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Abstract

Gaussian wave packets are used in numerous numerical methods to solve the time-
dependent Schrödinger equation. In particular, superpositions of Gaussian wave packets
are often used, because they have useful analytical properties and allow wave functions
outside the class of Gaussian functions to be approximated.
In this dissertation we investigate superpositions of Gaussian wave packets resulting

from discretisations of the continuous wave packet transform in phase space. Based on
a rigorous analysis of the underlying approximation properties for di↵erent quadrature
rules, we focus on the so-called “Time-Sliced Thawed Gaussian Propagation Method”,
a numerical method recently proposed for solving the Schrödinger equation, in which
the wave packet transform appears as an important ingredient. Finally, after a detailed
mathematical investigation supported by numerical experiments, I present the latest
results from the field of tensor-train approximations, which can be used to simulate
high-dimensional quantum systems.
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Zusammenfassung

Gaußsche Wellenpakete werden in zahlreichen numerischen Methoden zum Lösen der
zeitabhängigen Schrödingergleichung eingesetzt. Dabei kommen insbesondere oftmals
Überlagerungen Gaußscher Wellenpakete zum Einsatz, da diese nützliche analytische
Eigenschaften besitzen und es ermöglichen, auch Wellenfunktionen außerhalb der Klasse
von Gauß-Funktionen zu approximieren.
In dieser Dissertation untersuchen wir Überlagerungen Gaußscher Wellenpakete, die

sich aus Diskretisierungen der stetigen Wellenpaket-Transformation im Phasenraum er-
geben. Aufbauend auf einer rigorosen Analyse der zugrundeliegenden Approximations-
eigenschaften für verschiedene Quadraturregeln beschäftigen wir uns anschließend mit
der sogenannten “Time-Sliced Thawed Gaussian Propagation Method”, einer kürzlich
vorgeschlagenen numerischen Methode zum Lösen der Schrödingergleichung, in der die
Wellenpaket-Transformation als wichtiger Bestandteil auftritt. Nach einer ausführlichen
mathematischen Untersuchung gestützt durch numerische Experimente präsentiere ich
zuletzt neuste Ergebnisse aus dem Bereich der Tensor-Train Approximationen, die zur
Simulation hochdimensionaler Quantensysteme genutzt werden können.
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Notation

Some important notations that occur repeatedly in the thesis should be introduced right
at the beginning. For a complex-valued function  : Rd ⇥ R ! C, defined for x 2 Rd

(position) and t 2 R (time), we use the following conventions:

@t (x, t) :=
@

@t
 (x, t) and � (x, t) = �x (x, t) :=

dX

k=1

@2

@x2

k

 (x, t).

We denote by L2(Rd) the Hilbert space of square-integrable functions (wave functions)
and work with the inner product

hf | gi = hf | giL2(Rd) :=

Z

Rd

f(x)g(x) dx, f, g 2 L2(Rd),

which is taken antilinear in its first argument. Furthermore, S(Rd) denotes the Schwartz
space of rapidly decaying smooth functions defined by

S(Rd) :=
n
f 2 C1(Rd) : sup

x2Rd

|x↵@�f(x)| < 1 8↵, � 2 Nd

0

o
,

where C1(Rd) is the space of complex-valued smooth functions on Rd and x↵ = x↵1
1

· · · x↵d
d

and @� = @�1
x1

· · · @�d
xd
. In particular, recall that S(Rd) is a dense subset of L2(Rd).

It should also be noted that we work with a rescaled version of the Fourier transform,
which for " > 0 (semiclassical parameter) is defined by

F" (p) := (2⇡")�d/2

Z

Rd

 (x)e�ip·x/" dx,  2 S(Rd),

where i is the imaginary unit and p ·x = pTx is the dot product in Rd. Recall that since
F"(S(Rd)) = S(Rd) and k kL2(Rd) = kF" kL2(Rd) for all  2 S(Rd) (Plancherel), the
rescaled Fourier transform is a surjective isometry on L2(Rd) and thus uniquely extends
to a mapping from L2(Rd) onto L2(Rd), see e.g. [RS75, Theorem IX.6].

Finally, we note that we use bold letters for multi-indices that number entries of a
tensor, i.e., elements of R� or C�, where � is a finite set. For example, for � ⇢ N2d

we denote by cn 2 C the entry of a tensor c 2 C� corresponding to the multi-index
n = (n1, . . . , n2d) 2 �. Occasionally we will replace cn with c(n1, . . . , n2d). In addition
to tensors, we use bold indices for grid points in phase space. For example, we denote
by zn 2 R2d the grid point corresponding to the multi-index n = (n1, . . . , n2d).
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1 Introduction

The development of algorithms for e�cient simulations of quantum dynamics plays a
central role in numerical analysis, as these methods contribute to a deeper understanding
of many physical and chemical models. The time-dependent Schrödinger equation in
semiclassical scaling given by

i"@t (x, t) = �"
2

2
�x (x, t) + V (x) (x, t),  (•, 0) =  0 2 L2(Rd), (1.1)

where 0 < " ⌧ 1 is a small positive parameter and V : Rd ! R is a smooth potential,
has been shown to be fundamental to molecular quantum dynamics and will be the
central equation in this dissertation, which essentially deals with the question of how well
solutions to (1.1) can be approximated by concatenations of Gaussian superpositions.
The right-hand side of (1.1) is given by the action of the operator

H = H" := �"
2

2
�x + V

as it results from the celebrated Born–Oppenheimer approximation, see e.g. [LL20, Sec-
tion 2], where the dimensionless semiclassical parameter " represents the square root of
a mass ratio of nuclei and electrons, typically on the order of 10�2 to 10�3, and must be
formally distinguished from ~ ⇡ 1.055 · 10�34 Js, known as the reduced Planck constant.

Motivated by various problems in physics and chemistry, a large number of numer-
ical algorithms for solving (1.1) have been developed in the last decades. Recently,
Kong et al. have proposed the so-called Time-Sliced Thawed Gaussian (TSTG) Prop-
agation Method, see [KMB16], in which Gaussian wave packets are decomposed into
linear combinations of Gaussian basis functions without the need for multidimensional
numerical integration. It turns out that the approximations of wave packets used by
Kong et al. can be obtained by discretising the FBI inversion formula, according to
which any function  2 L2(Rd) can be decomposed as

 = (2⇡")�d

Z

R2d

hgz |  i gz dz, (1.2)

where the semiclassically scaled wave packet gz 2 S(Rd) is defined for a given Schwartz
function g : Rd ! C of unit L2-norm, which may or may not be a Gaussian, and a phase
space centre z = (q, p) 2 R2d by

gz(x) := "�d/4g

✓
x� qp

"

◆
eip·(x�q)/". (1.3)
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A direct discretisation of the phase space integral in (1.2) using a multidimensional
quadrature rule in phase space leads to an approximation of the form

 ⇡
X

n2�

cn( ) gn, (1.4)

where � ⇢ N2d is a given finite multi-index set, the representation coe�cients cn( ) 2 C
are complex numbers depending on  and the underlying quadrature rule, and the func-
tions gn := gzn are wave packets centred in the grid points zn 2 R2d. In particular, if both
the function  and the basis functions gn are Gaussian wave packets, the coe�cients
cn( ), which in this case are essentially given by the inner products hgn |  i (multiplied
by a weight), can be calculated by hand, which Kong et al. used for the design of the
TSTG method, since it allows to express time-evolved Gaussian basis functions in the
original Gaussian basis without multidimensional numerical integration.

Starting from the representation of the initial wave function  0 according to (1.4),
the solution to the Schrödinger equation (1.1) is approximated after a short propagation
time ⌧ > 0 by the linear combination of time-evolved basis functions as follows

 (⌧) = U(⌧) 0 ⇡
X

n2�

cn( 0)U(⌧)gn =
X

n2�

cn( 0) gn(⌧),

where U(t) := e�iHt/" denotes the unitary propagator and we have introduced the ab-
breviations  (⌧) and gn(⌧) for  (•, ⌧) and gn(•, ⌧) respectively.
Remark 1. If the Hamiltonian H is self-adjoint, the existence and uniqueness of the
strongly continuous group of unitary operators U(t), t 2 R, on L2(Rd) is guaranteed
by Stone’s theorem, see [Sto32]. Moreover, for all initial states  0 2 D(H) ⇢ L2(Rd)
(we denote by D(H) the domain of H), the solution to the time-dependent Schrödinger
equation in semiclassical scaling (1.1) is given for all times t 2 R by

 (t) = e�itH/" 0, k (t)k = k 0k = 1,

where we let k • k denote the L2-norm. In particular, H is self-adjoint if the potential
V is of sub-quadratic growth and we refer to [Lub08, Chapter I.3.2] for other conditions
on the potential that yield self-adjoint operators.

Using thawed Gaussian approximations for the time evolution of the individual ba-
sis functions gn, the discretisation of the wave packet transform according to (1.4) is
then brought into play again, this time to represent the individual thawed Gaussian
approximations u⌧n ⇡ gn(⌧) for the time-evolved basis functions as follows

u⌧n ⇡
X

n02�

cn0(u⌧n) gn0 ,

which allows the exact solution  (⌧) to be approximated directly in the original basis
in terms of updated coe�cients c1,⌧n as

 (⌧) ⇡  1,⌧ :=
X

n2�

c1,⌧n gn, where c1,⌧n :=
X

n02�

cn0( 0)cn(u
⌧

n0).
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The concatenation of these steps leads to approximations for longer times 2⌧, 3⌧, . . . ,
which are obtained (without additional time integration) by computing corresponding
update coe�cients c2,⌧n , c3,⌧n , . . . . Since all these coe�cients can be expressed analytically,
multidimensional numerical quadrature can be avoided completely, which means that the
total error of the TSTG method is essentially produced by three di↵erent sources:

i) the discretisation of the continuous wave packet transform

ii) the thawed Gaussian approximations for the propagation of the basis functions

iii) the numerical integration of the thawed equations of motion

The precise mathematical description and a complete error representation for both the
discretisation of the wave packet transform and the TSTG method is the subject of this
dissertation. Furthermore, we focus on the connection to other state-of-the-art methods
and use our mathematical analysis to show where the original method introduced by
Kong et al. can be further improved.

Remark 2. I will refrain from repeating the basics of quantum mechanics, especially the
statistical interpretation of wave functions due to Born, which does not play a major role
in this thesis anyway. Instead, I refer to the book of Hall, see [Hal13], for a comprehen-
sive introduction to the theory of quantum mechanics from the perspective of a pure math-
ematician, as well as to the book of Lubich, see [Lub08], which gives a general overview
of numerical methods for the time-dependent Schrödinger equation. In addition to these
rich sources and the methods described therein, I would like to explicitly mention some
numerical methods based on Gaussian wave packets. For example, reduced models via
variational approximations have been investigated, which include the variational multi-
configuration Gaussian wave packet (vMCG) method [WRB04] and the variational Gaus-
sian wave packets [Hel76, CK90]. Furthermore, semiclassical approaches such as Hage-
dorn wave packets [FGL09, GH14], Gaussian beams [LQ09, Zhe14, KKR15, LRT16],
or the Herman–Kluk propagator [HK84, LS17] have been developed to include quantum
e↵ects especially for high-dimensional systems, for which standard grid-based numerical
methods are infeasible.

1.1 Main results

The main contributions in this dissertation have been developed over the past five years
and most of them have already been published. In chronological order, these are:

1. with C. Lasser: “Fourier Series Windowed by a Bump Function”,
appeared in Journal of Fourier Analysis and Applications, 26(4):65, 2020,
e-print at arXiv:1901.04365

2. with C. Lasser: “The Gaussian Wave Packet Transform via Quadrature Rules”,
submitted to IMA Journal of Numerical Analysis on 15/12/2021,
e-print at arXiv:2010.03478
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3. with C. Lasser: “An Error Representation for the Time-Sliced Thawed Gaussian
Propagation Method”,
submitted to Numerische Mathematik on 27/08/2021,
e-print at arXiv:2108.12182

4. with M. B. Soley, A. A. Gorodetsky and V. S. Batista: “Functional Tensor-Train
Chebyshev Method for Multidimensional Quantum Dynamics Simulations”,
appeared in Journal of Chemical Theory and Computation, 18(1):25–36, 01 2022,
e-print at arXiv:2109.08985

While article no. 3 can be seen as a follow-up article to no. 2, at first glance there seems
to be no connection between the other publications. In order to bring the results together
into an overall picture in this thesis, parts of the above-mentioned articles have been
rearranged and connected with the help of new sections that have not been published
anywhere before. In particular, the newly added sections explain connections that have
already been mentioned by other authors but, to the best of my knowledge, have not yet
been stringently presented. For example, in Section 3.3, the relationship between the
Gaussian wave packet transform based on plain Gaussians and compactly supported ba-
sis functions is explained using bump windows, and it is shown that the FBI formula can
be identified as the common origin for the expansions used in the TSTG method and the
fast Gaussian wave packet transform previously introduced by Qian and Ying in [QY10].

The main results of this dissertation are formulated as theorems. Theorem 17 presents
the approximation errors for the discretisation of the FBI formula for di↵erent quadrature
rules in momentum space and shows the superiority of a new variant of the Gaussian
wave packet transform based on Gauss–Hermit quadrature. The proof of Theorem 17,
the preceding results in Section 3.1, the corresponding numerical results in Section 3.1.4
as well as Appendix 7.2 were taken from the joint preprint [BL20b] with C. Lasser.
Furthermore, the numerical results in Section 3.2.2 and Appendix 7.1 were taken from
the joint preprint [BL21] with C. Lasser.
Theorem 50 and Theorem 57 present results related to windowed Fourier series. The

first shows that pointwise multiplication by a window with plateau yields smaller recon-
struction errors in the interior of the plateau as compared to those without plateau, while
the second connects the decay rate of windowed Fourier coe�cients to a new bound for
the variation of windowed functions. The corresponding Sections 4.1-4.4 on windowed
Fourier series as well as Appendix 7.3, Appendix 7.4 and Appendix 7.5 were taken from
the joint publication [BL20a] with C. Lasser.
Theorem 78 represents the first rigorous error representation for the TSTG method,

both for the original version introduced by Kong et al. with non-variationally evolving
Gaussian basis functions and for the new variant with variational Gaussians. In addition,
Section 5.1 provides the first mathematical formulation of the TSTG method, which in
particular allows comparison with other methods and indicates possible approaches for
future research. The proof of Theorem 78, the preceding results in Sections 5.1-5.3, the
corresponding numerical results in Section 5.4 as well as Appendix 7.6 were taken from
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the joint preprint [BL21] with C. Lasser. Furthermore, the results on the Tensor-Train
Chebyshev (TTC) Method show how tensor trains can be used to perform multidimen-
sional quantum dynamics simulations, motivating a promising approach to make the
TSTG method applicable to high-dimensional systems. The description of the TTC
method in Section 6.2, including the numerical experiments, as well as Appendix 7.8
were taken from the joint publication [SBGB22] with M. B. Soley, A. A. Gorodetsky
and V. S. Batista.

1.2 Outline

The thesis is organised as follows: In the next chapter we focus on the essential “tool” of
this dissertation, which is of course the Gaussian wave packet transform. The aim is to
recall some important properties of Gaussian wave packets that will be used repeatedly
in the subsequent chapters. Chapter 3 deals with the discretisation of the continuous
wave packet transform, working our way step by step to the di↵erent discrete variants.
First we derive a semi-discrete representation in which the integral over position space
is replaced by a Gaussian summation curve. We then focus on the discretisation of the
remaining integral over momentum space via di↵erent quadrature rules and summarise
the underlying approximation errors in the main result Theorem 17. The remainder of
the chapter is divided into two sections. In Section 3.2 we study the direct discretisation
of the phase space integral, whereas in Section 3.3 we present the connection to the
variants of the Gaussian wave packet transform used by other authors. Chapter 4 is
dedicated to windowed Fourier series. Here we will follow up on some results on bump
windows that have already been briefly discussed in Chapter 3 in the context of win-
dowed Gaussian wave packets. In Chapter 5 we then analyse the TSTG method. The
mathematical description will reveal that the underlying approximation of wave packets
is an application of the Gaussian wave packet transform, and the main result Theorem 78
provides the first error representation of the TSTG method. Finally, in Chapter 6 we
will look at tensor-train approximations and show how they can be used to overcome
the curse of dimensionality that we usually face in grid-based methods for simulating
high-dimensional quantum dynamics.
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2 The Gaussian wave packet transform

Gaussian functions are used in many models today and occur in almost all fields of
study. For example, in numerical analysis, where Gaussians are used in the form of
radial basis function interpolations to construct solutions to partial di↵erential equations,
see e.g. [LF03], in widely used applications of statistics, in which probability densities
are approximated by Gaussian mixtures, see e.g. [TSM85], or in seismology, where
Gaussian functions appear in connection with the famous Gabor transform and are used
for the decomposition of seismic waves, see e.g. [ML01]. In this chapter we recall some
important properties of Gaussian wave packets, which we will refer to several times
later in the thesis. After introducing a precise definition of Gaussian wave packets,
we present Hagedorn’s parametrisation in preparation of a favourable representation of
the semiclassical equations of motion for the propagation of Gaussian wave packets.
Furthermore, we introduce an approximation manifold that is used for the variational
propagation based on the Dirac–Frenkel time-dependent variational principle and present
a useful formula for inner products. Section 2.2 deals with the FBI formula (1.2) and
establishes the connection with the inversion formula of the short-time Fourier transform.

2.1 Gaussian wave packets and their properties

In the following we work with d-dimensional complex Gaussians whose width matrix is
contained in a special subset of matrices that goes back to Siegel, see [Sie39].

Definition 3. The Siegel upper half-space of degree d � 1, denoted by S+(d), is the set
of complex symmetric d⇥ d matrices with positive definite imaginary part, i.e.,

S+(d) :=
�
C 2 Cd⇥d : C = CT , Im(C) is positive definite

 
.

We will also use the common shorthand notation “Im(C) > 0” to express that the
matrix Im(C) is positive definite.

Now, for a given matrix C 2 S+(d), consider the complex-valued Gaussian

g(x) := ⇡�d/4 det(ImC)1/4 exp

✓
i

2
xTCx

◆
, x 2 Rd. (2.1)

First, we note that it follows from the construction of the prefactor that g is normalised
with respect to the L2 norm, i.e.,

kgk =

✓Z

Rd

|g(x)|2 dx
◆1/2

= 1.
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Furthermore, with this choice, the wave packet gz defined in (1.3) has the form

gz(x) = gC,"

z
(x) := (⇡")�d/4 det(ImC)1/4 · · ·

exp


i

"

✓
1

2
(x� q)TC(x� q) + pT (x� q)

◆�
,

(2.2)

which is typically referred to as Gaussian wave packet in this dissertation, and from
now on, whenever we use the notation gC,"

z
, we assume that the amplitude function

g corresponds exactly to the Gaussian function defined in (2.1). In particular, the
dependence on the matrix C and the semiclassical parameter " is always implicitly
assumed in the shorthand notation gz, and in the one-dimensional case we always write
� = �r + i�i instead of C.

Remark 4. The Gaussian wave packets introduced above with an arbitrary width matrix
C 2 S+(d) generalise the ground states of the harmonic oscillator. To understand this
statement better, let us consider the one-dimensional annihilation operator given by

â :=
1p
2"

(q̂ + ip̂) ,

where q̂ is the position operator, i.e., (q̂')(x) := x'(x), and p̂ the momentum operator,
i.e., (p̂')(x) := �i" d

dx
'(x), for all Schwartz functions ' 2 S(R). Then, every element

of the kernel of the annihilation operator, i.e., every element of

�
' 2 S(R) : â' = 0

 
,

is of the form '(x) = c · e�x
2
/2", where c 2 C is a complex constant, see [Tro17, Chap-

ter 3.2]. Therefore, the ground state of the harmonic oscillator Hamiltonian

Hho = �"
2

2

d2

dx2
+

1

2
x2 =

1

2

�
q̂2 + p̂2

�
= "

✓
â†â+

1

2

◆

is given by the Gaussian function '0(x) = (⇡")�1/4e�x
2
/2, which in the context of quan-

tum dynamics is usually called the “coherent ground state of the harmonic oscillator”,
see e.g. [CR12, Chapter 1]. Accordingly, some authors refer to the function gz in (2.2)
as coherent states, although in Glauber’s original use of the term, see [Gla63], “wave
function of a coherent state” would be the correct description.

2.1.1 Hagedorn’s parametrisation

We will see later in Section 5.2.1 that the time-dependent Schrödinger equation (1.1)
leaves the class of Gaussian wave packets invariant for quadratic potentials and the
equations of motion for the width matrix C result in a form comparable to those for the
phase space parameters q and p if we use a special factorisation C = PQ�1, which goes
back to the work of Hagedorn, see [Hag80, Hag98].
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The following lemma was taken from [LL20, Lemma 3.16] and provides a useful con-
nection between the Siegel upper half-space and symplectic matrices. It also guarantees
the existence of Hagedorn’s parametrisation for elements in S+(d).

Lemma 5. Let Q and P be complex d⇥ d matrices such that the real matrix

Y =

✓
ReQ ImQ
ReP ImP

◆
2 R2d⇥2d

is symplectic, i.e.,

Y = Y TJY = J with J =

✓
0 � Idd

Idd 0

◆
,

or equivalently (in the following, Q⇤ = Q
T

denotes the Hermitian adjoint of Q),

QTP�P TQ = 0 (2.3)

Q⇤P �P ⇤Q = 2i Idd . (2.4)

Then, Q and P are invertible, and

C = PQ�1

is an element of the Siegel upper half-space S+(d) with imaginary part

Im(C) = (QQ⇤)�1. (2.5)

Conversely, every C 2 S+(d) can be written as C = PQ�1 with matrices Q and P
satisfying (2.3), (2.4) and (2.5).

For the proof of Lemma 5 we refer to [LL20, Lemma 3.16].

The factorisation C = PQ�1 provides an alternative way of representing Gaussian
wave packets, namely

gz(x) = gZ,"
z

(x) := (⇡")�d/4| det(Q)|�1/2 · · ·

exp


i

"

✓
1

2
(x� q)TPQ�1(x� q) + pT (x� q)

◆�
,

(2.6)

where we introduced the matrix Z = (Q,P ) 2 C2d⇥d and used that

det(ImC)1/4 = det(QQ⇤)�1/4 = | det(Q)|�1/2.

The complex normalisation factor det(Q)�1/2 without the absolute value is usually used
for numerical implementations where the branch of the square root must be chosen ap-
propriately, see e.g. [Lub08, Chapter V.1].

Gaussian wave packets, parameterised as in (2.6), were originally developed by Hage-
dorn to construct an orthonormal basis of L2(Rd) that generalises Hermite functions.
We note that Hagedorn wave packets have a wide range of applications. For example,
Hagedorn wave packets with complex phase space centres have recently been considered
for non-self-adjoint evolution problems, see [LST18].
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2.1.2 Gaussian approximation manifold

For the variational propagation of Gaussian wave packets, we will exploit the so-called
“Dirac–Frenkel time-dependent variational approximation principle” later in Section 5.2.
We therefore identify the approximation space

M =
n
u 2 L2(Rd) : u(x) = gC,"

z
(x)eiS/", z 2 R2d, C 2 S+(d), S 2 R

o
, (2.7)

consisting of Gaussian wave packets multiplied by a phase factor eiS/", as a manifold.
We will use variationally evolving Gaussians to approximate the time evolution of the
basis functions in the TSTG method and in Section 5.2.1 we will give a more precise
meaning to the phase factor eiS/", but for the time being we consider the parameter
S 2 R only as an additional degree of freedom of the Gaussian function u.

Since the Dirac–Frenkel variational principle works with the orthogonal projection
onto the tangent spaces of M, let us give an exact characterisation of tangent vectors.
The following lemma was taken from [LL20, Lemma 3.1].

Lemma 6. At every Gaussian function u 2 M, the tangent space equals

TuM =
�
'u : ' is a complex d-variate polynomial of degree at most 2.

 

In particular, the tangent space is a complex-linear subspace of L2(Rd), in the sense that
v 2 TuM implies iv 2 TuM. Moreover, for all di↵erential operators A of order  2
with constant coe�cients we have Au 2 TuM.

For the proof of Lemma 6 we refer to [LL20, Lemma 3.1].

The fact that the tangent spaces of M arise from multiplication by polynomials of
degree  2 is used to prove the exactness of variational approximations for quadratic
potentials, see Proposition 70.

2.1.3 Inner products

The discretisation of the FBI formula leads to representation coe�cients that sample
weighted inner products of Gaussians. The next lemma was taken from the joint preprint
[BL21] (see Lemma 3.2) and presents an analytical expression for these inner products,
which shows that the inner products can be written as Gaussians in phase space.

Lemma 7. For C1, C2 2 S+(d) and z1, z2 2 R2d, we have

hgC1,"
z1

| gC2,"
z2

i = �(z) exp

✓
i

2"
(z2 � z1)

TM(z2 � z1)

◆
, (2.8)

where the matrix

M :=

✓�
C�1

2
� C̄�1

1

��1

0
0 �(C2 � C̄1)�1

◆
2 C2d⇥2d (2.9)
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is an element of the Siegel upper half-space S+(2d) of 2d ⇥ 2d matrices, and for B =
C2 � C̄1 the complex constant �(z) 2 C is given by

�(z) :=
2d/2 det(ImC1 ImC2)1/4p

det(�iB)
exp

✓
i

2"
(p1 + p2)

T (q1 � q2)

◆
· · ·

exp

✓
i

2"
(p2 � p1)

TB�1(C2 + C̄1)(q2 � q1)

◆
.

Moreover, if the eigenvalues of the positive definite matrices Im(Ck) and Im(�C�1

k
),

k = 1, 2, are bounded from below by a constant ✓ > 0, then the absolute value of the
inner product is bounded by

��hgC1,"
z1

| gC2,"
z2

i
��2  ⇣ exp

✓
� ✓

4"
kz2 � z1k22

◆
, (2.10)

where the positive constant ⇣ > 0 depends on ✓ and an upper bound on the eigenvalues
of the matrices Im(Ck) and Im(�C�1

k
), but is independent of ".

The crucial ingredient for the proof uses a formula for integrals of complex-valued
Gaussians and is presented in Appendix 7.1. We also find that the bound in (2.10) can
be easily improved if the lower bound for the eigenvalues of Im(Ck) and Im(�C�1

k
) is

not chosen uniformly. We also refer to the proof for the dependence of the constant ⇣
on the spectral parameters.

2.2 Continuous superpositions of Gaussian wave packets

In the previous section we introduced Gaussian wave packets and presented properties
that are important for the next chapters. This section deals with the FBI formula (1.2),
which we will discretise in Chapter 3 to approximate wave functions by discrete superpo-
sitions of Gaussian basis functions. Let us start by proving the following representation,
which was taken from [LL20, Proposition 5.1].

Proposition 8. For every Schwartz function  2 S(Rd) we have

 (x) = (2⇡")�d

Z

R2d

hgz |  i gz(x) dz, x 2 Rd.

We present the proof of Lasser and Lubich based on the Fourier inversion theorem.

Proof. We use the inversion formula for the Fourier transform: a Schwartz function f is
reconstructed from its scaled Fourier transform

F"f(⇠) = (2⇡")�d/2

Z

Rd

f(x)e�i⇠·x/" dx
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by the inversion formula

f(x) = (2⇡")�d/2

Z

Rd

F"f(⇠)e
i⇠·x/" d⇠.

For a Schwartz function  and for x 2 Rd, this yields

(2⇡")�d

Z

R2d

hgz |  i gz(x) dz

= (2⇡")�d"�d/2

Z

R3d

g

✓
y � qp

"

◆
g

✓
x� qp

"

◆
eip·(x�y)/" (y) d(y, q, p)

= "�d/2

Z

Rd

(2⇡")�d/2

Z

Rd

F"

✓
g

✓
•� qp

"

◆
 

◆
(p)eip·x/" dp g

✓
x� qp

"

◆
dq

= "�d/2

Z

Rd

����g
✓
x� qp

"

◆����
2

 (x) dq =  (x),

since the normalisation of the function g implies

"�d/2

Z

Rd

����g
✓
x� qp

"

◆����
2

dq =

Z

Rd

|g(y)|2 dy = 1.

Since we have already referred to (1.2) as “FBI formula” several times, let us catch
up with the exact reference to the FBI transform. The following definition was taken
from [LS17, Definition 1].

Definition 9. For a point z = (q, p) 2 R2d in phase space and C = i Idd, consider the
Gaussian wave packet gz = gC,"

z
. Then, the mapping

T " : S(Rd) ! S(R2d), (T " ) (z) := (2⇡")�d/2 hgz |  i (2.11)

is called the FBI (Fourier–Bros–Iagolnitzer) transform.

We note that the transform can be extended to an isometry from L2(Rd) to L2(R2d),
see e.g. [Mar02, Proposition 3.1.1], and the formula in Proposition 8 extends directly to
functions  2 L2(Rd) by density.

The above definition shows that the FBI transform works with Gaussian wave pack-
ets of unit width (i.e., C = i Idd) and can be seen as a natural generalisation of the
plain Fourier transform using a Gaussian window. Although in this dissertation we use
Gaussian functions equipped with an arbitrary width matrix C 2 S+(d) and this does
not correspond to the classical definition, we follow the convention and continue to use
the name “FBI formula” or “FBI inversion formula” for (1.2). We also note that the
FBI transform for matrices of arbitrary width is sometimes called “Fourier–Bargmann
transform”, see e.g. [CR12, Chapter 1.2.3].
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2.2.1 Connection to the short-time Fourier transform

We realise that the FBI transform in (2.11) can be seen as a windowed Fourier transform
using a Gaussian window, which is known in time-frequency analysis as Gabor transform,
see e.g. [FS98]. Moreover, the Gabor transform is itself a special variant of the so-called
“short-time Fourier transform” (STFT), and thus we can use the inversion formula of
the STFT to obtain a more general representation than in Proposition 8. Since the
semiclassical parameter is typically not considered in the definition of the STFT, let us
introduce a rescaled version:

Definition 10. Let " > 0 and g 6= 0 be a function in L2(Rd) (window). For  2 L2(Rd)
we define the "-rescaled short-time Fourier transform by

STFT"

g
( )(z) := (2⇡")�d

Z

Rd

 (x)g

✓
x� qp

"

◆
e�ip·x/" dx, z 2 R2d.

We note that STFT"

g
( ) is uniformly continuous on R2d, see e.g. [Grö01, Lemma 3.1.1],

and by introducing the rescaled translation and modulation operators

T "

q
g(x) := g

✓
x� qp

"

◆
and M "

p
g(x) := g(x)eip·x/",

we can write

STFT"

g
( )(z) = (2⇡")�dhM "

p
T "

q
g |  i.

It is easy to see that if the window is localised in a neighbourhood of q, the same is
true for the windowed function and therefore the spectrum of the (rescaled) STFT is
associated with the windowed domain.

For the rescaled STFT we have the following inversion formula, which generalises the
FBI formula in Proposition 8. The following result is an extension (inclusion of the
semiclassical parameter) of [Grö01, Corollary 3.2.3].

Proposition 11. Suppose that g, h 2 L2(Rd) and hg | hi 6= 0. Then, for all  2 L2(Rd),

 = (2⇡")�d
1

hg | hi

Z

R2d

STFT"

g
( )(q, p)M "

p
T "

q
h dp dq.

For the proof we refer to [Grö01, Corollary 3.2.3].

Based on the representation in Proposition 11, the choice h = g for a normalised
window g implies that

 = (2⇡")�d

Z

R2d

hM "

p
T "

q
g |  iM "

p
T "

q
g dp dq,

which gives us the FBI formula (1.2) for

g(x) = ⇡�d/4 exp

✓
�1

2
|x|2
◆
.
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Remark 12. We would like to note that the inversion formula does not imply that the
STFT is invertible, see [Grö01, Corollary 3.2.3 (Remarks)]: Let Ah : L2(R2d) ! L2(Rd)
be the bounded linear operator defined by

Ah(F ) := (2⇡")�d

Z

R2d

F (q, p)M "

p
T "

q
h dp dq.

Since for all h 2 L2(Rd) and F 2 L2(R2d) we have

hh | Ah(F )i =
⌦
STFT"

h
(h) | F

↵
=
⌦
h | (STFT"

h
)⇤ F

↵
,

it follows that Ah is the adjoint operator of STFT"

h
and the inversion formula is

1

hg | hi (STFT
"

h
)⇤ STFT"

g
= Id .

We also note that the concept of windowed Fourier atoms was introduced by Gabor,
see [Gab46], who studied Gaussian windows in terms of the uncertainty principle to
obtain “optimal” windows. In many applications, windows are discussed in terms of data
weighting and spectral leakage, and numerous windows have been developed depending on
the type of signal, see for example [Har78, Section IV (Table 1)]. In particular, we will
elaborate further on the discussion of windows and their properties in Chapter 4.
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2.3 Summary of this chapter

We have presented some important properties of Gaussian wave packets and proved that
the Gaussian wave packet gz defined in (2.2) can be used to represent arbitrary wave
functions via the FBI formula (1.2), which itself is as a special variant of the inversion
formula of the short-time Fourier transform based on Gaussian windows. In particular,
there seems to be no uniform definition of the term

“Gaussian wave packet transform”

but in this dissertation we associate the term with decompositions of a given wave
function  2 L2(Rd) into (not necessarily continuous) superpositions of Gaussian wave
packets (or at least wave packets with a similar profile) according to the FBI formula.
Finally, let us summarise in a small table the various names for representations that
appear in the literature in connection with the FBI formula, see also [LL20, 5.9 Notes]:

Semiclassical Analysis Time-Frequency Analysis

arbitrary windows Fourier–Bargmann
Short-Time Fourier
Windowed Fourier

(Continuous) Wavelet

Gaussian windows FBI (unit width) (Continuous) Gabor

Table 2.1: Di↵erent names for the FBI formula.
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3 The Gaussian wave packet transform
via quadrature rules

In this chapter we investigate di↵erent approaches to discretise the FBI formula (1.2).
Using a uniform grid {qk}k2�q in position space, we start by deriving a semi-discrete
representation of the form

 (x) = (2⇡")�d

2

4 1

S(x)

X

k2�q

Z

Rd

hg(qk,p) |  i g(qk,p)(x) dp

3

5 , x 2 Rd,

where the function

S(x) :=
X

k2�q

|g0(x� qk)|2 (3.1)

is a summation curve in position space and g0 := g(0,0). Afterwards, by discretising the
remaining integral over momentum space via di↵erent quadrature rules, we obtain a
rescaled superposition of the Gaussian basis functions gj,k := g(qk,pj), as follows

 (x) ⇡ 1

S(x)

X

k2�q

X

j2�
(rule)
p

r(rule)
j,k

gj,k(x), (3.2)

where the representation coe�cients r(rule)
j,k

are complex numbers depending on  and the
underlying quadrature rule in momentum space. This discretisation of the wave packet
transform based on uniform Riemann sums in both position and momentum space was
used in particular by Kong et al. for the TSTG method, who used su�ciently dense
grids to approximate the Gaussian summation curve S(x) by a constant value S > 0,
since this has the consequence that the wave function  can be approximated by a pure
superposition of Gaussians as follows:

 (x) ⇡
X

k2�q

X

j2�
(rule)
p

c(rule)
j,k

gj,k(x), where c(rule)
j,k

=
1

S
r(rule)
j,k

. (3.3)

We present a rigorous error analysis and numerical experiments for the approximations
described above and extend the results of Kong et al. by a new representation based
on Gauss–Hermite quadrature, which significantly reduces the number of grid points.
Furthermore, we show that (3.3) corresponds to a direct discretisation of the phase
space integral in the FBI formula. Finally, we use bump windows and windowed Fourier
series to relate our results to the work of Qian and Ying on the fast Gaussian wave
packet transform, see [QY10], who derived a similar representation based on compactly
supported basis functions.
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S(x)

. . . . . .

�q

⇡ 1

�q

x

Figure 3.1: Gaussians |g0(x � qk)|2 and summation curve on a uniform grid for d = 1.
According to Lemma 13, S(x) can be approximated by 1/�q.

3.1 Semi-discrete approximations

As described in detail in Section 1.1, parts of the present section (Sec. 3.1) overlap
to a large extent with the joint preprint “The Gaussian Wave Packet Transform via
Quadrature Rules” with C. Lasser submitted to IMA Journal of Numerical Analysis on
15/12/2021, e-print available at arXiv:2010.03478.

For a non-empty index set �q ✓ Zd and a uniform grid {qk}k2�q in position space,
recall the definition of the summation curve in (3.1). A quick look at the one-dimensional
situation in Figure 3.1 makes it plausible that for a su�ciently small grid spacing �q > 0
the summation curve can be approximated by a constant value. The next lemma tells
us that this constant is equal to 1/�q.

Lemma 13. For d = 1 consider the Gaussian g defined in (2.1) with width parameter
� = �r + i�i 2 C, �i > 0. Then, for �q = Z and the uniform grid points qk = k�q with
distance �q > 0, the one-dimensional summation curve has the expansion

S(x) =
1

�q
+

2

�q

1X

n=1

cos

✓
2⇡nx

�q

◆
exp

✓
� ⇡2n2"

�i(�q)2

◆
, x 2 R, (3.4)

where the convergence is uniform in x. In particular, we obtain spectral convergence of
the summation curve to 1/�q as �q ! 0, i.e., for all s 2 N, there exists a positive
constant Cs > 0, depending on s, " and �, such that

����S(x)�
1

�q

���� < Cs(�q)2s�1 for all x 2 R,

where the constant Cs can be chosen as

Cs =
2s!�s

i

⇡2s"s
.

Moreover, the summation curve is �q-periodic and infinitely di↵erentiable.
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Proof. Using a convolution of an unshifted Gaussian with a Dirac comb, it is proven in
[ML01, Appendix A] that for �q > 0, T > 0 and all x 2 R we have

X

k2Z

�q

T
p
⇡
exp

✓
�(x� k�q)2

T 2

◆
= 1 + 2

1X

n=1

cos

✓
2⇡nx

�q

◆
exp

 
�
✓
⇡nT

�q

◆2
!
. (3.5)

Hence, using (3.5) for T =
p
"/�i, we obtain

X

k2Z

p
�ip
⇡"

exp
⇣
��i
"
(x� qk)

2

⌘
=

1

�q

 
1 + 2

1X

n=1

cos

✓
2⇡nx

�q

◆
exp

✓
� ⇡2n2"

�i(�q)2

◆!
,

which establishes (3.4). For the following calculations let us introduce the parameter
⌘ = exp(�⇡2"/�i(�q)2) < 1. Then we get

����S(x)�
1

�q

���� 
2

�q

1X

n=1

����cos
✓
2⇡nx

�q

◆
exp

✓
� ⇡2n2"

�i(�q)2

◆����

 2

�q

1X

n=1

exp

✓
� ⇡2n"

�i(�q)2

◆
=

2

�q

1X

n=1

⌘n,

and since ey � 1 > ys/s! for all y > 0 and all s 2 N, we finally conclude that

1X

n=1

⌘n =
⌘

1� ⌘
=

1

exp(⇡2"/�i(�q)2)� 1
<

s!�s
i

⇡2s"s
(�q)2s.

Moreover, a short calculation proves that the summation curve is �q-periodic,

S(x+�q) =
X

k2Z

|g0(x� (k � 1)�q)|2 = S(x), x 2 R,

and by the Weierstrass test, see for example [WW96, Chapter 3.34], the infinite sum
converges absolutely and uniformly on any set. It therefore follows from periodicity that
S 2 C1(R).

Provided that the position grid is aligned with the eigenvectors of the symmetric and
positive definite matrix ImC > 0, multidimensional summation curves can be written
as the product of one-dimensional summation curves, which itself can be expanded
according to (3.4). More precisely, if ImC = UDUT is an eigendecomposition with
corresponding eigenvalues �1, . . . ,�d > 0 and �q can be decomposed as

�q = �(1)

q
⇥ · · ·⇥ �(d)

q
,

then the multidimensional summation curve can be decomposed for all x 2 Rd as

S(x) =
dY

n=1

Sn(x) :=
dY

n=1

0

B@
X

kn2�
(n)
q

gn(x
Tun � kn�q)2

1

CA , (3.6)
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where un 2 Rd is the nth column of U and the one-dimensional functions gn are

gn(y) := (⇡")�1/4�1/4
n

exp

✓
��n
2"

y2
◆
, y 2 R. (3.7)

Remark 14. The reason why we restrict ourselves to uniform grids in position space is
that the variants of the wave packet transform, which we derive later in Section 3.1.2, de-
pend only on the grid in momentum space. However, the following results and estimates
do not depend on this specific choice unless we indicate otherwise.

The definition of the summation curve S(x) > 0 in (3.1) allows to construct the
functions �k(x) := |g0(x� qk)|2/S(x) for all k 2 �q that satisfy the two conditions

0 < �k(x)  1 and
X

k2�q

�k(x) = 1 for all x 2 Rd. (3.8)

The family {�k}k2�q thus forms a so-called “partition of unity”. Partitions of unity
typically occur in the theory of manifolds, see e.g. [Tu11, Chapter 13.1], but also in
numerical applications, for example to construct solutions of di↵erential equations, see
[GS00, Section 4.1.2]. In the next step, we combine the partition {�k}k2�q from above
with the Fourier inversion formula in momentum space to obtain a semi-discrete decom-
position of square-integrable functions.

Proposition 15. Let  2 S(Rd). For C 2 S+(d) and z = (q, p) 2 R2d, recall the
definition of the Gaussian wave packet gz in (2.2) and let us introduce the map

x 7! Iq(x) := (2⇡")�d

Z

Rd

hgz |  i gz(x) dp.

Then, for all x 2 Rd, we have

 (x) =
1

S(x)

X

k2�q

Iqk
(x) and (3.9)

 (x) =

Z

Rd

Iq(x) dq. (3.10)

For convenience we have taken  2 S(Rd), but just as with the FBI formula, the
above representations apply directly to L2(Rd). With respect to the approximation of
Schrödinger dynamics, we would also like to point out that semi-discrete representations
with a summation in position space such as in (3.9) are also used in the construction of
higher-order Gaussian beam approximations, see e.g. [LRT13, Section 2.1].

Proof. We start by proving (3.9). Let  2 S(Rd) and gk(x) := g0(x � qk), where the
Gaussian amplitude g is defined in (2.1). According to the properties of the partition
{�k}k2�q in (3.8), the function  can be decomposed as follows:

 =  
X

k2�q

�k =  

0

@ 1

S

X

k2�q

|gk|2
1

A =
1

S

X

k2�q

⇣
 gk
⌘
gk (3.11)

34



In particular, since gk 2 S(Rd) for all k 2 �q, we conclude that  gk 2 S(Rd) and
therefore, using the Fourier inversion theorem, we obtain

( gk)(x) = (2⇡")�d/2

Z

Rd

F" [ gk] (p) e
ix·p/" dp, for all x 2 Rd, (3.12)

where the "-rescaled Fourier transform is given by

F" [ gk] (p) = (2⇡")�d/2

Z

Rd

 (x)gk(x)e
�ip·x/" dx.

Furthermore, for all p 2 Rd, we get

F" [ gk] (p) e
ix·p/"gk(x)

= (2⇡")�d/2

Z

Rd

 (y)gk(y)e
�ip·(y�qk)/" dy gk(x)e

ip·(x�qk)/"

= (2⇡")�d/2hg(qk,p) |  i g(qk,p)(x).

(3.13)

Consequently, by inserting (3.12) and (3.13) into (3.11), we conclude that

 (x) =
1

S(x)

X

k2�q

Iqk
(x).

For proving (3.10) we use the fact that g0 is of unit norm. Hence, for all x 2 Rd we get

 (x) =  (x)

Z

Rd

|g0(x� q)|2 dq =
Z

Rd

⇣
 (x)g0(x� q)

⌘
g0(x� q) dq

and thus, again by the Fourier inversion formula, we obtain

 (x) =

Z

Rd

✓
(2⇡")�d/2

Z

Rd

F"[ g0(•� q)](p) eix·p/" dp

◆
g0(x� q) dq

=

Z

Rd

✓
(2⇡")�d

Z

Rd

hgz |  i gz(x) dp
◆

dq =

Z

Rd

Iq(x) dq,

which makes the proof complete.

The representation in (3.9) can be seen as a semi-discrete version of the FBI formula.
In particular, we emphasise that this is an exact representation and not an approxima-
tion, as we would obtain, for example, by a direct discretisation. Indeed, starting from
(3.10) in the one-dimensional setting and discretising the integral over Iq(x) using a
uniform grid of size �q, we obtain the approximation (not an exact representation)

 (x) ⇡ �q
X

k2Z

Iqk
(x). (3.14)

The relation between (3.9) and (3.14) is then obtained via Lemma 13, according to which
�q ⇡ 1/S(x) for a su�ciently small grid spacing �q.

35



3.1.1 A new representation for Gaussian wave packets

In the next step we focus on the special case that the wave function of interest  is
a Gaussian wave packet and therefore the inner products hgz |  i as well as Iq(x) can
be expressed analytically. These representations are of particular interest for the TSTG
method, where we need to approximate the time-evolved Gaussian basis functions gj,k(⌧)
in terms of the original Gaussian basis functions gj,k.

Lemma 16. For C,C0 2 S+(d) and z, z0 2 R2d let gz = gC,"

z
and  0 := gC0,"

z0
. Moreover,

let us introduce the parameters

A := i(C0 � C)�1, b(x) := x� q � iAC0(q � q0), and

c(x) :=
det(ImC ImC0)1/4

(⇡")d
p
2d det(A�1)

· · ·

exp

✓
� 1

2"
(q � q0)

TCAC0(q � q0) +
i

"
pT
0
(x� q0)

◆
.

Then, for all x 2 Rd, we have

Iq(x) = g0(x� q)c(x)

Z

Rd

exp

✓
� 1

2"
pTAp+

i

"
b(x)Tp

◆
dp. (3.15)

In particular, the integral in (3.15) exists because Re(A) > 0.

Proof. Using the formula for inner products in Lemma 7, we obtain

hgz |  0i = �(z) exp

✓
i

2"
(z � z0)

TM(z � z0)

◆
, (3.16)

where the matrix

M =

 ⇣
C�1

0
� C

�1
⌘�1

0

0 �(C0 � C)�1

!
2 C2d⇥2d

is an element of the Siegel upper half-space of 2d⇥2d matrices and the complex constant
�(z) 2 C is given by

�(z) =
2d/2 det(ImC ImC0)1/4p

det(A�1)
exp

✓
i

2"
(p+ p0)

T (q � q0)

◆
· · ·

exp

✓
1

2"
(p� p0)

TA(C0 + C)(q � q0)

◆
.

Moreover, according to Proposition 15, the function Iq is given for all x 2 Rd by

Iq(x) = (2⇡")�d

Z

Rd

hgz |  0i gz(x) dp.
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Consequently, the formula for the inner product in (3.16) yields

(2⇡")�dhgz |  0i gz(x)

= (2⇡")�d�(z) g0(x� q) exp

✓
i

2"
(z � z0)

TM(z � z0) +
i

"
pT (x� q)

◆

= g0(x� q)c(x) exp

✓
� 1

2"
(p� p0)

TA(p� p0) +
i

"
b(x)T (p� p0)

◆
,

(3.17)

where we rearranged terms only by simple algebraic manipulations and we used the fact
that (C�1

0
� C

�1

)�1 = iCAC0. The representation in (3.15) therefore follows from a
linear transformation of the integral. Finally, since Z 2 S+(d) implies �Z�1 2 S+(d),
see e.g. [Fol89, Theorem 4.64], we conclude that Re(A) > 0.

The combination of Proposition 15 with Lemma 16 gives the exact representation

 0(x) =
1

S(x)

X

k2�q

✓
g0(x� qk)ck(x)

Z

Rd

fk,x(p) dp

◆
, (3.18)

where we introduced the Gaussian function

fk,x(p) := exp

✓
� 1

2"
pTAp+

i

"
bk(x)

Tp

◆
, p 2 Rd, (3.19)

and we write bk and ck to indicate that we have replaced the variable q with qk in the
definition of b and c. At first glance, the representation in (3.18) may seem unfinished,
since it still contains a Gaussian integral that could be solved by hand. Let us briefly
discuss how (3.18) can be used for quadrature: Consider the one-dimensional situation
for a moment. Since fk,x is a Gaussian centred at p = 0 and therefore decays rapidly
relative to its width matrix, we can use a uniform grid {pj}Jj=1

on a given finite interval
[p0 � Lp, p0 + Lp] (where Lp > 0 depends on the width matrix) to discretise

Z
1

�1

fk,x(p) dp ⇡
Z

p0+Lp

p0�Lp

fk,x(p� p0) dp ⇡
JX

j=1

fk,x(pj � p0)�p (3.20)

and therefore, by inserting (3.20) into (3.18), the formula in (3.17) yields

 0(x) ⇡
1

S(x)

�p

2⇡"

X

k2�q

JX

j=1

hgj,k |  0i gj,k(x).

This reveals that discretisations of the multidimensional momentum integral
Z

Rd

fk,x(p) dp (3.21)

lead to discrete variants of the FBI formula which can be used to approximate Gaussian
wave packets by rescaled (prefactor 1/S(x)) Gaussian superpositions.

The next section deals with the discretisation of the integral in (3.21), where the aim
is to find a quadrature rule to keep the number of grid points small. We will see that
Gauss–Hermite quadrature is a good candidate because fk,x has a Gaussian envelope.
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3.1.2 Discretisation of the momentum integral

In the following we derive error bounds for discretisations based on

• truncations of the integral combined with the (composite) midpoint rule (TcM)

• infinite Riemann sums on uniform grids (RS)

• Gauss–Hermite quadrature (GH)

The rules (TcM) and (RS) were chosen because they can be used for the analysis of the
TSTG method later in Chapter 5. To show that the approach of Kong et al. can be
further improved by using more e�cient rules, we investigate (GH), and to the best of
my knowledge this is the first time that Gauss–Hermite quadrature is used to derive a
new variant of the Gaussian wave packet transform.

Depending on the underlying quadrature rule, we choose for

(TcM) the finite uniform grid defined by

pj,n = p0,n � Lp +
2jn � 1

2
�p, j 2 �(TcM)

p
= {1, . . . , J}d, (3.22)

with grid size �p = 2Lp/J , which discretises the box

⇤p :=
dY

n=1

[p0,n � Lp, p0,n + Lp] ⇢ Rd (3.23)

in momentum space of length 2Lq in each coordinate direction.

(RS) the infinite uniform grid of size �p > 0 defined by

pj,n = p0,n + jn�p, j 2 �(RS)

p
= Zd. (3.24)

(GH) the finite (non-uniform) grid

pj,n = p0,n + sjn
p
2", j 2 �(GH)

p
= {1, . . . , J}d,

depending on the zeros sjn of the Jth Hermite polynomial, see Section 3.1.2.

As discussed in the previous subsection, the di↵erent discretisations then lead to rescaled
superpositions of the form

 (rule)

rec
(x) :=

1

S(x)

X

k2�q

X

j2�
(rule)
p

r(rule)
j,k

gj,k(x), (3.25)

where the corresponding coe�cients can be calculated analytically as follows:
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(TcM) and (RS)

r(TcM)

j,k
= r(RS)

j,k
=

(�p)d

(2⇡")d
hgj,k |  0i. (3.26)

(GH) Depending on the weights wjn of the Gauss–Hermite rule, see Section 3.1.2, as

r(GH)

j,k
=

wj1 · · ·wjd

(2⇡")d
hgj,k |  0i.

The di↵erence between the representation coe�cients based on Riemann sums and
Gauss–Hermite quadrature lies, on the one hand, in the spacing of the grid points
pj and, on the other hand, in the di↵erent weighting of the inner product hgj,k |  0i.
Furthermore, it should be noted that for (TcM) a suitable truncation constant Lp > 0
must be chosen, while for (GH) the grid points are in a sense “optimally” distributed
even without an additional truncation constant.

Equipped with the di↵erent grids in momentum space, we are left with the choice of
the grid in position space. Since the wave function of interest  0 = gC0,"

z0
is a Gaussian,

it is plausible to assume that we are only interested in an approximation for values x in
a certain neighbourhood of the centre q0, e.g. the box

⇤q :=
dY

n=1

[q0,n � Lq, q0,n + Lq] ⇢ Rd

of length 2Lq in each coordinate direction (where Lq > 0 depends on the width of  0).
For a multi-index k 2 �q = {1, . . . , K}d we consider the uniform grid

qk,n = q0,n � Lq +
2kn � 1

2
�q, (3.27)

where �q = 2Lq/K. As mentioned earlier, for simplicity, in position space we focus on
uniform grids aligned with the eigenvectors of the width matrix of the basis functions.
More precisely, again using the eigendecomposition ImC = UDUT , we work on U⇤q

with corresponding grid points Uqk. However, to keep the notation simple, we write ⇤q

and qk and implicitly assume the action of the matrix U .

We are now ready to present the di↵erent approximation errors:

Theorem 17 (Gaussian wave packet transform via quadrature rules).

Recall the definition of  (rule)

rec 2 L2(Rd) in (3.25) and assume that the grid points in
position space are chosen according to (3.27). The approximation errors

E(rule) := sup
x2⇤q

�� 0(x)�  (rule)

rec
(x)
��
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for the rules (TcM), (RS) and (GH) satisfy the following bounds:

Truncation and composite midpoint rule (TcM)

There exist positive constants C(T) > 0 and C(cM) > 0 such that

E(TcM) < C(T) + C(cM)J�2.

Infinite Riemann sums (RS)

For all s � 1, there exists a positive constant C(RS)

s > 0 such that

E(RS) < C(RS)

s
(�p)2s+1.

Gauss–Hermite quadrature (GH)

For all s � 1, there exists a positive constant C(GH)

s > 0 such that

E(GH) < C(GH)

s
J�s/2.

In particular, the constants C(T), C(cM), C(RS)

s and C(GH)

s can be chosen independently of
the number K of grid points in position space.

Remark 18. The total number of grid points in momentum space for fully tensorised
quadrature rules is given by Jd = Jd and thus we have J�2 = J�2/d

d
and J�s/2 = J�s/2d

d
.

The proof is presented later in Section 3.1.3 and is based on the error estimates for the
individual rules. For a detailed analysis of the constants C(T), C(cM), C(RS)

s and C(GH)

s

and their dependence on the semiclassical parameter " we also refer to the proof.

As we can see, approximations based on infinite Riemann sums and Gauss–Hermite
quadrature lead to spectral convergence, while the composite midpoint rule only gives
order O(J�2). However, since the midpoint rule achieves spectral accuracy for smooth
and periodic integrands, see e.g. [SI88, Theorem 8], and fk,x is a Gaussian which can be
viewed as a periodic function vanishing at infinity, faster convergence is to be expected
in practical applications, as confirmed by our numerical examples in Section 3.1.4.

We now go on to analyse the di↵erent discretisation errors.

Truncation error

Recall the definition of the Gaussian integrand fk,x in (3.19). First, we note that if the
matrices C and C0 are purely imaginary, then both the matrix A = i(C0�C)�1 and the
vector bk(x) are real-valued. In this case, using the Cholesky decomposition A = LLT ,
where L 2 Rd⇥d is a lower triangular matrix with positive diagonal entries, yields

Z

Rd

fk,x(p) dp = det(A)�1/2

Z

Rd

exp

✓
� 1

2"
|y|2 + i

"
(L�1bk(x))

Ty

◆
dy.
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In the general case where C,C0 2 S+(d) and A and bk are complex-valued, a linear
transformation of the momentum integral leads to a similar result, but with additional
transformations for ImA and Im bk(x). However, to keep the calculations simple, in the
following we assume that the integrand has the form

fk,x(p) = exp

✓
� 1

2"
|p|2 + i

"
bk(x)

Tp

◆
, (3.28)

with a real-valued vector bk(x) 2 Rd. All of the following estimates can be extended to
the general case and lead to similar, albeit technically more involved, calculations.

From a numerical point of view, the Gaussian decay of the integrand in (3.28) allows
the approximation of the improper integral (3.21) by the truncated integral over ⇤p ⇢ Rd.
The next lemma provides the corresponding truncation error.

Lemma 19. Let ⇤p ⇢ Rd be the box in (3.23). Then, for all k 2 �q, we have

sup
x2Rd

�����

Z

Rd

fk,x(p) dp�
Z

⇤p

fk,x(p) dp

�����  (2⇡")d/2 exp

✓
� d

2"
L2

p

◆
. (3.29)

Proof. Let k 2 �q. The triangle inequality for integrals gives us

sup
x2Rd

�����

Z

Rd

fk,x(p) dp�
Z

⇤p

fk,x(p) dp

����� 
Z

Rd\⇤p

exp

✓
� 1

2"
|p|2
◆

dp.

Hence, the symmetry of the integral and Fubini’s theorem yields

Z

Rd\⇤p

exp

✓
� 1

2"
|p|2
◆

dp =
dY

n=1

2

Z
1

Lp

exp

✓
� 1

2"
z2
◆

dz.

Using the exponential-type bound erfc(y)  e�y
2
, y > 0, for the complementary error

function, see e.g. [CDS03, Equation 5], we conclude that

2

Z
1

Lp

exp

✓
� 1

2"
z2
◆

dz =
p
2⇡" erfc

⇣
Lp/

p
2"
⌘


p
2⇡" exp

✓
� 1

2"
L2

p

◆
,

which finally yields the following upper bound:

dY

n=1

2

Z
1

Lp

exp

✓
� 1

2"
z2
◆

dz  (2⇡")d/2 exp

✓
� d

2"
L2

p

◆
.
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Error bounds for fully tensorised quadrature rules

Error bounds for fully tensorised quadrature rules can be derived from one-dimensional
theory by applying a given quadrature formula to each variable individually:

Lemma 20. Consider the one-dimensional quadrature formula

QJf :=
JX

j=1

wjf(pj) ⇡
Z

1

0

f(p) dp

using the non-negative weights wj � 0,
P

J

j=1
wj = 1, and abscissas pj 2 [0, 1]. Moreover,

consider the corresponding “Cartesian product” formula

Qd

J
f = (QJ ⌦ · · ·⌦QJ) f :=

JX

j1=1

· · ·
JX

jd=1

wj1 · · ·wjd
f(p1,j1 , . . . , pd,jd)

and assume that for all n 2 {1, . . . , d} there exists a constant En � 0 such that
����
Z

1

0

f(p1, . . . , pd) dpn �QJ(f ; pn)

����  En

for all values of pm 2 [0, 1], m 6= n. Then,

����
Z

[0,1]d

f(p) dp�Qd

J
f

���� 
dX

n=1

En. (3.30)

We have formulated Lemma 20 as a special variant of a more general result that can
be found in [Hab70, Section 3]. In the next step we will apply the estimate in (3.30) to
the di↵erent discretisation schemes (TcM), (RS) and (GH).

Composite midpoint rule

Since the error bounds En of the one-dimensional quadrature rules depend crucially on
the smoothness of the integrand (in our case fk,x), it will be useful to have a formula for
the bounds of the higher-order derivatives:

Lemma 21. For all k 2 �q and (x, p) 2 ⇤q ⇥ ⇤p ⇢ R2d, the second-order partial
derivatives of the Gaussian integrand fk,x are bounded as follows:

��@2
n
fk,x(p)

��  4d (Lp + Lq)
2 "�2 + "�1, n = 1, . . . , d (3.31)

Moreover, for all s � 1, there exists a constant Cs > 0, depending on s, Lq and ", such
that for all k 2 �q and x 2 ⇤q we have

Z
1

�1

|@s
n
fk,x(p)| dpn  Cs (3.32)

for all values of pm 2 R, m 6= n.
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Proof. For k 2 �q, x 2 ⇤q and n 2 {1, . . . , d}, let us introduce the complex-valued
univariate functions

fk,x,n(⇠) := exp

✓
� 1

2"
⇠2 +

i

"
bk,n(x)⇠

◆
, ⇠ 2 R,

where bk,n(x) denotes the nth component of the real-valued vector bk(x). Since

fk,x(p) =
dY

n=1

fk,x,n(pn),

we conclude that for all s � 1 the derivatives of fk,x can be bounded as follows

|@s
n
fk,x(p)|  |f (s)

k,x,n
(pn)|, p 2 Rd,

and therefore it su�ces to find an upper bound for the derivatives of the Gaussian fk,x,n,
uniformly in k, x and n. As presented in [DLCS00, Equation 13], for ↵, � 2 C,↵ 6= 0,
the sth derivative of the exponential function

g(⇠) := exp
�
↵⇠2 + �⇠

�

can be expressed in terms of the second order Kampé de Fériét polynomial as

g(s)(⇠) = g(⇠) s!
bs/2cX

m=0

↵m(2↵⇠ + �)s�2m

m! (s� 2m)!
.

Hence, by choosing ↵ = �1/2" and � = ibk,n(x)/", we conclude that g(⇠) = fk,x,n(⇠)
and thus we get

|f (s)

k,x,n
(⇠)|  e�⇠

2
/2" s!

bs/2cX

m=0

⇣
|⇠|+ 2Lq

p
d
⌘s�2m

2m"s�mm! (s� 2m)!
,

where we used that

sup
x2⇤q

|bk,n(x)| =
1

2
sup
x2⇤q

�
|x� q0)|+ |x� qk|

�
 2Lq

p
d. (3.33)

Consequently, the estimate in (3.31) follows for s = 2 and therefore it remains to prove
the bound in (3.32). Using the binomial theorem, we further obtain

Z
1

�1

|f (s)

k,x,n
(⇠)| d⇠  s!

"s

bs/2cX

m=0

"m

2mm!

s�2mX

r=0

⇣
2Lq

p
d
⌘s�2m�r

r! (s� 2m� r)!

Z
1

�1

|⇠|re�⇠2/2" d⇠,

where the last integral can be transformed as
Z

1

�1

|⇠|re�⇠2/2" d⇠ = "(r+1)/2

Z
1

�1

|t|re�t
2
/2 dt.
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In particular, using a formula for moments of the normal distribution, see e.g. [PP02,
Equation 5-73], we conclude that

Mr :=

Z
1

�1

|t|re�t
2
/2 dt =

(p
2⇡(r � 1)!!, if r = 2k,

2k+1k!, if r = 2k + 1.

Note that Mr is an increasing function in r and Mr/r!  2 for all r � 1. Hence, for all
values of pm 2 R, m 6= n, we finally get

Z
1

�1

|@s
n
fk,x(p)| dpn  s!

"s

bs/2cX

m=0

"m+1/2

2mm!

s�2mX

r=0

"r/2
⇣
2Lq

p
d
⌘s�2m�r

r! (s� 2m� r)!
Mr

 s!

"s

bs/2cX

m=0

"m+1/2

2mm!

Ms�2m

(s� 2m)!

⇣p
"+ 2Lq

p
d
⌘s�2m

 s!

"s

bs/2cX

m=0

"m+1/2

2m�1m!

⇣p
"+ 2Lq

p
d
⌘s�2m

=: Cs.

In the next step, we approximate the truncated integral over ⇤p in Lemma 19 using
the Cartesian product formula for the one-dimensional composite midpoint rule.

Lemma 22. Consider the uniform grid on ⇤p ⇢ Rd defined in (3.22) and let Q(cM)

J

denote the one-dimensional quadrature formula

Q(cM)

J
f := �p

JX

j=1

f(pj � p0) ⇡
Z

Lp

�Lp

f(p) dp.

There exists a positive constant C(cM) > 0, depending on Lp, Lq and ", such that for all
k 2 �q and x 2 ⇤q we have

�����

Z

⇤p

fk,x(p) dp�
⇣
Q(cM)

J

⌘d
fk,x

�����  C(cM)J�2. (3.34)

Proof. Let k 2 �q and x 2 ⇤q. As it can be found e.g. in [DR07, Chapter 2.1], the error
of the one-dimensional composite midpoint rule is bounded by

�����

Z
Lp

�Lp

fk,x(p) dpn �Q(cM)

J
(fk,x; pn)

����� 
L3

p

3J2
sup
p2⇤p

��@2
n
fk,x(p)

�� ,

n = 1, . . . , d, and therefore, using the bound in (3.31), we conclude that

L3

p

3J2
sup
p2⇤p

|@s
n
fk,x(p)| 

L3

p

3J2

�
4d (Lp + Lq)

2 "�2 + "�1
�
=: E(cM)

n
.
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Hence, Lemma 20 implies that
�����

Z

⇤p

fk,x(p) dp�
⇣
Q(cM)

J

⌘d
fk,x

����� 
dX

n=1

E(cM)

n
= c(cM)J�2,

where the constant C(cM) is given by

C(cM) = d ·
L3

p

3

�
4d (Lp + Lq)

2 "�2 + "�1
�
.

Infinite Riemann sums

In addition to approximating the truncated integral with the midpoint rule as presented
in Lemma 22, we can also use infinite Riemann sums to directly approximate the im-
proper integral (3.21). As we will see, the error estimate for this approximation is based
on the Euler–Maclaurin formula:

Lemma 23. Consider the uniform momentum grid defined in (3.24) and let Q(RS) denote
the one-dimensional quadrature formula

Q(RS)f := �p
X

j2Z

f(pj � p0) ⇡
Z

1

�1

f(p) dp.

For all s � 1, there exists a positive constant C(RS)

s > 0, depending on s, Lq and ", such
that for all k 2 �q and x 2 ⇤q we have

����
Z

Rd

fk,x(p) dp�
�
Q(RS)

�d
fk,x

����  C(RS)

s
(�p)2s+1.

Proof. Let k 2 �q, x 2 ⇤q and s � 1. Since the integrand fk,x is a smooth function that
vanishes at infinity, we use the Euler–Maclaurin formula, see e.g. [KU98, Theorem 7.2.1],
to obtain

����
Z

1

�1

fk,x(p) dpn �Q(RS)(fk,x; pn)

���� 
Z

1

�1

��@2s+1

n
fk,x(p)

�� dpn ·
(�p)2s+1

(2⇡)2s+1
,

for all values of pm 2 R, m 6= n. Furthermore, the bound in (3.32) yields

Z
1

�1

��@2s+1

n
fk,x(p)

�� dpn ·
(�p)2s+1

(2⇡)2s+1
 C2s+1(�p)2s+1

(2⇡)2s+1
=: E(RS)

n
,

and thus the claim follows again by Lemma 20 for C(RS)

s = d · C2s+1/(2⇡)2s+1.

In the last step we use Gauss–Hermite quadrature, which is a special form of Gaussian
quadrature on the real line for a Gaussian weight function, see e.g. [DR07, Chapter 1.12].
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Gauss–Hermite quadrature

Consider the one-dimensional formula

JX

j=1

wjh(sj) ⇡
Z

1

�1

e�p
2
h(p) dp,

where the nodes s1, . . . , sJ are chosen as the zeros of the Jth Hermite polynomial and
the positive numbers wj > 0 are the corresponding quadrature weights. In particular,
the Jth Hermite polynomial and the weights are given by

HJ(x) = (�1)Jex
2 dJ

dxJ
e�x

2
and wj =

2J+1J !
p
⇡

[HJ+1(sj)]2
.

Note that both the weights and the nodes depend on J , although we do not express this
dependence in our notation. We obtain the following error bound:

Lemma 24. Consider the transformed Gauss–Hermite formula defined by

Q(GH)

J
f :=

JX

j=1

!jf(pj � p0) ⇡
Z

1

�1

f(p) dp,

where the transformed nodes and weights are defined by

pj := p0 + sj
p
2" and !j := es

2
jwj

p
2".

For all s � 1, there exists a positive constant C(GH)

s > 0, depending on s, Lq and ", such
that for all k 2 �q and x 2 ⇤q we have

����
Z

Rd

fk,x(p) dp�
⇣
Q(GH)

J

⌘d
fk,x

����  C(GH)

s
J�s/2.

Proof. Let k 2 �q and x 2 ⇤q. A linear transformation of the integral yields

Z

Rd

fk,x(p) dp = (2")d/2
Z

Rd

e�|p|
2
hk,x(p) dp,

where the complex-valued function hk,x : Rd ! C is given for all p 2 Rd by

hk,x(p) := exp
⇣
ibk(x)

Tp
p
2/"
⌘
.

In particular, the partial derivatives of order s � 1 are bounded for all p 2 Rd by

|@s
n
hk,x(p)| 

⇣p
2/"|bk(x)|

⌘s

⇣
2
p
2d/"Lq

⌘s
, n = 1, . . . , d,
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where we used the estimate in (3.33). In [MM94, Theorem 2], the authors prove that
if the (s � 1)th derivative of a function h : R ! C is locally absolutely continuous and
h(s)(p)e�(1��)p

2 2 L1(R) for some 0 < � < 1, then
�����

Z
1

�1

e�p
2
h(p) dp�

JX

j=1

wjh(sj)

�����  CJ�s/2kh(s)(p)e�(1��)p
2kL1(R),

where C > 0 is a constant that is independent of J and h. Since for all 0 < � < 1 and
n 2 {1, . . . , d} we have

Z
1

�1

���@snhk,x(p)e
�(1��)p

2
n

��� dpn 
⇣
2
p

2d/"Lq

⌘sr ⇡

1� �
,

we thus obtain the following bound
�����

Z
1

�1

e�p
2
nhk,x(p) dpn �

JX

j=1

wj hk,x(p1, . . . , pn�1, sj, pn+1, . . . , pd)

�����

 CJ�s/2

⇣
2
p

2d/"Lq

⌘s p
⇡ =: E(GH)

n

for all values of pm 2 R, m 6= n, and therefore the claim follows again by Lemma 20 for
the constant

C(GH)

s
= C

p
⇡ · 2(3s+d)/2ds/2+1"(d�s)/2Ls

q
.

Now that we have derived the corresponding discretisation errors, we can catch up
with the proof of Theorem 17.

3.1.3 Proof (Gaussian wave packet transform via quadrature rules)

Proof. Using the representation in (3.9) for the Gaussian wave packet  0 = gC0,"
z0

, the
triangle inequality yields

E(rule)  sup
x2⇤q

1

S(x)

X

k2�q

�������
Iqk

(x)�
X

j2�
(rule)
p

r(rule)
j,k

gj,k(x)

�������
.

In the following, let us consider rule = TcM. Combining the representation of Iq(x)
according to Lemma 16 with the truncation and the composite midpoint rule, we obtain

Iqk
(x)

(3.15)

= g0(x� qk)ck(x)

Z

Rd

fk,x(p) dp

(3.29)

⇡ g0(x� qk)ck(x)

Z

⇤p

fk,x(p) dp (truncation)
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(3.34)

⇡
JX

j1=1

· · ·
JX

jd=1

r(TcM)

j,k
gj,k(x) (composite midpoint rule),

where the representation coe�cients r(TcM)

j,k
2 C are given by (cf. Equation (3.26)):

r(TcM)

j,k
=

(�p)d

(2⇡")d
hgj,k |  0i = (�p)dck(x)fk,x(pj � p0)e

�ipj ·(x�qk)/".

Hence, for all j 2 {1, . . . , J}d and k 2 �q = {1, . . . , K}d, we get
�����Iqk

(x)�
JX

j1=1

· · ·
JX

jd=1

r(TcM)

j,k
gj,k(x)

�����

= |ck(x)| |g0(x� qk)|
����
Z

Rd

fk,x(p) dp�
⇣
Q(cM)

J

⌘d
fk,x

���� ,

and by definition of the numbers ck(x) in Lemma 16 it follows that

sup
x2⇤q

|ck(x)| = (2⇡")�d exp

✓
� 1

8"
|qk � q0|2

◆
 (2⇡")�d.

Moreover, by Lemma 19 (truncation) and Lemma 22 (composite midpoint rule), we
conclude that there are positive constants C̃(T) > 0 and C̃(cM) > 0 such that

sup
x2⇤q

����
Z

Rd

fk,x(p) dp�
⇣
Q(cM)

J

⌘d
fk,x

����  C̃(T) + C̃(cM)J�2.

Consequently, since there exists a constant C�q > 0 (see Appendix 7.2), depending on
the width matrix of the basis functions, " and Lq, but independent of K (number of grid
points in position space), such that

sup
x2⇤q

1

S(x)

KX

k1=1

· · ·
KX

kd=1

|g0(x� qk)| < Cd

�q
,

we finally conclude that

sup
x2⇤q

1

S(x)

X

k2�q

�������
Iqk

(x)�
X

j2�
(TcM)
p

r(TcM)

j,k
gj,k(x)

�������

 (2⇡")�d

⇣
C̃(T) + C̃(cM)J�2

⌘
sup
x2⇤q

1

S(x)

KX

k1=1

· · ·
KX

kd=1

|g0(x� qk)|

< C(T) + C(cM)J�2,

where the positive constants C(T), C(cM) > 0 are given by

C(T) = (2⇡")�dC̃(T)Cd

�q
and C(cM) = (2⇡")�dC̃(cM)Cd

�q
.

The corresponding estimates for infinite Riemann sums and Gauss–Hermite quadrature
follow the same arguments as presented for (TcM), but using Lemma 23 and Lemma 24.
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Figure 3.2: Gaussian wave packet  0 (black), four basis functions around the centre
q0 = 0 (grey) and summation curve (blue) for two choices of the width
parameter �. The larger width (left) leads to a better approximation to the
summation curve, which is a consequence of the larger overlap and can be
derived in particular from the analytical representation in Lemma 13.

3.1.4 Numerical experiments

We present experiments for the reconstruction of one-dimensional Gaussian wave packets
according to Theorem 17, which illustrate the superiority of our new representation by
Gauss–Hermite quadrature. Two examples are used to visualise the dependence of the
errors on the various parameters involved. The first example deals with the interplay of
� (width of the basis functions) and K (number of grid points in position space), while
the second investigates the dependence on the semiclassical parameter ", which controls
the oscillations of the wave packets.

Example 1

We consider the wave packet

 0(x) = ⇡�1/4 exp

✓
�1

2
x2

◆
,
h
" = 1, �0 = i, (q0, p0) = (0, 0)

i
,

on ⇤q = [�8, 8]. Note that this corresponds to Lq = 8. The plots in Figure 3.2 show
the wave packet  0 together with four basis functions around the centre q0 = 0 (grey)
and the summation curve (blue) for � = 2i (left) and � = 8i (right). In both plots, the
summation curve is built on a uniform grid with K = 32 grid points, giving a distance of
�q = 0.5 for the basis functions. In particular, smaller values of Im(�) cause the spread
(and hence the overlap) of the basis functions to increase, giving a faster convergence
of the summation curve. This can also be seen in the plots: For the summation curve
on the right-hand side we see the typical oscillations as we know them from the cosine
function, while on the left-hand side no oscillations can be seen because the summation
curve has approached the predicted value 1/�q = 2.
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Figure 3.3: Reconstruction error for di↵erent combinations of � and K. The approxima-
tions based on (TcM) show a fast initial decay. For (GH), all plots initially
show an exponential decay (green lines).
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The plots in Figure 3.3 show the reconstruction errors in the supremum norm on ⇤q

for di↵erent combinations of � and K. For each of the three rows (� is fixed here)
we compare K = 16 (left) and K = 64 (right) and three choices for the truncation
parameter in momentum space (Lp = 4⇡, 6⇡, 8⇡). For (TcM), we observe that larger
values of Lp lead to a worse decay of the errors, which is consistent with our theoretical
result in Lemma 22. Furthermore, fast initial decay is observed for (TcM), which can
be explained by the fact that the composite midpoint rule achieves spectral accuracy.
The plots also show, for example, that for the smallest box (yellow) the truncation error
is reached at about 10 grid points (plateau for � = 8i,K = 16). A comparison of the
two columns in Figure 3.3 shows that the error is only slightly a↵ected by the number
of grid points in position space (left: K = 16, right: K = 64), which can be explained
by the fact that all error constants are independent of K (cf. in Theorem 17). In the
reconstructions based on Gauss–Hermite quadrature (green lines), the errors initially
show an exponential decay (Lemma 24 predicts spectral convergence). In particular, all
plots show the superiority of (GH) for small values of J . As we will see in the next
example, the discrepancy between (TcM) and (GH) becomes even more pronounced if
the underlying wave packet is oscillating.

Example 2

For " 2
�
0.1, 0.05

 
we consider the wave packet

 0(x) = (⇡")�1/4 exp

✓
� 1

2"
(x� 1)2 +

2i

"
(x� 1)

◆
,
h
�0 = i, (q0, p0) = (1, 2)

i
,

on ⇤q = [�8, 8]. For small values of ", it follows from the presence of the complex
phase factor that the wave packet is oscillatory, see Figure 3.4. For all computations we
used K = 128, which corresponds to a uniform spacing of �q = 1/8, and two values
for the width of the basis functions (� = 16i and � = 32i). For " = 0.1, a plot of
four basis functions and the summation curve can be found in Figure 3.5. As we have
already discussed in the previous example, the smaller value of Im(�) (left) gives a better
approximation to the constant value 1/�q = 8. The errors in the reconstruction of the
wave packets can be seen in Figure 3.6. All plots underline the superiority of (GH) for
wave packets with high oscillations, independent of the width of the basis functions.
The experiment clearly shows that with the new rule the number of grid points can be
significantly reduced.
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Figure 3.4: Real (left) and imaginary part (right) of the wave packet  0 for di↵erent
values of ". Smaller values result in higher oscillations.
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Figure 3.5: Plot of four basis functions (gray) and the summation curve (blue). For the
larger value of Im(�) (right), the summation curve shows larger oscillations.
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Figure 3.6: Reconstruction errors for di↵erent values of � and ". The approximations
based on Gauss–Hermite quadrature (green) show the best decay. Compared
to the midpoint rule, the number of grid points can be significantly reduced,
especially for smaller values of " (higher oscillations in the wave packet).
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3.2 Full discretisation of the phase space integral

As described in detail in Section 1.1, parts of the present section (Sec. 3.2) overlap
to a large extent with the joint preprint “An Error Representation for the Time-Sliced
Thawed Gaussian Propagation Method” with C. Lasser submitted to Numerische Math-
ematik on 27/08/2021, e-print available at arXiv:2108.12182.

In the previous section we derived the semi-discrete representation (3.18) and showed
that discretisations of the momentum integral lead to approximations of the form

 ⇡  (rule)

rec
(x) =

1

S(x)

X

k2�q

X

j2�
(rule)
p

r(rule)
j,k

gj,k(x). (3.35)

In particular, using uniform Riemann sums in both position and momentum space, the
formula for the corresponding coe�cients r(RS)

j,k
in (3.26) and the approximation of the

summation curve S(x) according to Lemma 13 yields the approximation

 (x) ⇡
✓
�q�p

2⇡"

◆d X

k2�q

X

j2�
(RS)
p

hgj,k |  i gj,k(x),

which can be seen as a direct discretisation of the phase space integral. Regarding the
approximation of solutions of the time-dependent Schrödinger equation, we recognise
that the latter approximation is advantageous since it allows the propagation of the
wave packet  to be directly transferred to the Gaussian basis functions by linearity,
whereas this is not possible in (3.35) due to the additional prefactor 1/S(x).
It is of course well known that fully tensorised quadrature rules are impractical from

a numerical point of view because the number of grid points increases exponentially
with dimension, but since uniform Riemann sums in each coordinate direction have
been used in moderate dimensions without error estimates by Kong et al., we extend
our error representations from Section 3.1 to include direct discretisations of the phase
space integral. We therefore adjust our notation as follows: For a given finite multi-index
set � ⇢ N2d, e.g. a cube {n 2 N2d : nj  N} or a simplex {n 2 N2d :

P
2d

j=1
nj  N},

the bold multi-index n 2 � is used to specify grid points zn in phase space, where the
first d components correspond to the position space and the last d components to the
momentum space. With the previously used indices k 2 �q and j 2 �p we could also
write n = (k, j). Accordingly, we write the discretised FBI formula as

 ⇡
X

n2�

cn( ) gn =
X

n2�

wnhgn |  i gn (3.36)

with basis functions gn = gzn and complex-valued representation coe�cients

cn( ) := wnhgn |  i,
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which result from weighted point evaluations of the integrand and depend on  and the
positive weights wn > 0. For example, the weights for uniform Riemann sums based on
grid sizes �qj > 0 and �pj > 0 in each coordinate direction j = 1, . . . , d are given by

wn = (2⇡")�d

dY

j=1

�qj�pj.

Furthermore, we introduce the following quadrature-based pair of operators.

Definition 25. For a given finite multi-index set � ⇢ N2d, let {zn}n2� be a grid in phase
space and wn > 0 positive weights. The operator

A� : L
2(Rd) ! C�, (A� )n := hgn |  i for all n 2 �, (3.37)

is called the analysis operator. Moreover, the operator

S� : C� ! L2(Rd), (sn) 7!  � :=
X

n2�

wnsn gn,

which maps a given coe�cient tensor (sn) to the weighted Gaussian superposition  �, is
called the (weighted) synthesis operator.

The next lemma shows that the operators A� and S� are formally adjoint with respect
to weighted inner products and therefore we can write S� = A⇤

�
.

Lemma 26. Let � ⇢ N2d be a finite multi-index set. Moreover, for all n 2 �, let wn > 0
be positive weights. For x, y 2 C� we define the weighted inner product

hx, yiw :=
X

n2�

wnxn yn.

Then, for all  2 L2(Rd) and s 2 C�, we have

hS�s |  i = hs,A� iw.

Proof. Let  2 L2(Rd) and s 2 C�. By definition of the operators A� and S� we have

hS�s |  i =
Z

Rd

X

n2�

wnsn gn(x) (x) dx =
X

n2�

wnsnhgn |  i = hs,A� iw.

Let us assume again that we are interested in the representation of a Gaussian wave
packet  0 = gC0,"

z0
for some z0 2 R2d and C0 2 S+(d). Similar to the discretisation of

the momentum integral based on (TcM) in the previous section, the total error in the
discretisation of the phase space integral based on fully tensorised Riemann sums consists
of two di↵erent sources: In the first step, the improper integral must be truncated with
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respect to a compact phase space box ⇤ ⇢ R2d, which should of course be located at
the centre z0 and be aligned with the width matrix of the Gaussian wave packet  0.
This produces a truncation error. In the second step, the truncated integral must then
be approximated by a multidimensional Riemann sum, which produces a discretisation
error. In particular, the total error can be written using the above analysis and synthesis
operators as follows

Ewp = Ewp( 0,⇤,�) := k 0 �A⇤

�
A� 0kL1(⇤q), (3.38)

where ⇤q ⇢ Rd now denotes the projection of the phase space box ⇤ onto position space,
which is the domain of  0 and its approximation A⇤

�
A� 0 2 L2(Rd). In the next step

we analyse this error in more detail.

Truncation error

Recall that the formula for inner products of Gaussians in Lemma 7 shows that the
FBI transform of  0 has a Gaussian envelope in phase space. Similar to Lemma 19, we
therefore expect good approximations if we truncate the phase space integral using a
su�ciently large hypercube.

Lemma 27. For a given phase space centre z0 2 R2d and a positive parameter L > 0,
consider the phase space box

⇤ =
2dY

j=1

[z0,j � L, z0,j + L] ⇢ R2d. (3.39)

Moreover, for C,C0 2 S+(d) let gz = gC,"

z
and  0 = gC0,"

z0
and assume that the eigenvalues

of the matrices Im(C), Im(C0) and Im(�C�1), Im(�C�1

0
) are bounded from below by

✓ > 0 and from above by ⇥ > 0. Then, there exists a positive constant C(T) > 0,
depending on " and the spectral parameters, such that

sup
x2Rd

���� 0(x)� (2⇡")�d

Z

⇤

hgz |  0i gz(x) dz
����  C(T) exp

✓
�✓d
4"

L2

◆
. (3.40)

Proof. Using the bound for the inner product of Gaussian wave packets in Lemma 7 and
for the constant ⇣ in (7.4), we obtain the following estimate for all x 2 Rd:

���� 0(x)� (2⇡")�d

Z

⇤

hgz |  0i gz(x) dz
����  (2⇡")�dkgzk1

Z

R2d\⇤

|hgz |  0i| dz

 (2⇡")�d(⇡")�d/4✓�d/2⇥3d/4

Z

R2d\⇤

exp

✓
� ✓

8"
kz � z0k22

◆
dz.

Furthermore, the symmetry of the integral and Fubini’s theorem yields that

Z

R2d\⇤

exp

✓
� ✓

8"
kz � z0k22

◆
dz = 4d

✓Z
1

L

exp

✓
� ✓

8"
y2
◆

dy

◆2d

.
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Hence, using again the exponential-type bound erfc(y)  e�y
2
, y > 0, for the comple-

mentary error function (cf. Lemma 19), we conclude that

Z
1

L

exp

✓
� ✓

8"
y2
◆

dy =

p
2⇡"p
✓

erfc
⇣
L
p
✓/8"

⌘


p
2⇡"p
✓

exp

✓
� ✓

8"
L2

◆
,

and therefore we finally get

Z

R2d\⇤

exp

✓
� ✓

8"
kz � z0k22

◆
dz  4d(2⇡")d✓�d exp

✓
�✓d
4"

L2

◆
.

This proves that the constant C(T) in (3.40) can be chosen as

C(T) =

✓
4⇥3/4

(⇡")1/4✓3/2

◆d

.

Lemma 27 shows that the truncation error decreases exponentially with the length
of the hypercube. Furthermore, the proof shows that the error bound could be further
improved by using separate boxes ⇤q ⇢ Rd and ⇤p ⇢ Rd in position and momentum
space which are aligned with the eigenvectors of the width matrix of  0.

Fully tensorised uniform Riemann sums revisited

In Lemma 20 we have already shown how to derive error bounds for fully tensorised
quadrature rules from the one-dimensional theory. As a special case, we obtain the
following result if uniform grids are used in each coordinate direction.

Lemma 28. Let f 2 C1(R2d). There exists a positive constant Cf > 0, depending only
on the function f , such that

�����

Z

[0,1]2d

f(z) dz �N�2d
X

n2�

f
⇣n1

N
, . . . ,

n2d

N

⌘�����  Cf · d ·N�1,

where � = {1, 2, . . . , N}2d. In particular, Cf can be chosen as the total variation of the
function f in the sense of Hardy and Krause.

We have formulated Lemma 28 as a special variant of a more general result that can
be found in [DR07, Chapter 5.5.5]. The proof uses the same techniques we used for the
discretisation of the momentum integral in Section 3.1.2 and is therefore omitted.
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3.2.1 Error for the full phase space discretisation

The total error for the full discretisation of the FBI formula based on uniform Riemann
sums is now obtained by combining the estimates in Lemma 27 and Lemma 28:

Proposition 29. Let C0 2 S+(d) and z0 2 R2d. For the discretisation of

(2⇡")�d

Z

R2d

⌦
gz | gC0,"

z0

↵
gz dz,

using the phase space box ⇤ ⇢ R2d in (3.39) and uniform Riemann sums with N � 1
grid points in each coordinate direction, there exist positive constants C(T), C(RS) > 0
such that the total reconstruction error defined in (3.38) is bounded by

Ewp  C(T) + C(RS)N�1.

This result is not surprising, since we have already seen in Theorem 17 that the
discretisation of the momentum integral via (TcM) leads to an error of order O(J�2),
where J is the number of grid points in momentum space. In fact, the estimate in
Lemma 28 can be improved to a bound of order O(N�2) if the composite midpoint rule
is used instead of the composite rectangle rule. Nevertheless, we recognise the advantage
of the semi-discrete representation (3.18), which allows the separation of position and
momentum space via the summation curve and thus the more e�cient Gauss–Hermite
quadrature can be used for the discretisation of the momentum integral.

3.2.2 Numerical experiments

We present numerical experiments for the approximation of a Gaussian wave packet
according to Proposition 29 based on uniform Riemann sums for

 0(x) = (⇡")�1/4 exp

✓
� 1

2"
(x+

p
2⌘)2

◆
, ⌘ = 1.3544, (3.41)

which is later used in Section 5.4 as the initial wave function for the TSTG method.
Figure 3.7 shows the reconstruction errors in the supremum norm as a function of grid
points for di↵erent truncation boxes ⇤ = [�Lq, Lq]⇥ [�Lp, Lp], where we used the same
number of grid points for both intervals. For each column (the width � of the basis
functions is fixed here) we compare " = 1 (top) and " = 0.1 (bottom). All panels show
that larger boxes lead to a worse decay of the errors, which is consistent with Lemma 27.
In particular, the two upper plots show that for the smallest box (yellow) the truncation
error is reached after about 64 grid points (plateaus). Moreover, we see that the number
of grid points needed to achieve a certain accuracy increases with decreasing ".
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Figure 3.7: The four panels show the reconstruction errors for di↵erent combinations of
� (width of the basis functions) and ". The number of grid points used to
achieve a certain accuracy depends on " and the truncation box.

59



3.2.3 A note on sparse grids and Monte Carlo integration

In Section 3.1.2 we have seen that the grid points qk and pj resulting from the dis-
cretisation of the FBI formula depend on the centre of the Gaussian wave packet we
want to represent. This is of course a problem if many di↵erent functions have to be
represented at the same time, because this means that many di↵erent grids are needed.
In the TSTG method, for example, every individual time-evolved basis function must
be represented in the original basis. To avoid the dependence for each individual basis
function, Kong et al. choose su�ciently dense uniform grids in phase space, although
other “function-independent” grids would also be possible. The question therefore arises
whether there are alternatives to fully tensorised quadrature rules. In the following we
address two possibilities that have been adopted from [LL20, Section 8].

In moderate dimensions, so-called “sparse-grid methods” o↵er an alternative, as they
can overcome the curse of dimensionality to a certain extent. The idea of sparse grids
is to rewrite the tensorised quadrature rule

Qd

N
f = (QN ⌦ · · ·⌦QN) f =

NX

n1=1

· · ·
NX

nd=1

wn1 · · ·wnd
f(x1,n1 , . . . , xd,nd

)

for N = 2L grid points in each coordinate direction as follows

Qd

N
f =

LX

l1=0

· · ·
LX

ld=0

(�l1 ⌦ · · ·⌦�ld
) f,

where the one-dimensional di↵erence formulas �lj are given for Nj := 2lj by

�lj := QNj �QNj�1 , �0 := Q1.

By using only terms with l1 + ...+ ld  L, we then obtain the sparse grid formula

Sd

L
f :=

X

l1+...+ldL

(�l1 ⌦ · · ·⌦�ld
) f.

These variants require less than N(logN)d�1 quadrature nodes, while Nd are required
for the full tensor grid. Sparse grids have been used for the midpoint rule, see [BD93],
as well as for Gauss–Hermite quadrature, see [LL20, Section 8.1]. In particular, an error
bound for approximations based on sparse-grid Gauss–Hermite quadrature can be found
in [LL20, Theorem 8.2]. We also refer to [GG98] for a comprehensive presentation of
sparse grids and further developments.

If no fixed grid structure is needed, e.g. for the decomposition of the initial state
in the TSTG method, (quasi-) Monte Carlo methods provide a useful alternative and
have already been used for the discretisation of the FBI formula in connection with the
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discretisation of the Herman–Kluk propagator, see [LS17]. To recall the basic idea of
Monte Carlo methods, consider the integral

(2⇡")�d

Z

R2d

hgz | gz0i gz dz

for a Gaussian wave packet of unit width, i.e., C = C0 = i Id, where as usual C denotes
the width matrix of the basis function gz and C0 the width of gz0 . Using the formula for
the inner products of Gaussians from Lemma 7, we write

(2⇡")�d hgz | gz0i = r0(z)µ0(z)

with

r0(z) := 2d exp

✓
i

2"
(p+ p0)

T (q � q0)

◆

and

µ0(z) := (4⇡")�d exp

✓
� 1

4"
|z � z0|2

◆
.

Thus, assuming that µ0 defines a Gaussian probability density in phase space, we can
use independent samples z1, . . . , zN 2 R2d of it to approximate the FBI formula by the
Monte Carlo estimator

 0,N :=
1

N

NX

n=1

f0(zn) 2 L2(Rd), f0(z) = r0(z)gz, (3.42)

which converges almost surely to the expected value

E(f0) =
Z

R2d

r0(z)gz dµ0(z) = (2⇡")�d

Z

R2d

hgz | gz0i gz dz = gz0 .

Remark 30. We note that Markov chain Monte Carlo methods can be used to obtain
samples z1, . . . , zN 2 R2d for the representation of non-Gaussian functions for which it
is generally not known how to draw independent identically distributed samples.

A measure of accuracy is the mean squared error, which is of order O(N�1) and does
not depend on the dimension d. The following result was taken from [LL20, Theorem 8.4].

Lemma 31. Let  0 = gz0 and let  0,N be the Monte Carlo estimator defined in (3.42).
Then, the mean squared error is given by

E
�
k 0,N �  0k2

�
 V(f0)

N
,

where the variance of f0 is given by

V(f0) =
Z

R2d

Z

Rd

|r0(z)gz(x)� gz0(x)|2 dx dµ(z) = 4d � 1.

In particular, the error does not depend on the semiclassical parameter.
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For the proof we refer to [LL20, Theorem 8.4] and [LS17, Examples 2].

Since classical Monte Carlo simulations based on random or pseudo-random numbers
are faced with the problem that the samples are not uniformly distributed over the in-
tegration domain, Quasi-Monte Carlo quadrature can be used to speed up convergence.
This approach uses so-called “low discrepancy sequences” and corresponding error es-
timates for the discretisation of the FBI formula can be found in [LL20, Theorem 8.3].
Furthermore, we refer to [LS17, Example 6], where the authors present numerical exam-
ples for the reconstruction of a Gaussian wave packet.

3.3 The Gaussian wave packet transform in other works

We have already mentioned several times that the representations that follow from the
discretisation of the FBI formula have been used by other authors. The approximation
of Gaussian wave packets based on uniform Riemann sums can be found in the TSTG
method [KMB16], but unlike us, the authors work with non-normalised basis functions.
More precisely, Kong et al. use the one-dimensional basis functions

�j,k(x) = �(x� qk)e
ipj(x�qk), �(x) =

p
�qp
⇡

�

2
exp

✓
��

2

4
x2

◆
, x 2 R, (3.43)

where � > 0 is chosen such that �/2 = �p in order to minimise the oscillations of
the summation curve, which Kong et al. define in momentum space (we defined it in
position space). For the basis functions in (3.43), the discretised FBI formula according
to Theorem 17 then takes the equivalent form (cf. [KMB16, Equation 10])

 0(x) ⇡
1p
2⇡

KX

k=1

JX

j=1

h�j,k |  0i�j,k(x).

Kong et al. do not use the FBI formula to derive their representation of wave packets,
nor do they present an error analysis. However, they refer to the fast Gaussian wave
packet transform introduced by Qian and Ying [QY10], who used compactly supported
basis functions instead of simple Gaussian functions and prove a similar representation
via frame theory. Let us therefore take a closer look at the definition of frames.

Remark 32. To show that our error analysis for the discretisation of the FBI formula is
directly related to approximations resulting from frame representations, we focus only on
the description of the fast Gaussian wave packet transform by Qian and Ying. However,
it is important to note that frame representations related to the Schrödinger equation
have also been studied by other authors and we refer the interested reader to [BBCN17]
and [CNR09] and the references given therein.
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3.3.1 Overcomplete sets and frames

Recall that discretisations of the FBI formula based on weighted point evaluations of
the integrand can be written as (cf. (3.36))

 ⇡
X

n2�

cn( ) gn =
X

n2�

wnhgn |  i gn,

which, at second glance, shows a certain similarity to a decomposition of the wave
function  2 L2(Rd) according to an orthonormal basis. Although the functions gn
obviously do not form an orthonormal basis (we have hgn | gn0i 6= 0 for n 6= n

0), we
will see in a moment that with a suitable choice of the phase space grid we obtain an
overcomplete set. This means that every function  2 L2(Rd) can be represented as

 =
X

n2�

dn( ) gn,

where the corresponding coe�cients dn( ) 2 C are no longer given by the weighted
inner products wnhgn |  i. Our investigations will show how the coe�cients dn( ) can
be calculated using frames.

The following definition was taken from [Mal09, Definition 5.1].

Definition 33. Let H be a Hilbert space over the complex numbers and � an index set
that might be finite or infinite. The sequence {�n}n2� is a frame of H, if there exist
positive constants B � A > 0 such that

8 2 H, Ak k2
H

X

n2�

|h�n, iH|2  Bk k2
H
. (3.44)

When A = B the frame is said to be tight.

Remark 34. Every frame spans the Hilbert space H and if the vectors �n are linearly
independent, the frame is called a “Riesz basis”. Moreover, every orthonormal basis
of the Hilbert space is a tight frame with A = B = 1. The concept of frames is of
great importance in the field of signal processing and goes back to Du�n and Schae↵er
[DS52]. For a general introduction to this topic, we refer to [Mal09]. We also note that
frames have been generalised to the continuous domain, which allows, for example, an
alternative description of di↵erent function spaces, see [FR05].

If the frame condition is satisfied, then the operator

� : H ! `2(�), (� )n := h�n, iH for all n 2 �,

is called a “frame analysis operator”, where

`2(�) :=
n
s 2 C� :

X

n2�

|sn|2 < 1
o
,
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and the adjoint �⇤ is given by the synthesis operator

�⇤ : `2(�) ! H, �⇤s =
X

n2�

sn�n.

For the choice H = L2(Rd) and �n = gn we see that the frame analysis operator � is
equal to our analysis operator A� defined in (3.37), and therefore the question arises
under which conditions the sequence {gn}n2� is a frame. Without going into too much
detail, it should be noted that it can be proven that the sequence {gn}n2Z2d is a frame
for su�ciently dense uniform phase space grids, which is then called a “Gabor frame”
or“ Weyl–Heisenberg frame”, see [Grö01, Chapter 5.2 and Chapter 6.5]. This reflects
in particular the fact that the completeness of the basis set depends crucially on the
density of the grid points. For example, in the one-dimensional case, it is known that
{gj,k}j,k2Z is overcomplete if and only if �q�p < 2⇡", see e.g. [MA01, Section III]. More
precisely, the completeness of the basis set depends on the sampling density

D =
2⇡"

�q�p
, (3.45)

where D < 1 implies undercompleteness and D > 1 implies overcompleteness.

Remark 35. We note that “completeness” means that hgj,k |  i = 0 for all j, k 2 Z
implies  = 0. The proof that we get a complete set for D = 1 can be found in [BGZ75],
which generalises the results of Bargmann et al. [BBGK71] and Perelomov [Per71].
However, it should be noted that not every  2 L2(R) has an L2-convergent expansion
in terms of the Gaussian wave packets gj,k, see [Fol89, Chapter 3.4].

In the case of an orthonormal basis, one can use the analysis coe�cients (� )n to
reconstruct any element  of the Hilbert space. The next proposition was taken from
[Mal09, Theorem 5.4 and Theorem 5.5] and shows that frames have a similar property.

Proposition 36. Let {�n}n2� be a frame with bounds B � A > 0. Then, the operator
�⇤� is invertible and the sequence {�̃n}n2� defined by

�̃n := (�⇤�)�1 �n for all n 2 �

is a frame, the dual frame, that can be used to reconstruct every  2 H as follows:

 =
X

n2�

h�n, iH �̃n =
X

n2�

h�̃n, iH �n

In particular, the dual frame satisfies

8 2 H,
1

B
k k2

H

X

n2�

|h�̃n, iH|2 
1

A
k k2

H
,

and if the frame is tight, then �̃n = A�1�n.
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For the proof we refer to [Mal09, Theorem 5.4 and Theorem 5.5].

Unless the frame is tight, we see that the computation of the dual frame requires
the inversion of the operator �⇤�, whose supremum and infimum of the spectrum are
the same as of the Gram matrix G = (h�n,�n0iH)n,n02`2(�), see [Mal09, Theorem 5.1],
which is known to become ill-conditioned if the basis functions have a large overlap. This
problem has been studied extensively, see e.g. [FF15, Section 3], and several stabilisation
algorithms have been proposed, see e.g. [FLF11, KLY19]. In addition, various algorithms
have been proposed for the computation of the dual frame and the inversion of the Gram
matrix, including, for example, the Richardson iteration (aka “frame algorithm”, see
[Dau92]), the acceleration methods proposed by Gröchenig, see [Grö93], as well as the
iterative refinement method proposed by Andersson, see [MA01].

Remark 37. The reciprocal of a real number a 6= 0 can be computed by Newton’s method
using that 1/a is the root of the function f : R \ {0} ! R, f(x) = x�1 � a. The corre-
sponding iteration is given by

x(n+1) = x(n) � f(x(n))

f 0(x(n))
= 2x(n) � a

�
x(n)
�2

.

The same algorithm can be used to compute the inverse of a given invertible matrix G,
which is known as Newton–Schulz iteration and reads

X(n+1) = 2X(n) �X(n)GX(n).

In particular, it can easily be shown that this method converges quadratically if the initial
datum is chosen such that k Id�GX(0)k < 1 for a given submultiplicative matrix norm.
Using the Newton–Schulz iteration for the inversion of the Gram matrix, we get exactly
the iterative refinement method introduced by Andersson, see [MA01, Equation 23], and
it seems that this connection has remained undiscovered until now.

In the next step, we show that compactly supported basis functions that approximate
a Gaussian profile form a frame whose dual can be explicitly specified. To transform our
original Gaussian basis into a basis with compact support, we use bump windows.

3.3.2 Bump windows and windowed basis functions

As described in detail in Section 1.1, parts of the present section (Sec. 3.3.2) overlap to
a large extent with

1. the joint publication “Fourier Series Windowed by a Bump Function” with C.
Lasser appeared in Journal of Fourier Analysis and Applications, 26(4):65, 2020;

2. the joint preprint “The Gaussian Wave Packet Transform via Quadrature Rules”
with C. Lasser submitted to IMA Journal of Numerical Analysis on 15/12/2021,
e-print available at arXiv:2010.03478.
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There seems to be no general definition of window functions, but most authors tend
to think of a real function w 6= 0 that vanishes outside a certain interval. We now in-
troduce Cs-bump windows by singling out two additional properties: On the one hand,
we require that bump windows fall o↵ smoothly at the boundary of their support, and
on the other hand, to receive a faithful windowed shape of the original function, bump
windows have to equal 1 on a closed subinterval of their support. The plots in Figure 3.8
show three di↵erent bump windows (left) and their action on  (x) = x (right).

Let us summarise these properties in a definition:

Definition 38. Let � > 0 and 0  ⇢ < �. For some s � 1 we say that the function
w⇢,� 2 Cs

c
(R) is a Cs-bump window, if the following properties are satisfied:

(1) 0  w⇢,�(x)  1, for x 2 (��,�)
(2)w⇢,�(x) = 0, for x 2 R \ (��,�)
(3)w⇢,�(x) = 1, for x 2 [�⇢, ⇢]

If ⇢ = 0, we say that the bump is degenerate. Moreover, whenever w⇢,� 2 C1

c
(R), we

say that w⇢,� is a smooth bump.

Remark 39. We note that the class of bump windows include the famous Hann and
Tukey windows, see Section 4.3. In particular, compactly supported windows can obtain
at most root exponential accuracy, see [Tad86], while smooth windows without compact
support can be used for pointwise reconstructions of exponential accuracy. For exam-
ples of non-compactly supported windows we refer to the work of Boyd in [Boy96] and
subsequent papers, who pioneered the concept of adaptive filters.

Smooth bump windows typically occur when working with partitions of unity and have
previously been used for data analysis of gravitational waves, see [DIS00, Equation 3.35]
and [MRS10, Section 2 (Equation 7)]. An example is given by the even function

w⇢,�(x) =

8
>>>><

>>>>:

1 if 0  |x|  ⇢,
1

exp
⇣

1

��|x|
+ 1

⇢�|x|

⌘
+ 1

if ⇢ < |x| < �,

0 if |x| � �.

(3.46)

As we can see in the bottom two plots of Figure 3.8, the product of a non-degenerate
bump w⇢,� and a given function  produces a (smooth) windowed shape, matching with
the original function  in [�⇢, ⇢] and tending to zero at the boundaries of (��,�).

For a given bump window w⇢,� we now consider the windowed basis functions

gw
j,k
(x) := gj,k(x)w⇢,�(x� qk), (3.47)
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Figure 3.8: Three di↵erent bump windows (left) and their action on  (x) = x (right).
The Hann window (top) can be viewed as a degenerate C1-bump, whereas
for 0 < ↵ < 1 the Tukey window (middle) is a non-degenerate C1-bump.
In general, the Cs-bump w⇢,� (bottom) is s-times, but not (s + 1)-times
continuously di↵erentiable.
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which approximate our original Gaussian basis functions gj,k with centre qk and are
compactly supported in [qk � �, qk + �]. Furthermore, analogous to the definition of the
Gaussian summation curve S(x) in (3.1), we define the windowed summation curve

Sw(x) :=
X

k2Z

|gw
0
(x� qk)|2, x 2 R, (3.48)

where gw
0
:= g0w⇢,�. In particular, Sw is strictly positive if consecutive bump windows

are su�ciently overlapping, that is, if the window parameter ⇢ satisfies

⇢ � �q

2
. (3.49)

Since on the one hand the original basis functions gj,k form an overcomplete set if the
phase space density D defined in (3.45) satisfies D > 1, and on the other hand we have
⇢ < � by the definition of bump windows, we expect that for � = ⇡"/�p the windowed
basis functions gw

j,k
also form an overcomplete set. The next lemma shows that we even

get a frame. Furthermore, the lemma shows how the windowed summation curve can
be used to construct a second frame.

Lemma 40. Recall the definition of the windowed basis functions in (3.47) and the
windowed summation curve in (3.48) for a bump that satisfies (3.49) and � = ⇡"/�p.
Moreover, let Qw := 1/Sw. Then, the following sequences are frames of L2(R):

⇢
1p
2�

gw
j,k

�

j,k2Z
and

⇢
1p
2�

Qwgw
j,k

�

j,k2Z
(3.50)

The crucial ingredient for the proof is the fact that inner products with the windowed
basis functions gw

j,k
can be viewed as windowed Fourier coe�cients and therefore the

frame condition (3.44) follows via Parseval’s equation from bounds on the windowed
summation curve, see also [QY10, Lemma 3.1].

Proof. Like Qian and Ying, we only present the proof for the second family, because the
proof for the first follows the same arguments. Let k 2 Z and consider the functions

hk(x) := Qw(x)gw
k
(x), where gw

k
:= gw

0
(x� qk), x 2 R.

Moreover, for  2 L2(R) let us introduce the functions

 k :=  hk,

as well as the windowed Fourier coe�cients

c k
(j) :=

1

2�

Z
qk+�

qk��

 k(x)e
�

i
"pjx dx

=
1

2�

Z
1

�1

 (x)Qw(x)gw
k
(x) e�

i
"pjx dx for all j 2 Z.
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To verify the frame condition (3.44), note that

����

⌧
1p
2�

Qwgw
j,k

|  
�����

2

=
1

2�

��⌦Qwgw
j,k

|  
↵��2 = 2�|c k

(j)|2.

Hence, since Parseval’s equation (see e.g. [Edw82, Chapter 8.2]) yields

X

j2Z

|c k
(j)|2 = 1

2�

Z
qk+�

qk��

| k(x)|2 dx =
1

2�

Z
1

�1

| (x)|2 |hk(x)|2 dx,

the monotone convergence theorem gives us

X

k2Z

X

j2Z

����

⌧
1p
2�

Qwgw
j,k

|  
�����

2

=
X

k2Z

Z
1

�1

| (x)|2 |hk(x)|2 dx

=

Z
1

�1

| (x)|2
X

k2Z

|hk(x)|2 dx.

Consequently, it su�ces to prove the existence of positive numbers B � A > 0 such that

A <
X

k2Z

|hk(x)|2 < B for all x 2 R,

which then yields the frame condition

Ak k2 <
X

j,k2Z

����

⌧
1p
2�

Qwgw
j,k

|  
�����

2

< Bk k2.

Since the windowed summation curve is �q-periodic (cf. Lemma 13) and, due to the
condition in (3.49), also strictly positive, Sw(x) is bounded for all x 2 R, where the
lower and upper bounds are given by

SL := min
x2[0,�q]

Sw(x) and SU := max
x2[0,�q]

Sw(x).

Consequently, the frame bounds A and B can be chosen as follows:

X

k2Z

|hk(x)|2 =
X

k2Z

|Qw(x)|2|gw
k
(x)|2 > 1

S2

U

X

k2Z

|gw
k
(x)|2 = Sw(x)

S2

U

>
SL

S2

U

=: A and

X

k2Z

|hk(x)|2 <
Sw(x)

S2

L

<
SU

S2

L

=: B.

Remark 41. The above proof shows that the frame constants A and B can be expressed
in terms of the bounds SL and SU of the windowed summation curve, and a comparison
must be made with [Grö01, Theorem 6.4.1], which extends Lemma 40 to a larger class
of compactly supported basis functions.
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We are now ready to formulate the wave packet representation used by Qian and
Ying for the fast Gaussian wave packet transform. As shown in Proposition 36, the
reconstruction of any square-integrable function  can be performed using dual frames.
Given our results so far, it seems reasonable to expect that the sequences in (3.50) form
dual frames. Indeed, we get the following result:

Proposition 42. For any  2 L2(R), we have

 =
X

j,k2Z

⌧
1p
2�

gw
j,k

|  
�

1p
2�

Qwgw
j,k

=
1

Sw

X

j,k2Z

rw
j,k
gw
j,k
, (3.51)

where the complex-valued representation coe�cients rw
j,k

2 C are given by

rw
j,k

=
�p

2⇡"
hgw

j,k
|  i.

Recall that according to Theorem 17 (RS) a wave packet  can be approximated as

 ⇡ 1

S(x)

X

j,k2Z

r(RS)

j,k
gj,k, where r(RS)

j,k
=

�p

2⇡"
hgj,k |  i. (3.52)

The relationship between (3.51) and (3.52) thus puts Theorem 17 in a new light, namely
as an error representation for the reconstruction of wave packets based on dual frames.
In addition to the proof presented by Qian and Ying, see [QY10, Lemma 3.2], we present
a new proof based on windowed Fourier series.

Proof (of Proposition 42 via windowed Fourier series).
Let  2 L2(R). For k 2 Z we introduce the windowed function

 w

k
:=  gw

k
2 L2(R).

In particular,  w

k
is compactly supported in [qk � �, qk + �]. We represent  w

k
almost

everywhere in [qk � �, qk + �] via its windowed Fourier series (cf. Proposition 49) as

 w

k
(x) =

X

j2Z

cw
 k
(j)e

i
"pjx,

where the grid points pj are given by pj = j⇡"/� and the windowed Fourier coe�cients
cw
 k
(j) are given for all j 2 Z by

cw
 k
(j) =

1

2�

Z
qk+�

qk��

 w

k
(x)e�

i
"pjx dx =

1

2�

Z
1

�1

 (x)gw
k
(x)e�

i
"pjx dx.

In particular, for all j, k 2 Z we conclude that

cw
 k
(j)e

i
"pjqk =

1

2�

Z
1

�1

 (x) gw
j,k
(x) dx =

�p

2⇡"
hgw

j,k
|  i = rw

j,k
,

70



which yields that

cw
 k
(j)e

i
"pjx = rw

j,k
e

i
"pj(x�qk) for all x 2 R. (3.53)

Consequently, using that gw
k
is compactly supported, we obtain (almost everywhere)

 (x) =  (x)

 
1

Sw(x)

X

k2Z

|gw
k
(x)|2

!
=

1

Sw(x)

X

k2Z

 w

k
(x)gw

k
(x)

=
1

Sw(x)

X

k2Z

 
X

j2Z

cw
 k
(j)e

i
"pjx

!
gw
k
(x) =

1

Sw(x)

X

j,k2Z

rw
j,k
gw
j,k
(x).

The proof of Proposition 42 shows that the coe�cients rw
j,k

are given by

rw
j,k

= cw
 k
(j)e

i
"pjqk , j, k 2 Z,

where cw
 k
(j) is the jth Fourier coe�cients of the windowed function  w

k
. Consequently,

using the fast Fourier transform (FFT) for the computation of the coe�cients rw
j,k

and its
fast inverse (IFFT) for the synthesis, we obtain a fast algorithm for the reconstruction
of arbitrary wave functions (not necessarily Gaussians). This explains why Qian and
Ying use the prefix “fast”. In particular, a detailed description of how the FFT can be
used to compute windowed Fourier coe�cients can be found in Appendix 7.3.

Remark 43. Qian and Ying use the fast computation of the representation coe�cients
for a reinitialisation algorithm and introduce a Gaussian beam method to solve the time-
dependent Schrödinger equation, see [QY10, Algorithm 4.1]. Although the FFT was used
for the first time in this context, we would like to point out that the fast computation of
frame coe�cients was already used before, see e.g. [Mal09, Chapter 5.4.1].

Decay of the representation coe�cients

For the original Gaussian basis functions gj,k we have already seen that the norms of
the representation coe�cients decrease exponentially, see Lemma 16, and therefore we
expect the coe�cients to decrease very fast also for compactly supported basis functions.
Indeed, Qian and Ying write ([QY10, Page 7857]): “For a typical initial function [...],
most of the coe�cients [...] have small norms.”, but give no rigorous explanation for
this statement. Before we close this chapter, let us justify this statement in more detail:
Since it follows that

|rw
j,k
| = |cw

 k
(j)| for all j, k 2 Z,

the decay of rw
j,k

with respect to j is given by the decay rate of the Fourier coe�cients of
the compactly supported function  w

k
, which is known to be at most root exponential,

cf. Remark 39. On the other hand, we can prove spectral convergence for the decay rate
of |rw

j,k
| with respect to k, provided that  is a Schwartz function and the bump is even:
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Lemma 44. Let  2 S(R) and assume that the bump window w⇢,� is an even function.
Then, for all s � 1, there exists a positive constant Cs > 0, depending on s, , w⇢,� and
the width � of the basis functions, such that, uniformly in j 2 Z,

|rw
j,k
|  Cs

|k|s+1
for all k 6= 0.

Proof. The relation in (3.53) yields for all j, k 2 Z:

|rw
j,k
|  1

2�

Z
1

�1

| (x) gw
0
(x� qk)| dx.

Using that the window is an even function, we conclude that

|rw
j,k
|  kg0k1

2�

Z
1

�1

| (x)|w⇢,�(qk � x) dx =
(⇡")�1/4�1/4

i

2�
(| | ⇤ w⇢,�) (qk),

and by [Fol99, Proposition 8.11] it follows that | | ⇤ w⇢,� is a real and non-negative
Schwartz function. Consequently, there exists a positive constant C(s, , w⇢,�) > 0 such
that, for all s � 1 and all x 2 R \ {0}, we have

(| | ⇤ w⇢,�) (x) 
C(s, , w⇢,�)

|x|s+1
.

Hence, the claim follows for the constant

Cs = C(s, , w⇢,�)
(⇡")�1/4�1/4

i

2�s+2
,

where we used that qk = k�.

Our analysis shows that the representation coe�cients rw
j,k

decrease rapidly, but we
do not obtain a Gaussian decay. However, depending on the choice of bump window,
the estimate in (2.10) can be used for practical applications, because it is not possible
to distinguish Gaussian functions from windowed Gaussian functions due to machine
precision (provided that the window parameter ⇢ is su�ciently large).
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3.4 Summary of this chapter

Discretisations of the FBI formula lead to discrete representations of wave functions and
the separation of position and momentum space can be used to apply e�cient rules that
go beyond simple Riemann sums. If the separation is accomplished via the Gaussian
summation curve in position space, we obtain a rescaled superposition of Gaussian wave
packets, where each basis function is rescaled by S(x). In particular, since for su�-
ciently dense grids the summation curve can be approximated by a constant depending
on the grid size, the resulting approximations lead to pure Gaussian superpositions and
correspond to a direct discretisation of the phase space integral. The rescaled basis
functions gj,k(x)/S(x) can be understood as an approximation to the dual frame formed
by the basis functions. Furthermore, for the representation of Gaussian wave packets,
the representation coe�cients resulting from the discretisation of the FBI transform can
be calculated analytically, without high-dimensional numerical integration or the inver-
sion of overlap matrices. Bump windows can be used to construct a basis of compactly
supported wave packets approximating a Gaussian profile and the corresponding rep-
resentation coe�cients are then given by windowed Fourier coe�cients. The variants
(3.2) and (3.3) of the discrete Gaussian wave packet transform based on uniform grids
in both position and momentum space can be derived in three closely related ways:

1. via the discretisation of the phase space integral in the FBI formula.

2. via the decomposition of the wave packet using the frame that is formed by the
(windowed) Gaussian basis functions.

3. via the approximation of the wave packet by windowed Fourier series.
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4 Excursus: Windowed Fourier series

As described in detail in Section 1.1, parts of the present chapter overlap to a large
extent with the joint publication “Fourier Series Windowed by a Bump Function” with
C. Lasser appeared in Journal of Fourier Analysis and Applications, 26(4):65, 2020.

In this chapter we study windowed Fourier transforms and transfer Jackson’s clas-
sical results on the convergence of Fourier series to windowed series of not necessarily
periodic functions. We start by recalling basic properties of Fourier series for functions
with bounded variation in Section 4.1. Afterwards, in Section 4.2 we present windowed
transforms and estimate the corresponding reconstruction errors. In Section 4.3 the re-
sults are then applied to bump windows, which we have already used in Section 3.3.2
for the construction of compactly supported basis functions. Finally, in Section 4.4 we
present numerical experiments that underline our theoretical results and illustrate the
advantages of bump windows.

The theory of Fourier series plays an essential role in numerous applications of contem-
porary mathematics. It allows us to represent a periodic function in terms of complex
exponentials. Indeed, any square-integrable function f : R ! C of period 2⇡ has a
norm-convergent Fourier series such that (see e.g. [BN71, Proposition 4.2.3])

f(x) =
1X

k=�1

bf(k)eikx almost everywhere,

where the Fourier coe�cients are defined according to

bf(k) := 1

2⇡

Z
⇡

�⇡

f(x)e�ikx dx, k 2 Z.

By the classical results of Jackson in 1930, see [Jac94], the decay rate of the Fourier
coe�cients and therefore the convergence speed of the Fourier series depend on the reg-
ularity of the function. If f has a jump discontinuity, then the order of magnitude of
the coe�cients is O(1/|k|), as |k| ! 1. Moreover, if f is a smooth function of period
2⇡, say f 2 Cs+1(R) for some s � 1, then the order improves to O(1/|k|s+1).

In the following we focus on the reconstruction of a not necessarily periodic function
with respect to a finite interval (��,�). For this purpose let us think of a smooth,
non-periodic real function  : R ! R, which we want to represent by a Fourier series.
Therefore, we will examine its 2�-periodic extension, see Figure 4.1. As we can see,
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�� � x

 (x)

P�

�� � x

(P� )(x)

Figure 4.1: E↵ect of the periodisation: If  (��+) 6=  (��), then the 2�-periodic exten-
sion produces jump discontinuities at ±�. Consequently, the order of the
Fourier coe�cients is O(1/|k|).

whenever  (��+) 6=  (��), the periodisation has a jump discontinuity at �, and thus
the Fourier coe�cients are O(1/|k|). An easy way to eliminate these discontinuities
at the boundary, is to multiply the original function by a smooth window, compactly
supported in [��,�]. The resulting periodisation has no jumps. Consequently, one
expects faster convergence of the windowed Fourier sums. Therefore, we investigate the
convergence speed of Fourier series windowed by compactly supported bump functions
with a plateau. The properties of these bump windows will allow an e↵ortless transfer of
Jackson’s classical results on the convergence of the Fourier series for smooth functions.

4.1 Functions of bounded variation and their
Fourier series

Let us start by recalling basic properties of the Fourier series for functions of bounded
variation. We denote by BVloc the set of functions f : R ! R, which are locally of
bounded variation, that is of bounded variation on every finite interval. In particular,
we assume that such functions are normalised for any x in the interior of the interval of
definition, see [BN71, Chapter 0.6], by

f(x) =
1

2

⇣
f(x+) + f(x�)

⌘
=

1

2

✓
lim
t!0+

f(x+ t) + lim
t!0+

f(x� t)

◆
.

We recall that a function of bounded variation is bounded, has at most a countable set
of jump discontinuities, and that the pointwise evaluation is well-defined.

4.1.1 The classical Fourier representation

Recall that any 2⇡-periodic function f 2 BVloc has a pointwise converging Fourier series,
see e.g. [BN71, Proposition 4.1.5]. Let us transfer this representation to an arbitrary
interval of length 2�:
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Lemma 45. Suppose that  2 BVloc as well as � > 0 and t 2 R. Then,

 (x) =
X

k2Z

c (k)e
ik

⇡
�x, x 2 (t� �, t+ �),

where the coe�cients c (k) are given by

c (k) :=
1

2�

Z
t+�

t��

 (x)e�ik
⇡
�x dx, k 2 Z.

For the proof of Lemma 45 and our subsequent analysis, we will use a translation, a
scaling and a periodisation operator. For the centre t 2 R and a scaling factor a > 0,
we introduce:

Tt : BVloc ! BVloc, (Tt )(x) :=  (x+ t),

Sa : BVloc ! BVloc, (Sa )(x) :=  (ax).

For the period half length � > 0, we set

P� : BVloc ! BVloc,

(P� )(x) :=

8
<

:

 (x), if x 2 (��,�),
1

2

⇣
 (��+) +  (��)

⌘
, if x = �.

Proof. Consider the 2⇡-periodic function f = P⇡S�/⇡Tt . Then, it follows from Lemma 48
that f 2 BVloc and therefore

f(x) =
1X

k=�1

bf(k)eikx, x 2 R.

The Fourier coe�cients of f are given by

bf(k) = 1

2⇡

Z
⇡

�⇡

f(x)e�ikx dx =
1

2⇡

Z
⇡

�⇡

�
S�/⇡Tt 

�
(x)e�ikx dx

=
1

2�

Z
t+�

t��

 (x)e�ik
⇡
� (x�t) dx.

Consequently, for all x 2 (t� �, t+ �) we obtain

 (x) =
�
T�tS⇡/�f

�
(x) =

X

k2Z

c (k)e
ik

⇡
�x.
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4.1.2 The classical result of Jackson

In general, even if  is a smooth function, the periodic extension f = P⇡S�/⇡Tt 2 BVloc

has jump discontinuities at ±⇡. Let V (f) < 1 denote the total variation of f . Then,
the decay of the Fourier coe�cients can be bounded (see e.g. [Edw82, Chapter 2.3.6])
as follows:

|k · c (k)| = |k · bf(k)|  1

2⇡
V (f), for all k 2 Z.

Hence, the coe�cients are O(1/|k|). As we will see in a moment, the rate of the coe�-
cients transfers to an estimate for the reconstruction errors. For an arbitrary function
f 2 BVloc of period 2⇡ let us introduce the partial Fourier sum

Snf(x) :=
nX

k=�n

bf(k)eikx, n � 1, x 2 R.

Our analysis relies on the following classical result by Jackson on the convergence of the
Fourier sum, see [Jac94, Chapter II.3 (Theorem IV)]:

Proposition 46. If f : R ! R is a function of period 2⇡, which has a sth derivative
with limited variation, s � 1, and if V is the total variation of f (s) over a period, then,
for n > 0,

|f(x)� Snf(x)| 
2V

s⇡ns
, x 2 R.

4.2 The windowed transform

In Section 3.3.2 we have introduced bump windows. Since the following results on
windowed Fourier series hold for a larger class, let us define general window functions.

Definition 47. Let � > 0. We say that a function w 2 BVloc is a window function on
the interval (��,�), if the following properties are satisfied:

(1) 0  w(x)  1, for x 2 (��,�)
(2)w(x) = 0, for x 2 R \ (��,�)

In particular, we obtain the rectangular window, if w(x) = 1 for all x 2 (��,�), and
for simplicity we just write w ⌘ 1 in this case. For  2 BVloc, a fixed parameter t 2 R
and a window w on (��,�), we introduce the windowed periodisation

 w := P⇡S�/⇡ [w ·Tt ] .

Note that  w is 2⇡-periodic. Moreover, the next lemma shows that  w 2 BVloc.

Lemma 48. Let w be a window on (��,�). Moreover, let  2 BVloc and t 2 R. Then,
the windowed periodisation  w is of bounded variation.
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Proof. Since the window w is of bounded variation, it is a bounded function and so it is
easy to see that w ·Tt is also of bounded variation. Furthermore, since the variation of
w ·Tt on a finite interval [a, b] is equal to the variation of S�/⇡ [w ·Tt ] on [a⇡/�, b⇡/�]
it su�ces to show that the periodisation operator maps BVloc to BVloc. For a function
f : [a, b] ! R and a partition P of some finite interval [a, b] we denote by V (f, P ) the
variation of f with respect to P , and by V (f) the total variation of f on [a, b]. Now, for
 2 BVloc and � > 0 consider f := P� . It remains to show that V (f |[��,�]) is a finite
number. Therefore, let

P = {�� = x0, x1, . . . , xk�1, xk = �}

be a partition of [��,�]. Then,

V (f, P ) =
kX

i=1

|f(xi)� f(xi�1)|


kX

i=1

| (xi)�  (xi�1)|+ | (��)� f(��)|+ |f(�)�  (�)|

= V ( , P ) + | (��)� f(��)|+ |f(�)�  (�)|.

Thus, taking the supremum among such partitions, we conclude that

V (f |[��,�]) = V ( |[��,�]) + | (��)� f(��)|+ |f(�)�  (�)| < 1.

4.2.1 The windowed representation

According to the classical Fourier series of the periodisation presented in Lemma 45, the
windowed series allows an alternative representation with potentially faster convergence.

Proposition 49. Let  2 BVloc and � > 0 and t 2 R. If w 2 BVloc is a window on
(��,�), then,

 (x)w(x� t) =
X

k2Z

cw
 
(k)eik

⇡
�x, x 2 (t� �, t+ �),

where the coe�cients cw
 
(k) are given by

cw
 
(k) :=

1

2�

Z
t+�

t��

 (x)w(x� t)e�ik
⇡
�x dx, k 2 Z.

The statement in the above Proposition follows as in Lemma 45, but this time for the
Fourier series of the 2⇡-periodic windowed shape  w 2 BVloc.
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Suppose that  w 2 Cs(R), s � 1, and that  (s)

w has bounded variation. Then, as it
follows from [Jac94, Chapter II.3 (Corollary I)],

|cw
 
(k)| = | b w(k)| 

V ( (s)

w )

⇡|k|s+1
, k 6= 0,

and thus the decay rate of the windowed coe�cients cw
 
improves to O (1/|k|s+1).

4.2.2 An error estimate for the representations

For n � 1 and x 2 R let

Rw

n
 (x) :=

nX

k=�n

cw
 
(k)eik

⇡
�x and Rn (x) := Rw⌘1

n
 (x) =

nX

k=�n

c (k)e
ik

⇡
�x.

Note that Rw

n
 = T�tS⇡/�(Sn w). We now transfer Jackson’s classical result in Propo-

sition 46 to an estimate for the windowed reconstruction errors in terms of the Lipschitz
constant of  (s)

w . In order not to overload the notation unnecessarily for the presentation
of the main results, we assume that � = ⇡ and t = 0, that is, both the function  and  w

are 2⇡-periodic and centred at the origin. However, all results could also be formulated
for an arbitrary choice of � > 0 and t 2 R by performing an appropriate scaling and
translation.

Theorem 50 (Reconstruction, windowed series, � = ⇡ and t = 0).

Suppose that  w 2 Cs+1(R), s � 1 and let Ls > 0 denote the Lipschitz constant of  (s)

w

over [�⇡, ⇡]. Moreover, let 0 < ⇢ < ⇡. Then, for n � 1 the error of the reconstruction
Rw

n
 in the interval [�⇢, ⇢] is given by

����� sup
x2[�⇢,⇢]

| (x)�Rw

n
 (x)|�K1( , w, ⇢)

����� 
4Ls

sns
, (4.1)

where the non-negative constant K1( , w, ⇢) � 0 is given by

K1( , w, ⇢) = sup
x2[�⇢,⇢]

⇣
| (x)|

�
1� w(x)

�⌘
.

Proof. Let V < 1 denote the total variation of  (s)

w over a period. In particular,

V =

Z
⇡

�⇡

| (s+1)

w
(x)| dx  2⇡Ls.

Hence, for all x 2 R the classical Jackson result in Proposition 46 yields

An(x) := | w(x)�Rw

n
 w(x)| = | w(x)� Sn w(x)| 

4Ls

sns
.
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Moreover, for all x 2 [�⇢, ⇢] we have 0  w(x)  1 and thus, by the reverse triangle
inequality, we obtain

| (x)�Rw

n
 (x)|

⇢

�

� ����| (x)|
�
1� w(x)

�⇢+
�

�
An(x)

���� , x 2 [�⇢, ⇢]. (4.2)

Taking the supremum proves (4.1).

Note that for w ⌘ 1 we obtain the convergence of the plain reconstruction Rn , where
K1( , w, ⇢) = 0. Theorem 50 allows a calculation of the L2-error:

Corollary 51. The L2-error of the reconstruction is given by

���k �Rw

n
 k2

L2([�⇢,⇢])
�K2( , w, ⇢)

��� 
16⇢Ls

sns
K1( , w, ⇢) +

32⇢L2

s

s2n2s
, (4.3)

where the non-negative constant K2( , w, ⇢) � 0 is given by

K2( , w, ⇢) =

Z
⇢

�⇢

| (x)|2
�
1� w(x)

�2
dx.

In particular, K2( , w, ⇢) = 0, if and only if K1( , w, ⇢) = 0.

Proof. For p 2 {1, 2} we introduce Np,n,⇢ := k w �Rw

n
 k

Lp([�⇢,⇢])
. Then, it follows from

(4.2) that for all x 2 [�⇢, ⇢]:

| (x)�Rw

n
 (x)|2

⇢

�

� ����| (x)|
�
1� w(x)

�⇢+
�

�
An(x)

����
2

,

and therefore, integration yields

k �Rw

n
 k2

L2([�⇢,⇢])

⇢

�

�
K2( , w, ⇢)

⇢
+
�

�
2K1( , w, ⇢)N1,n,⇢ +N2

2,n,⇢
.

Consequently, (4.3) follows from

N1,n,⇢ 
p

2⇢ ·N2,n,⇢  2⇢

 
sup

x2[�⇢,⇢]

An(x)

!
 8⇢Ls

sns
.

In addition to the assumptions in Theorem 50, let us assume that w(x) = 1 for all
x 2 [�⇢, ⇢]. Then, it follows that K1( , w, ⇢) = 0 and therefore K2( , w, ⇢) = 0. Hence,
the reconstruction errors converge to 0 as n ! 1. This motivates the investigation of
bump windows.
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4.3 Bump windows revisited

Recall the definition of bump windows in Section 3.3.2. A famous member of this class
is the Hann window, which can be defined as follows, see [Mal09, Chapter 4.2.2]:

Definition 52. Let � > 0. For all x 2 R the Hann window is given by

hann�(x) = cos2
⇣ ⇡
2�

x
⌘
· 1[0,�](|x|) =

1

2

h
1 + cos

⇣⇡
�
x
⌘i

· 1[0,�](|x|).

In the sense of Definition 38, the Hann window is a degenerate C1-bump. In particu-
lar, for 0 < ⇢0 < � it follows from Theorem 50 and Corollary 51, that the reconstruction
errors for a function  6= 0 on the interval [t � ⇢0, t + ⇢0] are bounded from below by
positive constants K1( , w, ⇢0), K2( , w, ⇢0) > 0. This fact can also be observed in our
numerical experiments, see Section 4.4.1 and Section 4.4.2.

The Hann window is a famous representative of windows specially used in signal
processing. As it turns out, the Hann window arises as a special candidate of a more
general class, the Tukey windows, see [Tuk67], often called “cosine-tapered windows”.
These windows can be seen as a cosine lobe convolved with a rectangular window:

Definition 53. The Tukey window with parameter ↵ 2 (0, 1] is given by

tukey
↵,�

(x) := 1[0,(1�↵)�)(|x|) +
1

2


1� cos

✓
⇡|x|
↵�

� ⇡

↵

◆�
· 1[(1�↵)�,�](|x|).

The Tukey window is a C1-bump w⇢,� with ⇢ = (1� ↵)�. In particular,

tukey
1,�

= hann� = w0,�,

and for 0 < ↵ < 1 the Tukey window is not degenerate. We note that the sum of
phase-shifted Hann windows creates a Tukey window:

Lemma 54. Let ⌧ > 0 and m � 0. Then, for ↵ = 1/(m+ 1) and � = (m+ 1)⌧ ,

mX

k=�m

hann⌧ (•� k⌧) = tukey
↵,�

.

Proof. For all x 2 R we introduce the function

H⌧,m(x) :=
mX

k=�m

hann⌧ (x� k⌧).

Obviously, H⌧,m is an even function. Thus, for all x 2 R we obtain

H⌧,m(x) =
mX

k=0

hann⌧ (|x|� k⌧) =
1

2

mX

k=0

h
1 + cos

⇣⇡
⌧
(|x|� k⌧)

⌘i
· 1[�⌧,⌧ ](|x|� k⌧)
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=
1

2

mX

k=0

h
1 + cos

⇣⇡
⌧
(|x|� k⌧)

⌘i⇣
1[(k�1)⌧,k⌧)(|x|) + 1[k⌧,(k+1)⌧)(|x|)

⌘

=
1

2

mX

k=0

h
1 + cos

⇣⇡
⌧
(|x|� k⌧)

⌘i
· 1[(k�1)⌧,k⌧)(|x|)

+
1

2

m+1X

k=1

h
1 + cos

⇣⇡
⌧
(|x|� (k � 1)⌧)

⌘i
· 1[(k�1)⌧,k⌧)(|x|)

= 1[0,m⌧)(|x|) +
1

2

h
1� cos

⇣⇡
⌧
(|x|� (m+ 1)⌧)

⌘i
· 1[m⌧,(m+1)⌧)(|x|)

+
1

2

mX

k=1

⇣
cos
⇣⇡
⌧
(|x|� k⌧)

⌘
+ cos

⇣⇡
⌧
(|x|� k⌧) + ⇡

⌘⌘
· 1[(k�1)⌧,k⌧)(|x|)

= 1[0,m⌧)(|x|) +
1

2

h
1� cos

⇣⇡
⌧
(|x|� (m+ 1)⌧)

⌘i
· 1[m⌧,(m+1)⌧)(|x|).

4.3.1 The representation for bump windows

The windowed Fourier series in Proposition 49 applies to bump functions and yields the
following representation in the restricted interval [t� ⇢, t+ ⇢]:

Corollary 55. Suppose that  2 Cs+1(R), s � 1, as well as � > 0 and 0  ⇢ < � and
t 2 R. If w⇢,� 2 Cs+1

c
(R) is a Cs+1-bump on (��,�), satisfying the three conditions in

Definition 38, then,

 (x) =
X

k2Z

cw
 
(k)eik

⇡
�x, x 2 [t� ⇢, t+ ⇢],

where the coe�cients cw
 
(k) are given by

cw
 
(k) =

1

2�

Z
t+�

t��

 (x)w⇢,�(x� t)e�ik
⇡
�x dx, k 2 Z.

In particular, if Ls > 0 denotes the Lipschitz constant of  (s)

w over [�⇡, ⇡], then,

|cw
 
(k)|  V ( (s)

w )

⇡|k|s+1
 2Ls

|k|s+1
, k 6= 0. (4.4)

We note that for w = hann� the representation in Corollary 55 shrinks to a pointwise
representation at x = t. Furthermore, the bound in (4.4) depends on the choice of the
bump w⇢,�, and for ⇢ ⇡ � the windowed transform does not lead to an improvement of
the decay for low frequencies k, because in this case the action of the bump is comparable
to a truncation of  , such that the Lipschitz constant Ls dominates. We will illustrate
this fact with numerical experiments in Section 4.4.2. Moreover, we note that for a

83



smooth bump w⇢,� 2 C1

c
(R) the coe�cients cw

 
(k) do not decay exponentially fast, since

the window is compactly supported and thus not analytic, see [Tad86]. Nevertheless,
the coe�cients of a smooth bump have an exponential rate of fractional order and the
actual rate can be classified by analysing their so-called “Gevrey regularity”, see [Tad07,
Equation 2.4].

Remark 56. In [Boy06] a smooth bump is designed such that the order of the windowed
Fourier coe�cients is root-exponential (at least for the saw wave function), wheres in
[Tan06] we find a non-compactly supported window, for which we obtain true exponential
decay. We note that Boyd and Tanner focus on an optimal choice of window parameters
in order to obtain the best possible approximation results.

4.3.2 A bound for the Lipschitz constant

We now investigate the Lipschitz constant Ls in Corollary 55. Using the work of Ore in
[Ore38], we crucially use an estimate on the higher-order derivatives of the product of
two functions, which is developed in Section 4.3.3.

For a function f : R ! R, that is (s+ 1)-times di↵erentiable, s � 1, with a (s+ 1)th
derivative bounded on a finite interval (a, b), let us introduce the non-negative constant

Cs,f = sup
x2(a,b)

|f(x)|+ (b� a)s+1

(s+ 1)!
sup

x2(a,b)

|f (s+1)(x)| � 0. (4.5)

Theorem 57 (Bound for the Lipschitz constant, � = ⇡ and t = 0).
Let 0  ⇢ < ⇡ and suppose that  2 Cs+1(R) and w⇢,⇡ 2 Cs+1

c
(R) for some s � 1.

Assume the existence of two non-negative constants M ,M s+1 � 0, such that

| (x)|  M and | (s+1)(x)|  M s+1 for all x 2 (�⇡, ⇡).

Then, the Lipschitz constant Ls in Corollary 55 is bounded by

Ls  M s+1 +M kw(s+1)

⇢,⇡
k1 +

Cs, Cs,w

(2⇡)s+1
·Ks,

where the non-negative constants Cs, , Cs,w � 0 are given by

Cs, = M +
(2⇡)s+1

(s+ 1)!
M s+1 and Cs,w = 1 +

(2⇡)s+1

(s+ 1)!
kw(s+1)

⇢,⇡
k1,

and the constant Ks > 0 is given by

Ks =
22s+1s2(3s)!

(2s+ 1)!
. (4.6)
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Proof. According to Proposition 59 in the next section, we use the bound for the (s+1)th
derivative of the product fg for f = w⇢,⇡ and g =  . This results in

Ls = sup
x2(�⇡,⇡)

����
ds+1

dxs+1

⇣
w⇢,⇡(x) (x)

⌘����  M s+1 +M kw(s+1)

⇢,⇡
k1 +

Cs, Cs,w

(2⇡)s+1
·Ks.

Moreover, for the formula of the constant Ks in (4.6) we refer to Lemma 61.

Remark 58. Stirling’s formula yields the following approximation of Ks:

Ks =
2s

2s+ 1

22ss(3s)!

(2s)!
⇠ 4ss

p
6⇡s(3s)3se�3s

p
4⇡s(2s)2se�2s

= s

r
3

2

✓
27s

e

◆s

.

The sign ⇠ means that the ratio of the quantities tends to 1 as s ! 1.

In [GT85, Lemma 3.2], Gottlieb and Tadmor present a bound for the largest maximum
norm of a windowed Dirichlet kernel (regularisation kernel) and its first s derivatives.
This bound is used to derive an error estimate for the reconstruction of a function by
a discretisation of the convolution integral with an appropriate trapezoidal sum (cf.
[GT85, Proposition 4.1]). Instead of working with the largest maximum norm of the
first s derivatives, we are now presenting a new bound for the (s + 1)th derivative of a
product of two functions. We therefore combine the Leibniz product rule with individual
bounds for intermediate derivatives, and to the best of my knowledge, this is the first
time that an explicit bound has been revealed this way.

4.3.3 Estimating higher-order derivatives of a product

If f is (s + 1)-times di↵erentiable, and if its (s + 1)th derivative is bounded on a finite
interval (a, b), then, it follows from [Ore38, Theorem 2] that all intermediate derivatives
are bounded. In particular, for all i = 1, . . . , s and all x 2 (a, b),

|f (i)(x)|  K(i, s) · Cs,f

(b� a)i
, (4.7)

where the combinatorial constant K(i, s) > 0 is defined according to

K(i, s) =
2i · s2(s2 � 12) · · · (s2 � (i� 1)2)

1 · 3 · 5 · · · (2i� 1)
, i 2 {1, . . . , s}. (4.8)

We now use the general Leibniz rule to lift this result to an explicit bound for the
(s+ 1)th derivative of the product of two functions.

Proposition 59. Let s � 1 and f, g : R ! R, both (s+1)-times di↵erentiable in a finite
interval (a, b). Assume the existence of four non-negative constants

Mf ,Mg,Mfs+1 ,Mgs+1 � 0,
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such that for all x 2 (a, b):

|f(x)|  Mf , |g(x)|  Mg and |f (s+1)(x)|  Mfs+1 , |g(s+1)(x)|  Mgs+1 .

Then, for all x 2 (a, b) we have

|(fg)(s+1)(x)|  MfMgs+1 +Mfs+1Mg +
Cs,fCs,g

(b� a)s+1
·Ks,

where the constants Cs,f , Cs,g � 0 are defined according to (4.5) and the constant Ks > 0,
which only depends on s, is given by

Ks =
sX

k=1

✓
s+ 1

k

◆
K(s+ 1� k, s)K(k, s). (4.9)

Proof. By the general Leibniz rule the (s+ 1)th derivative of fg is given by

(fg)(s+1) =
s+1X

k=0

✓
s+ 1

k

◆
f (s+1�k)g(k).

We therefore obtain the following estimate for all x 2 (a, b):

|(fg)(s+1)(x)| 
s+1X

k=0

✓
s+ 1

k

◆
|f (s+1�k)(x)||g(k)(x)|

 MfMgs+1 +Mfs+1Mg +
sX

k=1

✓
s+ 1

k

◆
|f (s+1�k)(x)||g(k)(x)|.

Using (4.7) for 1  k  s, we conclude that

|f (s+1�k)(x)|  K(s+ 1� k, s) · Cs,f

(b� a)s+1�k
,

|g(k)(x)|  K(k, s) · Cs,g

(b� a)k
,

and thus

|(fg)(s+1)(x)|  MfMgs+1 +Mfs+1Mg +
Cs,fCs,g

(b� a)s+1
·Ks.

Remark 60. The bound

|f (i)(x)|  K(i, s) · Mf

(b� a)i
, x 2 (a, b),

for a polynomial f of degree s is due to W. Marko↵ (1916) and it is known that the
equality sign is attained for the Chebyshev polynomials, see [MG16].
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4.3.4 The combinatorial constant

Next, we will investigate the combinatorial constant Ks and derive formula (4.6) pre-
sented in Theorem 57.

Lemma 61. Let s � 1. The combinatorial constant Ks > 0 in (4.9) satisfies

Ks =
22s+1s2(3s)!

(2s+ 1)!
. (4.10)

Proof. We start by rewriting the constant K(i, s) that has been defined in (4.8). Let
i 2 {1, . . . , s}. For the numerator we obtain

2i · s2 · (s2 � 12) · · · (s2 � (i� 1)2) = 2i · s

s+ i
· (s+ i)!

(s� i)!
.

For the denominator we have

1 · 3 · 5 · · · (2i� 1) =
(2i� 1)!

2i�1(i� 1)!
=

(2i)!

2ii!
.

Hence, we can rewrite K(i, s) as

K(i, s) = 2i · s

s+ i
· (s+ i)!

(s� i)!
· 2

i · i!
(2i)!

=
s

s+ i
· 22i · i! ·

✓
s+ i

2i

◆
,

and the summands that define the number Ks in (4.9) can be expressed as
✓
s+ 1

k

◆
K(s+ 1� k, s) ·K(k, s)

= 22s · (s+ 1)! · (2s)2 · (s+ k � 1)! · (2s� k)!

(2k)! · (s� k)! · (2s� 2k + 2)! · (k � 1)!
.

Therefore we conclude that

Ks = 22s · (s+ 1)! ·
s�1X

k=0

(s+ k)! · (2s� k � 1)! · (2s)2
(2k + 2)! · (s� k � 1)! · (2s� 2k)! · k! (4.11)

= 22s · (s+ 1)! ·
s�1X

k=0

✓
2s� k

k

◆
2s

2s� k
·
✓
s+ k + 1

s� k � 1

◆
2s

s+ k + 1

�
.

Finally, let us introduce

j(2s) =

✓
2s� j

j

◆
2s

2s� j
for j = 0, 1, . . . , s� 1.

Recognising our constant Ks as a Vandermonde-type convolution and using the repre-
sentation in [Gou56, Equation 4], we write

Ks = 22s(s+ 1)!
s�1X

k=0

k(2s)s�k�1(2s) = 22s(s+ 1)!s�1(4s)
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= 22s(s+ 1)!

✓
3s+ 1

s� 1

◆
4s

3s+ 1
=

22s+1s2(3s)!

(2s+ 1)!
.

In Appendix 7.4 we derive an upper bound for Ks based on binomial coe�cients.

4.4 Numerical experiments

According to our results in Theorem 50 and Corollary 55 we present numerical exper-
iments for three di↵erent functions. We investigate reconstructions with the smooth
bump w⇢,� given by (3.46), compared to those with the Hann window in Definition 52
and the Tukey window in Definition 53. Besides the reconstructions we also present the
decay of the coe�cients and the reconstruction errors.
In Section 4.4.1 we start with the saw wave function to demonstrate the superiority of
the windowed transform with a smooth bump for a function having a high jump dis-
continuity. Afterwards, the experiments in Section 4.4.2 deal with a parabola function.
The symmetric periodic extension has no discontinuities, and therefore the parabola is
a good candidate to illustrate the limitations of bump windows. Last, in Section 4.4.3
we work with a rapidly decreasing function. As we will see in this example, for low
frequencies all coe�cients (plain, tukey, bump) have a rapid initial decrease, implying
excellent reconstructions.

Remark 62. In the following experiments, the dependency of the windows on the pa-
rameters �, ⇢ and ↵ are always assumed implicitly and therefore we write

hann = hann�, tukey = tukey
↵,�

, bump = w⇢,�.

For the numerical computation of the (windowed) coe�cients we used the fast Fourier
transform, see Appendix 7.3.

4.4.1 Saw wave function

In the first example we consider the function

 (x) = x,
h
� = ⇡, ⇢ = 0.9⇡, t = 0

i
.

The corresponding periodic extension P� results in a saw wave function.

We note that c (k) and chann
 

(k) can be evaluated analytically and are given by

c (k) = i · (�1)k

k
, k 2 Z \ {0}, chann

 
(k) = �i · (�1)k

2k(k2 � 1)
, k 2 Z \ {�1, 0, 1}
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Figure 4.2: Decay of the coe�cients (above) and reconstruction errors (below) for the
saw wave. The plain coe�cients (orange) have order O(1/|k|), while the
coe�cients for the bump (green) show exponential decay (upper right side).
For the Hann window the errors converge to constant values larger than 1
(red crosses).
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Figure 4.3: Plot of the reconstructions R10 and Rw

10
 for the saw wave. For x 2 [�⇢, ⇢]

(dotted lines) the bump-windowed reconstruction (green) matches well with
the original function and the typical overshoots (Gibbs phenomenon) of the
Fourier sum (orange) are dampened. The reconstruction with the Hann
window (blue) is accurate only in a small neighborhood of 0.

and c (0) = chann
 

(0) = 0, chann
 

(�1) = �chann
 

(1) = 3i/8. Moreover, since  is a real
function, we conclude that

cw
 
(�k) = cw

 
(k), k 2 Z.

The upper left-hand side of Figure 4.2 shows |c (k)|2 = 1/k2, as well as |cw
 
(k)|2 for

both windows (hann and bump). We observe that the windowed coe�cients have a
faster asymptotic decay than the plain Fourier coe�cients. The coe�cients and the
reconstruction errors for the bump (green) show the best asymptotic decay. As we
observe in the upper right plot of Figure 4.2, the bump-windowed coe�cients show
exponential initial decay. In particular, we recognise a trembling for these coe�cients,
while the other (plain and hann) have a smooth decay. We provide an explanation of
this phenomenon in Appendix 7.5. The reconstructions R10 and Rw

10
 are visualised in

Figure 4.3. For the bump we recognise a good convergence to the original function  in
[�⇢, ⇢] (dotted lines), and the typical overshoots of the Fourier sum at the discontinuity
(Gibbs phenomenon, see e.g. [Tad07, Section 3]) are dampened. As expected, the
reconstruction with the Hann window is accurate only in a small neighborhood of the
centre t = 0, and according to Theorem 50 and Corollary 51 the reconstruction errors
converge to K1( , w, ⇢), K2( , w, ⇢) > 0. For the saw wave these constants can be
calculated analytically in terms of � and ⇢, and their values are given by K1 ⇡ 8.91 and
K2 ⇡ 2.76. We have marked these values with red crosses and observe a perfect match.

Remark 63. As we have discussed in Section 4.3.1, the coe�cients of the bump do not
fall exponentially fast for all k, since the bump is not analytic. However, in [Boy06] the
author presents a smooth bump that is based on the erf-function, such that the Fourier
coe�cients for the saw wave fall exponentially fast (exponential of the square root of k).
This is achieved by an optimisation of the corresponding window parameters. In view of
the bump used here, this relates to an optimal choice of ⇢.
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Figure 4.4: Decay of the representation coe�cients for the parabola with ⇢1 = 0.25
(left) and ⇢2 = 0.8 (right). Again, the coe�cients for the bump show a fast
asymptotic decay.

4.4.2 Parabola

We consider the symmetric function

 (x) = x2,
h
� = 1, ⇢1 = 0.25, ⇢2 = 0.8, t = 0

i
.

Note that

c (k) =
2(�1)k

k2⇡2
, k 2 Z \ {0}, chann

 
(k) =

(�1)k(1� 3k2)

k2(k2 � 1)2⇡2
, k 2 Z \ {�1, 0, 1},

as well as

c (0) =
1

3
, chann

 
(0) =

1

6
� 1

⇡2
, chann

 
(�1) = chann

 
(1) =

1

12
� 7

8⇡2
.

The plots in Figure 4.4 show the decay of the coe�cients. Especially for low fre-
quencies, the coe�cients for the Hann window show the fastest decay. Nevertheless,
we observe once more that the bump coe�cients and errors have the best asymptotics,
see Figure 4.5. As for the saw wave, the constants K1( , w, ⇢) and K2( , w, ⇢) can be
calculated analytically and are given by

K1 ⇡
(
9.1 · 10�3, if ⇢ = 0.25,

0.58, if ⇢ = 0.8,
and K2 ⇡

(
4.7 · 10�6, if ⇢ = 0.25,

0.075, if ⇢ = 0.8.

We have marked these values with red crosses and verify the predicted convergence of
the errors. The reconstructions R50( ) and Rw

50
( ) are visualised in Figure 4.6. For

the first choice ⇢1 = 0.25 (left) the bump-windowed series approximates the original
function only in the small interval [�⇢1, ⇢1] = [�0.25, 0.25]. We note that the periodic
extension of the parabola has no discontinuities and therefore the plain reconstruction
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Figure 4.5: Reconstruction errors for the parabola with ⇢1 = 0.25 (left) and ⇢2 = 0.8
(right). For the second choice the smooth bump has a large derivative in the
interval (0.8, 1), implying a large Lipschitz constant Ls. Consequently, for
low frequencies the errors are worse than for the plain coe�cients.
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Figure 4.6: Reconstructions of the parabola. For ⇢2 = 0.8 (right) the bump-windowed
shape (green) has a large derivative in (0.8, 1), implying a slow decay of
the windowed coe�cients. For ⇢1 = 0.25 (left) the coe�cients fall o↵ much
faster, but the reconstruction is faithful only in a small interval, comparable
to the Hann window.
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Figure 4.7: Coe�cients (left) and reconstructions R10 and Rw

10
 (right) for the rescaled

Hermite function. All coe�cients show a rapid decrease for low frequencies
and thus we obtain excellent reconstructions for all series.

gives a good approximation, even with few coe�cients.

For a bad choice of the parameter ⇢, the reconstruction with the bump gets worse.
According to Theorem 57, the Lipschitz constant Ls is getting large as ⇢! �, implying a
slow decay for low frequencies, which can particularly be observed for the choice ⇢2 = 0.8.
This value leads to a large derivative of the smooth bump w0.8,1 in the interval (0.8, 1).
For low frequencies, the coe�cients and the errors for the bump show a slow decay (right
plots in Figure 4.4,4.5) and are even worse than for the plain Fourier series.

4.4.3 A function of rapid decrease

We also applied the windowed reconstructions to

 (x) =
�
8x3 � 24x2 + 12x+ 4

�
e�(x�1)

2
/2,

h
� = 2⇡, ⇢ = 5.9, t = 1

i
.

We note that  (x + 1) is the product of the Hermite polynomial H3(x) = 8x3 � 12x
times a Gaussian, i.e., a rescaled Hermite function. For the centre we chose t = 1. In
contrast to the previous examples, we now work with the Tukey window for ↵ = 1�⇢/�,
see Definition 53. We recall that this window is a non-degenerate C1-bump. The 2�-
periodic extension of  produces discontinuities with very small jumps, which can only
be resolved with high frequencies. Consequently, for low frequencies all coe�cients are
almost the same and fall o↵ rapidly, see Figure 4.7. Nevertheless, the plain coe�cients
are O(1/|k|), while the coe�cients for the smooth bump again show the best asymptotic
decay. For the reconstructions we used R10 and Rw

10
 . As we observe in the right plot

of Figure 4.7, the rapid decrease of the coe�cients yields excellent reconstructions and
no di↵erences can be determined to the original function.
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4.5 Summary of this chapter

The periodisation of smooth functions usually creates jump discontinuities and therefore
the Fourier coe�cients decay slowly. Bump windows can be used to avoid this e↵ect.
The corresponding windowed Fourier coe�cients have a faster decay, which implies that
the pointwise reconstruction via the windowed Fourier series converges faster in the
region where the bump has its plateau. In particular, the decay rate of the windowed
Fourier coe�cients depends on the Lipschitz constant of the windowed periodisation. In
Theorem 57 we presented a new bound for the Lipschitz constant based on an explicit
bound for derivatives of the product of two functions.
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5 The Time-Sliced Thawed Gaussian
Propagation Method

As described in detail in Section 1.1, parts of the present chapter overlap to a large
extent with the joint preprint “An Error Representation for the Time-Sliced Thawed
Gaussian Propagation Method” with C. Lasser submitted to Numerische Mathematik
on 27/08/2021, e-print available at arXiv:2108.12182.

In this chapter, we study the time-sliced thawed Gaussian propagation method intro-
duced in 2016 by Kong et al. for solving the time-dependent Schrödinger equation

i"@t (x, t) = �"
2

2
�x (x, t) + V (x) (x, t),  (x, 0) =  0 2 L2(Rd), (5.1)

based on the concatenation of thawed Gaussian propagation steps. We present a detailed
mathematical description of all subroutines, which allows a direct comparison with other
state-of-the-art methods and the derivation of a rigorous error representation. Since the
representation of Gaussian wave packets according to the discretisation of the FBI for-
mula is the central tool of the TSTG method, our results from Chapter 3 will play an
important role here.

The chapter is organised as follows: After presenting a detailed description and the
connections to other methods in Section 5.1, we investigate the errors generated by
the individual subroutines and their concatenation, which includes error analysis of
thawed Gaussian approximations and time discretisation for both variationally and non-
variationally evolving basis functions in Section 5.2. The full error representation of
the method is then discussed in Section 5.3. Finally, the one-dimensional numerical
experiments in Section 5.4 support our theoretical results and illustrate the applicability
of the method to simulations of quantum dynamics, including tunneling dynamics in a
double-well potential.

5.1 Mathematical description of the method

Let {zn}n2� be a given grid in phase space and recall that we use the notation gn = gzn for
a multi-index n 2 � ⇢ N2d and the Gaussian wave packet gz in (2.2). In the following we
work with time-evolved basis functions, and to make clear that we distinguish between
original and time-evolved basis functions, we write gn,0 for the original and gn(t) for the
time-evolved basis functions at time t > 0.
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Based on the time-independent linear approximation space

V� := span
�
gn,0 2 L2(Rd) : n 2 �

 
⇢ L2(Rd),

the TSTG method approximates the solution  of the Schrödinger equation (5.1) with
time-dependent coe�cients as follows,

 (t) ⇡  �(t) :=
X

n2�

cn(t) gn,0, (5.2)

where the coe�cients cn(t) result from a concatenation of thawed Gaussian propagation
steps for the basis functions gn,0 with the reinitialisation of the time-evolved basis in
the time-independent approximation space V�. To formulate the underlying equations
of motion for the coe�cients, we extend the quadrature-based pair of operators A� and
S� = A⇤

�
from Definition 25 by the so-called reinitialisation operator , which can be

viewed as a multidimensional version of the matrix-vector product and is defined for a
given tensor C 2 C�⇥� by

R�(C) : C� ! C�, (cn) 7!
X

n02�

Cn,n0cn0 .

Remark 64. Note that the approximation space V� depends on the underlying phase
space grid {zn}n2�. Kong et al. used uniform grids, but other choices are also possible.

With the triplet (A�,S�,R�) in hand, we can now formulate the TSTG method, which
starts to run through the following three subroutines:

(s1) Representation coe�cients of the initial wave function:
The first subroutine calculates the inner products

A� 0 = (hgn,0 |  0i) 2 C�,

which can be used to reconstruct a given initial wave function  0 as follows:

 0 ⇡ A⇤

�
A� 0 =

X

n2�

wnhgn,0 |  0i gn,0 =
X

n2�

cn( 0) gn,0 2 V�

(s2) Thawed Gaussian propagation of the basis functions :
Recall the definition of the approximation manifold M in (2.7). In the second
subroutine of the TSTG method, each individual basis function gn,0 is propagated
for a short propagation period ⌧ > 0. More precisely, each time-evolved basis
function gn(⌧) is approximated by an element un(⌧) in the manifold M according
to the thawed Gaussian propagation method, see [Hel75] and Section 5.2. Based
on a numerical integrator for the corresponding equations of motion, we introduce
the numerical propagator

U ⌧

n : M ! M, gn,0 7! u⌧n, (5.3)
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where the superscript indicates that u⌧n 2 M is the numerical approximation to
un(⌧) obtained by solving a system of ordinary di↵erential equations (see [KMB16,
Equation 17] and Section 5.2). Then, for all n 2 �, the second subroutine produces
the numerical approximations

u⌧n = U ⌧

n gn,0 ⇡ gn(⌧).

Remark 65. It is known that the thawed Gaussian un(⌧) is an accurate approxi-
mation to the true solution gn(⌧) only if the potential V in the Schrödinger equation
can be approximated as harmonic over the entire “support” of un(⌧), i.e., as long
as its width is not too wide, see also Lemma 72 for a precise estimate.

(s3) Computation of coe�cients for the reinitialisation:
The numerical approximations u⌧n 2 M obtained in subroutine (s2) are now re-
expanded in V�. For all n 2 � we apply the analysis operator A� to the Gaussian
wave packet u⌧n, which gives us the inner products

A�u
⌧

n = (hgn0,0 | u⌧ni) 2 C�.

The result of the third subroutine is then a tensor C⌧ 2 C�⇥� containing the
coe�cients C⌧n0,n := cn0(u⌧n) = wn0hgn0,0 | u⌧ni for all n,n0 2 �. In particular,
this tensor is obtained without numerical integration, since all coe�cients
sample inner products of two Gaussians and can be calculated by hand according
to Lemma 7.

Remark 66. Note that the approximation u⌧n,� 2 V� of u⌧n is given by

u⌧n,� := A⇤

�
A�u

⌧

n =
X

n2�

wn0hgn,0 |  0i gn,0 =
X

n02�

cn0(u⌧n) gn0,0.

Once we run the above subroutines, we are equipped with the tensor A� 0 for the
approximation of the initial wave function and the tensor C⌧ 2 C�⇥� containing the
coe�cients cn0(u⌧n). We therefore obtain an approximation of the solution  (⌧) to the
Schrödinger equation at time ⌧ as follows,

 (⌧)
(s1)

⇡ U(⌧)A⇤

�
A� 0

(s2)

⇡
X

n2�

cn( 0)U ⌧

n gn,0 =
X

n2�

cn( 0) u
⌧

n

(s3)

⇡
X

n2�

cn( 0)A⇤

�
A�u

⌧

n =
X

n2�

cn( 0)u
⌧

n,�

=
X

n2�

 
X

n02�

C⌧n,n0cn0( 0)

!
gn,0 = A⇤

�
R⌧

�
A� 0 =:  1,⌧

�
,
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where we have changed the names of the indices n and n
0 to get to the third line and

introduced the notation R⌧

�
:= R�(C⌧ ). Furthermore, using that the unitary propagator

U(t) = e�iHt/" can be decomposed for n > 1 as

U(n⌧) = U(⌧) · U(⌧) · · ·U(⌧),

single TSTG propagation steps can be concatenated to approximate the solution at
times 2⌧, 3⌧, . . . , where for the (n + 1)th iteration the result  n,⌧

�
of the nth iteration

is used as the new initial datum. This results in the following approximation at larger
times tn = n⌧ ,

 (tn) ⇡ A⇤

�
(R⌧

�
)n A� 0 =:  n,⌧

�
,

where we have replaced the operator A�A⇤

�
in the intermediate steps with the identity,

because the coe�cients from a previous step can be kept in memory. In particular,
reinitialising the time-evolved basis functions yields that the coe�cients of  n,⌧

�
are

given for all n 2 � by the following recursion formula:

(cn,⌧n ) := (R⌧

�
)n (cn( 0)) = R⌧

�

�
(R⌧

�
)n�1 (cn( 0))

�

=
X

n02�

cn�1,⌧

n0 cn(u
⌧

n0), c0,⌧n := cn( 0).
(5.4)

Finally, it should be noted that the coe�cients (and hence the approximation) are it-
eratively updated on the discrete time grid 2⌧, 3⌧, . . . and therefore (5.2) should be
rewritten for a fixed propagation time tn as follows:

 (tn) ⇡  n,⌧

�
=
X

n2�

cn,⌧n gn,0

5.1.1 Comparison with the Galerkin method

Looking at the ansatz in (5.2), one could determine the corresponding time-dependent
coe�cient tensor c = (cn) using the standard Galerkin method, which yields a linear
system of ordinary di↵erential equations and is derived from the condition that

@t �(t) 2 V� is such that
⌦
' | �i"@t �(t) +H �(t)

↵
= 0 for all ' 2 V�.

(5.5)

With the orthogonal projection P : L2(Rd) ! V� onto the approximation space, the
Galerkin condition (5.5) can also be written as

i"@t � = PH �.

However, in order to achieve a certain accuracy for the discretisation of the wave packet
transform, the grid points zn must be chosen su�ciently dense, which means that the
basis functions have a large overlap and therefore, as discussed in Section 3.3.1, the
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Gram matrix of the Galerkin method becomes ill-conditioned. One way around this
problem would be to replace the Gaussian basis functions with an orthonormal basis,
which implies that the Gram matrix becomes the identity. A comparison must be
made with the Galerkin method in [Lub08, Chapter III.1.1], where the time-independent
approximation space is spanned by the first N � 1 Hermite functions

'n(x) :=
1p

2nn!
p
⇡

dn

dxn
e�x

2
, n = 0, 1, . . . , N � 1, x 2 R,

which are known to form an orthonormal set. While this choice of basis functions
solves the ill-conditioned inversion problem of the Gram matrix and provides a simple
representation of the orthogonal projection, namely

P =
N�1X

n=0

h'n |  i'n,  2 L2(R), (5.6)

which is used in [Lub08, Chapter III.1.1 (Theorem 1.2)] to derive the approximation
error of the Galerkin method, in practical applications the dimension of V� must be
chosen large in order to compute the time-evolution of the wave function with su�cient
accuracy. For instance, for simulations of tunnelling in double-well potentials (quartic
potentials with two local minima separated by energy barriers) as presented later in
Section 5.4.2, the Hermite basis is expensive because the functions are localised by a
Gaussian envelope and therefore the degree of the polynomial prefactors must be chosen
large to capture both minima of the potential. Besides the Hermite functions, we would
also like to mention the Galerkin approximation for Hagedorn functions, a generalisation
of the Hermite functions based on a Gaussian amplitude with arbitrary width matrix in
the Siegel upper half-space, see e.g. [LL20, Section 4.3] and [GH14, BG20].

Remark 67. Like the Galerkin method, the TSTG method is based on a time-independent
approximation space. We note that time-dependent approximation spaces have also been
studied in the past. For example, linear combinations of time-evolved frozen Gaussians
were proposed by Heller, see [Hel81].

Orthogonal projections: frames revisited

As we have already mentioned above, the projection operator is typically used to esti-
mate the approximation error of the Galerkin method, see e.g. [Lub08, Chapter III.1.1
(Theorem 1.3)] for the Hermite basis. While there is a simple representation of the
projection operator for orthonormal bases, cf. (5.6), the situation is more di�cult for
the approximation space V�, which is based on the non-orthogonal Gaussian functions.
Let us briefly discuss how to calculate the orthogonal projection on V�.

The first observation is that {gn}n2� is a frame of V�, which obviously follows from
our assumption that � is a finite index set. Thus, if {g̃n}n2� denotes the dual frame, it
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follows from Proposition 36 that any function  2 V� can be represented as

 =
X

n2�

hg̃n |  i gn =
X

n2�

hgn |  i g̃n,

and therefore it is reasonable to expect that the orthogonal projection can be written as

P =
X

n2�

hg̃n | •i gn =
X

n2�

hgn | •i g̃n.

The next proposition was taken from [Mal09, Theorem 5.6] and shows that this repre-
sentation of the projection is indeed valid.

Proposition 68. Let V be a subspace of the Hilbert space H. Moreover, let {�n}n2�
be a frame of V and {�̃n}n2� its dual frame in V. Then, the orthogonal projection of
 2 H in V is given by

P =
X

n2�

h�̃n, iH �n =
X

n2�

h�n, iH �̃n. (5.7)

The following proof was taken from [Mal09, Theorem 5.6]:

Proof. Since both frames are dual in V , if  2 V , then Proposition 36 proves that the
operator P in (5.7) satisfies P =  . To prove that it is an orthogonal projection, it is
su�cient to verify that if  2 H then h�m, � P iH = 0 for all m 2 �. Indeed,

h�m, � P iH = h�m, iH �
X

m2�

h�n, iHh�m, �̃niH = 0,

because the dual frame property implies that

X

m2�

h�m, �̃niH �n = �m.

Since we have no analytic expression of the dual frame for a finite number of Gaussian
basis functions, we learn from Proposition 68 that there is no analytic representation of
the orthogonal projection P : L2(Rd) ! V�. Furthermore, we observe that discretisations
of the FBI formula can be understood as approximations to the projection operator,
which in the limit V� ! L2(Rd) converge to the identity operator

IdL2(Rd) = (2⇡")�d

Z

R2d

|gzihgz| dz := (2⇡")�d

Z

R2d

hgz | •i gz dz,

where we have used the bra-ket notation in the middle of the equation.
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5.2 Gaussian wave packet dynamics

This section deals with the thawed Gaussian propagation of the basis functions gn,0 2 M.
The main result is the error representation for a single TSTG step in Proposition 75,
which combines an estimate for thawed Gaussian approximations with an estimate for
the numerical integration of the underlying equations of motion.

Recall that in subroutine (s2) the individual basis functions are propagated according
to the (non-variational) thawed Gaussian equations for z 2 R2d, C 2 S+(d) and S 2 C,
which combine the Hamiltonian system

ż(t) = Jrh(z), h(z) =
1

2
|p|2 + V (q), J =

✓
0 Idd

� Idd 0

◆
2 R2d⇥2d (5.8)

for the motion of the centre z(t) with equations for C(t) and S(t) which ensure that we
obtain exact solutions in the presence of a quadratic potential. In addition to the work of
Kong et al., other propagation methods are also possible as long as the approximations
un(⌧) lie in the Gaussian manifold M so that the coe�cients for the re-expansion can be
calculated analytically. An alternative is o↵ered, for example, by variationally evolving
Gaussian wave packets, which are employed in this dissertation and have not yet been
used in connection with the TSTG method.

5.2.1 Variational approximation

Suppose that for a given time interval [0, T ] we want to approximate the solution of the
Schrödinger equation

i"@t (x, t) = H (x, t),  (x, 0) =  0 2 M,

by a Gaussian wave packet u(t) = u(•, t) 2 M. By requiring that

@tu(t) 2 Tu(t)M is chosen such that
⌦
v | �i"@tu(t) +Hu(t)

↵
= 0 for all v 2 Tu(t)M,

(5.9)

we guarantee that @tu(t) is given by the unique element w in the tangent space Tu(t)M
at u(t) such that

����w � 1

i"
Hu

���� is minimal,

or, in other words, @tu(t) is the orthogonal projection of 1

i"
Hu onto the tangent space,

which can also be written as

i"@tu(t) = PuHu.

The condition (5.9) is called the Dirac–Frenkel time-dependent variational approxima-
tion principle and we refer to [Lub08, Chapter II.1] for further discussion and properties
of variational approximations such as norm and energy conservation.
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Remark 69. Note that the Galerkin condition (5.5) can be viewed as the time-dependent
variational principle on the linear approximation space V�, see [Lub08, Chapter III.1.1].

Recall Lemma 6 which states that for all di↵erential operators A of order  2 and
u 2 M it holds that Au 2 TuM. Consequently, it follows for a quadratic potential that
Hu 2 TuM and thus the approximation u(t) and the correct solution  (t) satisfy the
same di↵erential equation. This proves that the variational approximation for quadratic
potentials is exact. The following result was taken from [LL20, Proposition 3.2].

Proposition 70. If the potential V in the time-dependent Schrödinger equation (5.1) is
quadratic, then the variational approximation is exact, that is, u(t) =  (t) for all t 2 R,
provided that the initial wave function is a Gaussian, u(0) =  (0) 2 M.

For the proof of Proposition 70 we refer to [LL20, Proposition 3.2].

We will see in a moment that under suitable conditions for the potential and the
spectrum of the time-dependent width matrix C(t), variational Gaussians provide ap-
proximations of order O(

p
"). The corresponding equations of motion for the Gaussian

parameters were first derived by Coalson and Karplus, see [CK90]. Using Hagedorn’s
parametrisation C = PQ�1 introduced in Section 2.1.1, these equations read

q̇ = p and ṗ =� hrxV iu,

Q̇ = P and Ṗ =� hr2

x
V iuQ, (5.10)

S(t) =

Z
t

0

✓
1

2
|p(s)|2 � hV iu(s) +

"

4
tr
⇣
Q(s)⇤hr2

x
V iu(s)Q(s)

⌘◆
ds,

where we denote by hW iu := hu | Wui, W 2 {V,rxV,r2

x
V }, the expected values. In

particular, for the propagation of the basis function gn,0 according to subroutine (s2)
the initial conditions are given by

zn(0) = zn, Qn(0) = Im(C0)
�1/2, Pn(0) = C0Qn(0) and Sn(0) = 0,

where Im(C0)1/2 is the unique positive definite square root of Im(C0) > 0.

Remark 71. To obtain the equations of motion for the non-variational thawed Gaus-
sians used by Kong et al., we have to replace the equations in (5.10) for the parameters
(q(t), p(t), Q(t), P (t)) by the point evaluations

q̇ = p and ṗ =� V (q),

Q̇ = P and Ṗ =�r2

x
V (q)Q,

S(t) =

Z
t

0

✓
1

2
|p(s)|2 � V

�
q(s)

�◆
ds,
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which are computationally less demanding than the variational equations. In particular,
this implies that the matrix Z(t) = (Q(t), P (t)) is a solution of the linearisation of the
classical equations

Ż(t) = Jr2h(z(t))Z(t),

where the function h and the matrix J are defined according to (5.8). We also note
that the matrix conditions in (2.3) and (2.4) ensure the correct normalisation of the
approximation u 2 M and that the above equations agree with those in (5.10) in the
presence of a quadratic potential. Like variational Gaussians, non-variational Gaussians
yield approximations of order O(

p
"), see Lemma 72.

5.3 Error representation

The next lemma presents the accuracy of the thawed Gaussian methods and extends
the results for the L2-error for variational Gaussians in [LL20, Theorem 3.5] to non-
variational Gaussians. We note that the first L2-error for non-variational Gaussians was
proved by Hagedorn, see [Hag98, Theorem 2.9].

Lemma 72. Assume that

• the eigenvalues of the positive definite width matrix Im(C(t)) are bounded from
below by a constant ⇢ > 0, for all t 2 [0, ⌧ ].

• the potential function V is three times continuously di↵erentiable with a polynomi-
ally bounded third derivative.

Moreover, assume that u(t) 2 M is an approximation to the Schrödinger equation (5.1)
that results from the variational or non-variational thawed Gaussian propagation method.
Then, there exists a positive constant C(1) > 0 such that the error between the approxi-
mation u(t) and the solution  (t) is bounded in the L2-norm by

ku(t)�  (t)k  C(1) t
p
", 0  t  ⌧, (5.11)

where C(1) is independent of " and t but depends on ⇢.

The estimate in (5.11) shows that thawed Gaussian approximations produce errors
that increase linearly in t, where a small semiclassical parameter yields an improvement
by a factor

p
" for the constant C(1). Crucial to the proof of Lemma 72 is the fact that

both the variational and non-variational approximations are exact provided the potential
is quadratic, see Proposition 70. Therefore, the estimate results from a bound for the
defect of the cubic part of the potential.

Proof. Let Uq : Rd ! R denote the second-order Taylor polynomial of V at q and let
Wq : Rd ! R be the corresponding remainder, i.e.,

V = Uq +Wq.
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Since the approximation u(t) 2 M is the exact solution to

i"@tu(t) = �"
2

2
�xu(t) + Uq(t)u(t), u(0) =  (0) =  0,

we obtain

@t(u�  ) =
1

i"
H(u�  )� 1

i"
Wqu,

where

kWquk = (⇡")�d/4 det(ImC)1/4 · · ·
✓Z

Rd

|Wq(x)|2 exp
✓
�1

"
(x� q)T ImC(x� q)

◆
dx

◆1/2

.

Moreover, using thatWq(x) is the non-quadratic remainder at q, an estimate for moments
of Gaussian functions (see [LL20, Lemma 3.8]) yields the existence of a constant C(1) > 0,
depending on ⇢, such that

kWquk  C(1) "3/2.

Consequently, since u�  satisfies the Schrödinger equation up to the defect

d(t) = � i

"
Wq(t)u(t),

we finally conclude that

ku(t)�  (t)k 
Z

t

0

kd(s)k ds = 1

"

Z
t

0

kWq(s)u(s)k ds  C(1)t
p
".

Remark 73. We note that the equations of motion for the variational and non-variational
thawed Gaussian methods are di↵erent and we therefore obtain individual lower bounds
for the eigenvalues of the width matrix, so that, although we have omitted this depen-
dency in our notation of Lemma 72, we obtain individual constants for the two methods.
In particular, the estimate of Lasser and Lubich for Gaussian moments shows that the
constant C(1) depends on the third derivative of V and is of order ⇢�3/2 with respect to
the spectral parameter ⇢. We also mention that, in contrast to the computation of the
full wave function, the error in the expected value of observables improves to an order
O(") accuracy, see [LL20, Theorem 3.5b].

For the thawed Gaussian propagation of the basis functions gn,0 we see that the prop-
agation time ⌧ must be chosen in such a way that we obtain accurate approximations
for all n 2 �. With this in mind, it should be noted that small values of ⌧ lead to
more concatenation steps to approximate the solution for a fixed final time. We present
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numerical experiments for the dependency on ⌧ in Section 5.4.1. Frozen Gaussian ap-
proximations would also be possible, see [Hel81]. On the one hand, this leads to simpler
equations of motion, since these approximations do not require information about the
second derivative of the potential, on the other hand, the frozen Gaussian method re-
duces the order to O(1) with respect to the parameter ".

We now turn to numerical integration for the equations of motion.

5.3.1 Time discretisation

For the integration of the equations of motion we need a suitable numerical integrator.
In (5.3) we have therefore introduced the numerical propagator U ⌧

n : M ! M, which
has not yet been defined in detail, except that it maps a Gaussian basis function gn,0 to
a numerical approximation u⌧n ⇡ gn(⌧). The development of such integrators essentially
uses exponential operator splitting methods such as the first-order Lie splitting or the
second-order Strang splitting, where the integrator is said to have order s � 1, if there
exists a constant C(2) > 0 such that the error between the approximation u⌧n obtained
after m � 1 steps of size h⌧ = ⌧/m and the true solution un(⌧) is bounded by

ku⌧n � un(⌧)k  C(2)⌧
hs

⌧

"
. (5.12)

For example, the L2-error of Strang splitting is O(h2

⌧
/"), which implies that the step size

h⌧ must be su�ciently smaller than
p
". We refer to [DT10] for rigorous error bounds

in the semiclassical scaling "⌧ 1.

Equipped with a numerical integrator, we obtain the following error estimate:

Proposition 74. For ⌧ > 0 and a uniform time grid of step size h⌧ > 0 let

E⌧

n = E⌧

n(h⌧ ) := ku⌧n � gn(⌧)k, n 2 �. (5.13)

Moreover, assume that U ⌧

n : M ! M is a numerical integrator of order s � 1. Then,
under the hypotheses of Lemma 72, for all n 2 � there exists a positive constant Cn > 0
such that

E⌧

n  Cn⌧

✓
hs

⌧

"
+
p
"

◆
. (5.14)

Proof. Let ⌧ > 0 and h⌧ > 0. For all n 2 �, we combine the estimate in (5.11) with the
estimate in (5.12) to obtain

E⌧

n  ku⌧n � un(⌧)k+ kun(⌧)� gn(⌧)k  C(2)

n ⌧
hs

⌧

"
+ C(1)

n ⌧
p
"

with corresponding positive constants C(1)

n , C(2)

n > 0. Consequently, the bound in (5.14)
follows for the constant

Cn = max
�
C(1)

n , C(2)

n

�
.
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A second-order algorithm of the variational splitting was proposed and studied by
Faou and Lubich, see [FL06]. In particular, it preserves the norm and the symplecticity
relations of the matrices Q and P in (2.3) and (2.4). There are several other higher-
order splittings for the unitary propagator that can also be implemented, and we refer
the interested reader to [MQ02] and [HLW06, Chapter III]. Furthermore, we note that
the symmetric Zassenhaus splitting, see [BIKS14], is an alternative to splitting methods
that can also be used to increase the order of the time discretisation. In particular, in
[BIKS16] the symmetric Zassenhaus splitting was combined with the Magnus expansion
of the time-dependent Hamiltonian, see e.g. [IN99, IMKNZ00].

We are now equipped with an error estimate for thawed Gaussian approximations
and the numerical integration of the thawed equations of motion. Together with the
error representations for the discretisation of the FBI formula in Chapter 3, we are
therefore able to analyse the total error introduced by a single TSTG step. Afterwards,
in Theorem 78 we lift this error estimate to a global one.

5.3.2 Error after a single TSTG step

Recall that a single TSTG step consists of the following approximations:

• the approximation of the initial wave function  0 in the approximation space V�

according to subroutine (s1)

• the thawed Gaussian approximations for the propagation of the basis functions
and the numerical integration of the thawed equations of motion according to (s2)

• the re-expansion of the time-evolved basis functions in V� according to (s3)

Let us introduce the following notation for the 1-norm of a tensor (cn) 2 C�:

kcnk1 :=
X

n2�

|cn|.

The next proposition presents an error bound for a single TSTG step:

Proposition 75. For a given phase space box ⇤ ⇢ R2d, a finite multi-index set � ⇢ N2d,
grid points zn 2 R2d and positive weights wn > 0, n 2 �, recall the definition of the
spatial discretisation error Ewp defined in (3.38). Moreover, for ⌧ > 0 and h⌧ > 0, recall
the definition of the time discretisation error E⌧

n in (5.13), produced by a numerical
propagator for the thawed equations of motion of order s � 1. Then, there exists a
positive constant C > 0 such that

k (⌧)�
X

n2�

c1,⌧n gn,0kL2(⇤q)  C⌧

✓
hs

⌧

"
+
p
"

◆
+ E1,⌧ , (5.15)

where E1,⌧ > 0 denotes the total spatial discretisation error

E1,⌧ := Ewp( 0) + C ·max
n2�

Ewp(u
⌧

n).
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Note that the bound in (5.15) depends on the spatial error Ewp resulting from the
discretisation of the FBI formula. For example, if we use a direct discretisation of the
phase space integral based on fully tensorised uniform Riemann sums with N � 1 grid
points in each coordinate direction, Proposition 29 guarantees the existence of positive
constants C(T), C(RS) > 0 such that

Ewp  C(T) + C(RS)N�1.

Proof. In the following, let k • k denote the L2-norm on the projected box ⇤q ⇢ Rd in
position space. Using that the evolution operator U(⌧) = e�iH⌧/" is unitary, we get

k (⌧)�
X

n2�

c1,⌧n gn,0k = kU(⌧) 0 �
X

n2�

c1,⌧n gn,0k

 kU(⌧) ( 0 �A⇤

�
A� 0) +A⇤

�
A�U(⌧) 0 �

X

n2�

c1,⌧n gn,0k

 Ewp( 0) + k
X

n2�

cn( 0) gn(⌧)�
X

n2�

c1,⌧n gn,0k.

Moreover, for the second summand the definition of the coe�cients c1,⌧n in (5.4) yields

k
X

n2�

cn( 0) gn(⌧)�
X

n2�

c1,⌧n gn,0k


X

n2�

|cn( 0)|
⇣
k gn(⌧)� u⌧nk+ ku⌧n �

X

n02�

cn0(u⌧n) gn0,0k
⌘


X

n2�

|cn( 0)|
⇣
E⌧

n + Ewp(u
⌧

n)
⌘
.

(5.16)

Consequently, using the bound for E⌧

n in (5.14) with the constant Cn > 0, the estimate
in (5.15) follows for the choice

C = kcn( 0)k1 ·max

✓
1, max

n2�
Cn

◆
.

The estimate for the sum in (5.16) combines the 1-norm with the maximum norm.
However, since the spatial errors Ewp(u⌧n) increase at the boundary of the grid {zn}n2�,
but the coe�cients cn( 0) decrease exponentially with the distance kzn � z0k2, other
Hölder conjugate exponents that reflect this grid-dependent interplay more accurately
could also be chosen.

In the next step, we investigate the error resulting from the concatenation of the
individual TSTG steps.
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5.3.3 Estimate for the update-coe�cients

As discussed in Section 5.1, the approximations for larger times 2⌧, 3⌧, . . . are based on
the update-coe�cients c2,⌧n , c3,⌧n , . . . given by the recursion formula in (5.4). Let us take
a closer look at the magnitude of these coe�cients. Recall that

c1,⌧n = R⌧

�
(cn( 0)) =

X

n02�

cn0( 0)cn(u
⌧

n0),

where both the factors cn0( 0) and cn(u⌧n0) are Gaussian wave packets in phase space.
Hence, as a sum of Gaussian wave packets, the update-coe�cients c1,⌧n can be bounded by
a Gaussian envelope. Furthermore, by induction on n, Gaussian bounds can be derived
for all update coe�cients cn,⌧n , n > 1:

Proposition 76. For z0 2 R2d and C0 2 S+(d) let  0 = gC0,"
z0

. Moreover, let {zn}n2�
be an arbitrary grid in phase space. Then, for all n � 0 and ⌧ > 0, there exist positive
constants ⇣⌧

n
and ✓⌧

n
> 0 such that for all n 2 � we have

|cn,⌧n |  ⇣⌧
n
exp

✓
�✓

⌧

n

8"
kzn � z0k22

◆
. (5.17)

For the proof of Proposition 76 we first derive an auxiliary result that allows us to
bound the coe�cients cn(u⌧n0) of u⌧n0 by a Gaussian envelope centred at zn0 .

Lemma 77. Under the assumptions of Proposition 76, for all n0 2 �, there exist positive
constants ⇣⌧n0 > 0 and ✓⌧n0 > 0 such that for all n 2 � we have

|cn(u⌧n0)|  ⇣⌧n0 exp

✓
�✓

⌧

n0

8"
kzn � zn0k2

◆
. (5.18)

Proof. Let n0 2 � and ⌧ > 0. The definition of the coe�cients cn(u⌧n0) implies

|cn(u⌧n0)| = wn|hgn | u⌧n0i| for all n 2 �,

where the non-negative weights wn � 0 depend on the underlying quadrature rule.
Therefore, using the bounds for inner products in Lemma 7, we find constants �⌧n0 , ✓⌧n0 > 0
such that

|cn(u⌧n0)|  �⌧n0 exp

✓
�✓

⌧

n0

8"
kzn � zn0(⌧)k2

2

◆
,

where zn0(⌧) is the centre of the time-evolved Gaussian u⌧n0 2 M. To bound |cn(u⌧n0)|
by a Gaussian centred at the original grid point zn0 = zn0(0), we write the time-evolved
centres in terms of the original grid points as

zn0(⌧) = zn0 + �n0(⌧)

and introduce the maximal phase space shift

�(⌧) := max
n02�

k�n0(⌧)k2.
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Using the Cauchy–Schwarz inequality in Rd, it then follows that

exp

✓
�✓

⌧

n0

8"
kzn � zn0(⌧)k2

2

◆
= exp

✓
�✓

⌧

n0

8"
kzn � zn0 � �n0(⌧)k2

2

◆

= exp

✓
�✓

⌧

n0

8"
kzn � zn0k2

2

◆
exp

✓
✓⌧n0

4"
�n0(⌧)T (zn � zn0)

◆
exp

✓
�✓

⌧

n0

8"
k�n0(⌧)k2

2

◆

 exp

✓
�✓

⌧

n0

8"
kzn � zn0k2

2

◆
exp

✓
✓⌧n0

4"
�(⌧)kzn � zn0k2

◆
.

Hence, if we denote by Dmax > 0 the maximal distance kzn � zn0k2 between two grid
points in phase space and

�⌧ := max
n02�

exp

✓
✓⌧n0

4"
�(⌧)Dmax

◆
,

the bound in (5.18) follows for ⇣⌧n0 = �⌧n0�⌧ .

Proof (of Proposition 76). We present a proof by induction on n � 0. For n = 0, the
bound in (5.17) follows from Lemma 77 by replacing u⌧n0 by  0. In particular, for this
special case the constants ⇣⌧

0
and ✓⌧

0
do not depend on either " or ⌧ and thus we could

also write ⇣0 and ✓0. Now, let n > 1 and assume that the bound in (5.17) holds for n�1.
The recursion formula (5.4) yields

|cn,⌧n | 
X

n02�

|cn�1,⌧

n0 ||cn(u⌧n0)| for all n 2 �,

where the factor |cn�1,⌧

n0 | can be estimated by the induction hypothesis and the second
factor |cn(u⌧n0)| by Lemma 77. This implies that we find constants ⇣⌧

n�1
, ✓⌧

n�1
> 0 and

⇣⌧n0 , ✓⌧n0 > 0 such that

|cn�1,⌧

n0 |  ⇣⌧
n�1

exp

✓
�
✓⌧
n�1

8"
kzn0 � z0k22

◆
and

|cn(u⌧n0)|  ⇣⌧n0 exp

✓
�✓

⌧

n0

8"
kzn � zn0k2

◆
.

Therefore, we conclude that

X

n02�

|cn�1,⌧

n0 ||cn(u⌧n0)|  ⇣⌧
n�1

⇣⌧
X

n02�

exp

✓
�
✓⌧
n�1

8"
kz̃n0k2

2

◆
exp

✓
�✓

⌧

8"
kz̃n � z̃n0k2

2

◆
,

where we have introduced

⇣⌧ := max
n02�

⇣⌧n0 > 0 and ✓⌧ := min
n02�

✓⌧n0 > 0,
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as well as the shifted grid points z̃n := zn � z0. In Appendix 7.6 we show that there
exists a positive constant C > 0, depending on ✓⌧

n�1
, ✓⌧ , " and the phase space grid, such

that for all components j = 1, . . . , 2d we have

X

n02�

exp

✓
�
✓⌧
n�1

8"

�
z(j)n

�2
◆
exp

✓
�✓

⌧

8"

⇣
z̃(j)n � z̃(j)n0

⌘2◆

 C exp

✓
� 1

8"

✓⌧
n�1

✓⌧

✓⌧
n�1

+ ✓⌧
�
z̃(j)n

�2
◆
.

Consequently, using the definition of the shifted grid z̃n = zn � z0, we finally get

X

n02�

exp

✓
�
✓⌧
n�1

8"
kz̃n0k2

2

◆
exp

✓
�✓

⌧

8"
kz̃n � z̃n0k2

2

◆

 C2d exp

✓
� 1

8"

✓⌧
n�1

✓⌧

✓⌧
n�1

+ ✓⌧
kzn � z0k22

◆
,

which proves the bound in (5.17) for

⇣⌧
n
= ⇣⌧

n�1
⇣⌧C2d and ✓⌧

n
=

✓⌧
n�1

✓⌧

✓⌧
n�1

+ ✓⌧
.

The above proposition provides a bound for the magnitude of the coe�cients |cn,⌧n |.
Together with the error representation for a single TSTG step in Proposition 75, we are
now ready to present the overall error representation for the concatenation.

5.3.4 Global error estimate for the concatenation

From Proposition 75 we learn that the total error of a single TSTG propagation step
can be decomposed into a time and a spatial component. In particular, the time error
consists of the error for the thawed Gaussian approximation of orderO(

p
") and the error

for the numerical integration of order O(hs

⌧
/"), while the spatial error consists of the

error for the approximation of the initial datum  0 in V� and the error for re-expansion
of the time-evolved approximation u⌧n in V�. Our final result generalises this result for
the concatenation of n > 1 TSTG steps:

Theorem 78 (Global error estimate of the TSTG method).
Under the hypotheses of Proposition 75, there exists a positive constant C > 0 such that
the global error of the TSTG propagation method with n � 1 concatenated steps at time
tn = n⌧ can be bounded as

k (tn)�
X

n2�

cn,⌧n gn,0kL2(⇤q)  Ctn

✓
hs

⌧

"
+
p
"

◆
+ En,⌧ , (5.19)

where En,⌧ > 0 denotes the total spatial discretisation error

En,⌧ = Ewp( 0) + Cn ·max
n2�

Ewp(u
⌧

n).
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Proof. Again, let k • k denote the L2-norm on ⇤q. For n � 1 we define

en,⌧ := k (n⌧)�A⇤

�
(R⌧

�
)n A� 0k = k (n⌧)�  n,⌧k.

Using that U(⌧) is unitary, we obtain the recursion

en+1,⌧ = kU(⌧) (n⌧)�  n+1,⌧k = kU(⌧)
�
 (n⌧)�  n,⌧ +  n,⌧

�
�  n+1,⌧k

 k (n⌧)�  n,⌧k+ kU(⌧) n,⌧ �  n+1,⌧k = en,⌧ + kU(⌧) n,⌧ �  n+1,⌧k,
where the second summand is the local error of the nth step. Hence, the global error
en,⌧ after n steps can be expressed in terms of the local errors as

en,⌧ = e1,⌧ +
n�1X

l=1

kU(⌧) l,⌧ �  l+1,⌧k.

We note that e1,⌧ is the error after a single propagation step in Proposition 75. Further-
more, for 1  l  n� 1, the definition of the coe�cients cl,⌧n in (5.4) yields

kU(⌧) l,⌧ �  l+1,⌧k = k
X

n2�

cl,⌧n gn(⌧)�  l+1,⌧k


X

n2�

|cl,⌧n |
⇣
k gn(⌧)� u⌧nk+ ku⌧n �

X

n02�

cn0(u⌧n) gn0,0k
⌘


X

n2�

|cl,⌧n |
⇣
E⌧

n + Ewp(u
⌧

n)
⌘
.

Using once more the bound for E⌧

n in (5.14) and defining

cmax := max

✓
1, max

n2�
cn

◆
as well as Emax

wp
:= max

n2�
Ewp(u

⌧

n),

we therefore conclude that

kU(⌧) l,⌧ �  l+1,⌧k  cmax

✓
⌧

✓
hs

⌧

"
+
p
"

◆
+ Emax

wp

◆
kcl,⌧n k1.

Consequently, the bound in (5.19) follows for the constant

C = cmax max
l=0,...,n�1

kcl,⌧n k1.

Theorem 78 proves that the error of the TSTG method increases linearly with the
number n of concatenations, where the corresponding constant depends on the errors
arising from (i) the discretisation of the wave packet transform, (ii) the thawed Gaussian
propagation of the basis functions, and (iii) the integration of the equations of motion.
In the following numerical experiments we employ a practical error bound based on a
direct calculation of

errl,⌧
�

:=
X

n2�

|cl,⌧n |
⇣
E⌧

n + Ewp(u
⌧

n)
⌘

(5.20)

for all l = 1, 2, . . . , n�1, using the split-step Fourier method as a reference solver for the
propagation of the basis functions. We present a detailed description of the reference
solver in Appendix 7.7.
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Figure 5.1: Evolution of the L2-error between the TSTG method and the analytical
solution  ref for the harmonic oscillator (" = 1). The errors increase linearly
with the number of concatenated steps (logarithmic scaling of the y-axis).
The time range covers about 15 oscillations of the harmonic oscillator.

5.4 Numerical experiments

We demonstrate the capabilities of the TSTG method with two numerical experiments.
First, we test the method by calculating the full wave function of the one-dimensional
harmonic oscillator for di↵erent propagation times ⌧ and step sizes h⌧ . We then repro-
duce the results of Kong et al. for a one-dimensional double-well potential.

Remark 79. So far, only non-variationally evolving Gaussians have been used for the
TSTG method, and the following experiments are the first to compare non-variational
with variational Gaussians. Although we only present one-dimensional experiments to
support our theoretical results for the error representation, we note that the capabilities
of the TSTG method have already been demonstrated for multidimensional systems by
Kong et al., see [KMB16, Results].

5.4.1 One-dimensional harmonic oscillator

We consider the quantum harmonic oscillator corresponding to the quadratic potential
V (x) = x2/2. As initial data we choose the Gaussian wave packet  0 = g�0,"

z0
with

z0 = (1, 0), �0 = i and " 2 {0.1, 1}. In particular, the analytic solution is known to be,
see [Hag98, Theorem 2.5],

 ref (t) = (⇡")�1/4 exp

✓
� 1

2"

�
x� q(t)

�2
+

i

"
p(t)

�
x� q(t)

�
+

i

"
S(t)� i

2
t

◆
,
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Figure 5.2: Evolution of the L2-error between the TSTG method and the analytical
solution for the harmonic oscillator (" = 0.1) for di↵erent step sizes h⌧ . The
error increases faster for the coarser time grid (red curve).

where q(t), p(t) and S(t) are given by

q(t) = q0 cos(t) + p0 sin(t), p(t) = p0 cos(t)� q0 sin(t),

S(t) = �1

2
sin(t)

⇣�
q2
0
� p2

0

�
cos(t) + 2q0p0 sin(t)

⌘
.

The discretisation of the wave packet transform according to Section 3.2 was based on
the phase space box ⇤ = [�8, 8] ⇥ [�8⇡, 8⇡], where we used 64 uniform grid points in
position space, 32 uniform grid points in momentum space and the width parameter
� = 4i for the basis functions. The propagation of the basis functions was implemented
with the second-order variational splitting integrator in [LL20, Section 7.5].
Figure 5.1 shows the L2-error between the TSTG method and the analytical solution

on the spatial interval ⇤q = [�8, 8] for " = 1 and two choices of ⌧ = 0.1 (red) and
⌧ = 0.01 (black). The step size for the time integration was h⌧ = 1 · 10�3. The dashed
lines indicate the error bound of Theorem 78 based on a direct evaluation of the error
bounds errl,⌧

�
in (5.20), where we have again used the analytical solution to calculate

the errors E⌧

n. Due to the logarithmic scaling of the y-axis, we have added the linear
functions t 7! 2·10�6t (dashed red) and t 7! 2·10�7t (dashed black) to check whether the
error actually increases linearly with the number of TSTG steps. Note that for ⌧ = 0.01
we need 10 times the number of concatenations compared to ⌧ = 0.1 and therefore
the slopes of the red and black lines di↵er by a factor of 10. To keep the number of
TSTG steps small, we note that ⌧ should be chosen as large as possible. Furthermore,
Figure 5.2 shows the L2-error for " = 0.1. The calculations were based on 128 uniform
grid points in position and momentum space and ⌧ = 0.01 for two step sizes h⌧ = 1 ·10�3

and h⌧ = 1 ·10�4. For the smaller choice of h⌧ (red curve), we see that the error increases
faster, which is consistent with our theoretical result in Proposition 74.
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Figure 5.3: Comparison between variational (left) and non-variational Gaussians (right)
for the double-well potential. Both variants of the TSTG method show good
agreement as compared to benchmark results based on the Fourier method.
Top: Error for the full wave function; Bottom: Survival amplitude.

5.4.2 One-dimensional double-well potential

In this experiment we follow the presentation of Kong et al. in [KMB16, Results] and
use the one-dimensional double-well potential

V (x) =
x4

16⌘
� x2

2
, ⌘ = 1.3544,

together with the initial datum  0 defined in (3.41) for " = 1, which is a model for
quantum tunnelling. A short calculation shows that the total energy is given by

h 0 | H 0i = �64⌘2 � 48⌘ � 3

64⌘
⇡ �0.57. (5.21)

As for the harmonic oscillator, we used the phase space box ⇤ = [�8, 8]⇥ [�8⇡, 8⇡], but
this time with 64 equally spaced grid points in both position and momentum space and
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� = 4i for the width of the basis functions. In addition to the variational Gaussians, we
implemented the non-variational Gaussians based on the Störmer–Verlet method, see
e.g. [HLW03], which have also been used by Kong et al.. For the reference solution, the
split-step Fourier method was implemented with 256 points in the range ⇤q = [�8, 8] and
the time increment ⌧ = 0.01. The step size h⌧ = 0.001 was used for both the variational
and the non-variational Gaussian propagation. The top panels of Figure 5.3 show the
L2-error between the TSTG method and the reference solution for the variational (left)
and the non-variational Gaussian (right) together with the error bounds of Theorem 78
(dashed lines). In the lower panels, the TSTG method is compared with the reference
solution for the so-called “survival amplitude” (overlap between  (x, t) and the mirror
image of the initial state on the opposite side of the double well), which is defined by

G(t) :=

Z
1

�1

 0(�x) (x, t) dx

and is a measure for the tunnelling amplitude. The results in Figure 5.3 show that the
TSTG method accurately reproduced the full wave function and the survival amplitude.
The experiments also show that the L2-error increases linearly (approx. as t 7! 10�6t
for the variable Gaussians), while for the non-variational Gaussians the rate is larger
(approx. t 7! 5 · 10�4t). Furthermore, in Figure 5.4 we compare the TSTG method
with the reference solution for the energy expected values (top) and their relative errors
(bottom). For better illustration, we have only plotted the time range of the last 4,000
of a total of 16,000 propagation steps. It can be seen that the expected values of the
reference solution are well approximated even after long running times. In particular,
the slopes of the blue lines in the lower panel show that the error for the non-variational
Gaussians (upper curves) increases faster.

115



3 3.2 3.4 3.6 3.8

�2

�1

0

time t [femtoseconds]

Energy (variational)

kinetic energy

potential energy

total energy

reference (cf. Eq. 5.21)

3 3.2 3.4 3.6 3.8

�2

�1

0

time t [femtoseconds]

Energy (non-variational)

3 3.2 3.4 3.6 3.8

0.2

0.4

0.6

0.8

1
·10�2

time t [femtoseconds]

Relative errors
top: non-variational, bottom: variational

Figure 5.4: Evolution of energy expected values (top) and relative errors (bottom) for
the variational Gaussians and the non-variational Gaussians between 12,000
and 16,000 TSTG propagation steps.
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5.5 Summary of this chapter

In the previous sections we have derived an error representation for the time-sliced
thawed Gaussian propagation method that combines representations of Gaussian wave
packets based on the discretisation of the FBI formula with thawed Gaussian approxi-
mations for the propagation of the basis functions. To provide a mathematical formu-
lation of the TSTG method, we combined the quadrature-based analysis and synthesis
operators A� and S� with the reinitialisation operator R⌧

�
, which allow to write the

approximate solution at time tn = n⌧ as

 (tn) ⇡  n,⌧

�
= S� (R⌧

�
)n A� 0.

The algorithm was implemented in MATLAB to underline our theoretical results and
to show that the global error of the method increases linearly with the number of time
steps, independent of the thawed Gaussian method (variational or non-variational) and
the order of the underlying time integrator.

5.6 Suggestions for further research

The TSTG method avoids multidimensional numerical quadrature by using an explicit
formula for calculating the representation coe�cients of the underlying Gaussian wave
packet transform. So far, only Gaussian basis functions have been considered and the
coe�cients have been calculated using the formula for inner products in Lemma 7.
However, other basis functions could also be used. For example, Hagedorn’s wave packets
provide a natural extension. With the additional polynomial prefactor, the accuracy
of the approximation can be further improved, while the inner products can still be
calculated analytically. Moreover, with regard to the numerical implementation of the
method, the further use of the error estimator in (5.20) could be profitably employed.
Future research could address the derivation of a practical a posteriori error bound that
can be used to implement the TSTG method with adaptive step sizes or adaptive mesh
refinements. To make the TSTG method applicable to high-dimensional systems, the
calculation of the update coe�cients given by the tensor-valued matrix-vector product
according to (5.4) could be performed using low-rank approximations. We will describe
this idea in more detail in the next chapter.
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6 Multidimensional quantum dynamics
with tensor trains

In the previous chapter we analysed the TSTG method and showed that the underlying
decomposition of Gaussian wave packets rely on discretisations of the FBI formula based
on fully tensorised grids in phase space, which limits the numerical implementation,
because the number of basis functions grows exponentially with the dimension. In
Section 3.2.3 we have already pointed out that sparse grids and Monte Carlo methods
can overcome the curse of dimensionality to some extent, but for the TSTG method these
approaches can only be used for the representation of the initial wave function, since
the re-expansion of the time-evolved Gaussian basis functions is performed on a time-
independent uniform grid (we worked with a time-independent approximation space).
It is important to understand that in the TSTG method we do not face the problem
of high-dimensional quadrature, but that the size of the coe�cient tensors to represent
the wave functions grows exponentially. In practical applications, we therefore have to
work with high-dimensional tensors, where it is usually not even possible to store all
elements explicitly. The following sections deal with tensor-train (TT) decompositions,
which are a special variant of low-rank tensor decompositions that can overcome the
curse and are currently used in many di↵erent fields, in particular for the computation
of multidimensional quantum dynamics. In Section 6.1 we introduce the TT format and
recall important results such as storage, existence and arithmetic operations. We then
present results on the tensor-train Chebyshev (TTC) method recently published in the
joint paper [SBGB22] with M. B. Soley, A. A. Gorodetsky and V. S. Batista, showing
that the TT format can be used for high-dimensional quantum dynamics simulations.

6.1 The tensor-train format

For positive integers n1, . . . , nd, d > 1, we consider a multivariate function

C : [n1]⇥ · · ·⇥ [nd] ! R, (i1, . . . , id) 7! C(i1, . . . , id),

where the sets [nk] ⇢ N are defined for all k = 1, . . . , d as

[nk] := {1, . . . , nk}.
Multivariate functions as defined above on a finite multi-index set � = [n1]⇥ · · ·⇥ [nd]
occur in many numerical applications. For instance, if f : [0, 1]d ! R is a given real-
valued function and for N � 1 we consider the uniform grid points

xi = ih, i = 1, . . . , N, h =
1

N
,
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•

n1

n2

n3

n4

n5

n6

...

nd

•C •vn1

n2

Figure 6.1: Graphical notation of tensors and tensor operations. Left: Tensor of order d.
Each “arm” corresponds to an input variable; Right: Matrix-vector product.
The summation over the auxiliary variable is visualised by the connecting
arm between C and v.

one could think of the following natural connection:

C(i1, . . . , id) = f(xi1 , . . . , xid
) for all ik 2 [N ], k = 1, . . . , d.

In particular, for the special case d = 2 we can identify C with an element of Rn1⇥n2 ,
where the image of (i1, i2) is given by the matrix element ci1,i2 . Accordingly, in the general
case d � 2 we can identify C with an element of Rn1⇥···⇥nd , usually called “tensor of
order d and size n1 ⇥ · · ·⇥ nd”. Tensors of order d can be represented in various ways,
e.g. as a single point with d “arms”, see Figure 6.1 (left). Using the convention that
connected compatible arms represent summation over the corresponding tensor indices,
the graphical notation also allows visualisation of basic tensor operations. For example,
the right-hand side of Figure 6.1 shows a matrix-vector product

(Cv)i1 =
n2X

↵1=1

ci1,↵1v↵1 , i1 2 [n1].

As a natural generalisation of matrices, the analysis of tensors is not only of great in-
terest from a theoretical point of view, but also for practical algorithms. However, it
is known that tensors in high dimensions such as d = 100 or d = 1000 cannot be used
explicitly on computers, which leads to the question of whether and how it is possible to
represent multidimensional tensors by a much smaller number of parameters. Low rank
tensor decompositions, which can be seen as a generalisation of the truncated singular
value decomposition (SVD) for matrices, are an e�cient tool for reducing the number
of parameters. Many di↵erent techniques have been developed in the last decades and
we refer to [GKT13] for an overview of the existing methods.

In the following, we focus on the approximation of tensors by tensors in tensor-train
format, which are also called “matrix-product states” and represent a special form of the
so-called “hierarchical tensor format”. A detailed mathematical introduction to tensor
methods, describing in particular the relationship between the various formats and their
origins, can be found in [Hac14]. Let us now introduce the TT format:
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• • • •
C1 C2 C3 Cd

n1 n2 n3 nd

. . .
r1 r2 r3 rd�1

Figure 6.2: Graphical notation of a tensor in tensor-train format

Definition 80. For positive integers n1, . . . , nd, let C 2 Rn1⇥···⇥nd be a order-d-tensor.
A decomposition of the form

C(i1, . . . , id) = C1[i1]C2[i2] · · ·Cd�1[id�1]Cd[id] for all ik 2 [nk], k = 1, . . . , d,

where C1[i1] 2 R1⇥r1 is a row vector, Ck[ik] 2 Rrk�1⇥rk , k = 2, . . . , d�1 are matrices and
Cd[id] 2 Rrd�1 is column vector, is called tensor-train (TT) decomposition. In particular,
the numbers r1, . . . , rd�1 � 1 are called the compression ranks.

By identifying vectors and matrices as order-2 and order-3 tensors, respectively, we see
that tensor-train decompositions can also be written as follows, see [HRS12, Equation 4]:

C(i1, . . . , id) =
r1X

↵1=1

· · ·
rd�1X

↵d�1=1

C1(i1,↵1)

 
d�1Y

k=2

Ck(↵k�1, ik,↵k)

!
Cd(↵d�1, id).

Since the corresponding graph representation resembles a train structure, see Figure 6.2,
Oseledets introduced the name “tensor train”, see [Ose11], which seems to be the best
known description for this type of decomposition today. However, this type of tensor
decomposition was introduced earlier in the quantum-physics community, but under the
name “matrix product format”, see e.g. [Hac14, Section 9]. Indeed, the individual tensor
elements C(i1, . . . , id) are obtained by products of matrices, and if each component is
represented as a fibre of matrices of the same dimension, we obtain an alternative picture
of the TT decomposition:

C1[i1] 2 R1⇥r1

1

2

n1

...

C2[i2] 2 Rr1⇥r2

1

2

n2

...

Cd�1[id�1] 2 Rrd�2⇥rd�1

1

2

nd�1

...

Cd[id] 2 Rrd�1⇥1

1

2

nd

...

. . .

Figure 6.3: Alternative visualisation of the TT format. Each entry of the original tensor
corresponds to a product of matrices.
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The advantages of TT decompositions can be easily illustrated with a short example,
which is a special case of Example 4.2 in [KK18]. Let us consider the tensor C 2 R3⇥4⇥5

of size 3 · 4 · 5 = 60 defined by

C(i1, i2, i3) = i1 + i2 + i3, i1 2 [3], i2 2 [4], i3 2 [5].

Since we have

i1 + i2 + i3 =
�
i1 1

�
·
✓

1
i2 + i3

◆
=
�
i1 1

�
·
✓
1 0
i2 1

◆
·
✓
1
i3

◆
,

we can define the matrices

C1[i1] :=
�
i1 1

�
2 R1⇥2, C2[i2] :=

✓
1 0
i2 1

◆
2 R2⇥2, C3[i3] :=

✓
1
i3

◆
2 R2⇥1,

to obtain the following TT decomposition:

C(i1, i2, i3) = C1[i1]C2[i2]C3[i3].

Note that n1 = 3, n2 = 4, n3 = 5 and r1 = r2 = 2. The total number of elements to store
the matrices C1[i1], C2[i2] and C3[i3] is given by 32, while the size of C is almost twice
as large! This simple example illustrates very clearly that the TT decomposition can be
used to reduce memory requirements. If we set r0 = rd = 1, R := max{r1, . . . , rd�1} and
N := max{n1, . . . , nd}, the total number M of matrix entries for the TT decomposition
in Definition 80 is bounded as follows,

M =
dX

k=1

nk · (rk�1 · rk)  d ·N ·R2, (6.1)

which has to be compared with the size of the tensor given by n1 ⇥ · · ·⇥ nd. Since the
upper bound in (6.1) depends only linearly on the dimension d, TT decompositions are
often said to break the curse of dimensionality. Indeed, various numerical experiments
show that a large class of tensors encountered in practical applications can be handled
e�ciently in TT format, allowing high-dimensional computations that could not be
performed on computers if tensors were implemented directly as high-dimensional arrays.

Remark 81. We already mentioned that tensors are closely related to grid functions.
In the one-dimensional case, for example, the function values on a grid can be stored
in a row-vector. It has proven advantageous to convert such vectors into tensors with a
special shape and then decompose the resulting tensors in TT format. One way to reshape
vectors is “q-adic unfolding”, where the indices of the resulting tensor correspond to the
q-adic representation of the original indices. More precisely, a vector v 2 RN of length
N = qL is transformed into an order-L tensor in Rq⇥···⇥q, where the jth element of v is
represented by the index (i1, . . . , id) of the reshaped tensor via

j � 1 =
LX

k=1

(ik � 1)qk�1.
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Such representations are called “Quantics Tensor Trains” (QTTs) and it has been shown
that in many applications the ranks of the components are small, making QTTs a power-
ful tool for high-dimensional problems, see [KK18, Chapter 4.2] and references therein.
In particular, we would like to mention that QTTs have been successfully applied to global
optimisation problems in the joint paper [SBB21] with M. B. Soley and V. S. Batista,
essentially by implementing the power iteration known from numerical linear algebra
with QTTs for q = 2. The corresponding algorithm is known as the “Iterative Power
Algorithm” (IPA), and it has been shown that IPA can be used to approximate solutions
to high-dimensional optimisation problems such as those encountered in molecular and
electronic structure calculations.

Before presenting numerical results related to quantum dynamics, let us recall some
important results of tensor trains.

6.1.1 Existence and uniqueness of TT decompositions

The decomposition of a given tensor in TT format depends crucially on the compression
ranks r1, . . . , rd�1. One of the first questions is therefore for which choice of ranks we
can guarantee the existence of a TT decomposition. To answer this question, we need
the following definition (see also [HRS12, Section 2.5]):

Definition 82. Let C 2 Rn1⇥···⇥nd be a tensor of order d and let

⌫k :=
kY

s=1

ns and µk :=
dY

s=k+1

ns, k = 1, . . . , d� 1. (6.2)

The kth canonical matrix Ck 2 R⌫k⇥µk of C is defined by

Ck

�
(i1, . . . , ik); (ik+1, . . . , id)

�
:= C(i1, . . . , id), is 2 [ns], s = 1, . . . , d,

where the indices (i1, . . . , ik) enumerate the rows and the indices (ik+1, . . . , id) the columns
of the matrix Ck in colexicographical order, i.e. in column-major order. Moreover,
the rank of the kth unfolding matrix, in the following denoted by sk, is called the
kth separation rank of C.

A short example will illustrate the definition of unfolding matrices. Therefore, let us
consider the following order-3 tensor C 2 R2⇥2⇥2, defined by

C(i1, i2, i3) := i1 · 102 + i2 · 10 + i3, i1, i2, i3 2 [2].

Then, the unfolding matrices C1 2 R2⇥4 and C2 2 R4⇥2 are given by

C1 =

✓
111 121 112 122
211 221 212 222

◆
and C2 =

0

BB@

111 112
211 212
121 122
221 222

1

CCA .
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In particular, in MATLAB the unfolding matrix Ck can be generated with the command

reshape(C, ⌫k, µk),

where the positive integers ⌫k and µk are defined according to (6.2).

We are now ready to prove the existence of TT decompositions. The following result
was taken from [Ose11, Theorem 2.1].

Proposition 83. Let C be an arbitrary tensor of order d with separation ranks sk � 1.
There exists a TT decomposition with compression ranks rk not higher than sk, that is,
rk  sk for all k = 1, . . . , d� 1.

For the proof we refer to [Ose11, Theorem 2.1].

Oseledets’ proof not only shows that a TT decomposition exists, but also allows the
construction of a practical algorithm for its computation. Since the resulting algorithm
relies on successive SVDs of auxiliary matrices to compute the tensor-train components,
this algorithm is called the “TT-SVD algorithm”. It should be noted that the separation
ranks of a tensor are not invariant under permutations of the indices, which has the
consequence that the ranks (and thus the storage) increase if an unfavourable order is
chosen. However, it is possible to approximate a given tensor by a tensor train with fixed
ranks by replacing the SVDs in the TT-SVD algorithm with best-rank approximations;
a result for the corresponding error can be found in [Ose11, Theorem 2.2].

Remark 84. In many situations it happens that a tensor is in TT format but the
ranks of the components are too large (see Section 6.1.2 for examples). Of course,
the ranks can be reduced with the variant of the SVD algorithm described above, but
as it turns out, this is not the best way. Instead, there is a method that directly uses
the TT format. This procedure is called “rounding”, which is important for numerical
applications because without rounding the ranks would explode after repeated calculations.
In [Ose11, Section 3], Oseledets presents an algorithm that requires O(dNR3) operations.

The next question that arises is whether the TT decompositions are unique. Since
the TT format is based on matrix products, it is easy to see that the TT components
cannot be uniquely determined, since, for example, for an invertible matrix G 2 Rrk⇥rk

it follows that

Ck[ik]Ck+1[ik+1] = Ck[ik]GG�1Ck+1[ik+1],

which implies that the components Ck[ik] and Ck+1[ik+1] can be replaced by

C̃k[ik] = Ck[ik]G and C̃k+1[ik+1] = G�1Ck+1[ik+1].

Hence, it makes sense to use further conditions that uniquely determine the components.
The next definition introduces special unfolding matrices that can be used to standardise
TT decompositions (see also [HRS12, Section 2.4]):

124



Definition 85. The left unfolding of a TT component Ck 2 Rrk�1⇥nk⇥rk , k = 2, . . . , d�1,

is denoted by CL

k
2 R(rk�1nk)⇥rk and defined by

CL

k
((↵k�1, ik); rk) := Ck(↵k�1, ik,↵k),

where the indices (↵k�1, ik) enumerate the rows and the index ↵k the columns of the
matrix CL

k
in colexicographical order. The rank rL

k
of the left unfolding is called the

left rank of the component Ck. The right unfolding CR

k
2 Rrk�1⇥(nkrk) and the corre-

sponding right rank rR
k

are defined analogously. Furthermore, a TT decomposition is
called minimal if rL

k
= rk and rR

k
= rk�1.

We are now ready to prove the uniqueness of TT decompositions. The following result
was taken from [HRS12, Theorem 1].

Proposition 86. There is exactly one rank vector r = (r1, . . . , rd�1) such that a given
order-d tensor C admits for a minimal TT decomposition and if s = (s1, . . . , sd�1)
denotes the (unique) separation rank of C, there holds r = s. In particular, a minimal
decomposition can be chosen such that the components are left-orthogonal, that is,

�
CL

k

�T
CL

k
= Id 2 Rrk⇥rk for all k = 1, . . . , d� 1.

Under this condition, the decomposition is unique up to insertion of orthogonal matrices:
For any two left-orthogonal minimal decompositions of C for which

C(i1, . . . , id) = C1[i1]C2[i2] · · ·Cd�1[id�1]Cd[id] = D1[i1]D2[i2] · · ·Dd�1[id�1]Dd[id]

holds for all ik 2 [nk], there exist orthogonal Q1, . . . , Qd�1, Qk 2 Rrk⇥rk such that

C1[i1]Q1 = D1[i1], QT

d�1
Cd[id] = Dd[id], QT

k�1
Ck(ik)Qk = Dk(ik).

For the proof we refer to [HRS12, Theorem 1].

The TT-SVD algorithm can be used to compute TT decompositions. Now that we
have specified these decompositions with left-orthogonal unfolding matrices, we should
add the fact that Oseledets’ TT-SVD algorithm produces (in exact arithmetic) mini-
mal TT decompositions with left-orthogonal components. As it can be advantageous
in some applications, we also note that the algorithm can also be adapted to compute
right-orthogonal or mixed (left- and right-orthogonal) components.

The TT format has many other interesting properties that are of particular interest
for the development of numerical methods. For example, it can be shown that tensors in
TT format of fixed rank locally form an embedded manifold in Rn1⇥···⇥nd , see [HRS12].
Moreover, we refer the interested reader to [GH21, Section 4], where the authors analyse
TT approximation schemes for continuous functions.
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6.1.2 Operations in TT format

In the previous section we saw that the TT format can be used to e�ciently represent
high-dimensional tensors, and once the tensors are in TT format, arithmetic operations
usually have to be performed. In the following, we describe how these operations are
implemented using the examples of addition, elementwise multiplication and inner prod-
ucts. In doing so, we summarise the description of Oseledets in [Ose11, Section 4].

Let us consider two tensors A,B 2 Rn1⇥···⇥nd of the same dimension, which are in
tensor-train format, i.e., A(i1, . . . , id) = A1[i1] · · ·Ad[id], B(i1, . . . , id) = B1[i1] · · ·Bd[id].
The sum C = A+B is given by

C(i1, . . . , id) = A(i1, . . . , id) + B(i1, . . . , id)

= A1[i1] · · ·Ad[id] + B1[i1] · · ·Bd[id],

and a simple calculation shows that the components of C in TT format are given by

Ck[ik] =

✓
Ak[ik] 0
0 Bk[ik]

◆

for all ik 2 [nk], k = 1, . . . , d� 1, and

C1[i1] = (A1[i1] B1[i1]) , Cd[id] =

 
Ad[id]

Bd[id]

!
, i1 2 [n1], id 2 [nd].

On the one hand, this shows that no arithmetic operations are necessary to build the
TT format of the sum, since the components of C simply result from “connecting” the
components of A and B in a common matrix. On the other hand, it can be seen that
the size of the resulting components increases (the ranks are summed). Rounding in
TT format (cf. Remark 84) can be used to avoid the rank increasing too much due to
successive additions. In particular, if Oseledets’ rounding algorithm is used after each
addition, the total number of operations grows as O(dNR3), where now R denotes the
maximum rank of the components of A and B.

Another important operation is the elementwise product of tensors, also known as the
“Hadamard product”, denoted by C = A �B. It is given by

C(i1, . . . , id) = A(i1, . . . , id)B(i1, . . . , id)

= A1[i1] · · ·Ad[id]B1[i1] · · ·Bd[id],

and a simple calculation (see e.g. [Ose11, Section 4.2]) shows that the components of C
are given by

Ck[ik] = Ak[ik]⌦ Bk[ik] 2 Rr
(A)
k�1r

(B)
k�1⇥r

(A)
k r

(B)
k , ik 2 [nk], k = 1, . . . , d,

where ⌦ denotes the Kronecker product of matrices and the superscripts (A) and (B)
indicate that the ranks correspond to either the tensor A or B. In particular, it follows
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that the ranks of the components of C are given by the products of the ranks. We also
note that in the special case B(i1, . . . , id) = b only one (freely chosen) component of A
has to be multiplied by the scalar b and the others remain unchanged.

The Hadamard product C = A � B is needed, for example, to calculate the inner
product of A and B, defined by

hA | Bi :=
n1X

i1=1

· · ·
ndX

id=1

A(i1, . . . , id)B(i1, . . . , id) =
n1X

i1=1

· · ·
ndX

id=1

C(i1, . . . , id). (6.3)

The computation of the sum in (6.3) is called a “multidimensional contraction”. Due to
the special structure of the matrices Ak[ik]⌦Bk[ik], the inner product can be implemented
with a total of O(dNR3) operations. Furthermore, the inner product algorithm can be
used to calculate the Frobenius norm of a tensor, which is defined as follows:

kAkF =
p
hA | Ai

In addition to the basic arithmetic operations mentioned above, advanced operations can
also be performed in the TT format. For instance, with regard to algorithms for solving
the Schrödinger equation, the Fourier transform of tensor trains is of particular interest,
which makes it possible to transfer the Laplace operator into the frequency domain,
where it can then be executed as a multiplication operator. Since this operation is also
used in the TT Chebyshev method below, we refer interested readers to [GB17], where
the authors introduce an extension of the split-step Fourier method in TT format, the
so-called “tensor-train split-operator Fourier transform (TT-SOFT)” method.

Remark 87. Like many other authors, we have treated only real-valued tensors for the
sake of simplicity. However, we point out that the above results can also be extended to
complex-valued tensors.

6.2 Tensor-train Chebyshev method

As described in detail in Section 1.1, parts of the present section (Sec. 6.2) overlap to a
large extent with the joint publication “Functional Tensor-Train Chebyshev Method for
Multidimensional Quantum Dynamics Simulations” with M. B. Soley, A. A. Gorodetsky
and V. S. Batista appeared in Journal of Chemical Theory and Computation, 18(1):25–36,
01 2022.

We now present the tensor-train Chebyshev (TTC) method, which is essentially a
tensor-train implementation of the celebrated Chebyshev propagation scheme introduced
by Tal-Ezer and Koslo↵ in [TK84]. This method approximates the unitary propagator
U(t) = e�iHt/" of the time-dependent Schrödinger equation (1.1) for a fixed time t by a
linear combination of Chebyshev polynomials of the Hamiltonian. In contrast to meth-
ods based on the concatenation of short-time propagators, the Chebyshev method has
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Figure 6.4: Plot of the first four Chebyshev polynomials.

the advantage that it can be implemented without error accumulation, since it allows the
computation of the time-evolved state U(t) 0 directly at the final time without having
to compute intermediate states at earlier times. The original method has been success-
fully applied to molecular systems with low dimensionality, see e.g. [GG02, CA13], but
applications to high-dimensional systems have been hindered by the exponential scaling
of memory and computational costs, as the method relies on full grid representations.
In the following, we present a viable solution to the exponential scaling by applying the
tensor-train format.

The section is structured as follows: Section 6.2.1 introduces Chebyshev polynomials,
Section 6.2.2 describes how to generate Chebyshev expansions of complex-valued func-
tions, and Section 6.2.3 describes Chebyshev propagation based on discrete space rep-
resentations. Finally, after discussing the tensor-train implementation in Section 6.2.4,
numerical experiments of the TTC method are presented in Section 6.2.5.

6.2.1 Chebyshev polynomials

For all integers k � 0, the kth Chebyshev polynomial is defined as follows:

Tk : [�1, 1] ! [�1, 1], Tk(x) := cos
�
k arccos(x)

�

We note that the Chebyshev polynomials satisfy the following recurrence relation

Tk+1(x) = 2xTk(x)� Tk�1(x), (6.4)

and the first four polynomials are given by (see also Figure 6.4)

T0(x) = 1, T1(x) = x, T2(x) = 2x2 � 1, T3(x) = 4x3 � 3x.

Chebyshev polynomials have a number of remarkable properties and are therefore an im-
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portant tool in approximation theory, see e.g. [Tre19, Chapter 10] and [FP68, Chapter 1].
For instance, they satisfy the following orthogonality relation for all j, k � 1, j 6= k,

Z
1

�1

Tj(x)Tk(x)
dxp
1� x2

=
⇡

2
�j,k, (6.5)

showing that the Chebyshev polynomials are orthogonal with respect to the weighted
inner product defined by the left-hand side of (6.5).

6.2.2 Chebyshev expansion of complex-valued functions

Chebyshev polynomials can be used to approximate a given complex-valued function
f : [�1, 1] ! C via its Fourier series, see e.g. [FP68, Chapter 2.6]. To show how, we
introduce the 2⇡-periodic function

g(x) = f(cos(x)),

which can be represented in (�⇡, ⇡) in terms of its Fourier series as follows:

g(x) =
1X

k=0

(2� �k,0)ak cos(kx), ak =
1

⇡

Z
⇡

0

g(x) cos(kx) dx

Therefore, the original function f(y) = g(arccos(y)) can be represented for all y 2 (�1, 1)
in terms of the Chebyshev polynomials as

f(y) =
1X

k=0

(2� �k,0) ckTk(y), ck =
1

⇡

Z
1

�1

f(y)Tk(y)
dyp
1� y2

. (6.6)

Equation (6.6) is called the “Chebyshev expansion” of f . It can be used to approximate
f as the linear combination of the first N � 1 Chebyshev polynomials as follows:

f(y) ⇡ SNf(y) =
N�1X

k=0

(2� �k,0) ckTk(y) (6.7)

The coe�cients ck defined by (6.6) are essentially the Fourier coe�cients of g, which
for analytic functions decay exponentially with k, see e.g. [Tad07, Section 2], and thus
provide fast convergence of the partial sums SNf . In particular, the resulting Chebyshev
approximation is a polynomial of degree N , which is known to be close to the polynomial
of the same degree with minimal error in the interval [�1, 1], see [TE89, Section 2].
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6.2.3 Chebyshev propagation in discrete representations

We obtain an approximation of the operator U(t) = e�iHt/" at a given time t > 0 by
considering the function f(y) = e�iyt/" for which the coe�cients ck defined according to
(6.6) can be expressed in terms of the Bessel functions Jk (of the first kind) as follows,
see e.g. [AS64, Chapter 9],

ck = (�i)kJk(t/"),

yielding the following approximation for all y 2 (�1, 1):

e�iyt/" ⇡
N�1X

k=0

(2� �k,0) (�i)kJk(t/")Tk(y) (6.8)

Using a linear transformation of the argument y, we can restate (6.8) for an arbitrary
Hermitian matrix H 2 Cd⇥d with eigenvalues contained in a finite interval [a, b] as

e�iHt/" ⇡ e�it
+

N�1X

k=0

(2� �k,0) (�i)kJk(t
�)Tk(H0), (6.9)

where we have introduced the rescaled variables t�, t+ 2 R and the matrix H0 2 Cd⇥d

with eigenvalues in [�1, 1] defined by

t± :=
t

2"
(b± a) and H0 :=

2

b� a

✓
H � b+ a

2
Id

◆
, (6.10)

where Id is the d⇥ d identity matrix. In particular, since e�iyt/" is an analytic function,
we obtain fast convergence of the approximation in (6.9). However, the number of
required polynomials increases with t since e�iyt/" is oscillatory and thus a su�ciently
large number N of Chebyshev polynomials is needed to resolve the oscillations. In fact,
it has been shown that the error falls like the Nth order in |t�|/(2N) for su�ciently
large N , see [Lub08, Chapter III.2.1, Theorem 2.4].

Remark 88. It is important to note that (6.9) can be used more generally than in the
current implementation to approximate the solution to any linear system of the form
iu̇ = Hu. Such linear systems typically arise in space discretisation methods, including
the Fourier collocation method, the Fourier–Galerkin method, or the Hermite–Galerkin
method, see [Lub08, Chapter III]. Hence, we anticipate that the TTC method should also
be valuable for solving high-dimensional linear systems in a wide range of applications
beyond the solution of the time-dependent Schrödinger equation.
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6.2.4 Tensor-train implementation

Discrete tensor-train approximations of the propagator U(t) = e�iHt/" are obtained by
discretising the d-dimensional space in each coordinate direction in the range xj,min to
xj,max with nj > 1 points and the grid size �xj > 0. Point evaluations  (xk) of the
wave function  , which are represented as a tensor W 2 Cn1⇥···⇥nd , are approximated
for fixed compression ranks r1, . . . , rd�1 by complex-valued low-rank tensor trains with
components Wj[kj] 2 Crj�1⇥rj as follows,

W (k1, . . . , kd) ⇡ W1[k1] · · ·Wd[kd],

where k = (k1, . . . , kd) is the index corresponding to the gird point xk = (x1,k1 , . . . , xd,kd
).

The action of the Hamiltonian

H = T + V = �"
2

2
�x + V

is represented by a Hermitian operator H = T +V on the tensor space. By this we mean
that if tensors in Cn1⇥···⇥nd are identified with row vectors of length D = n1 · · ·nd, the
discretised Hamiltonian can be represented as a Hermitian matrix in CD⇥D. As usual,
the potential energy operator V is given by the elementwise multiplication operator
(Hadamard product), i.e.,

(VW )(k1, . . . , kd) := V1[k1] · · ·Vd[kd]W1[k1] · · ·Wd[kd],

where the matrices Vj[kj] are the cores of the potential in TT format. Furthermore, the
kinetic energy operator

(T W )(k1, . . . , kd) ⇡ �"
2

2
�x (xk),

is defined by the Laplacian that acts as a multiplication operator in momentum space.
Therefore, we apply the kinetic energy operator in momentum space by exploiting the
implementation of multidimensional discrete Fourier transforms of tensor trains to switch
between position and momentum space. With the help of the FFT we obtain a very
e�cient and accurate implementation of the discretised kinetic energy operator.

Recall that for the approximation of the propagator the discrete Hamiltonian must be
rescaled according to (6.10) as follows,

H0 =
2

Emax � Emin

✓
H� Emax + Emin

2
Id

◆
,

where now Id denotes the identity on the tensor space. The bounds for the eigenvalues
Emin and Emax depend on the extension of the position grid and are given by

Emin = min
k

V (xk), Emax =
"2⇡2

2

✓
1

�x2

1

+ · · ·+ 1

�x2

d

◆
+max

k

V (xk),
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where we used �pj = 2⇡/(xj,max � xj,min) for the grid spacing in momentum space of
the jth coordinate, giving the maximum kinetic energy

Tj,max =
"2

2
p2
j,max

=
"2

2

⇡2

�x2

j

.

Consequently, the solution  (t) of the time-dependent Schrödinger equation (1.1) is
approximated with N � 1 Chebyshev polynomials as follows,

 (t) = e�iHt/" 0 ⇡ e�it
+

N�1X

k=0

(2� �k,0) (�i)kJk(t
�)Tk(H0)W0, (6.11)

where t± = tE±/2", E± = Emax ± Emin, and W0 samples the initial wave function  0.
We implement (6.11) as a one-step propagator to compute  (t) directly from the initial
data by using the Clenshaw algorithm, see Appendix 7.8. Alternatively, one could obtain
the time-dependent states Tk(H0)W0 according to the recurrence relation (6.4) as

T0(H0)W0 = W0, T1(H0)W0 = H0W0,

Tk+1(H0)W0 = 2H0Tk(H0)W0 � Tk�1(H0)W0, for k � 1.

We note that the Chebyshev propagation scheme can be alternatively implemented by
using the continuous analogue functional tensor-train decomposition of wave functions
as described in [SBGB22, Section 3].

6.2.5 Numerical experiments

We present numerical experiments for two systems. To demonstrate the dependence
of the error on the number of Chebyshev polynomials and the propagation time, we
first test the TTC method for a Gaussian wave packet in a two-dimensional harmonic
oscillator potential. We then present results for simulating the dynamics of protons in
a 50-dimensional model of hydrogen-bonded DNA.

Remark 89. In the following experiments, the construction of the tensor trains and
the operations in TT format were performed using Oseledets’ TT-Toolbox, see [Ose20].
Moreover, all operations were followed by rounding (cf. Remark 84) to avoid an artificial
growth of the ranks.

Two-dimensional harmonic oscillator

We consider the two-dimensional quantum harmonic oscillator potential

V (x1, x2) =
1

2
(x2

1
+ x2

2
).

The discretisation in position space was based on a 32 ⇥ 32 grid on ⇤q = [�6, 6]2 and
the maximum rank for rounding as described in Remark 89 was chosen as rmax = 3.

132



10�3 10�2 10�1 100 101
10�13

10�9

10�5

10�1

time t [au]

k (t)�  ref (t)kL2(⇤q)

TT-SOFT

TTC

200 400 600
10�10

10�7

10�4

10�1

No. Polynomials

k (t)�  ref (t)kL2(⇤q)

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

Figure 6.5: Left: Evolution of the L2-error between the TTC method and the analytical
solution for the two-dimensional harmonic oscillator (" = 1). TTC provides
more accurate approximations than the TT-SOFT method for longer times.
Right: L2-error for di↵erent numbers of polynomials. The number of poly-
nomials required for accurate simulation increases with larger times.

The left-hand side of Figure 6.5 shows the L2-error between the TTC method and the
analytical solution (green line). For comparison, the L2-error produced by the TT-SOFT
method is plotted (black line), which is essentially the split-step Fourier method in
tensor-train format, see [GB17]. The number of Chebyshev polynomials was N = 750
and the initial wave function was chosen as the Gaussian wave packet  0 = gC0,"

z0
with

" = 1, q0 = (1, 0), p0 = (0, 0) and C0 = i Id. While the errors for short time steps
cannot be distinguished, TTC produces the complete wave function with an error several
orders of magnitude smaller for longer time steps given the su�cient large number of
Chebyshev polynomials. In addition, the right-hand side of the Figure 6.5 shows the
L2-error for di↵erent numbers of polynomials, but this time for the initial Gaussian wave
packet centred at q0 = (0, 0). We observe that the TTC method requires less than 200
polynomials to accurately approximate the full wave function for the final times t = 1
and t = 2. As expected, the number of polynomials required for accurate simulation
increases with larger times. In particular, the errors converge for all final times up to
t = 6 for fewer than 500 polynomials, demonstrating the robustness of the TTC method
for the simulation of long-time dynamics.

50-dimensional model of hydrogen-bonded DNA

To demonstrate the capabilities of the TTC method for high-dimensional systems, we
simulated the dynamics of protons in a 50-dimensional model of hydrogen-bonded DNA
adenine-thymine base pairs, which is described by the potential

V (x1, . . . , x50) =
50X

k=1

↵
�
0.429xk � 1.126x2

k
� 0.143x3

k
+ 0.563x4

k

�
�

50X

k=2

↵�xkxk�1,
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Probability density dynamics, uncoupled (� = 0)
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Figure 6.6: Comparison of two-dimensional slices of the 50-dimensional time-dependent
wave packet obtained from TTC (green) as compared to TT-SOFT (black)
for uncoupled DNA base pairs.

Probability density dynamics, coupled (� = 2)
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Figure 6.7: Comparison of two-dimensional slices of the 50-dimensional time-dependent
wave packet obtained from TTC (green) as compared to TT-SOFT (black)
for coupled DNA base pairs.
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Survival Amplitude
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Figure 6.8: Comparison of survival amplitudes for the dynamics of uncoupled (top) and
coupled (bottom) DNA base pairs, including the real (left) and imaginary
(right) parts, obtained with TTC (green) and benchmark TT-SOFT (black).
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where ↵ = 0.1 determines the energy scaling of the potential and � � 0 is the coupling
parameter of the hydrogen bonds, see [GAKS15]. Due to the strongly anharmonic modes
in the potential, this model is a challenging test case for tensor-train-based methods,
especially for coupled DNA pairs (� 6= 0), which is beyond the reach of the original
grid-based Chebyshev approach or other methods based on full grid representations.
The discretisation in position space was based on a uniform grid with 32 grid points

in the range xk 2 [�5, 5] for each coordinate direction. The number of Chebyshev
polynomials was N = 50 and the initial wave function was chosen as  0 = gC0,"

z0
with

" = 1, q0,k = 1, p0,k = 0 and C0 = i Id. For both TTC and TT-SOFT, the solution was
calculated at intermediate times with a time step of ⌧ = 0.01 by defining each interme-
diate time as an end point. Figure 6.6 shows the comparison of two-dimensional slices
in the x1x2-plane of the 50-dimensional wave packet obtained with the TTC method
(green line) and the benchmark method TT-SOFT (black) for the uncoupled system
(� = 0) at six di↵erent times. The maximum rank for rounding was chosen as rmax = 3.
Figure 6.7 shows the corresponding simulations for the coupled system (� = 2) with the
maximum rank rmax = 10. In addition to computing the full wave function, the method
was analysed by computing survival amplitudes, which can be seen in Figure 6.8 for the
uncoupled system (top) and the coupled system (bottom). The results for the full wave
function and the survival amplitudes show excellent agreement between the methods and
e�cient performance, even without relying on high-performance computing facilities.

6.3 Summary of this chapter

Numerical methods based on naive space discretisations are not applicable to high-
dimensional systems, since the size of the tensors resulting e.g. from function evaluations
increases exponentially with increasing dimension. Both the storage and processing of
operations is therefore only possible, if at all, with the use of high-performance com-
puters. In this chapter we introduced the tensor-train decomposition, which allows the
storage of tensors that usually require O(Nd) data points for a d-dimensional grid with
N points to be reduced to O(dNR2) data points, where R denotes the maximum rank.
It was also discussed how basic operations such as addition, multiplication and rounding
can be implemented in TT format. The presented numerical results on the tensor-train
implementation of the Chebyshev propagation method have shown that the TT format
can potentially be used for other grid-based methods, e.g. the TSTG method.
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7 Appendix

7.1 Inner products of Gaussian wave packets

Proof (of Lemma 7). The product of the functions gC1,"
z1 and gC2,"

z2
is again a Gaussian,

and to obtain an explicit representation, we rewrite the sum of the exponents

� i

"

✓
1

2
(x� q1)

T C̄1(x� q1) + pT
1
(x� q1)

◆
+

i

"

✓
1

2
(x� q2)

TC2(x� q2) + pT
2
(x� q2)

◆

as a quadratic function

i

"

✓
1

2
(x� q2)

TB(x� q2) + (x� q2)
T b+ c

◆
,

where a short calculation shows that B 2 Cd⇥d, b 2 Cd and c 2 C are given by

B := C2 � C̄1, b := (p2 � p1)� C̄1(q2 � q1) and

c := �1

2
(q2 � q1)

T C̄1(q2 � q1)� pT
1
(q2 � q1).

(7.1)

In particular, since Im(�C̄1) = Im(C1) is positive definite and the sum of two real
positive definite matrices is again positive definite, we conclude that B is an element of
the Siegel space S+(d). This yields the following representation for all x 2 Rd:

gC1,"
z1 (x)gC2,"

z2
(x) = ↵ exp


i

"

✓
1

2
(x� q2)

TB(x� q2) + (x� q2)
T b+ c

◆�
,

where the positive constant ↵ > 0 is given by

↵ := (⇡")�d/2 det(ImC1 ImC2)
1/4.

Therefore, we conclude that

hgC1,"
z1

| gC2,"
z2

i =
Z

Rd

↵ exp


i

"

✓
1

2
(x� q2)

TB(x� q2) + (x� q2)
T b+ c

◆�
dx

= ↵

Z

Rd

exp


i

"

✓
1

2
yTBy + yT b+ c

◆�
dy.

In particular, since the last integral can be solved analytically by using a formula for
multivariate Gaussian integrals, see e.g. [Fol89, Appendix A (Theorem 1)], we get

Z

Rd

exp


i

"

✓
1

2
yTBy + yT b+ c

◆�
dy =

(2⇡")d/2p
det(�iB)

exp

✓
� i

2"
bTB�1b+

i

"
c

◆
,
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where the branch of the square root is determined by the requirement

det(�iB)�1/2 > 0

if �iB is real and positive definite. Moreover, using the formulas in equation (7.1), we
obtain the following representation:

↵
(2⇡")d/2p
det(�iB)

exp

✓
� i

2"
bTB�1b+

i

"
c

◆

=
2d/2 det(ImC1 ImC2)1/4p

det(�iB)
exp

✓
i

2"
(p1 + p2)

T (q1 � q2)

◆
· · ·

exp

✓
i

2"
(p2 � p1)

T (C2 � C̄1)
�1(C2 + C̄1)(q2 � q1)

◆
· · ·

exp

✓
i

2"
(p2 � p1)

T (�B�1)(p2 � p1)

◆
exp

✓
i

2"
(q2 � q1)

T (�C̄1 � C̄1B
�1C̄1)(q2 � q1)

◆

In the last line we have two Gaussians: One with respect to the di↵erence p2 � p1 with
width matrix �B�1 and one for q2�q1 with width matrix �C̄1�C̄1B�1C̄1. In particular,
the Woodbury matrix identity, see e.g. [Hig02, Page 258], yields

�C̄1 � C̄1B
�1C̄1 =

�
C�1

2
� C̄�1

1

��1

.

Hence, since Z 2 S+(d) implies �Z�1 2 S+(d), see e.g. [Fol89, Theorem 4.64], we
conclude that both width matrices

�B�1 and
�
C�1

2
� C̄�1

1

��1

are in S+(d) and therefore we conclude that the block diagonal matrix M in (2.9) is an
element of S+(2d). Putting together the above calculations we arrive at (2.8).

To prove the bound in (2.10), we follow the idea of [Swa08, 11.4 Lemma] and assume
that the eigenvalues of Im(Ck) and Im(�C�1

k
) are bounded from below by ✓ > 0 and

from above by ⇥ > 0. Furthermore, let us introduce the real-valued Gaussian function

g✓
k
(x) = (⇡")�d/4✓d/4 exp

✓
� ✓

2"
kx� qkk22

◆
, k = 1, 2, x 2 Rd.

Then, for all x 2 Rd, the spectral bounds imply that

|gCk,"
zk

(x)|  det(ImCk)
1/4✓�d/4g✓

k
(x)  ⇥d/4✓�d/4g✓

k
(x),

and therefore we obtain the following bound:
��hgC1,"

z1
| gC2,"

z2
i
��  ✓�d/2⇥d/2hg✓

1
| g✓

2
i

= ✓�d/2⇥d/2 exp

✓
� ✓

4"
kq2 � q1k22

◆
,

(7.2)
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where the last equality follows by (2.8). Furthermore, combining Plancherel’s theorem
with a formula for the Fourier transform F"gCk,"

zk
, implies

��hgC1,"
z1

| gC2,"
z2

i
�� =

��hF"g
C1,"
z1

| F"g
C2,"
z2

i
��

 ✓�d/2⇥d/2 exp

✓
� ✓

4"
kp2 � p1k22

◆
.

(7.3)

Consequently, combining the bounds in (7.2) and (7.3) proves (2.10) for

⇣ =

✓
⇥

✓

◆d

. (7.4)

7.2 Summation curve

To prove the existence of a constant C�q > 0 with

sup
x2⇤q

1

S(x)

KX

k1=1

· · ·
KX

kd=1

|g0(x� qk)| < Cd

�q
(7.5)

as used in the proof of Theorem 17, we use two one-dimensional bounds: The first one
is an upper bound for the infinite series

X

k2Z

|g0(x� qk)|

and the second one a lower bound for the summation curve S(x).

Lemma 90 (Upper bound). For d = 1 consider the Gaussian g defined in (2.1) with
width parameter � = �r + i�i 2 C, �i > 0 and the uniform grid points qk = k�q with
distance �q > 0. Then, for all x 2 R, we have

X

k2Z

|g0(x� qk)| < c�q,",� (7.6)

with upper bound

c�q,",� =
p
2(⇡")1/4��1/4

i

1

�q

✓
1 +�q

r
�i
2⇡"

◆
.

Proof. Let x 2 R. Using formula (3.5), we get

X

k2Z

|g0(x� qk)| 
p
2(⇡")1/4��1/4
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Hence, (7.6) follows by the estimate

1X

n=1

exp

✓
�2"⇡2n2

�i�q2

◆

Z

1

0

exp

✓
�2"⇡2z2

�i�q2

◆
dz =

�q

2

r
�i
2⇡"

.

Lemma 91 (Lower bound). For d = 1 consider the Gaussian g defined in (2.1) with
width parameter � = �r + i�i 2 C, �i > 0. Moreover, consider the uniform grid

qk = q0 � Lq +
2k � 1

2
�q, k = 1, . . . , K,

where �q = 2Lq/K. Then, for all x 2 [q0 � Lq, q0 + Lq] we have

S(x) =
KX

k=1

|g0(x� qk)|2 > C�q,",�,Lq (7.7)

with lower bound

C�q,",�,Lq =
1

2�q

✓
erf

✓
2Lq

r
�i
"

◆
� erf

✓
�q

r
�i
"

◆◆
. (7.8)

Proof. Let x̄ 2 [q0 � Lq, q0 + Lq] and denote by qK̄ the nearest grid point, i.e.,

K̄ = argmin
k=1,...,K

|x̄� qk|.

There exists t 2 (��q/2,�q/2] such that x̄ = qK̄ + t, and without any loss of generality
we assume that t � 0. Now, we decompose the one-dimensional summation curve as

S(x) = SK̄(x) +
�
S(x)� SK̄(x)

�
,

where SK̄ is defined by

SK̄(x) :=
K̄X

k=1

|g0(x� qk)|2.

In particular, since SK̄ is symmetric to the axis

x =
q1 + qK̄

2
=

(
ql, if K̄ = 2l � 1,

ql +�q/2, if K̄ = 2l,

we have SK̄(x̄) = SK̄(qK̄ + t) = SK̄(q1 � t). Hence, since SK̄ is increasing on [q0 �Lq, q1]
and S � SK̄ is increasing on [q0 � Lq, qK̄+1], we conclude that

S(q0 � Lq)  SK̄(q1 � t) +
�
S(x̄)� SK̄(x̄)

�
= S(x̄),
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and since x̄ was chosen arbitrarily, this shows that on the interval [q0 � Lq, q0 + Lq] the
summation curve S(x) attains its minimum at x = q0 � Lq. Consequently, using that

S(q0 � Lq) >
KX

k=1

(⇡")�1/2�1/2
i

exp
⇣
��i
"
(k�q)2

⌘

and estimating the sum from below by an integral as follows,

KX

k=1

(⇡")�1/2�1/2
i

exp
⇣
��i
"
(k�q)2

⌘
>

1

�q
p
⇡

Z
K�q

p
�i/"

�q

p
�i/"

e�z
2
dz,

the lower bound in (7.8) follows by the definition of the error function.

Proof for the upper bound in (7.5). We have

1

S(x)

KX

k1=1

· · ·
KX

kd=1

|g0(x� qk)| <
1

S(x)

X

k2Zd

|g0(x� qk)|,

and since the grid is aligned with the eigenvalues of the matrix ImC, we obtain the
following factorization:

1

S(x)

X

k2Zd

|g0(x� qk)| =
dY

n=1

1

Sn(x)

X

kn2Z

|gn(xTun � kn�q)|,

where the one-dimensional summation curves Sn(x) are defined according to (3.6) for

�(n)

q = {1, . . . , K} and the Gaussian functions gn are given in (3.7). In particular, using
the upper bound in (7.6) and the lower bound in (7.7), we conclude that

sup
x2⇤x

1

Sn(x)

X

kn2Z

|gn(xTun � kn�q)| < c�q,",�n

C�q,",�,Lq

, n = 1, . . . , d.

Since in the limit K ! 1 we get

c�q,",�n

C�q,",�,Lq

! 2
p
2(⇡")1/4��1/4

n

erf
⇣
2Lq

p
�n/"

⌘ ,

(use that �q ! 0 as K ! 1 and erf(x) ! 0 as x ! 0) the bound in (7.5) follows for

C�q =
2
p
2(⇡")1/4��1/4

erf
⇣
2Lq

p
�/"
⌘ ,

where � > 0 denotes the smallest eigenvalue of Im(C).
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7.3 Computing Fourier integrals using the FFT

For the computation of Fourier-type integrals, such as

I(k)( ) :=

Z
t+�

t��

 (x)w(x� t)e�i⇠
⇡
�x dx, ⇠ =

k

M
, k 2 Z, M 2 N,

we used the fast Fourier transform. Let v = (v1, . . . , vd) 2 Cd and

v̂l :=
dX

j=1

vje
�2⇡i·(j�1)(l�1)/d, l 2 {1, . . . , d}.

For the computation of the integral I(k)( ) let us consider the composite trapezoidal
rule on a uniform grid. Let N 2 N be a power of 2, as well as m 2 N, m  N � 1 and

xj := t� �+� · j, � :=
2�

m
, j 2 {0, 1, . . . ,m}.

The trapezoidal rule with grid {xj}j2{0,1,...,m} yields the following approximation:

I(k)( ) ⇡ e�i
k
M ·

⇡
� tei

k
M ⇡�

 
 (t+ �)w(�)

2
e�2⇡i

k
M �  (t� �)w(��)

2
. . .

+
mX

j=1

 (xj�1)w(xj�1 � t)e�2⇡i
k

Mm (j�1)

!
.

Consequently, if k = mn for some n 2 {0, 1, . . . , N � 1}, as well as M = N and
vj :=  (xj�1)w(xj�1 � t) for j = 1, . . . ,m, vj := 0 for j = m+ 1, . . . , N , then,

I(k)( ) ⇡ e�i
mn
N ·

⇡
� tei

mn
N ⇡�

 
r1e

�2⇡i
mn
N � r2 +

NX

j=1

vje
�2⇡i(j�1)n/N

!

= e�i
mn
N ·

⇡
� tei

mn
N ⇡�

⇣
r1e

�2⇡i
mn
N � r2 + v̂n+1

⌘
,

where the constants r1, r2 2 R are given by

r1 =
 (t+ �)w(�)

2
and r2 =

 (t� �)w(��)
2

.

In particular, the vector v̂ can be calculated with the FFT. For su�ciently large values
of m and N we get

1

2�

Z
t+�

t��

 (x)w(x� t)e�i⇠
⇡
�x dx ⇡ e�i⇠

⇡
� tei⇠⇡

m

�
r1e

�2⇡i⇠ � r2 + v̂n+1

�
.

Recall that the window w is compactly supported. Provided that both the functions  
and w are smooth on (t��, t+�), the trapezoidal rule gives accurate results. The actual
rates of convergence are based on the Euler–Maclaurin formula and can be found e.g. in
[DR07, Chapter 2.9]. In particular, the di↵erence between the exact Fourier coe�cients
and their discrete approximation using the trapezoidal rule is known to be spectrally
small, see [GT85, Equation 1.5].
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7.4 Upper bound for Ks

Recall the representation of the combinatorial constant Ks in (4.10). We want to find
an estimate for the following sum (cf. Equation (4.11)):

s�1X

k=0

(s+ k)! · (2s� k � 1)!

(2k + 2)! · (s� k � 1)! · (2s� 2k)! · k! =
Ks

22s(s+ 1)!(2s)2
.

For the summand we calculate

(s+ k)! · (2s� k � 1)!

(2k + 2)! · (s� k � 1)! · (2s� 2k)! · k!

=
(s+ k)! · (2s� k � 1)!

s! · k! · (s� k � 1)! · s! ·
s! · s!

(2s+ 2)!
·
✓
2s+ 2

2k + 2

◆
.

(7.9)

Recall Vandermonde’s theorem, see e.g. [Sea91, Equation 2.43]:

mX

k=0

(a)k
k!

(b)m�k

(m� k)!
=

(a+ b)m
m!

, a, b 2 C, m � 0.

In particular, for m = s� 1 and a = b = s+ 1, s � 1, we obtain

s�1X

k=0

(s+ k)! · (2s� k � 1)!

s! · k! · (s� k � 1)! · s! =
✓

3s

s� 1

◆
. (7.10)

Hence, since
✓

2s+ 2

2s� 2k

◆

✓
2s+ 2

s

◆
for 0  k  s� 1, s � 2,

by (7.9) and (7.10) we conclude that

s�1X

k=0

(s+ k)! · (2s� k � 1)!

(2k + 2)! · (s� k � 1)! · (2s� 2k)! · k! 
s! · s!

(2s+ 2)!

✓
2s+ 2

s

◆✓
3s

s� 1

◆

=
(3s)!

s!(2s+ 2)!
· 2s

s+ 2
.

This proves that

Ks 
22s+1s2(3s)!

(2s+ 1)!
· 2s

s+ 2
, s � 2.

Consequently, the true value of Ks is overestimated by the factor 2s/(s+ 2).
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1 2 3 4 5

1 |b1(⇠)|

1 2 3 4 5

1

|bx(⇠)|
1/⇠

Figure 7.1: Absolute values of the Fourier coe�cients (bullets) for f(x) = 1 (left) and
f(x) = x (right). The extension of the domain of the Fourier coe�cients
leads to a non-trivial function in ⇠, but the restriction to integer values
might result in a smooth decay (orange line).

7.5 Oscillations of the coe�cients

We focus once more on the windowed coe�cients cw
 
. In the plot at the upper left-hand

side of Figure 4.2 the green line falls in a trembling way. To explain this phenomenon,
we extend the domain of the Fourier coe�cients. For a 2⇡-periodic function f 2 BVloc

and ⇠ 2 R consider the number

bf(⇠) := 1

2⇡

Z
⇡

�⇡

f(x)e�i⇠x dx.

This means, that we calculate the Fourier coe�cients not only for integer values, but for
all real numbers ⇠. For example, the extended Fourier coe�cients of the function f ⌘ 1
are given by

b1(⇠) := 1

2⇡

Z
⇡

�⇡

e�i⇠x dx =
sin(⇡⇠)

⇡⇠
= sinc(⇠) .

In particular, if k is an integer, we obtain the simple Fourier coe�cients. Indeed,

|b1(k)| =
(
1, if k = 0,

0, else.

As we see in the left plot of Figure 7.1, for k 6= 0 the simple Fourier coe�cients of f ⌘ 1
correspond to the zeros of ⇠ 7! | sinc(⇠) |. For the saw wave in Section 4.4.1 we can do
the same calculation. Here we obtain

bx(⇠) := 1

2⇡

Z
⇡

�⇡

xe�i⇠x dx = i · (⇡⇠ cos(⇡⇠)� sin(⇡⇠))

⇡⇠2
.

Therefore, if k 6= 0 is an integer, we conclude that

|bx(k)| = 1

|k| .
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100 101

100

10�3

10�6

Extended coe�cients (saw wave)

|c (⇠)|
2

|cbump
 (⇠)|2

|chann (⇠)|2

1/⇠2

O(1/⇠6)

390 395 400
10�17

10�16

Detail (higher frequencies)

Figure 7.2: Due to the extension of the domain of the coe�cients, we are able to resolve
the trembling pattern in the upper left plot in Figure 4.2. The left plot shows
low frequencies (⇠ 2 [1, 10]) and in the right plot (⇠ 2 [390, 400]) we observe
that the bump coe�cients fall below the Hann coe�cients.

Thus, the coe�cients of the saw wave function have a smooth decay, as we see at the
right-hand side of Figure 7.1 (orange line). We computed the extended (windowed)
coe�cients for ⇠ 2 [1, 10] and ⇠ 2 [390, 400] for the saw wave. The result can be found
in Figure 7.2. By extending the domain of the Fourier coe�cients, we observe that the
trembling also occurs for the other coe�cients (plain and hann).

7.6 Discrete Gaussian convolution

Lemma 92. For � > 0 consider the one-dimensional Gaussian function

f�(t) := exp

✓
� 1

2�
t2
◆

for all t 2 R.

For arbitrary grid points t1 < t2 < ... < tN let

hi := ti+1 � ti, i = 1, . . . , N � 1 and h := min
i=1,...,N�1

hi. (7.11)

Then, for all �1, �2 > 0, there exists a constant c > 0 such that for all s 2 R we have

NX

k=1

f�1(tk)f�2(s� tk)  cf�1+�2(s), (7.12)

where c depends on �1, �2 and h, but not on N .

Proof. Let s 2 R. A short calculation shows that

f�1(tk)f�2(s� tk) = f�1+�2(s)f�3 (s
0 � tk) ,
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where we introduced the parameters

�3 =
�1�2
�1 + �2

and s0 =
�1s

�1 + �2
.

Consequently, the sum in (7.12) can be written as

NX

k=1

f�1(tk)f�2(s� tk) = f�1+�2(s)
NX

k=1

f�3 (s
0 � tk) .

In particular, the sum at the right-hand side can be bounded independently of s0 as

NX

k=1

f�3 (s
0 � tk) 

X

k2Z

f�3 (hk) ,

where the minimal distance h > 0 between consecutive grid points is defined in (7.11).
Since the last sum can be viewed as a Riemann sum approximation to the integral

1

h

Z

R
f�3 (t) dt =

p
2⇡�3
h

,

we find a positive constant c > 0, depending on �3 and h, such that

X

k2Z

f�3 (s
0 � tk)  c,

which makes the proof complete.

7.7 Reference solver: The split-step Fourier method

Let ", µ > 0 and V : R ! R be a smooth potential. We are interested in the numerical
solution to the one-dimensional time-dependent Schrödinger equation

8
><

>:

i"@t (x, t) = � "2

2µ
 00(x, t) + V (x) (x, t),

 (•, 0) =  0,

(7.13)

for a given initial wave function  0 2 S(R).

7.7.1 Transformation of the Schrödinger equation

Let  be the solution to (7.13). For a given time interval [0, tmax], we assume that
| (x, t)| is negligible outside the spatial interval [a, b], i.e.,

| (x, t)| ⇡ 0 for all x 2 R \ [a, b] and t 2 [0, tmax]. (7.14)
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For the parameters

↵ :=
b� a

2⇡
and � := a

we introduce the complex-valued function

f : R⇥ R ! C, f(y, ⌧) :=  (↵y + �, "⌧) for all (y, ⌧) 2 R⇥ R.

Note that for ⌧ 2 R we have

f(0, ⌧) =  (a, ⌧) and f(2⇡, ⌧) =  (b, ⌧).

In particular, f satisfies the following equation:
8
><

>:

i@⌧f(y, ⌧) = � "2

2µ

1

↵2
f 00(y, ⌧) + V (↵y + �)f(y, ⌧),

f(y, 0) =  0(↵y + �).

(7.15)

7.7.2 Approximation by trigonometric polynomials

Let f be the solution to (7.15). Our assumption in (7.14) yields that f(y, ⌧) is negligible
outside [0, 2⇡] for all times ⌧ 2 [0, tmax/"]. For those times we are interested in an
approximation of f in [0, 2⇡] by trigonometric polynomials.

The discrete Fourier transform

We denote by F : Cd ! Cd the discrete Fourier transform:

v̂ = Fv with v̂k =
dX

j=1

vje
�2⇡i(j�1)(k�1)/d, k = 1, . . . , d.

In particular, the inverse transform F�1 : Cd ! Cd is given by

v = F�1v̂ with vj =
1

d

dX

k=1

v̂ke
2⇡i(j�1)(k�1)/d, j = 1, . . . , d.

Lemma 93. Let K be a power of 2 and c :=
�
c�K/2, . . . , cK/2�1

�T 2 CK a given vector.
Moreover, let

vj :=
K/2�1X

k=�K/2

cke
2⇡i(j�1)k/K , j = 1, . . . , K,

and � : CK ! CK the linear map defined by

�(c) :=
�
c0, . . . , cK/2�1, c�K/2, . . . , c�1

�T
.

Then, the discrete Fourier transform of v is given by

Fv = K�(c).
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Proof. For k = 1, . . . , K we obtain

v̂k =
KX

j=1

vje
�2⇡i(j�1)(k�1)/K

=
KX

j=1

0

@
K/2�1X

⌫=�K/2

c⌫e
2⇡i(j�1)⌫/K

1

A e�2⇡i(j�1)(k�1)/K

=
K/2�1X

⌫=�K/2

c⌫

KX

j=1

�
e2⇡i(⌫�k+1)/K

�j�1

,

and by the formula of the geometric sum we find

KX

j=1

�
e2⇡i(⌫�k+1)/K

�j�1

=

(
K, if (⌫ � k + 1) 2 {0,�K},
0, else.

Consequently, we conclude that

v̂k =

(
ck�1, if k 2 {1, . . . , K/2},
ck�1�K , if k 2 {K/2 + 1, . . . , K},

and therefore Fv = v̂ = K�(c).

Collocation

Lemma 94. Let K be a power of 2. For all times ⌧ 2 R, let fK(⌧) be a trigonometric
polynomial of degree K/2, that is, there exists a time-dependent vector

c(⌧) =
�
c�K/2(⌧), . . . , cK/2�1(⌧)

�T 2 CK

such that

fK(y, ⌧) =
K/2�1X

k=�K/2

ck(⌧)e
iky for all (y, ⌧) 2 R⇥ R.

Moreover, define the K equidistant grid points

yj := (j � 1)
2⇡

K
, j = 1, . . . , K.

Then, the trigonometric polynomial fK satisfies the equation

i@⌧fK(yj, ⌧) = � "2

2µ

1

↵2
f 00

K
(yj, ⌧) + V (↵yj + �)fK(yj, ⌧), (7.16)
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for ⌧ 2 R and all j = 1, . . . , K, if and only if

i�(ċ) =
"2

2µ

1

↵2
D2�(c) + FV F�1�(c),

where ċ(⌧) = @⌧c(⌧) and the matrices D, V 2 RK⇥K are given by

D = diag
�
0, . . . , K/2� 1,�K/2, . . . ,�1

�
and V = diag

�
V (↵yj + �)

�
.

Proof. For ⌧ 2 R and j = 1, . . . , K we introduce

uj(⌧) := fK(yj, ⌧),

u�

j
(⌧) := f 00

K
(yj, ⌧) = �

K/2�1X

k=�K/2

k2ck(⌧)e
ikyj .

Using the vectors u and u�, we can rewrite the system in (7.16) equivalently as

iu̇ = � "2

2µ

1

↵2
u� + V u.

In particular, by Lemma 93 we conclude that

Fu = K�(c), F u̇ = K�(ċ), as well as Fu� = �D2Fu.

Therefore we obtain

iu̇ =
"2

2µ

1

↵2
F�1D2Fu+ V u. (7.17)

Hence, applying the Fourier transform on both sides, we finally conclude that

i�̇(c) =
"2

2µ

1

↵
D2�(c) + FV F�1�(c).

7.7.3 The split-step Fourier method

For an initial vector u0 2 CK , we consider the following system of ordinary di↵erential
equations (cf. (7.17)):

iu̇ =
"2

2µ

1

↵2
F�1D2Fu+ V u, u(0) = u0. (7.18)

We denote by F 2 CK⇥K the complex Fourier matrix defined by

Fj,k = !(j�1)(k�1), where ! := e�2⇡i/K .

In particular, we have Fv = Fv for all v 2 CK . Moreover, let us define the matrices

D0 :=
"2

2µ

1

↵2
D2 2 RK⇥K and T := F�1D0F 2 CK⇥K .

Then, the unique solution to the IVP (7.18) is given by

u(t) = e�it(T+V )u0 for all t 2 R.
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Strang splitting

Define the grid points

xj := ↵yj + � = a+ (j � 1)
b� a

K
, j = 1, . . . , K,

and recall that for all t 2 [0, tmax] the following approximation holds:

uj(t/") = fK(yj, t/") ⇡ f(yj, t/") =  (xj, t).

Moreover, for m 2 N let

�t :=
tmax

m
and tn := n�t, n = 0, 1, . . . ,m.

An approximation of u(t1/") = u(�t/") is given by

u1 := exp

✓
�i

�t

2"
V

◆
exp

✓
�i

�t

"
T

◆
exp

✓
�i

�t

2"
V

◆
u0. (7.19)

In particular, using that T = F�1D0F , we get

exp

✓
�i

�t

"
T

◆
= F�1 exp

✓
�i

�t

"
D0

◆
F.

For a vector v 2 CK , let us introduce

v+ := exp

✓
�i

�t

2"
V

◆
v and v++ := exp

✓
�i

�t

"
D0

◆
v,

and let d 2 RK be the real-valued vector defined by

dj :=
"

2µ

(2⇡)2

(b� a)2
·

8
<

:
(j � 1)2, if j 2 {1, . . . , K/2},

(j � 1�K)2, if j 2 {K/2 + 1, . . . , K}.

Note that the components j = 1, . . . , K of v+ and v++ are given by

v+
j
= exp

✓
�i

�t

2"
V (xj)

◆
vj and v++

j
= exp

⇣
� i�t · dj

⌘
vj.

Therefore, iteration of (7.19) yields the following algorithm:

150



Reference solver (Split-step Fourier method)

Input : un 2 RK (approximation to the solution u of (7.18) at time tn/")

Output : un+1 = v+ (approximation at time tn+1/").

1. set v = un;

2. calculate v+;

3. calculate v = Fv+; (via FFT)

4. calculate v++;

5. calculate v = F�1v++; (via IFFT)

6. calculate v+;

7.7.4 Computation of expected values

We are interested in the numerical computation of the expected values

hq̂it :=
Z

R
x| (x, t)|2 dx and hV it :=

Z

R
V (x)| (x, t)|2 dx,

hp̂it :=
Z

R
p|F" (p, t)|2 dp and hT it :=

1

2µ

Z

R
p2|F" (p, t)|2 dp,

hHit := hT + V it = hT it + hV it.

For the numerical computation of hq̂itn and hV itn at time tn we use that

un

j
⇡  (xj, t

n)

and approximate the integrals over position space via the composite trapezoidal rule
based on the grid points xj. Furthermore, to compute the integrals in momentum space,
we use that the Fourier transform F" (p, tn) can be approximated for all p 2 R as

F" (p, t
n) ⇡ 1p

2⇡"

b� a

K

KX

j=1

 (xj, t
n)e�

i
"pxj

= e�
i
"pa · 1p

2⇡"

b� a

K

KX

j=1

un

j
e�

i
"p(j�1)

b�a
K .

Consequently, using the following grid points in momentum space

pk :=
2⇡"

b� a
·

8
<

:
k � 1, if k 2 {1, . . . , K/2},

k � 1�K, if k 2 {K/2 + 1, . . . , K},
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we conclude that

F" (pk, t
n) ⇡ e�

i
"pka · 1p

2⇡"

b� a

K

KX

j=1

un

j
e�2⇡i(k�1)(j�1)/K

= e�
i
"pka · 1p

2⇡"

b� a

K
(Fun)k,

where Fun can be computed via the FFT. For the computation of hp̂itn and hT itn we
then approximate the integrals over momentum space via the composite trapezoidal rule
based on the grid points pk.

7.8 Clenshaw Algorithm

The direct computation of the Chebyshev expansion in (6.11) based on the usual summa-
tion algorithm has two disadvantages: (1) all summands have to be kept in the memory
of the computer, which can be very expensive in practical applications since the tensors
Tk(H0)W0 (and also their low-rank approximations) are typically large objects, and (2)
it is known that the worst-case error generated by the floating point operations grows
proportionally to the number N of summands, see e.g. [Hig02, Chapter 4]. We therefore
use the Clenshaw algorithm, see [Cle55], which o↵ers a stable alternative to evaluate
linear combinations of polynomials that satisfy a linear recurrence relation such as the
Chebyshev polynomials, see e.g. [FP68, Chapter 3.11].

Assuming that for given coe�cients c0, c1, . . . , cN�1 2 C we are interested in the value
of the partial Chebyshev sum in (6.7), the Clenshaw algorithm replaces the summation
by the evaluation of the following backward recurrence system

(
Br(y) = 2yBr+1(y)� Br+2(y) + cr, r = N � 1, . . . , 0,

BN(y) = 0, BN+1(y) = 0,

and then expresses the partial Chebyshev sum as

N�1X

k=0

(2� �k,0)ckTk(y) = B0(y)� B2(y).

To obtain the approximation of the solution  (t), we adapted the Clenshaw algorithm
by first solving the backward recurrence system

(
Br = 2H0Br+1 � Br+2 + (�i)rJr(t�)W0, r = N � 1, . . . , 0,

BN = 0, BN�1 = 0,

and then computing the approximation

 (t) ⇡ e�it
+
(B0 � B2) .

Note that this numerically stable procedure needs to keep only three tensors in memory.
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