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ABSTRACT

Efficiently collecting per-test execution traces is a common prereq-
uisite of dynamic regression test optimization techniques. However,
as these test traces are typically recorded through language-specific
code instrumentation, non-code artifacts and multi-language source
code are usually not included. In contrast, more complete test
traces can be obtained by instrumenting operating system calls
and thereby tracing all accessed files during a test’s execution. Yet,
existing test optimization techniques that use syscall tracing are im-
practical as they either modify the Linux kernel or operate in user
space, thus raising transferability, performance, and security con-
cerns. Recent advances in operating system development provide
versatile, lightweight, and safe kernel instrumentation frameworks:
They allow to trace syscalls by instrumenting probes in the op-
erating system kernel. Probe-based Syscall Tracing (ProST), our
novel technique, harnesses this potential to collect file-level test
traces that go beyond language boundaries and consider non-code
artifacts. To evaluate ProST’s efficiency and the completeness of
obtained test traces, we perform an empirical study on 25 multi-
language open-source software projects and compare our approach
to existing language-specific instrumentation techniques. Our re-
sults show that most studied projects use source files from multiple
languages (22/25) or non-code artifacts during testing (22/25) that
are missed by language-specific techniques. With the low execu-
tion time overhead of 4.6% compared to non-instrumented test
execution, ProST is more efficient than language-specific instru-
mentation. Furthermore, it collects on average 89% more files on top
of those collected by language-specific techniques. Consequently,
ProST paves the way for efficiently extracting valuable information
through dynamic analysis to better understand and optimize testing
in multi-language software systems.

CCS CONCEPTS
« Software and its engineering — Software testing and debug-
ging.
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1 INTRODUCTION

Regression testing is regularly performed on software systems to
ensure that changes have not inadvertently affected existing sys-
tem behavior [43]. Since regression testing is prone to be costly
for large software systems [24, 75], optimization techniques such
as regression test selection [15, 21, 22, 28, 42, 59, 65, 66, 69, 70, 78],
test case prioritization [13, 16, 19-22, 49, 61, 68, 70], test suite min-
imization [17, 18, 35, 48, 67, 72, 73], and flaky test analysis [10, 41,
45, 64, 82] have been extensively studied since the 1970s [25]. These
techniques exhibit methodological overlap [75]: Several of the pro-
posed approaches collect per-test dependencies, i.e., those parts of
the code that are covered by one specific test. Techniques which col-
lect test dependencies during test execution are called dynamic and
essentially record per-test execution traces. These test traces can
be collected on different granularity levels such as statement [10],
basic-block [36, 59], function [79, 80], class/file [15, 28, 29], or com-
binations thereof [78]!. Due to the lower instrumentation over-
head, file-level test traces have been shown to be particularly effec-
tive [15, 28, 29].

Nonetheless, collecting test traces usually requires language-
specific instrumentation of the code and often bears prohibitively
expensive costs [21, 46, 62]. Despite this effort, collected test traces
are incomplete as language-specific techniques are usually not
capable of collecting test traces across language boundaries in multi-
language software and ignore non-code artifacts [15, 46, 56]. This
is problematic since software projects are on average written in
five to seven general purpose programming languages (GPLs) and
domain specific languages (DSLs) [53, 54], and make significant use
of non-code artifacts [11]. Incomplete test traces thus distort results

Here, a test trace refers to the set of (code) artifacts covered by a test during execution.
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of test optimization techniques and pose non-negligible threats to
supposedly safe regression test selection [81].

Celik et al. [15] propose a different approach to obtain test
traces: They collect the set of per-test dependencies by intercepting
process- and file-related system calls during test execution. While
they are able to extract more complete file-level test traces and
achieve language inter-operability, their technique is arguably im-
practical, as it requires tainting the Linux kernel to run in kernel
space. This raises concerns regarding transferability (e.g., what
about closed-source operating systems), maintainability (e.g., every
kernel release may break it), and security (e.g., risk of corrupting
the kernel). Alternative, less intrusive approaches that operate in
user space are too inefficient to be considered as cost-effective [15].

In this paper, we propose a different approach, Probe-based
Syscall Tracing (ProST), for obtaining file-level test traces which in-
clude multi-language source files and non-code artifacts. In contrast
to prior approaches, ProST harnesses modern kernel instrumenta-
tion frameworks that allow tracing relevant syscalls by instrument-
ing probes in the operating system kernel. These frameworks are
versatile, lightweight, and operate in safe execution environments
inside the kernel. Therefore, they are already used for performance
analyses in production systems at Netflix and Facebook, among
others [30, 33].

To provide an empirical view on the state-of-the-art in testing
multi-language software, we first performed a motivating study
and empirically investigated how non-code artifacts and source
files are accessed during testing. We investigated 25 open-source
projects with a combined size of >18M physical lines of code (LOC).
We find that 24 of the analyzed multi-language projects do indeed
access source files from multiple programming languages (22/25)
or non-code artifacts during testing (22/25), which are missed by
language-specific instrumentation. This emphasizes the need for
more complete test traces.

We then applied our technique ProST in these projects to em-
pirically evaluate efficiency, on the one hand, and the increased
completeness of file-level test traces when compared to language-
specific code instrumentation, on the other hand. Our results show
that while ProST has a low execution time overhead of 4.6% added
to non-instrumented test execution, it collects on average 89% more
files on top of those covered by language-specific instrumentation
techniques. These encouraging results show that ProST is an ef-
ficient and more effective approach to recording test traces—the
overhead introduced by the language-specific instrumentation is
slightly higher at 7.4%. Finally, to demonstrate the practicality of
ProST, we implemented it for Windows, Linux, and macOS and
report differences in the experimental results.

ProST can be used to analyze multi-language software systems
and enables advances in regression test optimization. In fact, we
are already using test traces collected with ProST for regression
test selection in a large-scale (>20M LOC) multi-language software
inside Windows environments at our industry partner IVU Traffic
Technologies®.

In summary, our contributions are as follows:

2IVU Traffic Technologies is a leading provider of public transport software solutions.
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e Empirical pre-study: Evidence that multi-language soft-
ware projects do indeed access source files of multiple pro-
gramming languages and non-code artifacts during testing.

e Novel approach: A practical approach for obtaining file-
level test traces from system calls through probe-based ker-
nel instrumentation. Contrary to prior Linux-only syscall
tracing approaches, we implement ProST as an analysis tool
that currently supports the operating systems Windows,
Linux, and macOS.

e Comparative evaluation: Demonstration of ProST’s effi-
ciency and effectiveness by comparing its overhead and
test trace completeness to language-specific instrumenta-
tion techniques.

2 RELEVANCE OF THE PROBLEM:
MOTIVATING STUDY

Studies by Mayer et al. in 2015 [53] and 2017 [54] found that soft-
ware projects are on average written in five to seven GPLs and
DSLs, making multi-language programming “a factor which must
be dealt with in tooling and when assessing development and main-
tenance” [53]. The authors statically analyzed open-source software
repositories and interviewed software developers for issues during
multi-language development. Similarly, Bigliardi et al. [11] stat-
ically analyzed open-source repositories for non-code software
artifacts. They found that, on average, almost 50% of files in a
software project are non-code artifacts. Moreover, in the set of 21
open-source projects analyzed by Shi et al. [69] on average 7.5% of
commits contain non-code changes that are relevant for testing.

While testing appears to be especially challenging with the exis-
tence of cross-language links [54], there is no empirical evidence
of whether multi-language software projects actually make use of
such cross-language links during testing. However, if (1) software
is often tested across language boundaries, or (2) tests frequently
operate on non-code artifacts, the need to collect test traces across
boundaries arises. To motivate our main study and validate the rel-
evance of the problem at hand, we first investigate the motivating
research questions (MRQs):

e MRQ;: How commonly do projects test across language
boundaries and which combinations of GPLs and DSLs are
most frequently observed?

e MRQ2: How commonly do projects access non-code artifacts
during testing and which file extensions are most frequent?

To answer these questions, we analyze popular open-source
multi-language software projects as described in the following.

2.1 Project Selection

In this study, we collect test traces by monitoring file accesses.
However, traces must only be collected during testing activities.
Hence, it is crucial to clearly separate the build process from the
testing process. To keep the manual effort at a reasonable level,
we limit ourselves to projects using Maven as their build manage-
ment tool. Its unified build lifecycle allows to separate building
from testing [6]. In addition, Maven is considered frequently in
related literature and provides a large ecosystem of readily avail-
able analysis and instrumentation tools [15, 50]. Considering only
Maven projects will most likely result in projects that use at least
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one GPL from the Java Virtual Machine (JVM) ecosystem (e.g., Java,
Groovy, Scala, or Kotlin). Yet, analyzing such projects is particularly
interesting, given that most existing regression testing research
also targets Java [27]. We query GitHub’s application program-
ming interface (API)® to find relevant open-source projects for our
study. Eventually, all projects in our sample satisfy the following
requirements:

e Real-world project: The project is an actual software li-
brary, framework, or application or a combination thereof.
We exclude pure demo or example projects.

e Popularity and active development: The project reposi-
tory on GitHub has at least 100 stars and commit activity
within the last year was observed.

e Multi-language project: At least two GPLs are found in
the repository with all JVM-based languages counting as
one instance. We distinguish between DSL and GPL in this
case, to study actual multi-language projects, which excludes
projects that only use additional languages for build, doc-
umentation, or, in general, auxiliary purposes (e.g., project
website, or release and smoke test scripts).

e Buildable and testable: The project uses the Maven build
system and is separately buildable and testable on Ubuntu
20.04.

o Testing frameworks: To limit manual interference and to
ensure consistent control of test execution and analysis of
test reports, we only include projects that use Maven’s test-
ing plugins Surefire [7] and Failsafe [51], and the JUnit frame-
work [38].

e English project documentation: The project documenta-
tion is available in English, which facilitates understandabil-
ity and reproducibility.

Not all of these requirements can be automatically checked for
and GitHub’s API does not provide capabilities to query for Maven
projects only. Hence, to obtain 25 valid projects that meet the out-
lined requirements, we manually inspected the 114 most popular
projects with a pom. xml file as retrieved via the GitHub APIL The
reproduction package contains analysis scripts, the list of GitHub
projects and, if required, an explanation why a project was not
included in the final set of projects®. Table 1 summarizes those rea-
sons for project exclusion. Notably, it is not uncommon that only
roughly one out of five open-source projects is usable in studies
that perform dynamic program analysis [69].

Table 1: Reasons for project exclusions with frequencies

Reason for exclusion ‘ Frequency

Not English | 27

Not multi-language | 24

Not buildable and testable | 22
No tests | 8

Not JUnit/Surefire/Failsafe | 5
2
1

Demo/Example project
No activity

3GitHub REST API: https://docs.github.com/en/rest
4Reproduction package [23]
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Table 2 lists the final set of 25 projects together with the revision
used in our study and their size (in physical LOC as measured with
scc [12]). In total, the study corpus accounts for >18M LOC and
represents a variety of domains, developer groups, and project sizes.

2.2 Experiment Execution

As some projects require globally installed software packages (e.g.,
the GNU Compiler Collection), a specific Java Development Kit
(JDK) version, a Docker daemon for running tests against a con-
tainerized database, or certain command line flags, we manually cre-
ated two shell scripts for each project, one for building (build. sh),
and one for testing the project (test.sh). The execution of the
tests was embedded into the tool strace [5]. Although strace is
a Linux-only system call tracing tool that operates in user-space
and thus induces high overhead [15, 83], it suffices for the sake of
this motivating study. Using strace, we log all open and openat
system calls for the shell process executing test. sh into a log file
and transitively follow all spawned child processes.

During the analysis of all accessed files, we excluded (1) log
and temporary files generated by the build or testing framework,
and (2) files that are not located below the project directory, the
/usr/local directory (contains e.g., self-compiled C libraries), or
the local Maven repository. We exclude such files as they are related
to the execution environment (i.e., JDK or operating system) and
thus not under immediate control of the developer. For instance,
just because the executing JVM uses a system library implemented
in a different language does not make the test cross-language. We
then identified the used DSLs and GPLs via their corresponding file
extensions by using the definitions for GPL and DSL from Mayer et
al’s taxonomy for cross-language links [52]: Languages which can
be used to write “arbitrary application code” [52] are considered as
GPLs (e.g., Java, C/C++, or JavaScript), whereas DSLs have a distinct
application area. Examples for DSLs are HTML for UI specification
or SQL for querying databases, but also configuration formats such
YAML, JSON, XML, or Java-Properties (.properties). All other ex-
tensions such as .csv or . txt are considered as non-code artifacts.

2.3 Results

Table 2 shows the number of test classes and test methods that
were executed during testing. The rightmost three columns of the
table show the results of the file access analysis. Each accessed file
is only counted once to not distort results due to commonly loaded
configuration files or setup classes.

During testing, 22 (88%) projects access files of more than one
programming language: 20 (80%) projects use at least one DSL and
8 (32%) use more than one GPL. On average, the studied projects
access more than 4 distinct programming language file extensions
(DSL or GPL). The three most common GPL/DSL and GPL/GPL
combinations are Java/XML (18), Java/Properties (14), Java/JSON
(9), and Java/JavaScript (5), Java/C/C++ (4), Java/Python (2), re-
spectively. This confirms static analysis results from prior multi-
language research [11, 53, 54]. Moreover, it empirically manifests
the necessity of test traces that also capture file accesses across lan-
guage boundaries, since 88% of the studied multi-language projects
would otherwise have incomplete test traces.
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Table 2: Projects used in the empirical pre-study. The rightmost three columns of the table show the measured distinct
accessed file extensions during the execution of the projects’ tests.

Project SHA LOC #Files #Test classes #Test methods | Distinct file extensions during testing*
#Non-code #DSLs #GPLs
anserini ed57c3fb 6,086,489 981 137 462 40 3 1
cometd 00db4aca 123,530 681 209 1,120 1 2 2
consulo Odlecce2 1,990,244 15,705 152 770 1 1 1
enunciate 866b50b2 181,003 1,311 17 56 3 6 1
fess 23e17bef 357,220 1,744 58 202 4 5 1
graphwalker-project 60d07c01 334,273 650 96 435 4 3 1
guacamole-client 002cfded 202,865 1,580 13 38 0 0 1
hopsworks 6539935 355,920 2,163 19 173 1 1 1
incubator-streampipes 4de5956b 185,193 2,745 57 140 1 0 1
IPED 41e9632f 296,302 1,436 22 58 1 0 2
joyqueue a88914c5 333,963 2,881 47 105 0 1 1
jzmq 00e699ef 203,742 1,563 12 80 2 0 2
languagetool 5a553989 2,361,342 2,814 576 1,283 12 4 1
lavagna dc3a01a5 117,429 1,518 61 486 3 4 1
openmeetings feb25454 171,419 1,025 77 286 16 4 2
primefaces 5b548¢59 1,951,938 5,350 42 439 2 2 1
psi-probe 19£74553 80,701 655 123 254 0 3 1
redpen 87502989 72,900 358 105 1,126 3 2 2
searchcode-server b6188ced 95,872 428 46 390 17 0 1
servicecomb-java-chassis ~ 9f90bcdf 307,463 3,600 601 2,928 8 7 1
servicecomb-pack 441a6adc 74,267 849 61 285 2 4 1
sonar-php 16f4c41c 1,029,242 7,843 545 1,322 3 2 2
steady b78e2b27 373,942 2,274 96 336 20 5 3
tinkerpop dca51406 525,289 8,462 377 29,000 11 5 2
webprotege 3b2f18d9 344,394 4,682 621 4,397 2 3 1

Projects having non-code artifacts, projects having DSLs,

MRQ We find that in 88% of the multi-language projects we
studied, tests access source files of multiple programming lan-
guages. The most common GPL/GPL and GPL/DSL combinations
are Java/JavaScript and Java/XML.

In addition, 22 (88%) out of the 25 projects use non-code artifacts
during their test execution. On average, a project accesses more
than 6 distinct non-code artifact file extensions, where the most
common extensions are .txt (12), .csv (5), and .zip (5). Again,
these results show that in order to provide reliable insights, test
traces must reflect this state-of-practice and take non-code artifacts
into account.

MRQ; We find that in 88% of the multi-language projects we
studied, tests access non-code artifacts. The most commonly
accessed non-code artifacts are . txt files.

3 PROBE-BASED SYSCALL TRACING FOR
FILE-LEVEL TEST TRACES

Multi-language software requires complete test traces that include
cross-language links and non-code artifacts. This can be achieved
using system call tracing. However, existing system call tracing

Preprint — do not distribute.

projects having more than one GPL in their test trace.

approaches are impractical, which motivates our proposed tech-
nique, ProST. In this section, we first give a brief introduction to
operating system call tracing and elaborate on the idea of tracing
system calls using probe-based kernel instrumentation. We then
explain implementation details of ProST and its integration with
testing frameworks.

3.1 System Call Tracing

Operating systems have two primary functions, managing resources,
and providing services and abstractions to user programs [71]. For
the latter, system calls (or syscalls) represent the interface to the
operating system kernel that is visible to application programmers.
While the available system calls vary between operating systems,
they often share concepts for managing processes, files, memory,
threads, or sockets.

By tracing the invoked system calls during a program’s execu-
tion, its low-level behavior can be analyzed. This has been shown to
be useful for performance engineering [39], malware detection [74],
intrusion detection [47], energy consumption estimation [60], or
fault localization [77]. Yet, most relevant to our work, system call
analysis has further been successfully applied for regression test se-
lection by Celik et al. [15]: Their technique RTSLinux traces process-
and file-related system calls to obtain file-level test traces and then
selects affected tests based on which files have changed since the last
test execution. However, RTSLinux requires modifying the Linux
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kernel through a custom Linux kernel module to run efficiently
in kernel mode. We have alluded to why this is impractical for
transferability, maintainability, and security reasons. To provide an
alternative, less intrusive approach to system call tracing, Celik et
al. implement their technique in user space using strace, which,
however, introduces the significant overhead of 61.16% compared
to non-instrumented test execution (approximately 4 times the
overhead of RTSLinux, 14.9%) [15].

Given that none of the existing approaches for system call tracing
is both efficient and non-intrusive, we suggest the use of probe-based
kernel instrumentation in the next subsection.

3.2 Probe-based Kernel Instrumentation

Dynamic instrumentation (also referred to as dynamic tracing) has
been around at least since the early 1990s and builds on the idea of
dynamically inserting instrumentation during the execution of a
system [14, 32, 34, 37]. This reduces instrumentation overhead as it
allows engineers to instrument only those parts of the system that
they are interested in [37]. Technology that enables such dynamic
instrumentation is commonly referred to as dynamic instrumenta-
tion framework or observability technology [32, 34].

DTrace [14]° is the first such technology that we investigate:
After its development was initiated at Oracle for Solaris in 2005, it
has been integrated into macOS/Mac OS X (2007), FreeBSD (2008),
and more recently into Windows (2019) [34, 63]. DTrace provides
capabilities to dynamically instrument so-called probes, which are
static or dynamic instrumentation points. Users can then write
programs in a C-like scripting language that are executed if those
probes fire. While there have been efforts to port DTrace to Linux®,
they were never merged into the kernel. However, in 20147, an
extension of the Berkley Packet Filter (BPF)—an in-kernel virtual
machine originally created to analyze network traffic in 1993 [55]—
has been introduced to the Linux kernel [26]. This extension, called
eBPF, allows to run programs in response to instrumentation points
in the kernel beyond networking subsystems. This new flexibility
has led to the development of several front-ends for eBPF, including
bpftrace®, which provides a similar interface and capabilities as
DTrace, albeit using eBPF [31].

In particular, both DTrace and bpftrace share the concepts of
probes, i.e., instrumentation points, predicates, i.e., conditions that
allow filtering when a probe fires, and actions, i.e., the programs
or sets of instructions that are executed if a probe fires [32, 34].
For all the above mentioned operating systems’ kernels, probes
are (static) instrumentation points which are added during ker-
nel compile-time as NOP-instructions. DTrace and bpftrace can
dynamically register actions as event listeners to these probes dur-
ing runtime. Similar to DTrace, bpftrace offers a C-like scripting
language to define actions for probes. Listing 1 shows two sam-
ple scripts that instrument the open system call on macOS using
DTrace and on Linux using bpftrace. In the given examples, an
action is defined, that prints the current process identifier (PID)
and the file path to be opened. This action is associated to the

5DTrace is short for Oracle Solaris Dynamic Tracing Facility [34]

®Linux port of DTrace: https://github.com/dtrace4linux/linux

"Initial proposal of eBPF on the Linux kernel mailing list by Alexei Starovoitov in 2013:
https://lkml.org/lkml/2013/12/2/1066

8bpftrace: https:/bpftrace.org/
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probe identifier (syscall: :open:entry) and a predicate (/pid ==
123/).

rumentation of “open’ on

g DTrace
syscall::open:entry
/pid == 123/
{
printf ("%d %s\n", pid, cleanpath(copyinstr(arg0)));

// Ins

tation of “open” on Linux using bpftrace
tracepoint:syscalls:sys_enter_open
/pid == 123/
{
printf("%d %s\n", pid, str(args->filename));

}

Listing 1: Sample scripts that instrument the open system
call using DTrace on macOS and bpftrace on Linux.

Both technologies, DTrace and bpftrace, contribute to the prac-
ticality of tracing regarding performance overhead and security
issues [33]: Registered actions run in their own safe execution envi-
ronment inside the kernel and are designed for minimal overhead
during operation [34]. In fact, both DTrace and bpftrace are used
in production environments at Netflix and Facebook, among oth-
ers [30, 33].

3.3 Implementation and Integration

ProST
Testing W
Testing
Test event listeners J log
mvn test — Test
. — traces
Tracing
Tracing
User mode — T/ T

Kernel mode

Instrumented syscalls

Figure 1: High level architecture of ProST

Fig. 1 illustrates the high level architecture of ProST. ProST has
two distinct components, one concerned with (syscall) tracing and
one with integration into testing frameworks. In the following,
we outline how these two components work together to collect
file-level test traces by instrumenting system calls.

3.3.1 Tracing. We have already motivated why we rely on the dy-
namic instrumentation technologies DTrace and bpftrace to trace
system calls. To provide support for different operating systems,
ProST acts as a facade to these technologies and selects the suitable
DTrace or bpftrace instrumentation script for the corresponding
host operating system. Each script takes a root process’ PID as
input. It then keeps track of all transitive child processes: When a
process is spawned, the new PID is added to the set of tracked PIDs
and the information triple (timestamp, parentPID, PID) is written to
the standard output stream, which is redirected to a tracing log file.
Furthermore, system calls related to file accesses are instrumented
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under the condition (predicate) that the caller’s PID is in the set
of tracked PIDs. Whenever a file is opened, the instrumentation
adds the information triple (timestamp, PID, filepath) to the tracing
log. While this information already allows collecting all transitively
accessed files for each PID, it is still insufficient to link tests and
files to obtain test traces. The reasons are that (1) PIDs may be
reused by the operating system and (2) we miss a mapping of test
identifier to PID. Therefore, we require a second artifact, the testing
log, which is described next.

3.3.2 Testing. To associate accessed files from the tracing log with
the corresponding test that opened them, we need to know when
a test started and when it ended. Testing frameworks typically
offer a test event listener API, that allows defining custom event
listeners (e.g., JUnit [8], GoogleTest [2], Jest [3]). ProST currently
implements a JUnit test event listener that logs the information
(timestamp, PID, testidentifier, eventtype) to the testing log when-
ever a test suite is started and ended’. The JUnit test event listener
can either be added as an external dependency or to the JVM class-
path of the system under test. ProST can be easily used with other
testing frameworks that support test event listeners as well, since
our logging format is not specific to any testing framework or
programming language.

Mapping file accesses to tests through PIDs and timestamps,
ProST combines tracing and testing log to construct file-level test
traces as shown in Fig. 1. More formally, the test traces are a set
of tests T, where each test t € T is associated to its set of accessed
files F;. Notably, a test trace does not imply the order in which files
are accessed, but only constitutes the set of accessed files during
execution.

3.3.3 Integration. We implemented ProST as a command line pro-
gram which takes an arbitrary user command as input, e.g., mvn
test. If the test event listener is added to the system under test,
this will output both, tracing and testing log. ProST then converts
these log files into a structured JSON output file, containing the
file-level test traces.

One important aspect of test execution is parallelization. Similar
to RTSLinux, ProST supports tracing parallel execution of tests
through multi-processing (i.e., running multiple processes with one
test per process), as it transitively follows all child processes of
the user command and thereby collects all file accesses for each
test [15].

Since DTrace and bpftrace provide far more probes (beyond
system call instrumentation points), ProST is easily extensible to
trace further events than file accesses during test execution. Exam-
ples are events related to socket communication or multi-threading
which can be useful to detect flaky tests or prioritize regression
tests. We discuss extension points and use cases in Sec. 4.5.

4 EVALUATION

To evaluate the effectiveness and efficiency of ProST, we perform an
empirical study on the multi-language software projects introduced
in Sec. 2. We strive to answer the following research questions

(RQs):

9Similar to prior regression testing research, we consider one test as one test suite (i.e.,
test class) [22, 29, 69, 76].
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e RQ;: How many more files are included in ProST’s test
traces compared to language-specific instrumentation?

e RQ;: How efficient is ProST in terms of introduced execution
time overhead compared to language-specific instrumenta-
tion?

Since ProST aims to be practical and portable, we discuss the
transferability of our evaluation results to other operating systems
than Linux and other language environments than the JVM in
Sec. 4.5. All experiment results and scripts are part of our reproduc-
tion package.

4.1 Study Subjects

During our motivating pre-study, we identified 25 multi-language
software projects from open-source development listed in Table 2.
We have outlined the project selection criteria in Sec. 2. Notably, as
previously stated, all projects use one GPL that runs on the JVM,
which is one of the threats to validity of our study (see Sec. 4.6).

Throughout the course of our empirical study, we encountered
problems with the projects joyqueue and tinkerpop: joyqueue
has fluctuating test cleanup times due to complex locking and multi-
threading mechanisms, which would lead to distorted test execution
runtimes in RQ». For tinkerpop, ProST’s JUnit test listener was not
applicable due to incompatibility issues with a custom JUnit runner
that tinkerpop uses for several tests. Thus, only 23 out of the initial
25 projects could be included for the sake of this evaluation.

4.2 Comparing Language-specific Techniques

Since all of our projects use a JVM programming language as their
main GPL (see Sec. 2), we need to compare ProST to language-
specific instrumentation techniques that target the JVM. We employ
one publicly available coverage tool, JaCoCo'?, that supports collect-
ing test traces on the JVM (also called per-test coverage) and has been
used in prior studies on regression test optimization [10, 13, 58].
Additionally, we implemented a straightforward file-level instru-
mentation technique for the JVM, ClassInst. The reason why we
implement a language-specific technique ourselves and do not only
rely on JaCoCo, is that JaCoCo is not specifically designed to collect
file-level test traces. It collects more fine-grained execution infor-
mation and offers additional runtime features, such as a Web server
to interact with JaCoCo during test execution. Since these features
lead to higher overhead during test execution, comparing ProST
only to JaCoCo would be unfair. Thus, we compare ProST to both,
an existing tool and a raw instrumentation technique.

Notably, similar to ProST, JaCoCo and ClassInst also require
a simple JUnit test execution listener to link covered Java .class
files to tests.

4.2.1 JaCoCo. JaCoCo is a popular code coverage library for the
JVM that instruments bytecode during runtime using the ASM
bytecode manipulation framework!! and the Java Agent API [1].
With single-threaded execution of tests, JaCoCo allows to collect
per-test coverage by dumping collected coverage after a test has
been run (e.g., triggered by a test execution listener) [10, 13]. Similar

103aC0Co: https://www.eclemma.org/jacoco/
11 ASM bytecode manipulation framework: https://asm.ow2.io
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to [58], we use a JaCoCo wrapper!? that facilitates collecting per-
test coverage. This wrapper collects statement coverage by default.
However, per-test statement coverage information can simply be
aggregated to file-level test traces.

4.2.2 Language-specific File-level Instrumentation. Regression test
selection tools such as Ekstazi [28, 29] or HyRTS [78] internally rely
on file-level instrumentation techniques. Yet, they are specifically
designed for regression test selection and either do not offer an
interface to only collect test traces or do not support JDK or JUnit
versions newer than 8 or 4, respectively. Hence, we cannot directly
apply them in our study, as the majority of projects (16/23) uses
a newer JDK version. Thus, we implemented a simple language-
specific instrumentation approach (ClassInst) that is based on
the same underlying concepts of dynamic code instrumentation
using the Java Agent APL Similar to Ekstazi, HyRTS, and JaCoCo,
ClassInst intercepts class loading into the JVM during runtime.
Thus, when a class or a Java Archive (JAR) containing a class is
loaded into the JVM, its corresponding .class or . jar file path is
printed into a log file (i.e., tracing log). Due to the JVM’s lazy class
loading, this instrumentation will only cover all . class files, that
are actually used by the test that is executed.

4.3 Experiment Execution

For the experiments, we reuse the two shell scripts, build. sh and
test. sh (see Sec. 2.2) for building and testing the project. Recall
that this allows us to separate the build process from the testing
process. The experiments are conducted as follows: We iterate over
all 23 projects and first build the project. Second, similar to Celik et
al. [15], we add the Maven Surefire test options -Df orkCount=1 and
-DreuseForks=false to the test script (test.sh). This instructs
Maven Surefire to run tests in isolation in a separate JVM which
removes effects of JVM caching or parallel execution (partly not
supported by JaCoCo, see Sec. 4.2.1) for the sake of our experiments.
While this may introduce additional overhead for JVM forking, it is
a common approach used in industry and the default in several of
the studied projects [9, 15, 57]. In fact, when collecting test traces,
it is beneficial to use JVM forking in general, as it increases the
reliability of test results by preventing shared test state pollution
or test-order dependencies [9, 15, 57].

We then execute the adjusted test. sh script with ProST, JaCoCo,
and ClassInst instrumentation and measure the wall-clock end-to-
end test execution time for each of them. Additionally, we execute
the tests once without instrumentation, only including the JUnit test
execution listener that is needed for all instrumentation techniques
(NoInst).

We perform our experiments on a machine with an Intel® Core™
17-6700 processor containing 8 logical cores which run at 3.4 GHz,
16 GB main memory, and running the GNU/Linux Ubuntu 20.04
(64 bit) operating system.

4.4 Results

4.4.1 RQ: Test Trace Comparison. Table 3 contains the number of
files that are part of the test traces for each studied project as col-
lected by ProST, JaCoCo, and ClassInst. Notably, ClassInst and

12 7aCoCo wrapper: https://github.com/cqse/teamscale-jacoco-agent
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JaCoCo are based on the same dynamic instrumentation approach
using the Java Agent API and therefore cover the same .class
files that were loaded into the JVM. On average, 89.2% (335) more
files are collected by ProST, indicating that ProST’s test traces are
more complete and language-specific techniques alone would miss
per-test file dependencies in the studied projects. The measured
average number of file dependencies per test (class) increases by a
factor of 3.5. It is important to note that not only the numbers are
higher, but also that all files tracked by JaCoCo and ClassInst are
also covered by ProST. If ProST’s test traces are used in the context
of regression test selection, this enables higher safety than using
JaCoCo or ClassInst [15].

In general, this supports prior regression testing research, where
language-specific techniques only collected 16.99% of the files col-
lected with system call tracing [15]. However, while these find-
ings imply a factor of 5.89 more file dependencies, we only collect
roughly a factor of 0.9 (89%) more files with ProST. We expect these
differences to stem from the fact that Celik et al. [15] do not filter
out accessed directories, which, in Linux, are considered files, and
do not exclude files generated by the build or testing frameworks
as well as system and JDK-related files. Yet, we believe that apply-
ing these filters is reasonable, since these files are not tracked by
the version control system and, depending on the system, can be
out of the developers control (e.g., continuous integration build
machines).

RQ; We find that in the considered projects, test traces collected
with ProST contain all files found with language-specific tech-
niques and on average 89.2% more files.

4.4.2 RQ: Efficiency. In order to calculate the introduced execu-
tion overhead by ClassInst, ProST, and JaCoCo, we measure the
wall-clock end-to-end test execution time for each project in our
experimental Linux setup. The rightmost four columns of Table 3 de-
pict these times for each technique including NoInst. The average
introduced test execution time overhead are 7.4% for ClassInst,
4.6% for ProST, and 286.5% for JaCoCo. While the comparatively
high overhead introduced by JaCoCo is expected, as it instruments
Java bytecode at statement level, ClassInst has significant smaller
overhead. This emphasizes that it is fairer to compare to ClassInst
than to JaCoCo. ProST has an even slightly smaller overhead than
ClassInst (2.8 pp). Despite this efficiency, ProST collects all files
covered by ClassInst and JaCoCo and additional 89.2% files.

RQ, We find that ProST adds an execution time overhead of
4.6% on top of non-instrumented test execution. This overhead is
smaller than with lightweight language-specific instrumentation
(7.4%).

4.5 Discussion
In the following, we discuss the results, transferability and imple-

mentation aspects, as well as use cases and extensions for ProST.

4.5.1 Transferability to other languages and frameworks. We have
alluded to why system call tracing is a language-agnostic approach
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Table 3: Empirical evaluation results for RQ; and RQ; for the studied projects (excludes 2 discarded

projects)
Project Number of distinct files in test traces (RQ;) Test execution time [sec] (RQ3)
ClassInst / JaCoCo ProST NoInst ClassInst ProST JaCoCo
Total  Avg./Test Total ~ Avg./Test
anserini 481 31.96 1,949 213.04 160.31 177.27 166.08 2,570.32
cometd 1,213 53.07 1,343 70.47 2,264.20 2,304.74 2,268.18 2,632.76
consulo 555 12.96 641 67.00 154.87 160.59 158.87 327.25
enunciate 213 16.94 405 92.94 23.76 25.27 25.10 39.71
fess 1,303 104.78 1,747 359.48 164.92 172.67 168.96 267.28
graphwalker-project 486 37.56 1,112 62.41 103.78 115.18 106.81 293.86
guacamole-client 104 11.77 149 22.92 6.59 7.53 8.03 24.31
hopsworks 174 20.80 434 227.87 16.13 16.88 17.22 44.00
incubator-streampipes 262 15.20 490 114.64 50.93 55.07 52.91 111.23
IPED 56 6.86 300 249.95 10.53 11.84 12.14 42.72
jzmq 68 12.27 72 13.55 12.63 11.91 13.20 28.72
languagetool 1,715 44.77 2,493 127.17 1,440.13 1,494.65 1,473.34 2,367.55
lavagna 537 132.89 662 261.20 151.66 161.76 153.63 280.56
openmeetings 941 156.13 1,578 806.43 2,611.11 2,862.62 2,792.20 2,928.79
primefaces 368 22.60 402 64.83 48.13 51.51 50.95 102.84
psi-probe 497 20.47 584 101.78 82.86 91.98 86.33 267.47
redpen 279 67.89 325 128.70 127.88 142.68 131.25 258.10
searchcode-server 185 25.51 966 86.31 36.08 38.24 37.17 69.71
servicecomb-java-chassis 3,571 51.43 3,882 130.04 3,502.01 3,580.96 3,484.01 4,718.90
servicecomb-pack 646 64.05 872 159.16 292.26 313.84 295.89 374.53
sonar-php 1,391 82.29 1,726 105.60 240.32 279.51 249.65 1,040.06
steady 708 28.36 1,188 111.26 493.82 502.48 502.84 624.78
webprotege 1,699 16.96 1,834 98.78 426.23 494.24 437.96 1,444.52
Avg. 758.78 45.11 1,093.65 159.81 540.05 568.41 551.86 906.96
> 17,452.00 1,037.52  25,154.00 3,675.53 | 12,421.14 13,073.42  12,692.72  20,859.97

to collect dynamic per-test dependencies at file-level granularity.
Nonetheless, there are language-specific peculiarities that affect
the effectiveness of ProST.

Considering the JVM, syscall tracing can be imprecise, if accessed
.class files reside inside JARs, as only the accessed JAR will be
part of the test trace [29]. This limitation applies to ProST as well.
Notably, in contrast to ProST, both JaCoCo and ClassInst can
track which . class files inside a JAR were accessed.

If ProST is used on C/C++ software, where source files are com-
piled to (often large) binary files, ProST’s test traces might be too
coarse grained for precise per-test analysis. Still, as opposed to
language-specific instrumentation, ProST will cover all non-code
artifacts and file accesses made by spawned subprocesses. ProST
can thus be applied on top of existing language-specific instrumen-
tation techniques, e.g., augment established code coverage-based
techniques.

Furthermore, interpreted languages such as Python or JavaScript
use different implementations for lazy loading and evaluation of
source files than the JVM. In the worst case, this may lead to all
source files to be opened that are imported by a test—even if no
code from these files is actually used by the test [15].

Overall, while ProST is applicable to arbitrary language envi-
ronments, it definitely has limitations with respect to precision for
languages that compile to large binary files or with interpreted
languages. We believe that ProST is specifically useful in scenarios

Preprint — do not distribute.

where cross-language links are present and tests intensively make
use of non-code artifacts.

4.5.2  Portability to other operating systems. To evaluate whether
our results for RQy hold for different operating systems, we re-
peated our efficiency analysis again for a subset of five randomly
sampled projects, that were also buildable and testable on Windows
and macOS, namely anserini, enunciate, lavagna, primefaces,
searchcode-server. On those projects, ProST introduced on av-
erage 3.9% (Linux), 4.1% (macOS), and 7.6% (Windows) execution
time overhead. Hence, while the measured execution overhead is
indeed affected by the operating system and ProST has a slightly
smaller overhead on Linux on the project sample (3.9% versus 4.6%
on all projects), we can observe that ProST introduces relatively
low overhead of <10% on all three operating systems.

4.5.3 Running one test per process. In our experiments, we rely on
Maven Surefire’s JVM forking mechanism to run each test in its own
process. While we have discussed that this is a common practice
as it leads to more stable test results, it might not be supported by
an arbitrary testing framework for a given programming language.
Furthermore, such process forking might be undesired as it implies
additional overhead and removes caches between tests, such as
the JVM class loader cache. Yet, even in those cases, ProST can
provide significant benefits: As long as the testing framework allows
registering a test event listener, which is a requirement for any
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per-test dependency analysis, one can also use ProST on top of
an existing language-specific instrumentation. More precisely, if
a project already uses a language-specific technique to obtain test
traces, adding ProST can enrich these test traces by non-code or
multi-language artifacts. In fact, we are combining ProST with
lightweight Java bytecode instrumentation at our industry partner,
in order to gain more fine-grained test traces.

4.5.4  Writing to log files. As described, ProST and ClassInst cur-
rently log every file access directly into a tracing log file. While this
is not the most efficient way to store these data, it allows us to mea-
sure the actual instrumentation overhead in isolation, regardless
of the used storing mechanism (e.g., in-memory storage or stor-
ing accessed files directly into a database). Furthermore, this way,
we circumvent multi-threading problems with synchronized code
blocks, but simply rely on the operating system’s file locking mech-
anism. Hence, for the sake of comparing actual instrumentation
overhead, we deem the log file approach to be reasonable.

4.5.5 Use Cases and Extensions for ProST. As ProST uses generic
kernel instrumentation frameworks, it can be applied and extended
for several use cases which we discuss here.

Regression Test Selection. Test traces obtained with system call
tracing have been used for regression test selection by Celik et
al. [15]. To select tests, they compute checksums for each file in
a test’s trace and check if any of those checksums is affected by
changes to the code base. This approach is also applicable to test
traces recorded with ProST. In addition, ProST can be easily ex-
tended to instrument further available probes. These include, for
instance, instrumentation points specifically for the JVM': DTrace
provides probes to instrument any class loading activity in the JVM,
which can be used to also trace accesses to .class files packaged
into . jar files. Thus, through small context-specific additional in-
strumentation, we can make test traces obtained with ProST more
precise (i.e., fine-grained .class instead of coarse-grained . jar
accesses). This can in turn lead to better results for regression test
selection techniques [29].

We are successfully using ProST to create test traces used for
regression test selection at our industry partner IVU in a large-
scale (>20M LOC) multi-language software project that targets the
Windows operating system.

Test Case Prioritization. There are plenty of coverage-based test
case prioritization techniques which use more fine-grained test
traces (e.g., method or statement level) [44, 68] to rank tests: Tests
with more (additional) coverage should thereby be executed first.
There are, however, no test case prioritization techniques available
that incorporate non-code artifact coverage or coverage of source
files in other languages. Yet, as we have shown in Sec. 2.3, tests
commonly make use of such artifacts in multi-language software.
Test traces obtained with ProST provide all information necessary
to rank tests also based on those criteria. Furthermore, ProST con-
tains an experimental implementation of tracing socket interaction
that tracks whenever a socket is opened from any currently traced
process (i.e., test). The number of traced per-test socket interactions

13pTrace for Java 8: https://docs.oracle.com/javase/8/docs/technotes/guides/vm/dtrace.
html
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can also be used to prioritize tests, as tests that make network calls
are commonly prone to fail [62].

Flaky Test Detection and Classification. Flaky tests are tests that
may non-deterministically fail and pass with the same program
version. They are a well-known problem in regression testing [10,
41, 45, 64] and a potential threat for evaluating regression test
optimization techniques [61]. To decrease debugging costs it is thus
crucial to detect flaky tests, understand the root causes for flakiness,
and, if possible, repair the tests [45]. File-related input/output is one
common root cause for flakiness, that can be analyzed by using test
traces from ProST. Flakiness related to concurrency or networking
problems [45] could also be diagnosed with ProST by instrumenting
more probes related to networking or multi-threading (see previous
paragraph). We are currently experimenting with using ProST for
detecting and classifying flaky tests.

4.6 Threats to Validity

4.6.1 External Validity. The main threats to external validity stem
from the representativeness of our empirical results. We address
them by analyzing a set of popular, open-source multi-language,
yet only JVM-based, projects from different domains, but cannot,
by nature of an empirical evaluation, easily generalize the findings
beyond these projects.

Another threat is that six of the studied projects have relatively
short test runtimes of <1 minute which arguably questions whether
test optimization would be necessary in these projects. However,
while these projects may not necessarily require test selection, we
have discussed further use cases for test traces in Sec. 4.5.5, such as
failure diagnosis or flakiness root cause classification. In fact, the
approach proposed in this paper explicitly does not target a specific
use case, but introduces a universal, yet efficient and practical anal-
ysis technique based on probe-based system call tracing. Moreover,
even in prior studies on regression test selection, 9 of 21 studied
projects had test runtimes of <1 minute [15].

Finally, as described in Sec. 4.1, we exclude two projects from
our initial motivating pre-study for the main study, as they provide
unreliable evaluation results. While this does not preclude applica-
bility of ProST to these projects, other projects could pose similar
challenges to engineers. Yet, such compatibility issues are a general
threat for any instrumentation technique that needs to be hooked
into the build and testing frameworks and are a known problem
for existing regression test selection tools as well [81].

4.6.2 Internal Validity. The main internal threats to validity stem
from the implementation of ProST, ClassInst, and our evaluation
scripts used within our empirical study. To check ClassInst’s cor-
rectness, we compared the . class files covered by ClassInst with
those traces by JaCoCo, a widespread Java instrumentation tool,
and did not find any errors. ProST relies on the kernel instrumen-
tation frameworks DTrace and bpftrace. During our experiments
and the operation at our industry partner, we found that DTrace
on Windows occasionally produces probe errors, which in our case
did not lead to any missed accessed files. bpftrace currently only
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supports strings with up to 200 characters, which caused prob-
lems in a few of the studied projects'*. ProST therefore contains
its own compiled binary of bpftrace to support strings with up to
220 characters and an updated timestamp API, which has recently
been added to bpftrace, but not yet released. To address further
implementation-related threats, we wrote unit tests and runtime as-
sertions while developing ProST and manually checked test traces
for their validity.

5 RELATED WORK

We have referenced work from different research areas throughout
this paper. Among these areas, we consider multi-language software
and file-level test traces in regression testing to be most relevant
for our approach.

5.1 Multi-language Software

Mayer et al. [52-54] investigate multi-language software develop-
ment in open-source and industrial settings. By statically analyzing
source code repositories and interviewing developers, they find that
software projects use on average five to seven languages. Their re-
sults indicate that XML, JSON, and YAML are among the most used
DSLs, which we confirm in our pre-study, albeit with dynamic anal-
ysis of tests [53]. Furthermore, the interviewed developers report
Java/XML and Java/JavaScript to be the most common language
combinations which also matches our findings [54].

Bigliardi et al. [11] quantitatively analyze the prevalence and
development of non-code software artifacts in open-source reposi-
tories. Their results show that on average 50% of files in each project
are non-code artifacts and that one third of all commits includes
changes to these artifacts. In our pre-study even 88% of the studied
multi-language projects use non-code artifacts during testing.

Kochhar et al. [40] study the impact of multiple languages on
the quality of software. In their large scale study of open-source
projects, they find that in projects with more languages, the defect
proneness is significantly increased. We, on the other hand, do not
investigate bug proneness, but study what parts of multi-language
software are actually executed during regression testing.

5.2 File-level Test Traces in Regression Testing

Gligoric et al. [28, 29] propose the first dynamic file-level regression
test selection technique, Ekstazi. Ekstazi relies on Java bytecode
instrumentation and reduces the end-to-end testing time on average
by 32% across 32 open-source projects. Furthermore, the authors
show that test traces at file granularity are more effective than more
fine-grained traces.

Shi et al. [69] combine Ekstazi with the static incremental
Maven build tool GIB [4]. The resulting tool, GIBstazi, selects
an entire Maven module for testing, in case any non-code artifacts
are changed. To measure the impact of such non-code artifacts on
the test selection, the authors apply an strace-based tool to see
whether any tests access non-code artifacts and how often these
non-code artifacts have been changed in the version control his-
tory. They find that on average 7.5% of commits contain non-code
changes that are relevant for testing.

4There is a pending pull request that solves the string length limitation issue: https:
//github.com/iovisor/bpftrace/pull/1360
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Celik et al. [15] propose RTSLinux, the first and only regres-
sion test selection technique that uses system call analysis to trace
arbitrary file accesses during testing. RTSLinux thereby collects
roughly 6 times more accessed files than Ekstazi and saves 53%
of test execution time compared to a retest-all strategy. However,
RTSLinux is only applicable in Linux environments and taints the
Linux kernel through a custom kernel module. This is arguably
impractical in an industrial context, as this implies maintaining
that extension for future kernel versions with utmost care to avoid
kernel panics. In contrast, ProST uses safe kernel instrumentation
techniques available for all major operating systems and, similar
to RTSLinux, is highly efficient as it also operates in kernel rather
than user mode.

In summary, none of existing studies on multi-language software
projects analyze how intensively such software is tested across lan-
guage boundaries by applying dynamic program analysis. Moreover,
to the best of our knowledge, there are no studies on regression test-
ing that specifically investigate how to efficiently collect file-level
test traces through system call tracing beyond Linux environments.

6 CONCLUSION

Dynamic regression test optimization techniques require per-test
execution traces to analyze test runtime behavior and reduce test-
ing effort or feedback time. However, these test traces are typically
collected through language-specific code instrumentation, which
ignores cross-language boundaries and non-code artifacts. Tracing
operating system calls yields more complete test traces by col-
lecting all accessed files during test execution. However, existing
approaches are impractical in most contexts due to transferability,
maintainability, security, or performance concerns.

In this paper, we propose ProST, a novel system call analysis ap-
proach to collect file-level test traces. ProST harnesses probe-based
kernel instrumentation frameworks to instrument all relevant file-
and process-related system calls. The kernel instrumentation runs
in a safe execution environment and currently supports Linux, Win-
dows, and macOS. We empirically study the efficiency and effective-
ness of ProST on 25 open-source multi-language software projects.
The results show that in 96% (24) of the studied projects tests ac-
cess non-code artifacts or source files from multiple languages
that are missed by language-specific instrumentation techniques.
We further find that ProST introduces only 4.6% of execution time
overhead during testing (compared to 7.4% overhead with language-
specific techniques) and collects on average 89% more accessed files
on top of those collected by language-specific instrumentation.

ProST can thus be used as an efficient, practical, yet more com-
plete approach for obtaining file-level test traces or complement ex-
isting language-specific instrumentation to analyze multi-language
software systems.
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