
Build System Aware Multi-language Regression Test Selection in
Continuous Integration

Daniel Elsner
Roland Wuersching
Markus Schnappinger
Alexander Pretschner
firstname.lastname@tum.de

Technical University of Munich
Munich, Germany

Maria Graber
René Dammer
Silke Reimer

{grm,rda,sre}@ivu.de
IVU Traffic Technologies

Berlin, Germany

ABSTRACT
At IVU Traffic Technologies, continuous integration (CI) pipelines
build, analyze, and test the code for inadvertent effects before pull
requests are merged. However, compiling the entire code base and
executing all regression tests for each pull request is infeasible due
to prohibitively long feedback times. Regression test selection (RTS)
aims to reduce the testing effort. Yet, existing safe RTS techniques
are not suitable, as they largely rely on language-specific program
analysis. The IVU code base consists of more than 13 million lines of
code in Java or C/C++ and contains thousands of non-code artifacts.
Regression tests commonly operate across languages, using cross-
language links, or read from non-code artifacts. In this paper, we
describe our build system aware multi-language RTS approach,
which selectively compiles and executes affected code modules
and regression tests, respectively, for a pull request. We evaluate
our RTS technique on 397 pull requests, covering roughly 2,700
commits. The results show that we are able to safely exclude up
to 75% of tests on average (no undetected real failures slip into
the target branches) and thereby save 72% of testing time, whereas
end-to-end CI pipeline time is reduced by up to 63% on average.

CCS CONCEPTS
• Software and its engineering → Software testing and debug-
ging.

KEYWORDS
Software testing, regression test selection, continuous integration

ACM Reference Format:
Daniel Elsner, RolandWuersching,Markus Schnappinger, Alexander Pretschner,
Maria Graber, René Dammer, and Silke Reimer. 2022. Build System Aware
Multi-language Regression Test Selection in Continuous Integration . In
44th International Conference on Software Engineering: Software Engineering
in Practice (ICSE-SEIP ’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3510457.3513078

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in 44th International
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP ’22),
May 21–29, 2022, Pittsburgh, PA, USA, https://doi.org/10.1145/3510457.3513078.

1 INTRODUCTION
Regression testing is regularly performed on software systems to
ensure changes did not inadvertently affect existing system behav-
ior [23]. The simplest, yet expensive strategy to perform regression
testing, retest-all, is to execute every test case after each change.
However, with increasingly large test suites and limited physical
resources this approach is often too costly, especially in continuous
integration (CI) testing [11, 13, 24, 37]. To reduce the costs of regres-
sion testing, regression test selection (RTS) [15, 22, 29, 31, 32, 34, 38]
has been extensively studied since the 1970s [14].

RTS techniques are considered safe, if they select all tests that are
affected by the changes to the code base, such as the changeset of a
pull request. Therefore, they collect dependencies for each test. This
is implemented either through static (e.g., class dependency graph)
or dynamic (e.g., code instrumentation) program analysis [15, 16,
21, 22, 34, 38, 39]. These per-test dependencies are then used to
determine the relevant test cases. However, the involved language-
specific program analysis can be expensive, which is why existing
safe RTS techniques often bear (prohibitively) extensive costs [11,
24, 30]. Lightweight, less intrusive yet unsafe RTS techniques use
CI or version control system (VCS) metadata to select tests, but
the underlying statistical models can only provide project-specific
empirical safety trade-offs [7, 8, 11, 12, 20, 24, 30, 35].

IVU Traffic Technologies is one of the world’s leading providers
of public transport software solutions. The software system consid-
ered in this study accounts for approx. 13.5M Java and C/C++ lines
of code (LOC). A large variety of domain specific language (DSL)
source files and non-code artifacts including build and other config-
uration files, expected test results, and resources complement the
code base. IVU maintains the ten most recent releases of the system
on dedicated release branches. Before pull requests are merged into
any of these release branches, they are thoroughly tested for re-
gressions. However, compiling the entire code base and running all
of the thousands of regression tests for each pull request can take
up to several hours despite a high degree of parallelization within
the CI pipelines. This results in intolerable feedback time and is
economically infeasible: When the number of queued pull requests
increases, developers often need to wait until the next day for test
feedback. Consequently, reducing the overall testing efforts in pull
requests through selective compilation and testing is required.

Probabilistic RTS techniques have already been successfully em-
ployed at IVU in CI pipelines for the main development branch [12].
However, applying these unsafe techniques to pull requests on

https://doi.org/10.1145/3510457.3513078
https://doi.org/10.1145/3510457.3513078

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Elsner, et al.

release branches bears fundamental risks: Support patches are di-
rectly built from these release branches every day, hence, code from
those branches is potentially deployed into customer’s infrastruc-
ture. Therefore, when testing pull requests for release branches, we
aim for test selection that is as safe as reasonably achievable.

Yet, existing safe RTS techniques are not applicable in the given
industrial context: The complexity of the software requires test
scenarios at integration and system level, where tests commonly
operate across languages and intensively use non-code resources.
To the best of our knowledge, there is no RTS technique that ad-
dresses this problem for Windows environments, as opposed to
Linux-only approaches [10]. Furthermore, prior RTS approaches
select a test case if the checksum of any per-test dependency has
changed. There are two shortcomings to this approach: First, these
RTS techniques might miss tests in case of changes made to the
build system. For instance, adding a new runtime dependency in a
configuration file might completely change a test’s behavior, even
though checksums of previously recorded per-test code dependen-
cies are unchanged. Second, these techniques assume that a fully
compiled workspace is readily available. At IVU, compiling the Java
code base already takes roughly half an hour on average. Building
only the relevant modules that are affected by changes or contain se-
lected tests can have a significant impact on end-to-end CI pipeline
execution time—especially for small changesets.

In this paper, we propose a build system aware RTS technique
which harnesses dynamic and static program analysis to collect
file-level per-test dependencies across language boundaries: We
combine language-agnostic system call tracing, Java class loader
instrumentation, as well as static code and build dependency anal-
ysis. This yields more complete per-test dependencies than pure
language-specific approaches, thus leading to safer module and test
selection for compilation and test execution, respectively.

We evaluate our RTS technique on 397 pull requests and measure
the time savings in the CI pipelines across five weeks, covering
roughly 2,700 commits. In addition to traditional measures, such
as the ratio of selected tests, we also consider the observed real-
life end-to-end time saving, i.e., compilation plus test execution
time. The results on two evaluation branches show our approach
can select tests safely (no undetected failures slip into target re-
lease branches) and thereby saves on average 42% and 72% of test
execution time, depending on how recent the release branch is.
End-to-end CI pipeline time is further reduced by up to 63% on av-
erage, when compared to pull requests with full build and retest-all
strategy. Although we evaluate our RTS technique in just one indus-
trial context, we expect it to be applicable to other multi-language
software systems. Due to the resulting shorter feedback cycles, our
RTS approach is now deployed to all release branches at IVU.

2 CONTINUOUS INTEGRATION TESTING AT
IVU TRAFFIC TECHNOLOGIES

This paper describes the optimization of the CI testing process
for pull requests at IVU using a novel build system aware multi-
language RTS approach. To better understand the context of this
study, we first explain the system under test and the testing pro-
cess for pull requests at IVU. Second, we elaborate on established

state-of-practice RTS techniques and their drawbacks in the given
context.

2.1 System Description
At IVU, source code of the main software products is stored in a
monolithic code repository. The code repository is split into two
subtrees, one containing mainly C/C++ source code (approx. 9.5M
LOC) and one with mainly Java source code (approx. 4M LOC).
Additionally, both subtrees contain, amongst others, hundreds of
thousands LOC written in Java-/TypeScript, C#, Perl, Python, SQL,
and Assembly, as well as millions of lines in non-code artifacts such
as XML, CSV, YAML, Java Properties, and plain text files.

The code repository is structured through >4,000 Maven1 mod-
ules, yet Maven is only used as the build system for the Java subtree.
For the C/C++ subtree, a self-maintained build tool is employed,
which wraps Microsoft’s Visual C++ compiler, as most software
products primarily target Microsoft Windows.

The regression test suite is composed of unit, integration, and
system level test cases. Tests written in Java are naturally located
in the Java subtree, whereas C/C++ tests reside in the C/C++ sub-
tree. In this study, we focus on the Java tests. These are further
separated into so-called short-running and long-running test cases.
Both types of test cases frequently interact with databases, which
makes them inherently costly to run. Opposed to short-running
tests, long-running tests operate on real databases instead of in-
memory databases and use the Java Native Interface (JNI) to interact
with dynamic-link libraries (DLLs) built from the C/C++ subtree.
Executing the entire suite (∼10,000 test cases) yields unbearable
feedback times of around 2 hours (excluding compilation and code
analysis; see next section). Motivated by this high potential for
improvement, this paper describes how we reduce the effort for
building and testing Java code in pull request CI pipelines.

2.2 Pull Request CI Testing
To continuously integrate code changes, IVU uses a Jenkins2 CI
system. Respective CI pipelines (1) build, (2) analyze, and (3) test the
code base. These pipelines are continuously running for the main
development branch and release branches, which contain currently
supported and already released versions of the software.

Figure 1: Pull request CI pipeline as executed after every
change to a pull request branch

Before developers integrate changes into one of these branches,
they have to create a pull request. These pull requests contain
changesets which typically implement one feature, bug fix, or other
enhancement. When a pull request is opened, a new CI pipeline
is created for it. This pipeline will rebase the pull request branch
(source) onto the target branch (e.g., the release branch) and execute
1Maven: https://maven.apache.org
2Jenkins: https://www.jenkins.io/

Preprint — do not distribute.

https://maven.apache.org
https://www.jenkins.io/

Build System Aware Multi-language Regression Test Selection in Continuous Integration ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

the above mentioned steps. Every new commit to the source branch
triggers a new run of the pipeline. Since there exists only a lim-
ited amount of build machines for these pull request CI pipelines,
a pipeline run is typically queued before being executed. Once a
machine is available, the CI pipeline for the pull request runs as
depicted in Fig. 1. First, in case there are any changes related to
the C/C++ subtree, the C/C++ code is built, analyzed, and tested.
Second, the Java code is built, analyzed, and tested. Notably, ex-
clusively changing the C/C++ subtree nevertheless triggers the
Java build and the Java long-running tests, as these tests operate
across language boundaries and potentially use C/C++ DLLs3. If
no changes to the C/C++ code were made, the necessary DLLs are
loaded from a central artifact repository.

Before the improvements we describe in this study, the Java-
related pipeline steps took around 170 minutes on highly paral-
lelized build machines (64–96 cores): Building took on average 28
minutes, static code analysis 24 minutes, short-running tests 38
minutes, and long-running tests 80 minutes.

2.3 Alternative Test Selection Approaches and
State-of-Practice

The state-of-practice knows several safe RTS techniques and associ-
ated tools, specifically for Java projects [2, 4, 10, 15, 16, 19, 21, 22, 27,
29, 33, 34, 38, 39]. Existing techniques statically [2, 21, 22, 33] or dy-
namically [4, 10, 15, 16, 27, 34, 38, 39] collect per-test dependencies
at the level of basic-blocks [19, 29], methods [4, 39], classes/files [15,
16, 21, 22], modules [2, 33], or combinations thereof [34, 38] to se-
lect tests. These techniques have been shown to effectively reduce
the testing effort in various studies—especially on open-source soft-
ware projects, yet particularly not at the scale of the industrial
code base of IVU. However, existing techniques and tools suffer the
following limitations that are crucial in the context of IVU.

2.3.1 Build System Awareness. We identify two requirements re-
lated to the build system.

First, the majority of more recent RTS techniques use file or
method checksums of per-test dependencies to identify those de-
pendencies that have changed since the last test execution [10, 15,
16, 21, 22, 38]. While this approach is easily transferable and does
not require integration with the VCS, it is based on the assumption
that a fully built workspace is readily available. At IVU, compiling
the code of all >2,000 Java Maven modules already requires a sig-
nificant time effort, on average roughly half an hour despite high
parallelization. However, selecting only relevant modules for com-
pilation provides a great time-saving potential. Thus, an adequate
RTS technique in this context needs to select tests without having
compiled sources available.

Second, existing RTS techniques are unsafe considering the build
system configuration. This is because they either use language-
specific analysis or collect per-test dependencies during test exe-
cution. Yet, build configuration files such as Maven pom.xml files,
are not part of per-test dependencies since these files define the
compile and runtime dependencies before the test is executed. To

3Although C/C++-only changesets are supposed to trigger the Java build and Java
long-running tests since they might break tests, this has been partially deactivated
throughout the course of our study, due to the significant overhead caused for small
C/C++ changesets.

mitigate this threat, Shi et al. [34] recommend to use hybrid tech-
niques, which combine static module and dynamic file-level analy-
sis. However, their proposed technique, GIBstazi, selects all tests,
if any changes to non-code files occur. Due to the large amount of
non-code artifacts in our system, this does not provide significant
advantages over retest-all. At IVU, we require a more precise ap-
proach that actively checks for build system changes and prunes
the set of selected tests and modules to be compiled to a minimum.

2.3.2 Multi-language Test Traces. Since most existing RTS tech-
niques for Java software rely on language-specific static analysis
or code instrumentation, their collected per-test dependencies are
impracticable for software that operates across language bound-
aries [10, 40]. At IVU, we intensively use cross-language links to
implement Java tests that cover code from the Java and C/C++ code
base, and code written in other programming languages. Moreover,
our code base includes millions of lines in non-code artifacts, which
are used for configuration purposes at run-time or serve as test
resources (e.g., expected test results). Consequently, a safe RTS tech-
nique in our context needs to rely on test traces that cover multiple
languages and non-code artifacts, e.g., by tracing calls issued to
native DLLs during test execution.

To address this problem, Celik et al. [10] propose RTSLinux, an
RTS technique that modifies the Linux kernel to intercept operat-
ing system calls related to file accesses and process management.
This way, RTSLinux collects all file dependencies of a Java virtual
machine (JVM) process executing a test and is thereby also aware
of calls made from the JVM to native libraries via the JNI. However,
even if RTSLinux was publicly available, it would not be applicable
in our case: First, perhaps trivially, our software targets Windows
environments and therefore—at least the C/C++ parts—cannot be
executed on Linux. Since Windows is a closed-source operating
system, directly modifying the kernel and system call application
programming interfaces (APIs) is not easily possible. Second, assum-
ing said kernel modification was technically feasible, IVU would
most probably decide against using modified operating systems on
their CI machines, as this would imply maintaining that extension
for future versions of the kernel with utmost care to avoid kernel
panics. Third and yet more importantly, RTSLinux also relies on file
checksums to compute the set of changed files and thus requires
a compiled workspace. Hence, RTSLinux does neither provide an
applicable approach for multi-language software on Windows, nor
does it address the need to reduce compile time.

2.3.3 Tool Support. Beyond the conceptual limitations of existing
RTS techniques, we did not find a single RTS tool for JVM projects
that was publicly available (released on Maven Central) and worked
out-of-the-box in the given context. The main reasons are that
existing tools do not support JUnit 5 (Ekstazi [15], HyRTS [38]), or
fail with Java Development Kit (JDK) versions newer than 9 (we
use 11) or specific language features such as Java type annotations4
(Clover [4], STARTS [22]).

In summary, we need an RTS solution that is (1) build system aware,
i.e., it is safe concerning changes to the build system configuration
and can selectively build only those modules relevant for testing

4Clover GitHub Issue on Java Type Annotations: https://github.com/openclover/clover/
issues/20

Preprint — do not distribute.

https://github.com/openclover/clover/issues/20
https://github.com/openclover/clover/issues/20

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Elsner, et al.

introduced changes; (2) capable of collecting per-test dependencies
to non-code artifacts and across programming languages.

Similar to prior RTS research [12, 15, 16, 21, 22], we target class-
rather than method-level test selection. Therefore, unless otherwise
stated, we refer to a Java test class (i.e., JUnit test suite) in the rest
of the paper when we talk about a test.

3 BUILD SYSTEM AWARE MULTI-LANGUAGE
TEST SELECTION

Existing RTS techniques are either unsafe or unapplicable at IVU.
This motivates a novel approach, which is build system aware and
capable of multi-language RTS. In this section, we first explain how
to collect multi-language test traces as input for the test selection.
Second, we show how to integrate the test selection with the build
system to selectively compile modules for safe and cost-efficient
testing. Last, we elaborate on integration details of our RTS tech-
nique into the pull request CI at IVU.

3.1 Collecting Multi-language Test Traces
To address the requirement of multi-language support for our RTS
technique, we need to collect per-test dependencies to non-code
artifacts and across language boundaries. Therefore, we harness
and combine practical approaches for system call tracing and JVM
class loader monitoring. By integrating these approaches with the
JUnit testing framework [5] and the Maven Surefire Plugin [3], we
can collect the required test traces at file-level granularity.

3.1.1 Probe-based System Call Tracing. System calls represent the
interface to the operating system kernel that is visible to application
programmers [36]. During a test’s execution, its low-level behavior
can be analyzed by tracing the invoked system calls. Thereby, we
can collect the set of all accessed files, even if they are accessed by
loaded DLLs or transitive child processes. The most straightforward
way to trace all system calls issued by a test is to execute each test
in isolation in its own forked JVM process which is supported by
standard test execution frameworks [3, 10]. This further increases
the reliability of test results as it prevents shared test state pollution
or test-order dependencies [6, 28]. We can thus obtain stable file-
level test traces by tracing all process- and file-related system calls
for each JVM, i.e., for each test.

A similar approach is employed by RTSLinux [10]. However,
none of the techniques for tracing system calls evaluated by Celik et
al. [10] is available for theWindows operating system. As motivated
in Sec. 2.3.2, even if RTSLinuxwas available forWindows, wewould
prefer a less intrusive, more maintainable approach. Yet, from the
results reported by Celik et al., we learn that an efficient system
call tracing approach has to operate in kernel mode, since tracing
all system calls and filtering in user mode is prohibitively expensive
(approx. four times the overhead of kernel mode tracing) [10].

In order to implement practical and efficient system call tracing,
we use DTrace [9]5. DTrace provides capabilities to dynamically
instrument so-called probes. These are static or dynamic instrumen-
tation points for which one can specify instructions to be executed
if the probe fires (e.g., when entering a system call). Because this

5DTrace stands for Oracle Solaris Dynamic Tracing Facility

selective probe-based instrumentation is highly efficient and guar-
anteed to run safely inside the kernel [18], it has been deployed in
production environments at Netflix, amongst others [17].

Our DTrace script takes a process identifier (PID) as input and
instruments relevant system calls related to accessing files or spawn-
ing new processes. This way, we capture complete traces and fi-
nally store all relevant information (e.g., timestamps, PIDs, accessed
filepaths) in a tracing log.

3.1.2 JVM Class Loader Monitoring. There are two drawbacks to
relying solely on tracing system calls for Java tests:

First, in case a test loads a Java .class file that is located inside
a Java archive (JAR), that JAR file will be part of the test trace, but
not the actually used .class file. This could lead to imprecision
in the test selection, as it stipulates to select that test if any of the
files inside that JAR has changed [15]. Since many of our tests use
classes from other Maven modules which are typically packaged
as JARs, addressing this potential imprecision is crucial. Therefore,
we attach a Java agent6 to each JVM executing a test. The agent
monitors whenever a new class is loaded by the class loader. If the
corresponding .class file is located inside a JAR, it is added to the
tracing log. If it is not located inside a JAR, we can safely ignore it,
as we already cover it with our system call instrumentation. Note
that we are only interested if a .class file was ever loaded during
the execution of a test. Hence, as every test is running in its own
forked JVM, we do not need to instrument the loaded file itself.

Second, similarly, in case a resource, such as anXMLfile, is loaded
that is located inside a JAR, no separate system call to open that
resource is invoked by the JVM. Instead, it is read from the already
loaded JAR. Therefore, we instrument the getResource(String)
method in the java.lang.ClassLoader class, as it is used for load-
ing resources from JARs.

3.1.3 Integration with Testing Infrastructure. At IVU, we rely on
JUnit 5 as our testing framework for Java. To execute each test in
isolation in its own JVM process, we use Maven Surefire’s forking
mechanism7. This creates a new JVM per JUnit test class and we
parallelize testing across Maven modules on all available CPU cores.
To link the individual tests to the accessed files and spawned pro-
cesses from our tracing log, we further need to obtain information
about when a test started and terminated. Therefore, we register a
custom JUnit test execution listener and subscribe to a test’s start
and end event [5]. The listener creates a testing log which contains
start and end timestamps, the identifier of the test, as well as the
JVM PID. We cannot only use the PID of the test to find its file
accesses, as Windows may reuse PIDs after a process has been
terminated.

Eventually, the tracing and testing logs are combined and we are
able to compute a file-level test trace for each test8 after all tests
have been executed. We store the test traces in a CSV file, where
each row contains a test name and a filepath accessed by that test.

6Java Agent API for run-time code instrumentation on the JVM [1]
7mvn surefire:test -DforkCount=1 -DreuseForks=false -T1.0C
8Recall that we refer to a Java test class (i.e., JUnit test suite) when we talk about a test

Preprint — do not distribute.

Build System Aware Multi-language Regression Test Selection in Continuous Integration ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

3.2 Build System Aware Test and Module
Selection

Our proposed RTS technique acknowledges changes to non-code
artifacts and to the build system, e.g., changed dependencies. Al-
gorithm 1 contains the pseudo-code of our build system aware
test and module selection. Our algorithm has three inputs: (1) the
changeset from the VCS, (2) the multi-language file-level test traces
described in Sec. 3.1, and (3) DLL-to-source mappings for target and
pull request branch. The latter are retrieved by analyzing the C/C++
compiler output which contains static compile dependencies for
each DLL. More specifically, we parse .tlog files that are emitted
by the Microsoft C++ compiler toolchain9 and extract which source
files each DLL depends on. The resulting mapping is stored in a
CSV file, where one row has two columns; one contains the DLL
file name and one a source filepath this DLL depends on. We need
the information contained in this mapping since our test traces
only include accesses to DLL files, not to actual C/C++ source files.

Changeset Analysis. Our algorithm analyzes the changeset by
iterating over all changed files. For each Java source file, we search
the Java source file for all class, enum, and interface definitions.
From those definitions we create corresponding .class filepaths
that match .class files generated by the Java compiler. For instance,
if a Java source file that is part of the package a.b.c contains two
classes X and Y, the two generated class filepaths are a/b/c/X and
a/b/c/Y. These will also match accessed .class filepaths of nested
or anonymous classes, e.g., if X contained one anonymous class,
the Java compiler would output a file a/b/c/X$1.class, which
can also be matched by a/b/c/X. Then, we check for presence of
JUnit test method annotations. If the file does indeed contain test
methods, it is considered a test suite and thus added to the set of
tests to be executed. This way we safely select all newly created
or updated test classes. For each C/C++ source file, we retrieve all
affected DLLs from the DLL-to-source mappings and add the DLL
paths to the set of affected filepaths. For changed Maven pom.xml
files or files that can affect the build results (e.g., .wsdl or .xsd files),
we select all tests from the changed module and all downstream
modules, by retrieving them from the Maven reactor. The filepaths
of all other changed files (e.g., .xml or .csv files) are also added to
the set of affected filepaths.

While our approach intuitively works for additive and modifying
changes, it is not immediately clear, how deletions have to be treated
for each file type: We address deletions of and inside of .java files
by parsing both, the old and the new revision (if existing) of the
file. This way, we can also find all affected tests that covered any
.class filepaths of the old revision. Deletions related to C/C++ are
already covered, since we use the DLL-to-source mappings from
both, the target branch and the pull request branch. Hence, if the
pull request contains a C/C++ deletion, the deleted filepath will
still be part of the DLL-to-source mapping of the target branch. For
deletions of other file types, we simply search for the old filepath
inside the test traces.

Test Selection. We iterate over all test traces and select those tests
that have accessed files that match any of the affected filepaths.

9.tlog files in Microsoft Visual C++ [26]

Algorithm 1: Build System Aware Test and Module Selection
Input: changeset, test traces, DLL-to-source mappings
Output: selected tests, selected modules

1 selectedTests← {}
2 selectedModules← {}
3 affectedFilePaths← {}
4 foreach change in changeset do
5 if isJavaFile(change) then

/* get .class filepaths from .java file (before/after) */

6 affectedFilePaths
+
← getClassFilePaths(change)

/* if @Test annotation is present, select test suite */

7 if containsTests(change) then
8 selectedTests

+
← getTestSuiteIdentifier(change)

9 else if isCppFile(change) then
/* look up affected DLLs in DLL-to-source mappings */

10 affectedFilePaths
+
← getDLLFilePaths(change)

11 else if isRelevantForBuild(change) then
/* select all tests of changed Maven module and from all

transitive downstream modules */

12 selectedTests
+
← getTestsForModule(change)

13 else
14 affectedFilePaths

+
← change

/* select modules for changes in pom.xml, .java, .xsd, and

.wsdl files */

15 if isRelevantForBuild(change) then
/* get enclosing Maven module for compilation */

16 parentModule← getParentMavenModule(change)

17 selectedModules
+
← parentModule

/* include upstream modules (transitive) */

18 selectedModules
+
←

getUpstreamModules(parentModule)
/* include direct downstream modules with their

transtive upstream modules */

19 selectedModules
+
←

getDownstreamModules(parentModule)

/* compute affected tests from test traces */

20 selectedTests
+
← getAffectedTests(affectedFilePaths)

/* search affected parent Maven modules for selected tests */

21 testModules← getAffectedModules(selectedTests)

22 selectedModules
+
← getUpstreamModules(testModules)

23 return selectedTests, selectedModules

Module Selection. We select all Maven modules for compilation
that either (1) are directly impacted by the changeset or (2) enclose
any of the selected tests. For (1) we further need to add all upstream
modules to the set of selected modules, as they are required to com-
pile the changed modules. Additionally, since changes in modules
from (1) could break direct downstream modules, these also need
to be selected including their transitive upstream modules, in order
to be buildable. For (2) we need to add upstream modules as well,
since they are required to build the tests’ modules.

Preprint — do not distribute.

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Elsner, et al.

Figure 2: Pull request CI pipeline extended by our RTS technique

In the next section, we describe how we use these two results—
the sets of selected tests and modules—inside the pull request CI
to instruct Maven and Maven Surefire to selectively compile and
execute modules and tests, respectively.

3.3 Integration into Pull Request CI
We integrated our RTS technique into the pull request CI, as il-
lustrated in Fig. 2. Therefore, we added an additional step to the
pipeline that calls our RTS algorithm, which we implemented as a
simple command line interface (CLI) tool.

To provide the test traces to our tool, we created a separate
tracing CI pipeline, that continuously runs for the target branches
chosen in this study (see Sec. 4.1 for our evaluation setup). Cur-
rently, we update the test traces approx. once per day for each
release branch, which provides good trade-offs regarding effort and
effectiveness in our context (see our results in Sec. 4.2). We only
update test traces for passing tests, since failing tests might yield
incomplete traces (e.g., if the test terminated early).

Our tool receives the following inputs: First, the changeset of
that pull request; second, the most recent test traces collected with
our separate tracing CI pipeline; third, the DLL-to-source mapping
from the most recent C/C++ build of the target branch. If changes
were made to the C/C++ subtree within the pull request, we also
provide the DLL-to-source mapping from the C/C++ build step.
With these inputs, our tool computes the set of selected tests and
modules and stores them in text files for subsequent pipeline steps.

To build and analyze only the selected Java modules, we extend
the Maven reactor mechanism [25] to read the modules from that
text file. We need this extension as the reactor API currently does
not offer an option to specify the list of modules as a file10. To
execute only the selected short- and long-running tests, we make
use of Maven Surefire’s test inclusion mechanism.

4 EVALUATION
The effectiveness of safe RTS techniques is typically evaluated
by comparing the number of selected tests to the retest-all strat-
egy and by measuring the overall test duration of the selected

10Due to command line length limitations onWindows, we cannot use the --projects
option.

tests [10, 16, 21]. Regarding the evaluation of a technique’s safety,
prior work often semi-formally proves safety under certain assump-
tions [10, 16, 21], such as safety for code changes [16]. However,
prior research on checking RTS tools has shown that these assump-
tions cannot be guaranteed to hold in practice [40]. We have already
explained in Sec. 2.3 why non-code artifacts, cross-language links,
and build system changes pose particular threats to the safety of
existing RTS techniques. Thus, we need to empirically determine
how safe our proposed RTS approach is for changesets of pull re-
quests and discuss scenarios where our approach can be unsafe
(see Sec. 4.3.2). Since no existing RTS technique is considered uni-
versally safe and could therefore serve as a reference, the only way
to empirically check for safety violations is to find real (non-flaky)
failures that were not selected by the RTS technique [34]. We per-
form an empirical study on five weeks of real development activity
to answer the following research questions (RQs):

• RQ1: How much testing effort reduction can we achieve by
selecting tests using our RTS technique?
• RQ2: How safe is our RTS technique for changesets of pull
requests in terms of real missed failures?
• RQ3: How much end-to-end CI pipeline execution time does
our RTS technique save per pull request CI pipeline run?

4.1 Experimental Setup
In order to be able to answer RQ1−3, we need to measure (1) testing
effort reduction, (2) missed failures, and (3) end-to-end CI pipeline
execution time savings for pull requests. We therefore added an
invocation of our RTS CLI tool before the Java pipeline steps on
the previous two release branches, RV1 and RV2 , and in the current
release branch, RV3 . Additionally, for all three branches we log the
start and end timestamp for each Java pipeline step and the newly
added RTS pipeline step. The build machines used for executing
pull request pipelines are drawn from a fixed set of machines (64–96
cores), independent of the target branch of the pull request. Table 1
provides a summary of relevant descriptive statistics for the three
release branches considered in this evaluation.

To answer RQ1 and RQ2 and measure (1) and (2), we only con-
sider pull requests to RV1 and RV3 . On these branches, we still
execute all tests and only store the set of selected tests for later

Preprint — do not distribute.

Build System Aware Multi-language Regression Test Selection in Continuous Integration ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 1: Relevant statistics for 3 considered release branches

Branch RV1 RV2 RV3

Dataset
Statistics

PRs 88 58 251
PR pipeline runs 157 73 356
Commits 896 120 1,681
Median changeset size (# files) 5 4 9

analyses (i.e., retest-all with simulated RTS). This way, we get a
retest-all test report for each pull request CI pipeline run on these
branches. From this report and the set of selected tests, we can com-
pute the fraction of selected tests and test duration, and count the
missed failures that occurred during retest-all. The rationale behind
the choice of release branches is that at IVU release branches follow
a specific lifecycle: On the current release branch, RV3 , the most
development activity is expected, as small features and bug fixes
are still added. The less recent release branch, RV1 , receives fewer
development activity, which primarily concerns maintenance tasks,
where pull requests with smaller changesets are expected. By using
both RV1 and RV3 to answer RQ1, we can also investigate to what
extent RTS on pull requests to older release branches can achieve
higher savings due to the smaller changesets.

To answer RQ3 and measure (3), we need to compare end-to-
end pipeline durations with RTS against retest-all. However, using
both, RTS and retest-all on the same pull requests introduces large
overhead—in the worst case a factor of 2, if all tests and modules
are selected. In our industrial setting, this evaluation approach is
rendered too expensive. From previous experience and analyses
we know that CI pipeline runs take approx. the same time for pull
requests to RV2 and RV3 , although they can be subject to natural
variations due to infrastructure side-effects [12]. Hence, we can
compare the time distribution for each pipeline step in RV2 , where
RTS is actually used, againstRV3 , where retest-all is used. In addition
to this inter-branch evaluation approach, we validate our results by
also using RTS on RV3 for the final week of our experiments. This
allows to investigate the pipeline runtimes before and after RTS
activation in an intra-branch evaluation.

Figure 3: Evaluation approach for different release branches

The evaluation approach is illustrated in Fig. 3. Overall, our ap-
proach captures two aspects that have not been considered in prior
research: First, we investigate the impact of the current lifecycle
phase of a target release branch on RTS effectiveness. Second, we
analyze how savings in each pipeline step contribute to the achieved
end-to-end time savings for pull request CI pipeline runs.

4.2 Results
RQ1: Testing Effort Reduction. Fig. 4 depicts the testing effort reduc-
tion we achieve, by comparing our RTS technique to a retest-all
strategy. As described in the previous section, we compute the
fraction of selected tests and test duration by combining retest-all
test reports from pull requests on RV1 and RV3 with the respective
sets of selected tests. The results indicate that our RTS technique
selects on average 25% of tests for pull requests on RV1 and 52%
for RV3 . The selected tests further take on average 28% and 58% of
test duration for RV1 and RV3 , respectively. Hence, RTS was partic-
ularly effective for the maintenance branch RV1 , which had smaller
changesets (median changeset size is only roughly half of RV3).

Figure 4: Comparison of our RTS technique to retest-all
strategy regarding ratio of selected tests and test duration

RQ1: We find that on two evaluation branches our RTS tech-
nique selects on average 25% and 52% of tests per pull request CI
pipeline run realizing a test duration reduction by 72% and 42%,
respectively. RTS performs significantly better in pull requests
on a maintenance release branch (RV1) compared to a release
branch with active development (RV3).

RQ2: Safety. To find real failures which would not have been se-
lected by our RTS technique, we first create the set difference of all
failed tests in the retest-all test report and the selected tests. This
yields a total of 305 pull request CI pipeline runs with missed fail-
ures across pull requests to RV3 and RV1 . To filter out failures that
are not introduced by the changeset of the pull request itself, we
need to re-run the failing tests at the revision of the target branch
which the pull request was rebased on. If a test also fails on the
target branch, it is probably not related to the pull request (e.g., a
won’t fix) and can be discarded. If a test does not fail on the target
branch, we need to manually check if it is a failure introduced by
the pull request and was therefore missed by the RTS technique. To
keep the tedious manual effort at a reasonable level, we randomly
sampled 50 from the 305 runs and manually inspected 2,176 missed
test failures. Most of the missed failures stem from a database tech-
nology switch that was made on the build machines during the
considered time period. This switch caused many long-running
tests to fail due to memory leaks or failing schema updates during
the first days of operation. We further observe a few flaky tests
that failed due to non-deterministic test behavior that is partially
known to the developers. However, none of the inspected missed
test failures are actually related to the changes introduced in the
pull requests. We can therefore conclude that our RTS technique

Preprint — do not distribute.

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Elsner, et al.

is empirically safe regarding failures that were introduced by the
considered pull requests. Yet, we discuss potential reasons for safety
violations in Sec. 4.3.2. We can further confirm previous findings
that RTS techniques can be helpful in avoiding flaky test failures
and thereby reduce associated debugging costs [34].

RQ2: We find that our RTS technique does not miss any real
failures that are introduced in the considered pull requests.

Figure 5: Inter- and intra-branch comparison of our RTS
technique to full build and retest-all strategy

RQ3: End-to-End Savings in Pull Requests. Fig. 5 shows the distri-
butions of the duration for each Java pipeline step and the Java
end-to-end runtime for RV2 and RV3 . As described in our experi-
mental setup, we perform two kinds of comparisons, inter-branch
and intra-branch. Regardless of the applied evaluation, we observe
significant savings: In the inter-branch comparison, the results in-
dicate that we can save on average 50% (71 minutes) of end-to-end
pipeline runtime with RTS on RV2 . In the intra-branch comparison,
when comparing RV3 (retest-all) against RV3 (RTS), which was used
in the final week of our experiments, we achieve even better results:
On average, 63% (89 minutes) of end-to-end pipeline runtime is
saved. Despite small discrepancies in the achieved time savings,
our results show similar trends using either of the two evaluation
techniques and thus confirm each other. Comparing the median
time savings, there is only a discrepancy of 6 minutes between the
evaluation methods.

Regarding the individual contributions to this overall end-to-end
time, we report the following average savings for the individual
pipeline steps for RV2 : 53% for Build, 80% for Analysis, 79% for
Test (short), and 42% for Test (long). We discuss the reasons for the
comparatively smaller savings in long-running tests in Sec. 4.3.1.

We further find that computing the selected modules and tests
is inexpensive: The mean and median of the RTS pipeline step was
roughly 3 minutes across all three branches. Since we generate test
traces and DLL-to-source mappings in separate CI pipelines every
day, the end-to-end pipeline time for pull requests is unaffected.

RQ3:We find that our RTS technique helps save on average 50%
and 63% end-to-end pipeline execution time for pull requests on
two release branches.

4.3 Discussion
In the following, we discuss weaknesses related to the precision
and safety of our RTS approach and share feedback we received
from developers working on the system.

4.3.1 Imprecision of DLL-to-source Mappings. Our results for RQ3
indicate that time savings achieved for the long-running Java test
step are lower than those for the short-running test step. The reason
is that if there are changes in core modules of the C/C++ subtree,
commonly the majority of long-running tests is selected. This im-
plies that these changes affect any DLL used by many long-running
tests. We do not have any runtime information about which C/C++
source files that are part of a DLL are actually covered by each
test. Hence, our selection in such cases is rather coarse-grained and
imprecise. To address this problem and obtain more fine-grained
runtime information, we are currently investigating extensions
to our approach such as instrumenting the DLLs, intercepting na-
tive function invocations from the JNI, or using DTrace for tracing
additional relevant system events.

4.3.2 Potential Reasons for Safety Violations. Test traces and DLL-
to-source mappings are created in separate CI pipelines continu-
ously running on the target release branches. Depending on the
frequency of these pipelines (we run them once per day), test traces
and DLL-to-source mappings might be outdated, which in turn may
lead to unsafe test selection. Similarly, if a test fails over multiple
runs in the separate tracing CI pipeline, that test’s trace will not get
updated until it passes again, also leading to outdated test traces.

In case of changes related to dependency injection mechanisms,
affected tests might be missed: For instance, if a new default Java
EE bean implementation is added inside a pull request, all tests
that use the default bean will change their behavior. Yet, none of
the files inside the test trace is directly affected by the addition.
However, in such cases, typically another change that affects the
test trace is part of the pull request, such as adjusting any other file
that uses the newly added bean implementation—hence, odds are
low that we effectively miss any affected tests.

Eventually, our RTS technique might be unsafe, if new non-code
artifacts are added to the code base that are implicitly used by tests,
while tests are not changed themselves; for instance, if a test walks
the file tree and opens all files with a certain file extension, rather
than explicitly opening a file through its filepath.

Finally, we found that external configuration changes, e.g., to
the database environment, can cause tests to fail. However, our
RTS technique only considers artifacts tracked by the VCS and
therefore did not select these tests. We believe this to be expected
RTS behavior, since these failures are not related to the changeset
of a pull request.

4.3.3 Developer Feedback. Since IVU engineers, architects, and
testers are directly impacted by our changes to the pull request
pipelines, we regularly asked them for feedback on our work. Over-
all, our RTS approach has wide support among developers as it
significantly reduces feedback times in their daily work; they are
convinced that the RTS approach adds great value. Therefore, we
deploy it to all other release branches as well. Furthermore, as
requested by developers, we are working on extending the test

Preprint — do not distribute.

Build System Aware Multi-language Regression Test Selection in Continuous Integration ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

selection to C/C++ tests. While the system call tracing is language-
agnostic and the integration with the testing framework is straight-
forward, we require further language-specific instrumentation, as
DLL test trace granularity is too coarse (see our discussion on im-
precise DLL-to-source mappings above).

4.4 Threats to Validity
4.4.1 External Validity. As for most industrial case studies, the
main threat to validity concerns the generality of our results: We
have specifically designed our RTS approach to address the short-
comings of existing techniques in the context of IVU. Nonethe-
less, our results show similar trends as prior RTS research done
on open-source software and we can confirm empirical findings
that dynamic file-level RTS can indeed significantly reduce regres-
sion testing efforts [10, 16, 34]. Furthermore, the technology we
use to implement our RTS tool is publicly available and we rely
on standard frameworks and tools, such as JUnit and Maven, that
are frequently used across research [10, 16, 21, 38]. This eases a
replication of our study in other software projects.

Furthermore, similar to previous studies [12, 34], the measured
times in the CI pipelines can contain irregular fluctuations stem-
ming from infrastructure or environment issues. While this could
affect our evaluation results, we address this threat by reporting
not only (potentially biased) average values, but the distributions
for time savings across analyzed pull request pipeline runs.

Finally, to assess the safety our RTS approach, we manually
checked if there were any real missed failures, but limited the
inspection to 50 randomly sampled pull requests, which might not
be representative. However, as opposed to most prior studies on
safe RTS, we discuss potential safety violations and perform an
empirical study to find any occurrences. We do this even though
we rely on concepts that have been shown to work in other safe
RTS approaches. Furthermore, to the best of our knowledge, we
have still re-run and inspected the largest number of missed test
failures in any existing RTS study to date.

4.4.2 Internal Validity. The main internal threats emerge from
the implementation of our RTS tool and the proper functioning of
Maven Surefire, JUnit, DTrace, and the ByteBuddy library11, which
we use to instrument the Java class loader. To address these threats,
we wrote unit and integration tests for our RTS tool and manually
checked selection results of pull requests for their validity.

5 RELATEDWORK
Throughout this paper, we have referenced RTS techniques that
have been proposed to effectively reduce regression testing efforts
(see Sec. 2.3). Among the many existing studies, we consider the
following to be most relevant for our work:

Gligoric et al. [15, 16] propose Ekstazi, a dynamic file-level RTS
technique for the JVM that relies on file checksums for computing
the set of selected tests. In Sec. 2.3, we describe why Ekstazi is
unsafe in our context, as it uses file checksums and is neither aware
of cross-language links, nor does it consider non-code artifacts12.

11ByteBuddy: https://bytebuddy.net
12Ekstazi has a hidden Linux-only option to collect files loaded by the JVM, which is
untested and disabled by default. Nonetheless, even when collecting files loaded by
the JVM, file accesses made from native DLLs or transitive processes are missed [10].

Ekstazi reduces the end-to-end testing time on average by 32%
across 32 open-source projects. Furthermore, Gligoric et al. [16] find
that selecting tests at the class level (i.e., JUnit test suites) achieves
better results than selecting tests at method level (i.e., JUnit test
methods). We acknowledge these results as our RTS technique also
collects file dependencies per test class, rather than test method.

Shi et al. [34] extend Ekstazi by complementing it with the
static incremental build tool GIB [2]. The resulting tool, GIBstazi,
is thus the most similar existing approach to our hybrid approach
of selecting modules and regression tests for compilation and test
execution, respectively. However, GIBstazi selects all tests, if any
changes to non-code files occur. Due to the large number of non-
code artifacts in our system, this is too imprecise. Additionally,
similar to Ekstazi, it is unsafe for changes tomulti-language source
or binary files, such as DLLs, and files accessed by those. Overall,
GIBstazi achieves higher safety than Ekstazi and the empirical
results on 22 open-source projects show that GIBstazi reduces
end-to-end build and testing time in CI environments by 23%.

Celik et al. [10] propose RTSLinux, the first and only RTS tech-
nique that uses system call analysis to track accesses to files across
JVM boundaries during testing. Similar to Ekstazi, RTSLinux uses
file checksums for selecting tests, when a compiled workspace al-
ready exists. We have alluded to why RTSLinux is not applicable
in Windows environments and why our lightweight, safe kernel
instrumentation through DTrace is a more practical approach in
an industrial setting than modifying the operating system kernel.
RTSLinux saves 53% of test execution time compared to retest-all.

In a previous study at IVU, we evaluated the cost-effectiveness of
unsafe RTS techniques that solely rely on readily available CI and
VCS metadata [12]. When applied to the main development branch
at IVU for six weeks, the best performing unsafe RTS technique
achieved test time savings of on average 19.8% with 93.4% of failures
being detected. Though, we have motivated before that for pull
requests to release branches safe RTS is required.

In summary, we are not aware of any prior work that investigates
safe RTS that is build system aware and operates across language
boundaries. Moreover, neither do any of the previous studies evalu-
ate safe RTS in a large-scale industrial CI setting, nor do they study
how end-to-end time for pull request CI pipelines can be reduced.

6 CONCLUSION
At IVU, compiling, analyzing, and testing pull requests within CI
pipelines has prohibitively long feedback times. To reduce testing
effort for pull requests on release branches, safe RTS is required,
since support patches for customers are directly built from release
branches. However, existing safe RTS techniques are inapplicable,
as tests at IVU commonly operate across languages and intensively
make use of non-code artifacts. Moreover, prior RTS approaches are
unsafe for changes to the build system configuration and require
an already fully compiled workspace.

In this paper, we introduce a build system aware multi-language
RTS technique that safely selects modules and tests for compilation
and execution. We deploy our novel RTS technique in IVU’s large-
scale, multi-language code base and perform an extensive empirical
study to evaluate its effectiveness. The results indicate that our
RTS technique saves on average 42% and 72% of testing time on

Preprint — do not distribute.

https://bytebuddy.net

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Elsner, et al.

two evaluation release branches. We thereby reduce end-to-end CI
pipeline runtime for pull requests by up to 63% on average. Since
this greatly reduces feedback time for developers while retaining
failure detection, our introduced RTS technique is now deployed
company-wide to all release branches. While our industrial case
study provides insights for one specific context, we expect our
RTS technique to be applicable to other multi-language software
projects, as it is based on well-known concepts and widely used
tools for dynamic and static program analysis.

ACKNOWLEDGMENTS
We thank Dennis Bracklow, Stefan Golas, Maximilian Pohl, and
Stefan Sieber for their support while integrating our technique into
IVU infrastructure. This work was partially funded by the German
Federal Ministry of Education and Research (BMBF), grant SOFIE
01IS18012B. The responsibility for this article lies with the authors.

REFERENCES
[1] 2017. Java Agent API. https://docs.oracle.com/javase/9/docs/api/java/lang/

instrument/package-summary.html
[2] 2021. gitflow-incremental-builder (GIB). https://github.com/gitflow-incremental-

builder/gitflow-incremental-builder
[3] Apache Maven. 2021. Maven Surefire Plugin – surefire:test. https://maven.

apache.org/surefire/maven-surefire-plugin/test-mojo.html
[4] Atlassian. 2017. About test optimization. https://confluence.atlassian.com/

clover/about-test-optimization-169119919.html
[5] Stefan Bechtold, Sam Brannen, Johannes Link, Matthias Merdes, Marc Philipp,

Juliette de Rancourt, and Christian Stein. 2021. JUnit 5 User Guide: Advanced Top-
ics. https://junit.org/junit5/docs/current/user-guide/{#}launcher-api-listeners-
custom

[6] Jonathan Bell and Gail Kaiser. 2014. Unit test virtualization with VMVM. In
Proceedings of the International Conference on Software Engineering. 550–561.
https://doi.org/10.1145/2568225.2568248

[7] Antonia Bertolino, Antonio Guerriero, Roberto Pietrantuono, Stefano Russo,
Breno Miranda, and Roberto Pietran-Tuono. 2020. Learning-to-Rank vs Ranking-
to-Learn: Strategies for Regression Testing in Continuous Integration. In Pro-
ceedings of the International Conference on Software Engineering. 1–12. https:
//doi.org/10.1145/3377811.3380369

[8] Benjamin Busjaeger and Tao Xie. 2016. Learning for test prioritization: An indus-
trial case study. In Proceedings of the International Symposium on the Foundations
of Software Engineering. 975–980. https://doi.org/10.1145/2950290.2983954

[9] Bryan M. Cantrill, Michael W. Shapiro, and Adam H. Leventhal. 2004. Dynamic
Instrumentation of Production Systems. In Proceedings of the Annual Conference
on USENIX Annual Technical Conference. https://doi.org/10.5555/1247415.1247417

[10] Ahmet Celik, Marko Vasic, Aleksandar Milicevic, and Milos Gligoric. 2017. Re-
gression test selection across JVM boundaries. In Proceedings of the Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 809–820. https://doi.org/10.1145/3106237.3106297

[11] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for im-
proving regression testing in continuous integration development environments.
In Proceedings of the International Symposium on the Foundations of Software
Engineering. 235–245. https://doi.org/10.1145/2635868.2635910

[12] Daniel Elsner, FlorianHauer, Alexander Pretschner, and Silke Reimer. 2021. Empir-
ically Evaluating Readily Available Information for Regression Test Optimization
in Continuous Integration. In Proceedings of the International Symposium on
Software Testing and Analysis. 491–504. https://doi.org/10.1145/3460319.3464834

[13] Kurt Fischer, Farzad Raji, and Andrew Chruscicki. 1981. A Methodology for
Retesting Modified Software. In Proceedings of the National Telecommunications
Conference. 1–6.

[14] Kurt F. Fischer. 1977. A test case selection method for the validation of software
maintenance modifications. In Proceedings of International Computer Software
and Applications Conference. 421–426.

[15] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Ekstazi: Lightweight
Test Selection. In Proceedings of the International Conference on Software Engi-
neering. 713–716. https://doi.org/10.1109/icse.2015.230

[16] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical Regression
Test Selection with Dynamic File Dependencies. In Proceedings of the International
Symposium on Software Testing and Analysis. 211–222. https://doi.org/10.1145/
2771783.2771784

[17] Brendan Gregg. 2016. DTrace for Linux. http://www.brendangregg.com/blog/
2016-10-27/dtrace-for-linux-2016.html

[18] Brendan Gregg and Jim Mauro. 2011. DTrace: Dynamic Tracing in Oracle Solaris,
Mac OS X, and FreeBSD. Prentice Hall Professional.

[19] Mary Jean Harrold, Alessandro Orso, James A. Jones, Tongyu Li, Maikel Pennings,
Saurabh Sinha, Ashish Gujarathi, Donglin Liang, and S. Alexander Spoon. 2001.
Regression test selection for Java software. ACM SIGPLAN Notices 36, 11 (2001),
312–326. https://doi.org/10.1145/504311.504305

[20] Eric Knauss, Miroslaw Staron, Wilhelm Meding, Ola Soder, Agneta Nilsson, and
Magnus Castell. 2015. Supporting Continuous Integration by Code-Churn Based
Test Selection. In Proceedings of the International Workshop on Rapid Continuous
Software Engineering. 19–25. https://doi.org/10.1109/rcose.2015.11

[21] Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and
Darko Marinov. 2016. An Extensive Study of Static Regression Test Selection in
Modern Software Evolution. In Proceedings of the International Symposium on
Foundations of Software Engineering. 583–594. https://doi.org/10.1145/2950290.
2950361

[22] Owolabi Legunsen, August Shi, and DarkoMarinov. 2017. STARTS: STAtic regres-
sion test selection. In Proceedings of the International Conference on Automated
Software Engineering. 949–954. https://doi.org/10.1109/ase.2017.8115710

[23] Hareton K.N. Leung and Lee White. 1989. Insights into regression testing. In
Proceedings of the International Conference on Software Maintenance. 60–69.

[24] Mateusz Machalica, Alex Samylkin, Meredith Porth, and Satish Chandra. 2019.
Predictive Test Selection. In Proceedings of the International Conference on Software
Engineering: Software Engineering in Practice. 91–100. https://doi.org/10.1109/
ICSE-SEIP.2019.00018

[25] Apache Maven. 2021. Maven Multi-Module Projects. https://maven.apache.org/
guides/mini/guide-multiple-modules.html

[26] Microsoft. 2019. Visual Studio C++ Project system extensibility and toolset inte-
gration – .tlog files. https://docs.microsoft.com/en-us/visualstudio/extensibility/
visual-cpp-project-extensibility?view=vs-2019{#}tlog-files

[27] Agastya Nanda, Senthil Mani, Saurabh Sinha, Mary Jean Harrold, and Alessandro
Orso. 2011. Regression testing in the presence of non-code changes. In Proceedings
of the International Conference on Software Testing, Verification, and Validation.
21–30. https://doi.org/10.1109/icst.2011.60

[28] Pengyu Nie, Ahmet Celik, Matthew Coley, Aleksandar Milicevic, Jonathan Bell,
and Milos Gligoric. 2020. Debugging the Performance of Maven’s Test Isolation:
Experience Report. In Proceedings of the International Symposium on Software
Testing and Analysis. 249–259. https://doi.org/10.1145/3395363.3397381

[29] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. 2004. Scaling regression
testing to large software systems. In Proceedings of the International Symposium
on Foundations of Software Engineering. 241–251. https://doi.org/10.1145/1029894.
1029928

[30] Adithya Abraham Philip, Ranjita Bhagwan, Rahul Kumar, Chandra Sekhar Mad-
dila, and Nachiappan Nagppan. 2019. FastLane: Test Minimization for Rapidly
Deployed Large-Scale Online Services. In Proceedings of the International Confer-
ence on Software Engineering. 408–418. https://doi.org/10.1109/icse.2019.00054

[31] Gregg Rothermel and Mary Jean Harrold. 1997. A safe, efficient regression test
selection technique. ACM Transactions on Software Engineering and Methodology
6, 2 (1997), 173–210. https://doi.org/10.1145/248233.248262

[32] Gregg Rothermel, Mary Jean Harrold, and Jeinay Dedhia. 2000. Regression
test selection for C++ software. Software Testing, Verification and Reliability
10, 2 (2000), 77–109. https://doi.org/10.1002/1099-1689(200006)10:2<77::AID-
STVR197>3.0.CO;2-E

[33] August Shi, Suresh Thummalapenta, Shuvendu K. Lahiri, Nikolaj Bjorner, and
Jacek Czerwonka. 2017. Optimizing Test Placement for Module-Level Regression
Testing. In Proceedings of the International Conference on Software Engineering.
689–699. https://doi.org/10.1109/ICSE.2017.69

[34] August Shi, Peiyuan Zhao, and Darko Marinov. 2019. Understanding and Im-
proving Regression Test Selection in Continuous Integration. In Proceedings
of the International Symposium on Software Reliability Engineering. 228–238.
https://doi.org/10.1109/issre.2019.00031

[35] Helge Spieker, Arnaud Gotlieb, Dusica Marijan, and Morten Mossige. 2017. Rein-
forcement learning for automatic test case prioritization and selection in con-
tinuous integration. In Proceedings of the International Symposium on Software
Testing and Analysis. 12–22. https://doi.org/10.1145/3092703.3092709

[36] Andrew S. Tanenbaum andHerbert Bos. 2015.Modern operating systems. Pearson.
[37] Shin Yoo and Mark Harman. 2012. Regression testing minimization, selection

and prioritization: A survey. Software Testing Verification and Reliability 22, 2
(2012), 67–120. https://doi.org/10.1002/stv.430

[38] Lingming Zhang. 2018. Hybrid regression test selection. In Proceedings of the
International Conference on Software Engineering. 199–209. https://doi.org/10.
1145/3180155.3180198

[39] Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. 2013. FaultTracer: A
spectrum-based approach to localizing failure-inducing program edits. Journal
of Software: Evolution and Process 25, 12 (2013), 1357–1383. https://doi.org/10.
1002/smr.1634

[40] Chenguang Zhu, Owolabi Legunsen, August Shi, and Milos Gligoric. 2019. A
framework for checking regression test selection tools. In Proceedings of the
International Conference on Software Engineering. 430–441.

Preprint — do not distribute.

https://docs.oracle.com/javase/9/docs/api/java/lang/instrument/package-summary.html
https://docs.oracle.com/javase/9/docs/api/java/lang/instrument/package-summary.html
https://github.com/gitflow-incremental-builder/gitflow-incremental-builder
https://github.com/gitflow-incremental-builder/gitflow-incremental-builder
https://maven.apache.org/surefire/maven-surefire-plugin/test-mojo.html
https://maven.apache.org/surefire/maven-surefire-plugin/test-mojo.html
https://confluence.atlassian.com/clover/about-test-optimization-169119919.html
https://confluence.atlassian.com/clover/about-test-optimization-169119919.html
https://junit.org/junit5/docs/current/user-guide/{#}launcher-api-listeners-custom
https://junit.org/junit5/docs/current/user-guide/{#}launcher-api-listeners-custom
https://doi.org/10.1145/2568225.2568248
https://doi.org/10.1145/3377811.3380369
https://doi.org/10.1145/3377811.3380369
https://doi.org/10.1145/2950290.2983954
https://doi.org/10.5555/1247415.1247417
https://doi.org/10.1145/3106237.3106297
https://doi.org/10.1145/2635868.2635910
https://doi.org/10.1145/3460319.3464834
https://doi.org/10.1109/icse.2015.230
https://doi.org/10.1145/2771783.2771784
https://doi.org/10.1145/2771783.2771784
http://www.brendangregg.com/blog/2016-10-27/dtrace-for-linux-2016.html
http://www.brendangregg.com/blog/2016-10-27/dtrace-for-linux-2016.html
https://doi.org/10.1145/504311.504305
https://doi.org/10.1109/rcose.2015.11
https://doi.org/10.1145/2950290.2950361
https://doi.org/10.1145/2950290.2950361
https://doi.org/10.1109/ase.2017.8115710
https://doi.org/10.1109/ICSE-SEIP.2019.00018
https://doi.org/10.1109/ICSE-SEIP.2019.00018
https://maven.apache.org/guides/mini/guide-multiple-modules.html
https://maven.apache.org/guides/mini/guide-multiple-modules.html
https://docs.microsoft.com/en-us/visualstudio/extensibility/visual-cpp-project-extensibility?view=vs-2019{#}tlog-files
https://docs.microsoft.com/en-us/visualstudio/extensibility/visual-cpp-project-extensibility?view=vs-2019{#}tlog-files
https://doi.org/10.1109/icst.2011.60
https://doi.org/10.1145/3395363.3397381
https://doi.org/10.1145/1029894.1029928
https://doi.org/10.1145/1029894.1029928
https://doi.org/10.1109/icse.2019.00054
https://doi.org/10.1145/248233.248262
https://doi.org/10.1002/1099-1689(200006)10:2<77::AID-STVR197>3.0.CO;2-E
https://doi.org/10.1002/1099-1689(200006)10:2<77::AID-STVR197>3.0.CO;2-E
https://doi.org/10.1109/ICSE.2017.69
https://doi.org/10.1109/issre.2019.00031
https://doi.org/10.1145/3092703.3092709
https://doi.org/10.1002/stv.430
https://doi.org/10.1145/3180155.3180198
https://doi.org/10.1145/3180155.3180198
https://doi.org/10.1002/smr.1634
https://doi.org/10.1002/smr.1634

	Abstract
	1 Introduction
	2 Continuous Integration Testing at IVU Traffic Technologies
	2.1 System Description
	2.2 Pull Request CI Testing
	2.3 Alternative Test Selection Approaches and State-of-Practice

	3 Build System Aware Multi-Language Test Selection
	3.1 Collecting Multi-language Test Traces
	3.2 Build System Aware Test and Module Selection
	3.3 Integration into Pull Request CI

	4 Evaluation
	4.1 Experimental Setup
	4.2 Results
	4.3 Discussion
	4.4 Threats to Validity

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

