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A B S T R A C T

Epidemiological models are widely used to analyze the spread of diseases such as the global COVID-19
pandemic caused by SARS-CoV-2. However, all models are based on simplifying assumptions and often on
sparse data. This limits the reliability of parameter estimates and predictions.

In this manuscript, we demonstrate the relevance of these limitations and the pitfalls associated with the
use of overly simplistic models. We considered the data for the early phase of the COVID-19 outbreak in
Wuhan, China, as an example, and perform parameter estimation, uncertainty analysis and model selection
for a range of established epidemiological models. Amongst others, we employ Markov chain Monte Carlo
sampling, parameter and prediction profile calculation algorithms.

Our results show that parameter estimates and predictions obtained for several established models on the
basis of reported case numbers can be subject to substantial uncertainty. More importantly, estimates were
often unrealistic and the confidence/credibility intervals did not cover plausible values of critical parameters
obtained using different approaches. These findings suggest, amongst others, that standard compartmental
models can be overly simplistic and that the reported case numbers provide often insufficient information for
obtaining reliable and realistic parameter values, and for forecasting the evolution of epidemics.
1. Introduction

Epidemiological models are essential tools in public health as they
facilitate assessments and forecasts of the spread of infectious diseases.
This has been for instance demonstrated for influenza (Yang et al.,
2015), dengue (Reich et al., 2016), Ebola (Shaman et al., 2014),
Zika (Chowell et al., 2016), and – most recently – COVID-19 (Ferguson
et al., 2020; Boldog et al., 2020). These assessments and forecasts are
the basis for political decision making (Doms et al., 2018) and therefore
of vital importance.

The spectrum of mathematical modeling approaches in epidemiol-
ogy ranges from relatively simple ordinary differential equation (ODE)
models (Kermack et al., 1927; Hethcote, 2000; Brauer and Castillo-
Chavez, 2012), partial differential equation (PDE) models (Chalub
and Souza, 2011; Lotfi et al., 2014), stochastic differential equation
(SDE) models (Dargatz et al., 2006; Greenwood and Gordillo, 2009;
Allen, 2010), continuous-time discrete-state Markov chain (CTMC)
models (Allen, 2010; Britton, 2010; Isham, 2007), to complex agent-
based models (Epstein and Axtell, 1996; Bruch and Atwell, 2015).
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While ODE, PDE and SDE models provide descriptions at the population
level, agent-based models are centered around formulations of the
properties and dynamics of individuals. Some models explicitly account
for space (usually in terms of countries, regions and/or cities) to
capture spreading. Furthermore, models for the infection spread are
usually combined with models of testing and reporting strategy to link
them to the observed case number (Birrell et al., 2011).

The choice of the modeling approach depends on the purpose of
the study, the availability of information about the underlying disease
and population, and the amount and quality of experimental data. Yet,
all these models rely on parameter values that need to be extracted
from the literature or estimated from given data. The parameters of epi-
demiological models in many studies are inferred using frequentist and
Bayesian parameter estimation methods. Frequentist methods often rely
on parameter optimization for obtaining point estimates and profile
likelihoods for uncertainty analysis (Brookhart et al., 2002). Bayesian
methods exploit sampling strategies such as Markov chain Monte Carlo
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(MCMC) methods (Weidemann et al., 2014; Birrell et al., 2011) or vari-
ational inference (Chatzilena et al., 2019). Also flexible emulator based
methods based, e.g. on Gaussian process, have been applied (Farah
et al., 2014). For applications in which competing hypotheses are
available, the parameter estimation is often complemented by model
selection. Established model selection measures include the Akaike
Information Criterion (AIC) (Akaike, 1973), the Bayesian Information
Criterion (BIC) (Schwarz, 1978), or Bayes factors (Kass and Raftery,
1995).

In this study, we exploit state-of-the-art parameter estimation and
model selection approaches to perform an analysis of the COVID-
19 outbreak in Wuhan, China. The first cases of COVID-19 were re-
ported on December 30, 2019 and the Chinese Center for Disease
Control and Prevention confirmed the isolation of a novel virus on
January 7, 2020 (Gralinski and Menachery, 2020). Already by Jan-
uary 27, there were 1590 confirmed cases which include severe cases
and 85 cumulative death cases in Wuhan, and several exported con-
firmed cases to Cambodia, Canada, France, Japan, Malaysia, Nepal,
Republic of Korea, Singapore, Thailand, United States of America, and
Vietnam (World Health Organization, 2020). As SARS-CoV-2 spread
quickly, the Director-General of World Health Organisation (WHO) de-
clared the flood of infections caused by SARS-CoV-2 a global pandemic
on March 11 (Tedros, 2020).

Our study complements other modeling efforts (Shao and Shan,
2020; Chen et al., 2020; Li et al., 2020a; Ming et al., 2020; Read et al.,
2020; Koo et al., 2020; Neher et al., 2020; Li et al., 2020b; Zhao et al.,
2020b; Tian, 2020; Liu et al., 2020a; Nordt and Herdener, 2020; Jenny
et al., 2020) by considering multiple established model topologies,
observables, parameter estimation and model selection approaches. To
recapitulate the situation in the beginning of the pandemic, we limit
the use of prior knowledge to a minimum. This highlights challenges,
e.g. the limited information content of case numbers and the depen-
dence on proper model topology, but also opportunities for quantitative
modeling in epidemiology.

2. Results

2.1. Observable selection and parameter identifiability

For this study, we considered the case numbers reported by the
Health Commission of Hubei Province (2020) and Wuhan Municipal
Health Commission (2020). These case numbers were particularly rel-
evant for the analysis of the early transmission dynamics and the
planning of interventions. Accordingly, these data were the basis of
several modeling studies on the dynamics of COVID-19 epidemic (see
e.g. Tian (2020), Zhao et al. (2020a), Wang et al. (2020), Ming et al.
(2020), Roosa et al. (2020), Zhao et al. (2020b), Peng et al. (2020),
Li et al. (2020b)). Here, we used the time interval from January 9 to
February 9, as afterwards the definition of a positive test changed (Chi-
nese Center for Disease Control and Prevention, 2020), which limits the
comparability.

The Chinese Center for Disease Control and Prevention provides
time-resolved information on:

• Reported number of infected individuals: 𝑦𝐼 (𝑡)
• Reported number of recovered individuals: 𝑦𝑅(𝑡)
• Reported number of deceased individuals: 𝑦𝐷(𝑡)
• Reported cumulative number of infected individuals: 𝑦𝑇 (𝑡) =
𝑦𝐼 (𝑡) + 𝑦𝑅(𝑡) + 𝑦𝐷(𝑡)

The reported number of deceased individuals is probably most accurate,
yet the overall reliability of the measurement and the distribution of the
errors is unknown. As in the literature different combinations of these
observables are used for model parameterization, we consider here the
following fitting scenarios:
2

• O1: Observations of 𝑦𝑇 and 𝑦𝐷.
• O2: Observations of 𝑦𝐼 and 𝑦𝐷.
• O3: Observations of 𝑦𝐼 , 𝑦𝑅 and 𝑦𝐷.

As different studies considered different aspects of the data, we first
asked which scenario is most suited to determine the parameters of the
infection process.

To address this question, we employed a classical deterministic
Susceptible–Exposed–Infectious–Recovered–Deceased (SEIRD) model
(Capasso, 1993). This compartmental model describes the size of the
susceptible (𝑆), exposed (𝐸), infectious (𝐼), recovered (𝑅) and deceased
(𝐷) subgroups (Fig. 1A). The time-dependence of the subgroup sizes is
governed by the ODEs:
𝑑𝑆
𝑑𝑡

= −𝛽 𝑆𝐼
𝑁

𝑆(0) = 𝑁𝑆

𝑑𝐸
𝑑𝑡

= 𝛽 𝑆𝐼
𝑁

− 𝜅 ⋅ 𝐸 𝐸(0) = 𝑁𝐸

𝑑𝐼
𝑑𝑡

= 𝜅𝐸 − (𝛾 + 𝛿)𝐼 𝐼(0) = 𝑁𝐼

𝑑𝑅
𝑑𝑡

= 𝛾𝐼 𝑅(0) = 𝑁𝑅

𝑑𝐷
𝑑𝑡

= 𝛿𝐼 𝐷(0) = 𝑁𝐷

in which 𝛽 is the average number of contacts per person per time which
result in an infection, 𝜅 is the rate at which exposed individuals become
nfectious, 𝛾 is the rate at which infectious individuals recover, 𝛿 is the
ate at which infectious individuals decease, and 𝑁 = 𝑆(𝑡)+𝐸(𝑡)+𝐼(𝑡)+
(𝑡)+𝐷(𝑡) is the overall population size. Note that the inverse of the rate
is the average incubation time 𝑇𝐸 = 𝜅−1. The initial conditions for

he different state variables are given by 𝑁𝑆 , 𝑁𝐸 , 𝑁𝐼 , 𝑁𝑅 and 𝑁𝐷. The
nitial conditions are usually non-zero and might be inferred along with
he unknown model parameters as shown in Peng et al. (2020), Tsay
t al. (2020), Tang et al. (2020). We applied the simplifying assumption
hat all infectious individuals are observed.

For all observable scenarios we performed a maximum likelihood
stimation assuming normally as well as log-normally distributed mea-
urement noise with unknown standard deviations (see Materials and
ethods). All parameters were assumed to be unknown with conser-

ative bounds (Table 4), similar to various recent publications (Roda
t al., 2020; Bertozzi et al., 2020; Tang et al., 2020; Peng et al.,
020). The multi-start local optimizations converged (Supplementary
igure S1A) and the simulations with the maximum likelihood esti-
ates achieved a good agreement with the observed data (Fig. 1B–D

nd Supplementary Figure S1C–E). This confirms the findings of other
esearch groups showing that the SEIRD model is sufficient to fit the
bserved case numbers of the COVID-19 outbreak in Wuhan. The com-
arably low noise levels inferred for the number of deceased individuals
onfirms our expectation that these observations are most reliable.
odel selection based on AIC and BIC indicated a strong support

or log-normally distributed measurement noise (Supplementary Figure
1B). For this choice, the residual distribution is consistent with the
heoretically expected on Supplementary Figure S2, which indicated
hat the statistical model is appropriate.

For an in-depth analysis of the impact of the choice of observables,
e performed uncertainty analysis using frequentist and Bayesian
ethods using bounded log-uniform priors (Fig. 2). This analysis re-

ealed several well-known problems, e.g. that the estimates of the
ransmission rate 𝛽 and the progression rate 𝜅 are subject to substantial
ncertainties (see also previous studies (Tuncer and Le, 2018; Roda
t al., 2020; Roosa and Chowell, 2019)). Furthermore, profile likelihood
alculation and MCMC sampling showed that for the case of an upper
ound for the inverse of the rate constants of 182 days and for the
nitial conditions of 1000 individuals, O3 provides improved parameter
dentifiability and decreased parameter uncertainties compared to O1
nd O2 (Fig. 2A–C). This was to be expected as O3 uses three observ-
bles (𝐼 , 𝑅 and 𝐷) while O1 and O2 use two observables (and a subset
f the information encoded in O3). Overall, the results were robust
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Fig. 1. Analysis of different observable combinations. (A) Schematic of the SEIRD model. (B,C,D) Fitting results for observation scenarios O1, O2, and O3 assuming log-normally
istributed measurement noise. The simulation for the maximum likelihood estimate (line) and interval for +∕− one standard deviation of the inferred noise level (shaded area)

is depicted. The upper bound for the inverse of the rate constants was set to 182 days and for the initial conditions to 1000 individuals.
to changes in the bounds of the rates and for the initial conditions
(Supplementary Figures S3, S4 and S5).

As in some studies a subset of rates and initial conditions is fixed to
specific values, we analyzed the impact of the choices on the estimates
of the remaining parameters. We observed that while the maximum
likelihood estimates remained mostly similar for different plausible
choices, the confidence intervals are altered substantially (Supplemen-
tary Figures S3, S4 and S5). Subsequently, we analyzed the impact of
fixing the initial number of exposed individuals 𝑁𝐸 for model O3. Here,
we found that the estimates of the remaining parameters to be sensitive
to the choice of 𝑁𝐸 . This was particularly relevant for the progression
rate 𝜅, for which implausible confidence intervals were obtained for
a range of values of 𝑁𝐸 (Supplementary Figure S6). This is critical as
it implies that fixing the initial value of this compartment (for which
usually only unreliable estimates are available), can bias the complete
analysis. The selected bounds as well as indicating which parameters
are estimated for the subsequent analyses in the manuscript are shown
in Table 4. Interestingly, the large parameter uncertainties for O1 and
O2 are only partially reflected in the prediction uncertainties (Fig. 2D–
F) due to a strong parameter correlation (Supplementary Figures S7, S8
and S9).

The most critical observation was that the parameter estimates
are not realistic, independently of the selected initial / estimated
conditions, and that the credibility intervals derived from the MCMC
samples are too narrow. The 99%-credibility intervals for O1, O2 and
O3 suggested that 𝜅 is in the interval of [0.39, 4.28] ×10−2 days−1.
This would imply an incubation period of [23.4, 257.6] days. This is
not consistent with the estimates reported by the WHO which indicate
3

a median incubation time of 5–6 days (World Health Organization,
2020), which have been confirmed by several other studies (Chen et al.,
2020; Li et al., 2020b; Koo et al., 2020; Jenny et al., 2020; Neher et al.,
2020). Similar inconsistencies are observed for the basic reproduction
number. Not only the Bayesian parameter estimates for bounded log-
uniform priors are off, but also the maximum likelihood estimates.
However, in contrast to narrow 99%-credibility intervals computed
from MCMC samples, the 99%-confidence intervals derived from profile
likelihoods are broad and cover realistic values. This indicates that
parameters estimates derived from case numbers can be unrealistic and
their reliability should be carefully assessed using different approaches.

In addition to the parameters, several model predictions are unreal-
istic and implausible. This includes high numbers of exposed individu-
als for O1. Given the estimated parameters of the transmission process,
these estimate numbers of exposed individuals at the initial time point
of our simulation could not have been reached. This implies that the
estimated rate constants and initial conditions are inconsistent in this
setup. As the consistency of the model and its parameters is essential,
this needs to be assessed and ensured.

As the information encoded in the number of reported cases alone
appeared insufficient to infer realistic and identifiable parameter es-
timates, we complemented it in the following with log-normal priors
for the incubation period, death rate and recovery rate as specified
in the Materials and Methods section. The parameters of the prior of
the incubation time are derived from the work of Backer et al. (2020),
which is based on the infections among travelers from Wuhan. While
the parameters of the priors of the death and recovery rates are derived
from the work of Zhou et al. (2020). We tested the sensitivity of the
results with respect to the parameters by considering a range of values

for the scale parameter. This revealed that plausible estimates of the
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Fig. 2. Uncertainty quantification for the different observable combinations. (A–C) Parameter confidence/credibility intervals obtained using profile calculation and MCMC samples.
The gray lines indicate the employed parameter boundaries. (D–F) Posterior of state variables obtained by MCMC sampling. Medians (line) and 99% confidence (dashed lines) /
credibility intervals (area) are indicated. The upper bound for the inverse of the rate constants was set to 182 days and for the initial conditions to 1000 individuals.
incubation period 𝑇𝐸 are already obtained for weak priors, whereas
plausible estimates for the death and recovery rates required strong
priors (Supplementary Figure S10). For the subsequent analysis, we
set the scales of the priors according to the reliability of the param-
eters provided in the respective publications. As O3 with these priors
achieves plausible estimates, i.e. the parameter confidence intervals
cover values reported in the literature (Read et al., 2020; Jenny et al.,
2020; Peng et al., 2020), we considered for the following sections this
setup with priors in the model fitting (Fig. 3A).

2.2. Analysis of transmission process

The SEIRD model with the priors for the incubation period, the
death rate and the recovery rates provides a reasonable description of
the case numbers reported for Wuhan (Fig. 3A). Yet, this widely used
model disregards the observation that patients are asymptomatic (Euro-
pean Centre for Disease Prevention and Control, 2020a). These patients
can be infectious but are more difficult to detect. To study the impact
of asymptomatic patients, we consider besides the basic SEIRD model
(M1) also two alternative epidemiological models:

• M2: A SAIRD model considering asymptomatic individuals (𝐴)
with transmission rate 𝜁 and symptomatic individuals (𝐼) with
transmission rate 𝛽. The asymptomatic individuals are assumed
to become symptomatic.
4

• M3: A SAIRD model similar to M2, which allows for the direct
recovery of asymptomatic patients. The recovered asymptomatic
patients (𝑅′) are assumed to remain unreported.

We assume that the reported number of infected individuals corre-
sponds to the number of symptomatic patients (𝐼). Accordingly, the
reported number of recovered individuals is assumed to count only
previously symptomatic individuals.

As a further model extension, we consider the possibility of waning
immunity. Some studies suggested that the infection with SARS-CoV-
2 does not necessarily induce a long-lived antibody response (Amanat
and Krammer, 2020; Long et al., 2020), while others found antibody
responses 4 months after infection (Gudbjartsson et al., 2020). To
address this, we consider:

• M4: A SAIRD model similar to M2, which allows recovered indi-
viduals (𝑅) to become susceptible (𝑆) with rate 𝜌.

The parameters of models M1–M4 were estimated using multi-
start local optimization. The simulations of models M1 to M4 for the
respective maximum a posterior estimate show a reasonable agreement
with the data (Fig. 3). Interestingly, while the simulations for M1, M2
and M4 are similar, the simulation for M3 shows an early saturation
(Fig. 3C). The reason is that the initial number of unobserved recov-
ered patients (which can also be interpreted as immune patients) is
estimated to be very high, which does not appear to be plausible.
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Fig. 3. Fit for different epidemiological models. (A–D) Illustration of model structures (top) and model-data comparison (bottom). The simulation for the maximum likelihood
estimate (line) and interval for +∕− one standard deviation of the inferred noise level (shaded area) is depicted.
As the fitting results for all models were highly reproducible
(Fig. 4A), we considered the values of the likelihood function and
evaluated the AIC and BIC for model selection (Fig. 4B,C). First of
all, we observed that although M4 is more complex than M1 and M2,
it does not achieve a better likelihood value (Fig. 4A, zoom in). This
suggests that recovered individuals are not again becoming susceptible
in the considered time frame. However, when taking into account
the AIC and BIC values, for which differences of 10 are considered
substantial (Burnham and Anderson, 2002), we cannot reject M4. As
all models achieved a relatively similar fit, M1 to M3 appeared to
be suitable descriptions and the ranking differs for AIC and BIC. This
confirms the limited information content of the case numbers as there
is clear evidence for the relevance of asymptomatic cases.

To assess the uncertainty of the parameter estimates and predic-
tions, we computed the profile likelihoods and performed MCMC sam-
pling (Fig. 5A–D). The results indicate that the parameter uncertainties
for M2–M4 are larger than for M1, but that most parameters are well
determined. The profile likelihoods yield overall more conservative
estimates than the sampling (Supplementary Figures S11, S12, S13 and
S14). The predictions of the state variables based on the sampling
suggest low uncertainties of all model states (Fig. 5E–H) while still
5

having large parameter uncertainties as a result of correlations between
parameters (Supplementary Figures S11, S12, S13 and S14). In partic-
ular for M3 this appears unrealistic as there are so far no reports about
a large number of immune individuals (Fig. 5G).

2.3. Analysis of intervention effect

A key question in many recent studies is how much interventions
such as compulsory masks and social contact restrictions, as well as the
rising public awareness impact the transmission rate of SARS-CoV-2. To
study how well this question can be assessed based on early case report
data, we considered three simple scenarios:

• No change of the transmission rate.
• Discrete change in the transmission rate due to the compulsory

masks introduced by the government in Wuhan on January 22
and substantially increasing contract restrictions.

• Continuous change in the transmission rate due to rising public
awareness and a broad spectrum of interventions.

These scenarios are illustrated in Fig. 6 and a detailed mathematical
description is provided in the Materials and Methods section.

As the result of the analysis of the infection dynamics carried out
in the previous section was inconclusive, we considered model M1
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Fig. 4. Analysis of model structure. (A) Waterfall plots for the 200 multi-start runs. The optimization runs are sorted by increasing negative log-likelihood value. The lower panel
shows a magnification of the best 20 starts. (B) Differences in AIC with respect to the lowest value indicate M3 as the most plausible model. (C) Differences in BIC with respect
to the lowest value indicate M1 as the most plausible model. Black dashed line in (B) and (C) depicts a change of 10 units considered as a rejection threshold (Burnham and
Anderson, 2002).
to M4. For all 12 combinations of model structures and intervention
effects, we performed parameter estimation and uncertainty analysis.
The assessment of the model selection criteria provided support for
a discrete change in the transmission rate on January 22 (Fig. 7A).
The resulting model provides an accurate description of the data and
suggests that the transmission rate dropped by around 46% (Fig. 7B).
Moreover, the residual distribution is consistent with the theoretically
expected (Supplementary Figures S15). The uncertainty estimates for
the decrease (𝛥) depend heavily on the analysis approach. While MCMC
sampling yields a 99% credibility interval from 32.2 to 63.67%, the
profiles suggests a much broader regime (Fig. 7C and Supplemen-
tary Figure S16). Accordingly, the reported case number for the early
outbreak were not sufficient for an accurate assessment of all model
parameters. Despite the parameter uncertainties, the states seem to be
relatively well determined (Fig. 7D).

3. Discussion

Pandemics pose a global challenge and show the importance of
model-based forecasting. Forecasts influence the political decision-
making process and have a significant impact on our society. Mini-
mizing model uncertainties and properly evaluating them is therefore
crucial. Yet, many publications are still only using reported case num-
ber and/or omit an identifiability and uncertainty analysis (Li et al.,
2020a; Ming et al., 2020; Maier and Brockmann, 2020; Read et al.,
2020; Zhao et al., 2020b; Barbarossa et al., 2020; Salim et al., 2020;
Berk and Kadyrov, 2020). Here, we demonstrated that both aspects are
problematic.

Our analysis of the COVID-19 outbreak in Wuhan demonstrates that
the parameterization of epidemiological models can result in incor-
rect parameter estimates and predictions. Surprisingly, even Bayesian
uncertainty analysis using MCMC sampling with bounded log-uniform
priors as well as informative priors on the incubation time, death and
recovery rates, resulted in an underestimation of the indeterminacy
and provided inaccurate predictions. In principle this could be caused
6

by (i) problems in the parameter estimation, (ii) unsuitable statistical
data model, (iii) poor data quality, (iv) low information content of
the data, and (v) inadequate process descriptions. Yet, we ensured the
reliability and reproducibility of the fitting results (by even comparing
multiple methods) and confirmed the appropriateness of the noise
data (by considering multiple noise models and evaluating residual
distributions). This indicates that (i)-(iii) do not cause the observed
problems. In our opinion the concrete reasons are:

(1) The models considered here and used in various other publica-
tions are too simple to obtain meaningful parameter estimates
during the early phase of the COVID-19 epidemic. They neglect
for instance particularities of the process (e.g. a large number
of asymptomatic cases (Nishiura et al., 2020)), the stochastic
nature of the process (He et al., 2020; Halloran et al., 2008), the
heterogeneity of the population (e.g. the age structure (Wu et al.,
2020)), and time-dependent testing and reporting protocols (Chi-
nese Center for Disease Control and Prevention, 2020). As the
parameter estimates depend on the model characteristics, such
simplifications can result in biased estimates and predictions.

(2) The case report data provide only limited information about
the process, in particular the distribution of inter-event times
are difficult of reconstruct, which is also discussed in multiple
other studies (Zhao et al., 2020b; Roosa et al., 2020; Chowell,
2017; Ahmetolan et al., 2020; Anastassopoulou et al., 2020;
Mukandavire et al., 2020; Liu et al., 2020b).

Besides parameter estimation, the aforementioned limitations of case
numbers were observed in the model selection process. The data did, for
instance, not allow to unravel that a large number of the asymptomatic
cases is not detected. Yet, the data still contained information that
allowed to detect the effect of government restrictions.

The problems we encountered in this study have in parts been
described for other models. In particular, practical and structural iden-
tifiability has been reported in several publications which used case
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Fig. 5. Uncertainty quantification for different model structures. (A–D) Confidence/credibility intervals for the model parameters obtained using profile calculation and MCMC
sampling. The gray lines indicate the employed parameter boundaries. (E–H) Confidence/credibility intervals for the state variables obtained using prediction profile likelihood
calculation and MCMC sampling. Medians (line) and 99% confidence (dashed lines) / credibility intervals (area) are indicated.
report data (Chowell, 2017; Roosa et al., 2020; Mukandavire et al.,
2020; Zhao et al., 2020b; Tuncer and Le, 2018; Roda et al., 2020). In
contrast, bias in parameter estimates and inappropriateness of confi-
dence intervals – which is caused by unsuitability of the model – is
rarely discussed.

Fortunately, the problems can be addressed by refining the models
and by incorporating additional information. Already the incorporation
of details of the disease progression provides substantially improved
estimates and predictions (Giordano et al., 2020). In addition, pa-
rameter priors can be used to incorporate information which is not
contained in case numbers. Yet, – as we demonstrate above – the
priors have to be chosen appropriately, as the results can be very
sensitive to them. Furthermore, while literature-based priors are used
in many manuscripts (Khailaie et al., 2020), we hypothesize that it
7

would be better to use information about individual cases for parameter
estimation and model selection. In particular the date of the onset of
symptoms, the date of the positive test, and the date of recovery/death
for individuals is highly relevant. These data are being collected and
analyzed (Backer et al., 2020; Lauer et al., 2020; Zhou et al., 2020;
Wölfel et al., 2020), but should in the future be shared much ear-
lier. Furthermore, randomized testing would be required, ideally using
antibody tests to determine the fraction of completely asymptomatic
patients. Such studies are usually not possible during an initial phase
of a pandemic but are now on the way (Bayerisches Staatsministerium
für Wissenschaft und Kunst., 2020).

This study does not offer new insights into the COVID-19 pandemic.
However, it pinpoints important pitfalls and showcases the relevance
of the underlying assumptions and the available data. Furthermore, it
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Fig. 6. Modeling intervention strategies. Schematic of distinct intervention effects influencing 𝛽 and 𝜁 . 𝑇𝐶 denotes the time at which an intervention is performed.
Fig. 7. Analysis of intervention effects. (A) Model selection using AIC weights (top) and BIC weights (bottom). (B) Best model fit (top) and estimated intervention effect (bottom).
The simulation for the maximum likelihood estimate (line) and interval for +∕− one standard deviation of the inferred noise level (shaded area) is depicted. (C) Confidence/credibility
intervals for the model parameters obtained using profile calculation and MCMC sampling. The gray lines indicate the employed parameter boundaries. (D) Confidence/credibility
intervals for the state variables obtained using prediction profile likelihood calculation and MCMC sampling. Medians (line) and 99% confidence (dashed line) / credibility intervals
(area) are indicated.
demonstrates that even a proper uncertainty analysis using state-of-
the-art frequentist or Bayesian approaches does not ensure that the
true parameters and dynamics are captured within the uncertainty
bounds. While we demonstrate this aspect here for deterministic com-
partmental models – which are the basis of many modeling studies
8

for COVID-19 and beyond – it certainly holds also for other modeling
approaches. Similarly, model-free studies are based on assumptions,
data and statistical models, rendering them subject to at least the same
limitations.
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Table 1
Number of total, infected, deceased and recovered cases in Wuhan, China. Missing data
in the official reports are indicated by ‘‘-’’.

Date Total Infected Recovered Deceased

January 9 – – – –
January 10 – – – –
January 11 41 34 6 1
January 12 41 33 7 1
January 13 41 33 7 1
January 14 41 33 7 1
January 15 41 27 12 2
January 16 45 28 15 2
January 17 62 41 19 2
January 18 121 94 24 3
January 19 198 169 25 4
January 20 258 227 25 6
January 21 363 326 28 9
January 22 425 380 28 17
January 23 495 441 31 23
January 24 572 502 32 38
January 25 618 533 40 45
January 26 698 593 42 63
January 27 1590 – – 85
January 28 1905 1726 75 104
January 29 2261 2050 82 129
January 30 2639 2377 103 159
January 31 3215 2884 139 192
February 1 4109 3714 171 224
February 2 5142 4653 224 265
February 3 6384 5768 303 313
February 4 8351 7621 368 362
February 5 10117 9272 431 414
February 6 11618 10606 534 478
February 7 13603 12360 698 545
February 8 14982 13497 877 608
February 9 16902 15177 1044 681

4. Materials and methods

4.1. Data

The study is based on official reports on the total number of cases
and the numbers of infected individuals, recovered individuals and
deceased individuals. From January 11 to 20, the reports were made
available by the Wuhan Municipal Health Commission (2020). After-
wards, the reports were organized by the Health Commission of Hubei
Province (2020). All these data are publicly available on the respective
webpages. The complete data sets used in this study are listed in
Table 1.

The exact population size in the city of Wuhan in the period under
consideration is not precisely known due to Chinese New Year. In this
study we assume a population size of 9 million which was mentioned
by the mayor of Wuhan, Zhou Xianwang (Business Insider, Ashley
Collman, 2020).

4.2. Mathematical models

We considered four different deterministic compartmental models
for the description of the transmission process. The state variables of
the models are the number of individuals with particular characteristics
and the notations can be found in Table 2.

The models allow for various processes which result in the transi-
tions of individuals between compartments (see Fig. 3). A description
of the rates is provided in Table 3. For the time-dependence of the
transmission rates 𝛽 and 𝜁 ,

𝛽(𝑡) = 𝛽0 ⋅ 𝑔(𝑡) and 𝜁 (𝑡) = 𝛽0 ⋅ 𝜉0 ⋅ 𝑔(𝑡),

we considered three scenarios:

• No change: 𝑔(𝑡) = 1
9

Table 2
State variables of the mathematical models.

Name Description

𝑆 Susceptible
𝐸 Exposed but not infectious
𝐴 Asymptomatic and infectious
𝐼 Symptomatic and infectious
𝑅 Recovered with previously symptomatic progression
𝑅′ Recovered with previously asymptomatic progression
𝐷 Deceased

Table 3
Rates in the mathematical models.

Name Process Description

𝛽(𝑡) 𝑆 + 𝐼 → 𝐸∕𝐴 (Time-dependent) transmission rate for symptomatic
𝜁 (𝑡) 𝑆 + 𝐴 → 𝐸∕𝐴 (Time-dependent) transmission rate for asymptomatic
𝜅 𝐸∕𝐴 → 𝐼 Progression rate (= 𝑇 −1

𝐸 for incubation time 𝑇𝐸 )
𝛾 𝐼 → 𝑅 Recovery rate for symptomatic case
𝜈 𝐴 → 𝑅′ Recovery rate for asymptomatic case
𝛿 𝐼 → 𝐷 Death rate
𝜌 𝑅 → 𝑆 Rate at which immunity wanes

• Discrete change: 𝑔(𝑡) =
{

1 for 𝑡 ≤ 𝑇𝐶
1 − 𝛥 otherwise

• Continuous change: 𝑔(𝑡) = 𝑒−𝑘𝑡

The function 𝑔(𝑡) describes the reduction of the transmission rates
ompared to baseline at 𝑡 = 0, with 𝑔(0) = 1 for all scenarios.
he parameters for the discrete change are the time point 𝑇𝐶 and
he relative reduction 𝛥, and for the continuous change we have the
ecay rate 𝑘. The parameter 𝜉0 = 𝜁0

𝛽0
denotes the relative difference

between the transmission rates of the symptomatic individuals (𝛽(𝑡))
and asymptomatic individuals (𝜁 (𝑡)).

The ODEs governing the dynamics of the different compartmental
models are provided in Table 5. We decided to initialize the model
on January 9, which is when the virus was first detected (European
Centre for Disease Prevention and Control, 2020b), defining 𝑡 = 0. As
on January 22 the wearing of masks became mandatory, we set for the
scenario of a discrete reduction of 𝛽 for 𝑇𝐶 = 13 days.

The state variables of the model were linked to the observed case
numbers using observation functions. The observation functions for the
total number of cases (𝑦𝑇 ) as well as for the number of infected (𝑦𝐼 ),
recovered (𝑦𝑅) and deceased (𝑦𝐷) people are provided in Table 5. As
the reported numbers are subject to unknown measurement noise, we
considered two error models:

• Additive normally distributed measurement noise:

�̄�𝑇 ,𝑘 = 𝑦𝑇 (𝑡𝑘) + 𝜀𝑇 ,𝑘, 𝜀𝑇 ,𝑘 ∼  (0, 𝜎2𝑇 )

�̄�𝐼,𝑘 = 𝑦𝐼 (𝑡𝑘) + 𝜀𝐼,𝑘, 𝜀𝐼,𝑘 ∼  (0, 𝜎2𝐼 )

�̄�𝑅,𝑘 = 𝑦𝑅(𝑡𝑘) + 𝜀𝑅,𝑘, 𝜀𝑅,𝑘 ∼  (0, 𝜎2𝑅)

�̄�𝐷,𝑘 = 𝑦𝐷(𝑡𝑘) + 𝜀𝐷,𝑘, 𝜀𝐷,𝑘 ∼  (0, 𝜎2𝐷)

• Multiplicative log-normally distributed measurement noise:

�̄�𝑇 ,𝑘 = 𝑦𝑇 (𝑡𝑘) ⋅ 𝜀𝑇 ,𝑘, 𝜀𝑇 ,𝑘 ∼ log (0, 𝜎2𝑇 )

�̄�𝐼,𝑘 = 𝑦𝐼 (𝑡𝑘) ⋅ 𝜀𝐼,𝑘, 𝜀𝐼,𝑘 ∼ log (0, 𝜎2𝐼 )

�̄�𝑅,𝑘 = 𝑦𝑅(𝑡𝑘) ⋅ 𝜀𝑅,𝑘, 𝜀𝑅,𝑘 ∼ log (0, 𝜎2𝑅)

�̄�𝐷,𝑘 = 𝑦𝐷(𝑡𝑘) ⋅ 𝜀𝐷,𝑘, 𝜀𝐷,𝑘 ∼ log (0, 𝜎2𝐷)

The observation time points 𝑡𝑘, 𝑘 = 1,… , 32, are the days listed in
Table 1, and the measurements (as indicated with the superscript 𝑚)
are the respective case numbers. The distribution parameters 𝜎𝑇 , 𝜎𝐼 ,
𝜎𝑅 and 𝜎𝐷 were considered as unknown.

In the following the parameters of the transition rates, the total and
initial number of people in different compartments, and the parameters
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Table 4
Model parameters. Nominal values, lower bounds, upper bounds, priors and units for the model parameters. The nominal values are only used for model parameters
which are not fitted.

Name Fitted Nominal
value

Lower
bound

Upper
bound

Prior Unit

Parameters of transition rates

𝛽0 Yes - 10−5 105 log-uniform day−1

𝜉0 Yes - 0.0038 16.63 log-uniform day−1

𝜅 Yes - 0.0038 16.63 log-uniform/-
normal

day−1

𝛾 Yes - 0.0038 16.63 log-uniform/-
normal

day−1

𝜈 Yes - 0.0038 16.63 log-uniform day−1

𝛿 Yes - 0.0038 16.63 log-uniform/-
normal

day−1

𝜌 Yes - 0.0038 16.63 log-uniform day−1

𝛥 Yes - 0.0038 16.63 log-uniform -
𝑇𝐶 No 13 - - - day
𝑘 Yes - 0.0038 16.63 log-uniform day−1

Total and initial number of people

𝑁 No 9 × 106 - - - #
𝑁𝐸 Yes - 10−1 103 log-uniform #
𝑁𝐴 Yes - 10−1 103 log-uniform #
𝑁𝐼 Yes - 10−1 103 log-uniform #
𝑁𝑅 Yes - 10−1 103 log-uniform #
𝑁𝑅′ Yes - 10−1 103 log-uniform #
𝑁𝐷 Yes - 10−1 103 log-uniform #

Noise level

𝜎2
𝑇 Yes - 10−3 103 log-uniform #

𝜎2
𝐼 Yes - 10−3 103 log-uniform #

𝜎2
𝑅 Yes - 10−3 103 log-uniform #

𝜎2
𝐷 Yes - 10−3 103 log-uniform #
a
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of the noise distribution are inferred. A comprehensive list of all model
parameters and implemented constraints is provided in Table 4. The
boundaries of the search space were chosen very conservatively to
indicate the initial knowledge gap about SARS-CoV-2 and COVID-19.

4.3. Parameter estimation

To infer the unknown model parameters we used frequentist and
Bayesian approaches. These approaches considered the conditional
probability 𝑝(|𝜃) of the data  given the parameters 𝜃, also known
as likelihood. For additive normally distributed measurement noise the
likelihood function is

𝑝(|𝜃) =
∏

𝑖∈

32
∏

𝑘=1

1
√

2𝜋𝜎𝑖
exp

{

−1
2

( �̄�𝑖,𝑘 − 𝑦𝑖(𝑡𝑘)
𝜎𝑖

)2}

,

nd for multiplicative log-normally distributed measurement it is

(|𝜃) =
∏

𝑖∈

32
∏

𝑘=1

1
√

2𝜋𝜎𝑖�̄�𝑖,𝑘
exp

{

−1
2

( log(�̄�𝑖,𝑘) − log(𝑦𝑖(𝑡𝑘))
𝜎𝑖

)2}

.

The set of considered observables is encoded by  and differs for the
scenarios O1 to O3: O1 = {𝑇 ,𝐷}, O2 = {𝐼,𝐷}, and O3 = {𝐼, 𝑅,𝐷}.
In addition to the case reports, we also incorporated knowledge avail-
able before the parameter estimation. For Bayesian approaches this
was done by defining prior distributions. These prior distributions are
mostly log-uniform with conservative upper and lower bounds, mean-
ing that the distribution over the log-transformed parameter values
is flat. For 𝜅 we include in parts of the study information about the
incubation period (Backer et al., 2020), given by a log-normal prior:

𝑝(𝜅) = 1
√

2𝜋𝜎𝜅𝜅
exp

{

−1
2

(

log(𝜅) − log(�̂�)
𝜎𝜅

)2
}

,

with �̂� = (6.4[day])−1 and 𝜎𝜅 = 0.3.

For 𝛿 and 𝛾 we include in parts of the study information about the
mean death and mean recovery time (Zhou et al., 2020), given by a
log-normal prior:

𝑝(𝛿) = 1
√

exp

{

−1
2

(

log(𝛿) − log(𝛿)
𝜎

)2}

,

10

2𝜋𝜎𝛿𝛿 𝛿 i
with 𝛿 = (18.5[day])−1 and 𝜎𝛿 = 0.15,

and

𝑝(𝛾) = 1
√

2𝜋𝜎𝛾𝛾
exp

{

−1
2

(

log(𝛾) − log(�̂�)
𝜎𝛾

)2
}

,

with �̂� = (22[day])−1 and 𝜎𝛾 = 0.1.

For the frequentist approaches the available estimates of 𝜅, 𝛿 and 𝛾
re treated as data points.

emark. For the parameter estimation we consider the log-transf-
rmed parameter values. For the log-transformed parameters, the log-
niform prior become effectively a uniform prior. This renders the
requentist and the Bayesian approaches comparable, namely, the max-
mum likelihood and the maximum a posteriori estimates coincide.

.3.1. Maximum likelihood and maximum a posteriori estimates
To determine the maximum likelihood and the maximum a pos-

eriori estimates, we minimized the negative log-likelihood function
nd negative log-posterior function, respectively. As these optimization
roblems are non-linear and non-convex, we used multi-start local
ptimization. The starting points for the local optimizations were gener-
ted using latin hypercube sampling. Local optimization was performed
sing the interior point algorithm implemented in the MATLAB func-
ion lsqnonlin.m, which exploits the least-squares like structure of
he optimization problems. To facilitate convergence, we computed
he gradients of the residuals via forward sensitivity equations. The
onvergence of the global optimization was assessed using waterfall
lots.

For each of the 18 considered combinations of compartment model,
oise model, observable scenario and intervention scenario, we per-
ormed 200 local optimizations. For all combinations at least 15 runs
onverged to the observed global optimum. This suggested that the
esults are highly reliable.

.3.2. Frequentist uncertainty analysis
To evaluate the (frequentist) parameter and prediction confidence

ntervals we used profile likelihoods (Raue et al., 2009; Kreutz et al.,
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Table 5
Mathematical models. ODEs for the transmission dynamics, initial conditions and observations functions are defined for all considered model structures. As some models
consider only a subset of the state variables, some rows are empty.

SEIRD model (M1) SAIRD model (M2) SAIRRD model (M3) SAIRDS model (M4)

Infection dynamics

𝑑𝑆
𝑑𝑡

= −𝛽 𝑆𝐼
𝑁

𝑑𝑆
𝑑𝑡

= −𝛽 𝑆𝐼
𝑁

− 𝜁 𝑆𝐴
𝑁

𝑑𝑆
𝑑𝑡

= −𝛽 𝑆𝐼
𝑁

− 𝜁 𝑆𝐴
𝑁

𝑑𝑆
𝑑𝑡

= −𝛽 𝑆𝐼
𝑁

− 𝜁 𝑆𝐴
𝑁

+ 𝜌𝑅
𝑑𝐸
𝑑𝑡

= 𝛽 𝑆𝐼
𝑁

− 𝜅𝐸
𝑑𝐴
𝑑𝑡

= 𝛽 𝑆𝐼
𝑁

+ 𝜁 𝑆𝐴
𝑁

− 𝜅𝐴 𝑑𝐴
𝑑𝑡

= 𝛽 𝑆𝐼
𝑁

+ 𝜁 𝑆𝐴
𝑁

− (𝜅 + 𝜈)𝐴 𝑑𝐴
𝑑𝑡

= 𝛽 𝑆𝐼
𝑁

+ 𝜁 𝑆𝐴
𝑁

− 𝜅𝐴
𝑑𝐼
𝑑𝑡

= 𝜅𝐸 − (𝛾 + 𝛿)𝐼 𝑑𝐼
𝑑𝑡

= 𝜅𝐴 − (𝛾 + 𝛿)𝐼 𝑑𝐼
𝑑𝑡

= 𝜅𝐴 − (𝛾 + 𝛿)𝐼 𝑑𝐼
𝑑𝑡

= 𝜅𝐴 − (𝛾 + 𝛿)𝐼
𝑑𝑅
𝑑𝑡

= 𝛾𝐼 𝑑𝑅
𝑑𝑡

= 𝛾𝐼 𝑑𝑅
𝑑𝑡

= 𝛾𝐼 𝑑𝑅
𝑑𝑡

= 𝛾𝐼 − 𝜌𝑅
𝑑𝑅′

𝑑𝑡
= 𝜈𝐴

𝑑𝐷
𝑑𝑡

= 𝛿𝐼 𝑑𝐷
𝑑𝑡

= 𝛿𝐼 𝑑𝐷
𝑑𝑡

= 𝛿𝐼 𝑑𝐷
𝑑𝑡

= 𝛿𝐼

Initial conditions

𝑆(0) = 𝑁 −𝑁𝐸 −𝑁𝐼 −𝑁𝑅 −𝑁𝐷 𝑆(0) = 𝑁 −𝑁𝐴 −𝑁𝐼 −𝑁𝑅 −𝑁𝐷 𝑆(0) = 𝑁 −𝑁𝐴 −𝑁𝐼 −𝑁𝑅 −𝑁𝑅′ −𝑁𝐷 𝑆(0) = 𝑁 −𝑁𝐴 −𝑁𝐼 −𝑁𝑅 −𝑁𝐷

𝐸(0) = 𝑁𝐸

𝐴(0) = 𝑁𝐴 𝐴(0) = 𝑁𝐴 𝐴(0) = 𝑁𝐴

𝐼(0) = 𝑁𝐼 𝐼(0) = 𝑁𝐼 𝐼(0) = 𝑁𝐼 𝐼(0) = 𝑁𝐼

𝑅(0) = 𝑁𝑅 𝑅(0) = 𝑁𝑅 𝑅(0) = 𝑁𝑅 𝑅(0) = 𝑁𝑅

𝑅′(0) = 𝑁𝑅′

𝐷(0) = 𝑁𝐷 𝐷(0) = 𝑁𝐷 𝐷(0) = 𝑁𝐷 𝐷(0) = 𝑁𝐷

Observables

𝑦𝑇 = 𝐼 + 𝑅 +𝐷 𝑦𝑇 = 𝐼 + 𝑅 +𝐷 𝑦𝑇 = 𝐼 + 𝑅 +𝐷 𝑦𝑇 = 𝐼 + 𝑅 +𝐷

𝑦𝐼 = 𝐼 𝑦𝐼 = 𝐼 𝑦𝐼 = 𝐼 𝑦𝐼 = 𝐼

𝑦𝑅 = 𝑅 𝑦𝑅 = 𝑅 𝑦𝑅 = 𝑅 𝑦𝑅 = 𝑅

𝑦𝐷 = 𝐷 𝑦𝐷 = 𝐷 𝑦𝐷 = 𝐷 𝑦𝐷 = 𝐷
f
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2013). The profile likelihoods were computed using the MATLAB
toolbox Data2Dynamics (Raue et al., 2015). This toolbox implements
optimization-based methods with adaptive step-size selection as well
as fast integration-based methods (Hass et al., 2016). To ensure the
robustness of the results, the consistency of the outcomes was checked
and confirmed.

The profile likelihoods were used to derive the (finite sample)
confidence intervals and to assess practical identifiability (Raue et al.,
2009). For a significance level 𝛼, the bounds of the confidence interval

ere determined as the smallest and largest parameter values for which
he profile likelihood stays above the threshold defined by the 𝛼th-

percentile of the 𝜒2-distribution (Meeker and Escobar, 1995). We used
the 𝜒2-distribution with one degree of freedom which yields the so
called point-wise confidence intervals. We note that for practically
identifiable parameters (as termed (Raue et al., 2009)), the confidence
intervals can still be rather wide.

4.3.3. Bayesian uncertainty analysis
To evaluate the (Bayesian) parameter and prediction credibility

intervals we used Markov chain Monte Carlo sampling (Ballnus et al.,
2017). The parameter posterior distribution was sampled using the
Adaptive Metropolis algorithm implemented in the MATLAB toolbox
PESTO (Stapor et al., 2018). The methods are self-tuning and provided
good convergence properties. Convergence after burn-in was assessed
using the Geweke test (Geweke, 1992). The parameter samples were
used to generate samples for the model states and observables.

The samples of parameters and predictions were used to derive
the credibility intervals. For a credibility level 𝛼, the bounds of the
credibility interval were determined as the 100𝛼∕2- and the 100(1−𝛼∕2)-
percentile of the respective sample. This procedure yields the so called
equal-tailed interval.

4.4. Model selection

We considered competing hypotheses on the dynamics of the infec-
tion process, the effect of the intervention and the noise distribution.
Each of the resulting models was assessed using the Akaike information
criterion (AIC),

AIC = −2 log 𝑝(|�̂�(𝑗)) + 2𝑛(𝑗),
11

𝑗 𝜃
and the Bayesian information criterion (BIC),

BIC𝑗 = −2 log 𝑝(|�̂�(𝑗)) + log(𝑛)𝑛𝜃(𝑗) ,

in which 𝑗 is the model index, �̂�(𝑗) is the maximum likelihood estimate
or the 𝑗th model, and 𝑛𝜃(𝑗) is the number of parameter of the 𝑗th
odel. The number of independent data points is denoted by 𝑛.
he parameter priors are treated as data points, therefore included in
. AIC and BIC account for the likelihood of the data and penalize
odel complexity. Low AIC and BIC values are favorable. We consider
difference of 10 between AIC/BIC values of different models as

ubstantial (Burnham and Anderson, 2002).
For analysis and visualization we also evaluated the AIC and BIC

eights (Burnham and Anderson, 2002). The AIC weight for the 𝑗th
odel is defined as

AIC,𝑗 =
exp{− 1

2 (AIC𝑗 − AICmin)}
∑

𝑗′ exp{−
1
2 (AIC𝑗′ − AICmin)}

, with AICmin ∶= min
𝑗′

AIC𝑗′ ,

and provides the weight of evidence in favor of the 𝑗th model being
the actual best model in terms of the Kullback–Leibler Information
(assuming that the true model is in the considered set). The BIC weight
for the 𝑗th model is defined as

𝑤BIC,𝑗 =
exp{− 1

2 (BIC𝑗 − BICmin)}
∑

𝑗′ exp{−
1
2 (BIC𝑗′ − BICmin)}

, with BICmin ∶= min
𝑗′

BIC𝑗′ ,

and provides an approximation to the Bayesian posterior probability of
the 𝑗th model. AIC and BIC weights are between 0 and 1, and a high
value indicates a strong support.

4.5. Implementation and availability

The model formulation, parameter estimation and profile likeli-
hoods were performed in the MATLAB toolbox Data2Dynamics
(https://github.com/Data2Dynamics/d2d) (Raue et al., 2015). Out-
liers in the computed prediction profiles arising from calculation er-
rors were corrected subsequently. The calculation of parameter confi-
dence intervals and MCMC sampling was carried out using the MAT-
LAB toolboxes PESTO (https://github.com/ICB-DCM/PESTO) (Stapor
et al., 2018) and AMICI (https://github.com/ICB-DCM/AMICI) (Fröh-
lich et al., 2017a,b). For numerical integration Data2Dynamics and

https://github.com/Data2Dynamics/d2d
https://github.com/ICB-DCM/PESTO
https://github.com/ICB-DCM/AMICI
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AMICI rely on the SUNDIALS solver CVODES (Serban and Hindmarsh,
2005).

The complete implementation (including the respective version of
the used toolboxes) and data are available on ZENODO (https://doi.
org/10.5281/zenodo.4457194). This includes the MATLAB code as
well as the specification of the parameter estimation problems as PEtab
files (Schmiester et al., 2020) (with the model in SBML format Hucka
et al. (2003)).
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