robotic Applications
One of themain issues hindering the use of schedulability analysis
is the generalization of tests to robotic task models (Gobillot et al.,
2019). Some robotic software initiatives try to tackle this issue
(Soetens and Bruyninckx, 2005; Schlegel et al., 2010; Gobillot

et al., 2019). In particular, MAUVE (Gobillot et al., 2019)
supports specification, implementation, and analysis of real-
time constraints. Other works propose some real-time
extensions for the popular framework ROS (Wei et al., 2016;
Saito et al., 2018). However, all these works focus on adding
schedulability features, sometimes with schedulability analysis
support, and thus leave important properties such as reachability
and bounded response unattended.

On the other hand, a major challenge of using formal
verification is bridging robotic software, not formally founded,
with formal methods. Proposed solutions range from ad hoc non-
reusable formalization (Kim and Kang, 2005; Molnar and Veres,
2009) to formal frameworks for robotics (Miyazawa et al., 2017).
Another difficulty is the lack of scalability of exhaustive
verification techniques due to the complexity and size of
robotic systems. Non-exhaustive techniques, such as SMC,
used by Hazim et al. (2016), are not suitable for critical
applications where schedulability of HRT tasks must be
verified with certainty. Besides, to the best of our knowledge
and except for our efforts (Section 10.1.1), the literature on
formal verification in robotics (including works cited here)
ignores the MEC and OS scheduling constraints, which
restricts the results’ validity to the unrealistic assumption of all
tasks running in parallel at all times.

10.1.1 Our Previous Work
In Foughali (2017), Foughali (2019), and Foughali and Hladik,
(2020), we proposed automated support to verify various
properties of robotic applications under different scheduling
policies by means of model checking. Such support is not
suitable for the drone navigation application because of
scalability issues. In Foughali et al. (2019b), we proposed an
automated approach based on SMC to verify, up to a high
probability, a number of properties. This approach is not
suitable either for the drone system because SMC guarantees
are not enough for critical properties such as the schedulability of
HRT tasks. In other works, we propose the use of runtime
verification (RV) to cope with the scalability issues of model
checking (Foughali et al., 2020; Ocón et al., 2020). Though
lightweight and scalable, RV techniques check properties as
the system executes and are thus not suitable for critical
applications where guarantees are needed prior to system
deployment.

10.2 Real-Time Locking in Robotics
Besides ROS, there is a large corpus of robotic frameworks in the
literature with different philosophies, capabilities, and design choices
[e.g., YARP (Metta et al., 2006), OpenRT-M (Ando et al., 2005), and
ArmarX (Vahrenkamp et al., 2015)]. In our state-of-the-art, we only
focus on those frameworks that are real-time oriented, that is,
developed for real-time applications, mainly ROS2, OROCOS
(Bruyninckx, 2001), MAUVE (Gobillot et al., 2019), and GenoM3
(Mallet et al., 2010). As explained in Section 1.1, ROS2 is still under
development and its real-time capabilities are yet to be understood
(Casini et al., 2019; Blass et al., 2021; Choi et al., 2021). As seen in
Section 10.1 above, MAUVE (Gobillot et al., 2019) is perhaps the
most mature real-time–oriented robotic framework with full support

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 79175722

Foughali and Zuepke Formal Verification of Real-Time Autonomous Robots

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


for WCET estimation and schedulability analysis. Locking-wise,
however, MAUVE relies on the OROCOS-RTT middleware
(Section 2) where each component contains only one task, and
resources are duplicated as data flow ports attached to components
(Soetens and Bruyninckx, 2005). Then, whenever a component writes
its own port, it diffuses thewritten value to components that need it by
writing to their corresponding ports. This mechanism has two main
disadvantages. First, it induces a memory constraint as most of data
structures are duplicated. Second, access to ports is inaccurately
referred to as “lock free.” Indeed, OROCOS-RTT still uses mutex
procedures under the hood to, e.g., prevent a write attempt while a
read is being performed (Santini and Lages, 2010), which makes it
hard to reason on fairness (and therefore predictability) and efficiency.
GenoM3 uses a low-level fine-grained, yet unpredictable concurrency
model (Section 2.1.2). Perhaps, this lack of predictable and efficient
lockingmechanisms in real-time robotics is due to the fact that real-
time locking is out of a roboticist’s expertise, but also the
specificities of robotic software making it hard to apply state-of-
the-art locks to real-time robots (Section 6.2). For instance, real-
time–oriented robotic frameworks do not use nesting. They
typically implement algorithms in “elementary codes” (aka
codels, e.g., C functions as seen for GenoM3, Section 2) each
requesting all resources for its execution (e.g., specified in its
arguments) at once [codels are also used in MAUVE, see
Gobillot et al. (2019), Section 3.1].

11 CONCLUSION AND OUTLOOK

In this work, we describe an automated two-step approach to
rigorously verify complex (mixed-)critical real-time robots. It
combines schedulability analysis and formal verification and is
suitable for real-time robotic applications that do not scale
with model checking. Our approach is automated for non-
expert users and validated on a real drone case study.
Furthermore, we present LLAB and R/W LLAB, two novel
spin-based real-time locking implementations for multi-core
real-time robots. They fulfill a set of requirements, based on
real-time robot specificities, while outperforming the state-of-
the-art multi-resource locks DGL and MRLock in
predictability and/or efficiency. LLAB and R/W LLAB are
also useful beyond the scope of robotics, i.e., in any multi-
core/many-core real-time system with short critical sections
that requires nesting-free multi-resource locking.

We give two examples of future work directions. First, though
our experiments in Section 8 are carried out on a system that is
inspired from a real robotic application, we still need to
implement R/W LLAB in a robotic framework, e.g., GenoM3
or MAUVE, and evaluate its performance on actual executions of
real-time robots. Second, our verification approach (Section 4,
Section 9) does not include the locking-related overheads. While
real-time analysis usually focuses on theoretical blocking bounds,
recent works such as Nemitz et al. (2021) propose overhead-
aware schedulability analysis. This will be a good starting point
for us to quantify various overheads on real robotic
implementations and include them in our verification process.

DATA AVAILABILITY STATEMENT

The implementation of the locking protocols and the benchmarks
are publicly available at https://gitlab.com/azuepke/llab/. The
UPPAAL-SMC template is publicly available, since Foughali
et al. (2019b), at https://github.com/Mo-F/uppaal-smc-exp.

AUTHOR CONTRIBUTIONS

MF is the (first) lead author of the paper, as it is an extension of
his conference paper “A Two-Step Hybrid Approach for
Verifying Real-Time Robotic Systems.” AZ is the second
author, having proposed, implemented, and evaluated the
LLAB/RW-LLAB locking protocols (practically the major part
of the new material in the extension).

FUNDING

AZ was supported by the Chair for Cyber-Physical Systems in
Production Engineering at TUM and the Alexander von
Humboldt Foundation.

ACKNOWLEDGMENTS

This paper is a major extension of the RTCSA 2020 publication
“A Two-Step Hybrid Approach for Verifying Real-Time Robotic
Systems” (Foughali, 2020).

REFERENCES

Ando, N., Suehiro, T., Kitagaki, K., Kotoku, T., and Yoon, W.-K. (2005). “RT-
middleware: Distributed Component Middleware for RT (Robot Technology),”
in International Conference on Intelligent Robots and Systems (IROS) (New
York, NY: IEEE), 3933–3938. doi:10.1109/iros.2005.1545521

Blass, T., Hamann, A., Lange, R., Ziegenbein, D., and Brandenburg, B. B. (2021).
“Automatic Latency Management for ROS 2: Benefits, Challenges, and Open
Problems,” in Real-Time and Embedded Technology and Applications
Symposium (RTAS) (New York, NY: IEEE), 264–277. doi:10.1109/rtas52030.
2021.00029

Brandenburg, B. B., and Anderson, J. H. (2010). Spin-based Reader-Writer
Synchronization for Multiprocessor Real-Time Systems. Real-time Syst. 46,
25–87. doi:10.1007/s11241-010-9097-2

Brandenburg, B. B. (2020). “Multiprocessor Real-Time Locking Protocols,” in
Handbook of Real-Time Computing. Editors Y. C. Tian and D. C. Levy
(Singapore: Springer), 1–99. doi:10.1007/978-981-4585-87-3_10-1

Brandenburg, B. B. (2011). Scheduling and Locking in Multiprocessor Real-Time
Operating Systems. Ph.D. thesis. Chapel Hill, NC: University of North
Carolina at Chapel Hill.

Bruyninckx, H. (2001). “Open Robot Control Software: the OROCOS Project,” in
International Conference on Robotics and Automation (ICRA) (New York, NY:
IEEE), 2523–2528. doi:10.1109/ROBOT.2001.933002

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 79175723

Foughali and Zuepke Formal Verification of Real-Time Autonomous Robots

https://gitlab.com/azuepke/llab/
https://github.com/Mo-F/uppaal-smc-exp
https://doi.org/10.1109/iros.2005.1545521
https://doi.org/10.1109/rtas52030.2021.00029
https://doi.org/10.1109/rtas52030.2021.00029
https://doi.org/10.1007/s11241-010-9097-2
https://doi.org/10.1007/978-981-4585-87-3_10-1
https://doi.org/10.1109/ROBOT.2001.933002
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Burns, A., and Baruah, S. (2008). Sustainability in Real-Time Scheduling.
J. Comput. Sci. Eng. 2, 74–97. doi:10.5626/jcse.2008.2.1.074

Buttazzo, G. C., Bertogna, M., and Yao, G. (2012). Limited Preemptive Scheduling
for Real-Time Systems. A Survey. IEEE Trans. Ind. Inform. 9, 3–15. doi:10.1109/
tii.2012.2188805

Casini, D., Blaß, T., Lütkebohle, I., and Brandenburg, B. B. (2019). “Response-time
Analysis of ROS 2 Processing Chains under Reservation-Based Scheduling,” in
Euromicro Conference on Real-Time Systems (ECRTS). Editor S. Quinton
(Wadern, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik),
Vol. 133, 1–6. doi:10.4230/LIPIcs.ECRTS.2019.6

Chermprayong, P., Zhang, K., Xiao, F., and Kovac, M. (2019). An Integrated delta
Manipulator for Aerial Repair: A New Aerial Robotic System. IEEE Robot.
Automat. Mag. 26, 54–66. doi:10.1109/mra.2018.2888911

Choi, H., Xiang, Y., and Kim, H. (2021). “PiCAS: New Design of Priority-Driven
Chain-Aware Scheduling for ROS 2,” in Real-Time and Embedded Technology
and Applications Symposium (RTAS) (New York, NY: IEEE), 251–263. doi:10.
1109/rtas52030.2021.00028

David, A., Larsen, K. G., Legay, A., Mikučionis, M., and Poulsen, D. B. (2015).
Uppaal SMC Tutorial. Int. J. Softw. Tools Technol. Transfer 17, 397–415. doi:10.
1007/s10009-014-0361-y

Echeverria, G., Lemaignan, S., Degroote, A., Lacroix, S., Karg, M., Koch, P., et al.
(2012). “Simulating Complex Robotic Scenarios with MORSE,” in
International Conference on Simulation, Modeling, and Programming for
Autonomous Robots (SIMPAR) (Berlin: Springer), 197–208. doi:10.1007/978-
3-642-34327-8_20

Elkady, A., and Sobh, T. (2012). RoboticsMiddleware: A Comprehensive Literature
Survey and Attribute-Based Bibliography. J. Robotics, 959013. doi:10.1155/
2012/959013

Foughali, M. (2020). “A Two-step Hybrid Approach for Verifying Real-Time
Robotic Systems,” in International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA) (New York, NY: IEEE), 1–10.
doi:10.1109/rtcsa50079.2020.9203687

Foughali, M., Bensalem, S., Combaz, J., and Ingrand, F. (2020). “Runtime
Verification of Timed Properties in Autonomous Robots,” in International
Conference on Formal Methods and Models for System Design (MEMOCODE)
(New York, NY: ACM/IEEE), 1–12. doi:10.1109/memocode51338.2020.
9315156

Foughali, M., Dal Zilio, S., and Ingrand, F. (2019a). On the Semantics of the
GenoM3 Framework. Technical Report 19036. Toulose, France: LAAS/CNRS.

Foughali, M. (2018). Formal Verification of the Functional Layer of Robotic and
Autonomous Systems. PhD Thesis. Toulouse, France: INSA Toulouse. 11–28.

Foughali, M., and Hladik, P.-E. (2020). Bridging the gap between Formal
Verification and Schedulability Analysis: The Case of Robotics. J. Syst.
Architecture 111, 101817. doi:10.1016/j.sysarc.2020.101817

Foughali, M., Ingrand, F., and Seceleanu, C. (2019b). “Statistical Model Checking of
Complex Robotic Systems,” in International SPIN Symposium on Model
Checking of Software (Cham, Switzerland: Springer), 114–134. doi:10.1007/
978-3-030-30923-7_7

Foughali, M. (2019). “On Reconciling Schedulability Analysis and Model Checking
in Robotics,” in International Conference on Model and Data Engineering
(MEDI) (Cham, Switzerland: Springer), 32–48. doi:10.1007/978-3-030-
32213-7_3

Foughali, M. (2017). “Toward a Correct-And-Scalable Verification of Concurrent
Robotic Systems: Insights on Formalisms and Tools,” in International
Conference on Application of Concurrency to System Design (ACSD) (New
York, NY: IEEE), 29–38. doi:10.1109/acsd.2017.10

Gai, P., Di Natale, M., Lipari, G., Ferrari, A., Gabellini, C., and Marceca, P. (2003).
“A Comparison of MPCP and MSRP when Sharing Resources in the Janus
Multiple-Processor on a Chip Platform,” in International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA)
(New York, NY: IEEE), 189–198. doi:10.1109/RTTAS.2003.1203051

Gai, P., Lipari, G., and Di Natale, M. (2001). “Minimizing Memory Utilization of
Real-Time Task Sets in Single and Multi-Processor Systems-On-A-Chip,” in
Real-Time Systems Symposium (New York, NY: IEEE), 73–83. doi:10.1109/
REAL.2001.990598

Gobillot, N., Lesire, C., and Doose, D. (2019). A Design and Analysis Methodology
for Component-Based Real-Time Architectures of Autonomous Systems.
J. Intell. Robot Syst. 96, 123–138. doi:10.1007/s10846-018-0967-5

Gracioli, G., Fröhlich, A. A., Pellizzoni, R., and Fischmeister, S. (2013).
Implementation and Evaluation of Global and Partitioned Scheduling in a
Real-Time OS. Real-time Syst. 49, 669–714. doi:10.1007/s11241-013-9183-3

Hazim,M. Y., Qu,H., andVeres, S.M. (2016). “Testing, Verification and Improvements
of Timeliness in ROS Processes,” in Towards Autonomous Robotic Systems
Conference (TAROS), 146–157. doi:10.1007/978-3-319-40379-3_15

Jarrett, C. E., Ward, B. C., and Anderson, J. H. (2015). “A Contention-Sensitive
fine-grained Locking Protocol for Multiprocessor Real-Time Systems,” in
International Conference on Real Time Networks and Systems (RTNS).
Editor J. Forget (New York, NY: ACM), 3–12. doi:10.1145/2834848.
2834874

Jeong, S., Kim, D., Kim, S., Ham, J.-W., Lee, J.-K., and Oh, K.-Y. (2021). Real-time
Environmental Cognition and Sag Estimation of Transmission Lines Using Uav
Equipped with 3-D Lidar System. IEEE Trans. Power Deliv. 36, 2658–2667.
doi:10.1109/tpwrd.2020.3024965

Kamel, M., Alexis, K., Achtelik, M., and Siegwart, R. (2015). “Fast Nonlinear Model
Predictive Control for Multicopter Attitude Tracking on SO(3),” in
International Conference on Control Applications (CCA) (New York, NY:
IEEE), 1160–1166. doi:10.1109/cca.2015.7320769

Khedekar, N., Mascarich, F., Papachristos, C., Dang, T., and Alexis, K. (2019).
“Contact-based Navigation Path Planning for Aerial Robots,” in International
Conference on Robotics and Automation (ICRA) (New York, NY: IEEE),
4161–4167. doi:10.1109/icra.2019.8793794

Kim, M., and Kang, K. C. (2005). “Formal Construction and Verification of home
Service Robots: A Case Study,” in International Symposium on Automated
Technology for Verification and Analysis (ATVA) (Berlin: Springer), 429–443.
doi:10.1007/11562948_32

Koenig, N., and Howard, A. (2004). “Design and Use Paradigms for Gazebo, an
Open-Source Multi-Robot Simulator,” in International Conference on
Intelligent Robots and Systems (IROS) (New York, NY: IEEE), 2149–2154.
doi:10.1109/IROS.2004.1389727

Kortenkamp, D., and Simmons, R. (2008). “Robotic Systems Architectures and
Programming,” in Springer Handbook of Robotics (Berlin: Springer), 187–206.
doi:10.1007/978-3-540-30301-5_9

Kress-Gazit, H., Wongpiromsarn, T., and Topcu, U. (2011). Correct, Reactive,
High-Level Robot Control. IEEE Robot. Automat. Mag. 18, 65–74. doi:10.1109/
mra.2011.942116

Legay, A., Delahaye, B., and Bensalem, S. (2010). “Statistical Model Checking: An
Overview,” in International Conference on Runtime Verification (RV) (Berlin:
Springer), 122–135. doi:10.1007/978-3-642-16612-9_11

Mallet, A., Pasteur, C., Herrb, M., Lemaignan, S., and Ingrand, F. (2010). “GenoM3:
Building Middleware-independent Robotic Components,” in International
Conference on Robotics and Automation (ICRA) (New York, NY: IEEE),
4627–4632. doi:10.1109/robot.2010.5509539

Maruyama, Y., Kato, S., and Azumi, T. (2016). “Exploring the Performance of
ROS2,” in International Conference on Embedded Software (EMSOFT).
Editors P. Eles and R. Mangharam (New York, NY: ACM), Vol. 5 (1–5),
10. doi:10.1145/2968478.2968502

Mellor-Crummey, J. M., and Scott, M. L. (1991a). Algorithms for Scalable
Synchronization on Shared-Memory Multiprocessors. ACM Trans. Comput.
Syst. 9, 21–65. doi:10.1145/103727.103729

Mellor-Crummey, J. M., and Scott, M. L. (1991b). “Scalable Reader-Writer
Synchronization for Shared-Memory Multiprocessors,” in ACM SIGPLAN
Symposium on Principles & Practice of Parallel Programming (PPOPP).
Editor D. S. Wise (New York, NY: ACM), 106–113. doi:10.1145/109626.
109637SIGPLAN Not., 26

Metta, G., Fitzpatrick, P., and Natale, L. (2006). YARP: yet Another Robot
Platform. Int. J. Adv. Robotic Syst. 3, 8. doi:10.5772/5761

Miyazawa, A., Ribeiro, P., Li, W., Cavalcanti, A., and Timmis, J. (2017). “Automatic
Property Checking of Robotic Applications,” in International Conference on
Intelligent Robots and Systems (IROS) (New York, NY: IEEE), 3869–3876.
doi:10.1109/iros.2017.8206238

Molnar, L., and Veres, S. (2009). “System Verification of Autonomous Underwater
Vehicles by Model Checking,” in OCEANS-EUROPE (New York, NY: IEEE),
1–10. doi:10.1109/oceanse.2009.5278284

Nemitz, C. E., Amert, T., and Anderson, J. H. (2019a). Real-time Multiprocessor
Locks with Nesting: Optimizing the Common Case. Real-time Syst. 55,
296–348. doi:10.1007/s11241-019-09328-w

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 79175724

Foughali and Zuepke Formal Verification of Real-Time Autonomous Robots

https://doi.org/10.5626/jcse.2008.2.1.074
https://doi.org/10.1109/tii.2012.2188805
https://doi.org/10.1109/tii.2012.2188805
https://doi.org/10.4230/LIPIcs.ECRTS.2019.6
https://doi.org/10.1109/mra.2018.2888911
https://doi.org/10.1109/rtas52030.2021.00028
https://doi.org/10.1109/rtas52030.2021.00028
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/978-3-642-34327-8_20
https://doi.org/10.1007/978-3-642-34327-8_20
https://doi.org/10.1155/2012/959013
https://doi.org/10.1155/2012/959013
https://doi.org/10.1109/rtcsa50079.2020.9203687
https://doi.org/10.1109/memocode51338.2020.9315156
https://doi.org/10.1109/memocode51338.2020.9315156
https://doi.org/10.1016/j.sysarc.2020.101817
https://doi.org/10.1007/978-3-030-30923-7_7
https://doi.org/10.1007/978-3-030-30923-7_7
https://doi.org/10.1007/978-3-030-32213-7_3
https://doi.org/10.1007/978-3-030-32213-7_3
https://doi.org/10.1109/acsd.2017.10
https://doi.org/10.1109/RTTAS.2003.1203051
https://doi.org/10.1109/REAL.2001.990598
https://doi.org/10.1109/REAL.2001.990598
https://doi.org/10.1007/s10846-018-0967-5
https://doi.org/10.1007/s11241-013-9183-3
https://doi.org/10.1007/978-3-319-40379-3_15
https://doi.org/10.1145/2834848.2834874
https://doi.org/10.1145/2834848.2834874
https://doi.org/10.1109/tpwrd.2020.3024965
https://doi.org/10.1109/cca.2015.7320769
https://doi.org/10.1109/icra.2019.8793794
https://doi.org/10.1007/11562948_32
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1007/978-3-540-30301-5_9
https://doi.org/10.1109/mra.2011.942116
https://doi.org/10.1109/mra.2011.942116
https://doi.org/10.1007/978-3-642-16612-9_11
https://doi.org/10.1109/robot.2010.5509539
https://doi.org/10.1145/2968478.2968502
https://doi.org/10.1145/103727.103729
https://doi.org/10.1145/109626.109637
https://doi.org/10.1145/109626.109637
https://doi.org/10.5772/5761
https://doi.org/10.1109/iros.2017.8206238
https://doi.org/10.1109/oceanse.2009.5278284
https://doi.org/10.1007/s11241-019-09328-w
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Nemitz, C. E., Amert, T., Goyal, M., and Anderson, J. H. (2019b). “Concurrency
Groups: A New Way to Look at Real-Time Multiprocessor Lock Nesting,” in
International Conference on Real-Time Networks and Systems (RTNS). Editors
J. Ermont, Y. Song, and C. Gill (New York, NY: ACM), 187–197. doi:10.1145/
3356401.3356404

Nemitz, C. E., Caspin, S., Anderson, J. H., and Ward, B. C. (2021). “Light
Reading: Optimizing Reader/writer Locking for Read-Dominant Real-Time
Workloads,” in Euromicro Conference on Real-Time Systems (ECRTS). Editor
B. B. Brandenburg (Wadern, Germany: Schloss Dagstuhl - Leibniz-Zentrum
für Informatik), 6 (1–6), 22. doi:10.4230/LIPIcs.ECRTS.2021.6

Ocón, J., Dragomir, I., Coles, A., Green, A., Kunze, L., Marc, R., et al. (2020). “ADE:
Autonomous Decision Making in Very Long Traverses,” in International
Symposium on Artificial Intelligence, Robotics and Automation in Space
(I-Sairas) (Columbia, MD: Lunar and Planetary Institute).

Pecheur, C. (2000). Verification and Validation of Autonomy Software at NASA.
Technical Report NASA/TM-2000-209602. Moffett Field, CA: NASA Ames
Research Center.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., et al. (2009). “ROS:
an Open-Source Robot Operating System,” in ICRA Workshop on Open Source
Software (Stanford, CA: Standford University), 3, 5.

Saito, Y., Sato, F., Azumi, T., Kato, S., and Nishio, N. (2018). “ROSCH: Real-Time
Scheduling Framework for ROS,” in International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA) (New York, NY:
IEEE), 52–58. doi:10.1109/rtcsa.2018.00015

Santini, D. C., and Lages, W. F. (2010). “An Architecture for Robot Control Based
on the OROCOS Framework,” in Workshop on Applied Robotics and
Automation (Porto Alegre, Brazil: UFRGS), 1–10.

Schlegel, C., Steck, A., Brugali, D., and Knoll, A. (2010). “Design Abstraction and
Processes in Robotics: From Code-Driven to Model-Driven Engineering,” in
International Conference on Simulation, Modeling, and Programming for
Autonomous Robots (SIMPAR) (Berlin: Springer), 324–335. doi:10.1007/978-
3-642-17319-6_31

Soetens, P., and Bruyninckx, H. (2005). “Realtime Hybrid Task-Based Control for
Robots and Machine Tools,” in International Conference on Robotics and
Automation (ICRA) (New York, NY: IEEE), 259–264.

Vahrenkamp,N.,Wächter,M., Kröhnert,M.,Welke, K., andAsfour, T. (2015). TheRobot
Software Framework ArmarX. Inf. Techn. 57, 99–111. doi:10.1515/itit-2014-1066

Walter, V., Staub, N., Saska, M., and Franchi, A. (2018). “Mutual Localization of UAVs
Based on Blinking Ultraviolet Markers and 3D Time-Position Hough Transform,” in
International Conference on Automation Science and Engineering (CASE) (New York,
NY: IEEE), 298–303. doi:10.1109/coase.2018.8560384

Ward, B. C., and Anderson, J. H. (2013). “Fine-grained Multiprocessor Real-Time
Locking with Improved Blocking,” in International Conference on Real-Time

Networks and Systems (RTNS). Editors M. Auguin, R. de Simone, R. I. Davis,
and E. Grolleau (New York, NY: ACM), 67–76. doi:10.1145/2516821.2516843

Ward, B. C., and Anderson, J. H. (2014). “Multi-resource Real-Time Reader/writer
Locks for Multiprocessors,” in International Parallel and Distributed Processing
Symposium (IPDPS) (New York, NY: IEEE Computer Society), 177–186. doi:10.
1109/ipdps.2014.29

Ward, B. C., and Anderson, J. H. (2012). “Supporting Nested Locking in
Multiprocessor Real-Time Systems,” in Euromicro Conference on Real-Time
Systems (ECRTS). Editor R. Davis (New York, NY: IEEE Computer Society),
223–232. doi:10.1109/ecrts.2012.17

Ward, B. C. (2016). Sharing Non-processor Resources in Multiprocessor
Real-Time Systems. Ph.D. thesis. (Chapel Hill, NC: University of North
Carolina at Chapel Hill).

Wei, H., Shao, Z., Huang, Z., Chen, R., Guan, Y., Tan, J., et al. (2016). RT-ROS: A
Real-Time ROS Architecture on Multi-Core Processors. Future Generation
Comput. Syst. 56, 171–178. doi:10.1016/j.future.2015.05.008

Wieder, A., and Brandenburg, B. B. (2013). “On Spin Locks in AUTOSAR:
Blocking Analysis of FIFO, Unordered, and Priority-Ordered Spin Locks,”
in Real-Time Systems Symposium (RTSS) (New York, NY: IEEE), 45–56. doi:10.
1109/rtss.2013.13

Zhang, D., Lynch, B., and Dechev, D. (2013). “Fast and Scalable Queue-Based
Resource Allocation Lock on Shared-Memory Multiprocessors,” in
International Conference on Principles of Distributed Systems (OPODIS).
Editors R. Baldoni, N. Nisse, and M. van Steen (Cham, Switzerland:
Springer), 266–280. vol. 8304 of Lecture Notes in Computer Science. doi:10.
1007/978-3-319-03850-6_19

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Foughali and Zuepke. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 79175725

Foughali and Zuepke Formal Verification of Real-Time Autonomous Robots

https://doi.org/10.1145/3356401.3356404
https://doi.org/10.1145/3356401.3356404
https://doi.org/10.4230/LIPIcs.ECRTS.2021.6
https://doi.org/10.1109/rtcsa.2018.00015
https://doi.org/10.1007/978-3-642-17319-6_31
https://doi.org/10.1007/978-3-642-17319-6_31
https://doi.org/10.1515/itit-2014-1066
https://doi.org/10.1109/coase.2018.8560384
https://doi.org/10.1145/2516821.2516843
https://doi.org/10.1109/ipdps.2014.29
https://doi.org/10.1109/ipdps.2014.29
https://doi.org/10.1109/ecrts.2012.17
https://doi.org/10.1016/j.future.2015.05.008
https://doi.org/10.1109/rtss.2013.13
https://doi.org/10.1109/rtss.2013.13
https://doi.org/10.1007/978-3-319-03850-6_19
https://doi.org/10.1007/978-3-319-03850-6_19
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

	Formal Verification of Real-Time Autonomous Robots: An Interdisciplinary Approach
	1 Introduction
	1.1 Context and Addressed Problem
	1.2 Propositions and Difficulties
	1.3 Contributions
	1.4 Outline

	2 Background
	2.1 Robotic Software Specificities
	2.1.1 Behavior
	2.1.2 Concurrency
	2.1.3 Specification and Templates

	2.2 Case Study

	3 The Verification Challenge
	3.1 Properties of Interest
	3.2 Difficulties
	3.2.1 With Model Checking/SMC
	3.2.2 With Schedulability Analysis


	4 A Two-Step Hybrid Approach
	4.1 Step One: Schedulability Analysis
	4.1.1 Computing Tasks’ WCET
	4.1.1.1 Bounding TU Codels’ WCET
	4.1.1.2 Deducing Tasks’ WCET
	4.1.2 Analysis
	4.1.2.1 Scheduling Assumptions
	4.1.2.2 Computing Tasks’ WCRT

	4.2 Step Two: Formal Verification

	5 Results
	5.1 Step One
	5.2 Step Two
	5.3 Discussion

	6 Setting the Requirements for Real-Time Locking in Robotics
	6.1 Real-Time Model
	6.1.1 Task Model
	6.1.2 Behavior
	6.1.3 Resource Conflicts

	6.2 Requirements
	6.3 Analysis of Existing Multi-Resource Locks

	7 Lock-Less Array-Based Multi-Resource Reader–Writer Locks
	7.1 Task-Fair Conflict Check for Multi-Resource Reader–Writer Locks
	7.2 Implementation

	8 Evaluation
	8.1 Internal Overheads in the Uncontended Case
	8.2 Mixed Reader–Writer Workloads
	8.3 Discussion

	9 A Two-Step Hybrid Approach (Revisited)
	9.1 Step One: Schedulability Analysis
	9.2 Step Two: Formal Verification
	9.3 Results
	9.3.1 Step One
	9.3.2 Step Two

	9.4 Discussion

	10 Related Work
	10.1 Rigorous Verification of Real-Time Robotic Applications
	10.1.1 Our Previous Work

	10.2 Real-Time Locking in Robotics

	11 Conclusion and Outlook
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


