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Abstract
In this article, a greedy reduced basis algorithm is proposed for the solution
of structural acoustic systems with parameter and implicit frequency depen-
dence. The underlying equations of linear time-harmonic elastodynamics and
acoustics are discretized using the finite element and boundary element method,
respectively. The solution within the parameter domain is determined by a lin-
ear combination of reduced basis vectors. This basis is generated iteratively and
given by the responses of the structural acoustic system at certain parameter
samples. A greedy approach is followed by evaluating the next basis vector at
the parameter sample which is currently approximated worst. The algorithm
runs on a small training set which bounds the memory requirements and allows
applications to large-scale problems with high-dimensional parameter domains.
The computational efficiency of the proposed scheme is illustrated based on two
numerical examples: a point-excited spherical shell submerged in water and a
satellite structure subject to a diffuse sound pressure field excitation.
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1 INTRODUCTION

Assessing the vibroacoustic behavior of structures is an important aspect of designing quiet machines and vehicles.1 With
the advances in numerical modeling techniques, vibroacoustic quantities such as radiated sound power and transmission
loss of complex structures can be accurately predicted ahead of manufacturing. In the low frequency range, when the
modes are still well separated, the underlying equations of motion are typically addressed by the finite element method
(FEM)2 and the boundary element method (BEM).3,4 The structural domain is usually discretized by finite elements
whereas either FEM or BEM is used for discretizing the acoustic domain. Since the BEM reduces the problem’s dimension
by one, that is, only the sound radiating surface has to be discretized instead of the surrounding acoustic volume, the
BEM features an inherent advantage for unbounded acoustic domains.4 This contribution focuses on structural acoustic
problems with an unbounded acoustic domain in the low frequency region and hence a FEM-BEM approach is employed.

Including vibroacoustic quantities in design optimization and uncertainty analyses has become a common engi-
neering practice in recent decades.5,6 However, when using a FEM-BEM approach, the repeated evaluation of these
vibroacoustic quantities poses a significant computational challenge. In general, the structural acoustic system has to be
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solved for each change in the design variables which usually includes the reassembly of the system matrices. Different
techniques have been proposed to accelerate the evaluations for solely frequency dependent but also general parameter
dependent problems.

Modal superposition is a popular choice for solely frequency dependent structural acoustic systems.7 Solving the
corresponding eigenvalue problem yields the eigenfrequencies and modes of the structural acoustic problem and the
time-harmonic responses can be estimated by superposing the modes. The computational complexity mainly depends on
the type of the structural acoustic problem and the discretization method of choice. Bounded acoustic domains discretized
by the FEM yield linear eigenvalue problems8,9 whereas unbounded acoustic domains generally yield nonlinear eigen-
value problems. An exception is given in the latter case by a particular choice of finite elements.10,11 In contrast, boundary
element discretizations yield nonlinear eigenvalue problems in both cases due to the implicit frequency dependence of the
boundary element matrices.12,13 A remedy can be found in a frequency approximation of the boundary element matrix.7,14

Alternatively, the nonlinear eigenvalue problem can be solved, for example, by contour integral methods15,16 and rational
approximation.17

When considering parameter dependent structural acoustic problems, the aforementioned approach of modal reduc-
tion becomes infeasible. In these cases, parametric model order reduction (pMOR)18,19 can be employed to generate a
reduced order model (ROM). A broad range of reduction techniques exists for affine parameter dependence, see Ref-
erence 20 for a detailed overview. Parameters with a low-rank impact on the system matrix are a special type of affine
parameters. For those, a parametric ROM can be build that preserves all parameters by employing conventional non-
parametric MOR techniques.21 Van Ophem et al.22 reduced a finite element discretized fully coupled structural acoustic
problem based on Krylov subspace projection and a second order Arnoldi scheme. Their frequency dependent problem
features additional parameters which correspond to locally added structural mass and hence can be described as low-rank
updates of the mass matrix. For nonaffine parameterized systems such as linear systems with implicit frequency depen-
dent boundary element matrices, the discrete empirical interpolation method (DEIM)23 can be used. The DEIM yields
an affine approximation of the linear system in a given parameter domain based on a small number of evaluations of
the original linear system. Negri et al.24 applied the matrix variant of the DEIM to a finite element discretized acoustic
problem with a five-dimensional parameter domain. They optimize the shape of an acoustic horn in a frequency range
by varying four geometry parameters. Casenave et al.25 applied the DEIM to a solely frequency dependent boundary ele-
ment discretized acoustic scattering problem. Applications to FEM-BEM structural acoustic problems have not yet been
reported up to the authors’ knowledge.

An alternative MOR technique are reduced basis methods which utilize that the solutions of parameterized linear
systems are often members of lower-dimensional manifolds.26 Hence, linear combinations of a small number of basis
vectors can accurately approximate the solutions.27 Most reduced basis methods follow an offline-online paradigm. In
the offline stage, the reduced basis is built using solutions of the parameterized linear system. Usually either a proper
orthogonal decomposition (POD) or greedy algorithms are employed. In the former approach, the parameter domain
is sampled without prior knowledge of optimal points and a singular value decomposition (SVD) of the corresponding
solutions determines the basis.28 In contrast, greedy algorithms meticulously select parameter samples based on a pre-
defined optimality criterion and the basis vectors coincide with the corresponding solutions.29 In the online stage, the
approximate solutions at new parameter values are found by linear combinations of the basis vectors.30 Casenave et al.31

employed a greedy reduced basis scheme in conjunction with the BEM to find the solution of a parameterized acoustic
scattering problem. Boundary element discretized electromagnetic problems can be solved in a similar way.26 In our pre-
vious work,32 we proposed a greedy reduced basis scheme for the solution of fully coupled FEM-BEM structural acoustic
problems at predefined frequency points. The reduced basis is expanded iteratively and the vectors spanning the reduced
basis are simply the solutions of the linear system at some of these frequency points. The points are chosen based on
a greedy approach, namely, the next basis vector is computed at the frequency point at which the solution is currently
worst approximated. Although the study underlines the computational efficiency of the scheme, its memory requirements
prevent the application to large-scale problems.

In this contribution, the greedy reduced basis scheme of Reference 32 is extended to general implicitly parameter
dependent structural acoustic problems. The algorithm finds the solution specifically at predefined parameter points
by a linear combination of reduced basis vectors. It builds and utilizes the reduced basis simultaneously in contrast to
algorithms following the offline-online paradigm. While a high-dimensional parameter domain makes the previously
reported greedy strategy infeasible due to prohibitive memory requirements, this issue is addressed here by an adaptively
enriching technique similar to Reference 33. The scheme uses a small subset of the full parameter set to build the reduced
basis. This introduces a bound on the memory usage and allows to apply the greedy strategy to large-scale problems
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with possibly high-dimensional parameter domains. In contrast to Reference 33, the size of the subset is held small
to allow storing the corresponding full order linear systems. This eliminates the need of reassembling and reduces the
computational effort at an a priori known increase of the required memory. Furthermore, a variation of the scheme
for problems with many right-hand sides is introduced. The efficiency of the adaptively enriching greedy reduced basis
algorithm is verified based on the solution of two structural acoustic problems.

2 COUPLED FEM-BEM FORMULATION FOR STRUCTURAL ACOUSTIC
INTERACTION

The underlying equations of the structural acoustic interaction problem are given by the equations of linear
time-harmonic elastodynamics and acoustics. Discretizing the former with FEM and the latter with BEM yields the system
of linear equations for the structural and acoustic domains4,5

(
K(𝝀) − 𝜔2M(𝝀)

)
u = fs + ff, (1)

and

H(𝜔)p = G(𝜔)
(
vs − vi

f

)
+ H(𝜔)pi. (2)

The vectors u ∈ Cns and p ∈ Cnf contain the unknown displacement and sound pressure degrees of freedom (dofs) at
the nodes, where ns and nf denote the corresponding numbers of degrees of freedom, respectively. The stiffness and mass
matrices of the structure are denoted as K(𝝀) ∈ Rns×ns and M(𝝀) ∈ Rns×ns . Both depend implicitly or explicitly on d − 1
parameters which are concatenated into the vector

𝝀 = [𝜆1, … , 𝜆d−1]. (3)

We restrict the following derivations to parameters that do not affect the geometry of the sound radiating bound-
ary. Hence, the boundary element matrices H(𝜔) ∈ Cnf×nf and G(𝜔) ∈ Cnf×nf only depend on the angular frequency
𝜔 = 2𝜋f , where f is the frequency in Hz. The boundary element matrices arise from a collocation discretization of the
Kirchhoff–Helmholtz integral equation and relate the sound pressure to the structural particle velocity vs ∈ Cnf . The
acoustic field is excited by an incident sound pressure field pi ∈ Cnf and the corresponding incident particle veloc-
ity vi

f ∈ Cnf . The structure is excited by nodal forces fs ∈ Cns as well as an acoustic loading ff ∈ Cns due to the acoustic
sound pressure on the sound radiating boundary. The particle velocity vs is the time derivative of the normal displacement
on this boundary. Therefore, the coupling conditions

ff = Csfp and vs = −i𝜔Cfsu, (4)

hold, with the imaginary unit i and the mesh coupling matrices Csf ∈ Rns×nf and Cfs ∈ Rnf×ns . Both are obtained by a
Galerkin projection.34 Putting Equation (4) into Equations (1) and (2), the fully coupled system of linear equations reads[

K(𝝀) − 𝜔2M(𝝀) −Csf

i𝜔G(𝜔)Cfs H(𝜔)

][
u
p

]
=

[
fs

− G(𝜔)vi
f + H(𝜔)pi

]
. (5)

This system can be solved at the current stage or reduced beforehand. Forming the Schur complement with respect
to the pressure dofs is a common strategy especially when considering heavy fluid loading or lightweight structures since
the system matrix of Equation (5) is generally ill-conditioned.16,35,36 The Schur complement reads[

i𝜔G(𝜔)Cfs
(
K(𝝀) − 𝜔2M(𝝀)

)−1Csf + H(𝜔)
]

p = f̂s(𝜔,𝝀), (6)

with

f̂s(𝜔,𝝀) ∶= −i𝜔G(𝜔)Cfs
(
K(𝝀) − 𝜔2M(𝝀)

)−1fs − G(𝜔)vi
f + H(𝜔)pi. (7)
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In many applications of interest, the system matrix of Equation (6) is well conditioned and the corresponding linear
system can be efficiently solved since the finite element matrix K(𝝀) − 𝜔2M(𝝀) admits a sparse LU factorization. In this
contribution, all time-harmonic structural acoustic problems are solved by finding the solution of Equation (6). In the
following, the linear system (6) is abbreviated by

A(𝝁)x(𝝁) = b(𝝁), (8)

introducing the d-dimensional parameter vector

𝝁 = [𝝀, 𝜔] = [𝜆1, … , 𝜆d−1, 𝜔] . (9)

The system matrix A(𝝁) ∈ Cn×n, the solution vector x(𝝁) ∈ Cn and the right-hand side vector b(𝝁) ∈ Cn implicitly
depend on d parameters in the present case and feature n degrees of freedom.

3 ALGORITHMS FOR STRUCTURAL ACOUSTIC PROBLEMS IN A
D-DIMENSIONAL PARAMETER DOMAIN

We are interested in the solution of Equation (8) for specific parameter samples 𝝁 located in the parameter domain  .
This domain is a d-dimensional box, that is,

 ∶= [𝜆l
1, 𝜆

u
1 ] × … × [𝜆l

d−1, 𝜆
u
d−1] × [𝜔l, 𝜔u], (10)

with the lower and upper bounds, (⋅)l and (⋅)u, in each dimension, respectively. Each interval k is discretized with nk points,
where k = 1, … , d. These sample points are denoted as 𝜆k,1, … , 𝜆k,nk for k = 1, … , d − 1 and 𝜔1, … , 𝜔id for k = d.
The solution is sought at all possible combinations of these points which are summed up in the parameter set P, that is,

P =
{(

𝜆1,i1 , … , 𝜆d−1,id−1 , 𝜔id

)
∶ 1 ≤ ik ≤ nk for k = 1, … , d

}
. (11)

Hence the solution of Equation (8) is sought for a total of m =
∏d

k=1nk parameter samples. Instead of solving the
linear system for each sample within P, we propose to apply a reduced basis approach. For this, a greedy algorithm
for frequency dependent structural acoustic systems32 is extended to problems with high-dimensional parameter
domains in Section 3.1. This is followed by an adaption of the algorithm to address the high memory requirements
in Section 3.2.

3.1 Greedy reduced basis algorithm

In each iteration j of the greedy algorithm, a set of parameter samples Pj ⊆ P is given as

Pj =
{
𝝁(1), ... , 𝝁(j)} . (12)

A reduced basis Xj is generated by concatenating the solutions at these parameter samples, that is,

Xj =
[
x(𝝁(1)), ... , x(𝝁(j))

]
∈ C

n×j. (13)

This basis is used to approximate the solution at an arbitrary parameter sample 𝝁 ∈ P by

x (𝝁) = x(𝝁(1))y1(𝝁) + ... + x(𝝁(j))yj(𝝁) = Xjy(𝝁), (14)

where y(𝝁) ∈ Cj is the solution of the least squares problem

min
y(𝝁)∈Cj

||A(𝝁)Xjy(𝝁) − b(𝝁)||22. (15)
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The next parameter sample 𝝁(j+1) is chosen by a greedy approach, that is, at the parameter sample where the current
approximation (14) yields the largest relative residual,

𝝁(j+1) = arg max
𝝁∈P

||A(𝝁)Xjy(𝝁) − b(𝝁)||2∕||b(𝝁)||2. (16)

The next basis vector of the new iteration is determined by solving the underlying linear system

A(𝝁(j+1))x(𝝁(j+1)) = b(𝝁(j+1)). (17)

The greedy reduced basis in Equation (13) is extended by one vector in each iteration which provides an
improved approximation (14) of the solution at the remaining parameter samples in the parameter set. This
is repeated until a convergence criterion is met for all 𝝁 ∈ P. The presented scheme is computationally supe-
rior to the explicit solution at each sample whenever a small number of iterations q ≪ m yields a sufficiently
accurate approximation of the solution at all parameter samples. This is attainable if the solution matrix X =[
x(𝝁1), ... , x(𝝁m)

]
∈ Cn×m is of low rank and its singular values follow an exponential decay. This has been proven

for analytical parameter dependencies by Kressner and Tobler37 and holds for the herein presented structural acoustic
problems.

The computational cost of the greedy algorithm lies in the solution of q linear systems (17), repeatedly solving
the least squares problem (15) for all the yet unconverged solutions and assessing the accuracy of the approxima-
tions by evaluating the relative residual (16). Although the number of least squares solutions is of order (qm),
each solution is rather inexpensive since A(𝝁i)Xq features only a few columns given that q ≪ m holds. However,
the scheme requires the storage of all m system matrices which can lead to excessive memory requirements in the
case of large parameter sets and/or large-scale problems. This issue can be addressed from two different sides: run-
ning the scheme in parallel in a high-performance computing environment or adapting the scheme, such that only
a limited amount of system matrices need to be stored in the main memory at the same time. The latter is outlined
in Section 3.2 whereas the former is described by Baydoun et al.32 Therein, the authors suggest to solve the least
squares problem (15) in a distributed memory environment and to evaluate the linear system (17) in a shared memory
environment.

The greedy reduced basis algorithm is outlined in Algorithm 1. The prescribed value of 𝜀tol defines a relative tolerance
on the residual of the solution at parameter samples within the parameter set. The initial parameter sample 𝝁(1) can be
chosen randomly and is the first element within the set of solved parameter samples Psol. At the end of the algorithm, a
solution for each parameter sample within P is established either by explicitly solving the corresponding linear system
or finding a sufficiently accurate linear approximation. Explicitly storing the least squares matrices A(𝝁i)Xj and only
concatenating the new column A(𝝁i)x(𝝁(j)) in each iteration avoids additional computational effort. Whenever a solution
for a parameter sample 𝝁i is found, the corresponding matrices A(𝝁i) and A(𝝁i)Xj are no longer required and freed from
the memory.

3.2 Adaptively enriching greedy reduced basis algorithm

The main disadvantage of Algorithm 1 is the need of assembling and storing the system matrices and right-hand sides for
all parameter samples within the parameter set. This becomes prohibitive for large m, that is, high dimensional parameter
domains and/or large numbers of parameter samples. As a remedy, we modify the greedy algorithm by introducing the
adaptively enriching technique presented by Hesthaven et al.33

The main idea of the adaptively enriching greedy algorithm is to start the algorithm on a small training
set Ptrain ⊂ P of size mtrain ≪ m and to subsequently replace parameter samples for which a converged solution
has been generated by parameter samples for which a solution has not been found yet. This reduces the mem-
ory requirements significantly, since only up to mtrain assembled linear systems have to be stored at the same
time. However, the small size of the subset implies a reduced richness and the iteratively performed greedy choice
of the next basis vector is only depending on the residuals in Ptrain and not on all residuals in P. Hence, the
algorithm will usually generate a larger basis than Algorithm 1 which implies an increase in the number of
iterations.
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Algorithm 1. Greedy algorithm for the solution of parameter dependent linear systems

1: input
2: system matrices A(𝝁i) and right-hand sides b(𝝁i) for all 𝝁i ∈ P
3: relative residual tolerance 𝜀tol
4: parameter sample for first iteration 𝝁(1) ∈ P
5: initialization
6: j ∶= 1
7: r(𝝁i) ∶=b(𝝁i) ∀𝝁i ∈ P
8: solve A(𝝁(1))x(𝝁(1)) = b(𝝁(1))
9: X1 ∶=

[
x(𝝁(1))

]
10: Psol ∶=

{
𝝁(1)}

11: while ∃𝝁i ∈ P ∶ ‖r(𝝁i)‖2∕‖b(𝝁i)‖2 > 𝜀tol do
12: for each 𝝁i ∈ P∖Psol do
13: solve min

y(𝝁i)∈Cj
‖A(𝝁i)Xjy(𝝁i) − b(𝝁i)‖2

2 , r(𝝁i) ∶=A(𝝁i)Xjy(𝝁i) − b(𝝁i)

14: if ‖r(𝝁i)‖2∕‖b(𝝁i)‖2 < 𝜀tol then
15: x(𝝁i) ∶=Xjy(𝝁i), Psol ∶=Psol ∪

{
𝝁i
}

16: end if
17: end for
18: if ‖r(𝝁i)‖2∕‖b(𝝁i)‖2 < 𝜀tol ∀𝝁i ∈ P then
19: break
20: end if
21: 𝝁(j+1) ∶= argmax

𝝁i∈P
‖r(𝝁i)‖2∕‖b(𝝁i)‖2

22: solve A(𝝁(j+1))x(𝝁(j+1)) = b(𝝁(j+1))
23: Xj+1 ∶=

[
Xj, x(𝝁(j+1))

]
∈ Cn×(j+1), Psol ∶=Psol ∪

{
𝝁(j+1)}

24: j ∶= j + 1
25: output
26: x(𝝁i) with ‖A(𝝁i)x(𝝁i) − b(𝝁i)‖2∕‖b(𝝁i)‖2 < 𝜀tol ∀𝝁i ∈ P

At the beginning of the adaptively enriching greedy algorithm, an initial subset Ptrain is randomly chosen from
the full set P based on the prescribed size mtrain. With each iteration j, the reduced basis Xj is extended by the basis
vector x(𝝁(j)) as in Equation (13). This basis is used to approximate the solution at all remaining parameter sam-
ples within Ptrain, that is, the linear least squares problem (15) is solved for all 𝝁 ∈ Ptrain. Each parameter sample for
which a sufficiently accurate solution is found—either by solving the corresponding linear system or by linear super-
position of the basis vectors—is added to the set of solved parameter samples Psol and removed from the training
set Ptrain. Whenever a parameter sample is removed, the allocated memory of the corresponding linear system as well
as the linear least squares system is freed. Further, a parameter sample for which a solution has not been generated
yet, that is 𝝁 ∈ P ⧵ (Psol ∪ Ptrain), is added to the training set. The linear system of the newly added parameter sam-
ple is assembled and stored in the main memory. In addition, the current basis is used to approximate its solution.
If the approximation is sufficiently accurate, the newly added parameter sample is replaced right away. This proce-
dure is repeated until the convergence criterion fails on all solutions of the newly added parameter samples within
the training set. At this stage, the next parameter sample 𝝁(j+1) is chosen in a greedy approach within the training set,
that is,

𝝁(j+1) = arg max
𝝁∈Ptrain

||A(𝝁)Xjy(𝝁) − b(𝝁)||2∕||b(𝝁)||2, (18)

and the next basis vector is generated by solving the linear system (17). The full algorithm is outlined in Algorithm 2
and the scheme for replacing parameter samples in the training set is presented in Algorithm 3. Note that replacing a
parameter sample in Line 19 updates the training set while looping over it. The implementation places new parameter
samples at the end of the training set such that the loop in Line 15 is also executed for each new parameter sample.
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Algorithm 2. Adaptively enriching greedy algorithm for the solution of parameter dependent linear systems

1: input
2: parameter set P
3: initial training set Ptrain ⊂ P with |Ptrain| = mtrain
4: system matrices A(𝝁i) and right-hand sides b(𝝁i) with 𝝁i ∈ Ptrain
5: relative residual tolerance 𝜀tol
6: parameter sample for first iteration 𝝁(1) ∈ Ptrain

7: initialization
8: j ∶= 1
9: r(𝝁i) ∶=b(𝝁i) ∀𝝁i ∈ Ptrain

10: solve A(𝝁(1))x(𝝁(1)) = b(𝝁(1))
11: X1 ∶=

[
x(𝝁(1))

]
12: Psol ∶=

{
𝝁(1)}

13: Ptrain ∶= Algorithm 3(P,Ptrain,Psol,𝝁
(1))

14: while |Ptrain| > 0 do
15: for each 𝝁i ∈ Ptrain do
16: solve min

y(𝝁i)∈Cj
‖A(𝝁i)Xjy(𝝁i) − b(𝝁i)‖2

2 , r(𝝁i) ∶=A(𝝁i)Xjy(𝝁i) − b(𝝁i)

17: if ‖r(𝝁i)‖2∕‖b(𝝁i)‖2 < 𝜀tol then
18: x(𝝁i) ∶=Xjy(𝝁i), Psol ∶=Psol ∪

{
𝝁i
}

19: Ptrain ∶= Algorithm 3(P,Ptrain,Psol,𝝁i)
20: end if
21: end for
22: if Ptrain = ∅ then
23: break
24: end if
25: 𝝁(j+1) ∶= argmax

𝝁i∈Ptrain

‖r(𝝁i)‖2∕‖b(𝝁i)‖2

26: solve A(𝝁(j+1))x(𝝁(j+1)) = b(𝝁(j+1))
27: Xj+1 ∶=

[
Xj, x(𝝁(j+1))

]
∈ Cn×(j+1) , Psol ∶=Psol ∪

{
𝝁(j+1)}

28: Ptrain ∶= Algorithm 3(P,Ptrain,Psol,𝝁
(j+1))

29: j ∶= j + 1
30: output
31: x(𝝁i) with ‖A(𝝁i)x(𝝁i) − b(𝝁i)‖2∕‖b(𝝁i)‖2 ≤ 𝜀tol ∀𝝁i ∈ P

Algorithm 3. Algorithm for replacing an element from the training set

1: input
2: full parameter set P
3: current training set Ptrain ⊂ P
4: set Psol ⊂ P with samples at which a solution is known
5: parameter sample 𝝁i to be removed from Ptrain

6: Ptrain ∶=Ptrain∖{𝝁i}
7: free memory of system matrix A(𝝁i) and right-hand side b(𝝁i)
8: if (Ptrain ∪ Psol) ≠ P then
9: randomly pick 𝝁k ∈ P∖(Ptrain ∪ Psol)

10: Ptrain ∶=Ptrain ∪ {𝝁k}
11: assemble system matrix A(𝝁k) and right-hand side b(𝝁k)
12: end if
13: output
14: updated training set Ptrain
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Throughout the algorithm, the size of the training set is bounded by mtrain. Therefore, the memory requirements
for the storage of the system matrices and the least squares matrices are of order (mtrain(n2 + jn)), assuming that
the system matrix is fully populated. Note that the quadratic complexity in n could be removed by always applying
the full order model (FOM) systems on-the-fly. However, reassembling the FOM systems within the training set in
each iteration significantly increases the computational time in the case of coupled vibroacoustic problems due to the
implicitly frequency dependent BE matrices. The overall computational efficiency of the algorithm depends on the
size of the training set. Very small values of mtrain lead to a higher number of iterations due to the limited range of
the training set. In contrast, large values of mtrain result in training sets which represent the full parameter set more
accurately. This implies significantly higher memory requirements but results in a reduced number of iterations. In
the case of mtrain = m, the adaptively enriching greedy algorithm (Algorithm 2) is identical to the greedy algorithm
(Algorithm 1).

3.3 Adaptively enriching greedy reduced basis algorithm for linear systems
with many right-hand sides

In some cases, the response to more than just one excitation is of interest, for example, when optimizing high-intensity
focused ultrasound transducers38 or when determining the response to diffuse incident sound pressure fields.39 The
corresponding system of linear equations features many right-hand sides and reads

A(𝝁)X(𝝁) = B(𝝁), (19)

with the solution matrix X(𝝁) = [x1(𝝁), … , xnrhs(𝝁)], the right-hand side matrix B(𝝁) = [b1(𝝁), … , bnrhs(𝝁)] and the
number of right-hand sides nrhs. The vectors xl(𝝁) denote the individual solutions to the corresponding right-hand
sides bl(𝝁) with l = 1, … , nrhs.

Equation (19) can be understood as a sequence of nrhs linear systems, which may be successively addressed by
Algorithm 2 in order to obtain the solutions to each forcing vector individually. Such an approach requires nrhs separate
runs of the algorithm and generates nrhs independent reduced bases. Since the system matrix of Equation (19) remains
unchanged within the sequence, it is to be expected that the reduced bases share a common subspace. If this holds, it is
more efficient to generate only one reduced basis for all solution vectors xl.

Implementing this strategy requires only slight modifications of the existing algorithm. In iteration j, all nrhs linear
systems are solved given the current parameter sample 𝝁(j). Then, the basis is extended by adding the solution matrix X
to it. Alternatively, when dealing with a large number of right-hand sides, the matrix X can be truncated in order to avoid
an excessive increase of the reduced basis. This is particularly efficient when the nrhs solutions span a low-dimensional
subspace. Subsequent to extending the reduced basis, the solution for each right-hand side and for each parameter sample
in the training set is determined as usual by the least squares solver. The adaptively enriching greedy algorithm for linear
systems with many right-hand sides is outlined in Algorithm 4. The algorithm coincides with Algorithm 2 in the case
of nrhs = 1.

A broad variety of methods is available for truncating the system responses before extending the basis Xj. In the first
iteration, that is, j = 1, a truncated singular value decomposition (SVD) of the solution matrix is performed which yields
the best approximation in the spectral norm within a prescribed accuracy.40 It reads

X(𝝁(1)) ≈ U1𝚺1V∗
1, (20)

with 𝚺1 = diag(𝜎(1)
1 , 𝜎

(1)
2 , … , 𝜎

(1)
t ) storing the first t singular values of X(𝝁(1)) on its diagonal. The matrices U1 and V1

contain the first t left and right singular vectors as columns, respectively, and (⋅)∗ denotes the complex conjugate transpose.
Large values of t lead to more precise approximations with t = min{nrhs,n} leading to an exact decomposition. Based on
the decomposition in Equation (20), the first t left singular vectors are added to the reduced basis X1. In all subsequent
iterations j > 1, the part of the solution matrix that already lies in the current reduced basis is removed before applying
the truncated SVD, that is,

X⟂(𝝁(j)) = X(𝝁(j)) − X||(𝝁(j)) ≈ Uj𝚺jV∗
j . (21)
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Algorithm 4. Adaptively enriching greedy algorithm for the solution of parameter dependent linear systems with many
right-hand sides

1: input
2: full parameter set P
3: initial training set Ptrain ⊂ P with |Ptrain| = mtrain
4: system matrices A(𝝁i) and right-hand sides B(𝝁i) = [b1(𝝁i), … ,bnrhs(𝝁i)] with 𝝁i ∈ Ptrain
5: relative residual tolerance 𝜀tol
6: truncation tolerance 𝜀svd
7: parameter sample for first iteration 𝝁(1) ∈ Ptrain

8: initialization
9: j ∶= 1

10: [r1(𝝁i), … , rnrhs(𝝁i)] ∶=B(𝝁i) ∀𝝁i ∈ Ptrain
11: solve A(𝝁(1))X(𝝁(1)) = B(𝝁(1))
12: calculate X(𝝁(1)) ≈ U1𝚺1V∗

1 with t as in Equation (23)
13: X1 ∶=

[
U1

]
14: Psol ∶=

{
𝝁(1)}

15: Ptrain ∶= Algorithm 3(P,Ptrain,Psol,𝝁
(1))

16: while |Ptrain| > 0 do
17: for each 𝝁i ∈ Ptrain do
18: solve min

Y(𝝁i)
‖A(𝝁i)XjY(𝝁i) − B(𝝁i)‖2

2

19: [r1(𝝁i), … , rnrhs(𝝁i)] ∶=A(𝝁i)XjY(𝝁i) − B(𝝁i)
20: if ‖rl(𝝁i)‖2∕‖bl(𝝁i)‖2 < 𝜀tol ∀l ∈ {1, … ,nrhs} then
21: [x1(𝝁i), … , xnrhs(𝝁i)] ∶=XjY(𝝁i), Psol ∶=Psol ∪

{
𝝁i
}

22: Ptrain ∶= Algorithm 3(P,Ptrain,Psol,𝝁i)
23: end if
24: end for
25: if Ptrain = ∅ then
26: break
27: end if
28: 𝝁(j+1) ∶= argmax

𝝁i∈Ptrain

max
l∈{1,…,nrhs}

‖rl(𝝁i)‖2∕‖bl(𝝁i)‖2

29: solve A(𝝁(j+1))X(𝝁(j+1)) = B(𝝁(j+1))
30: calculate X⊥(𝝁(j+1)) ≈ Uj+1𝚺j+1V∗

j+1 with t as in Equation (23)
31: Xj+1 ∶=

[
Xj,Uj+1

]
, Psol ∶=Psol ∪

{
𝝁(j+1)}

32: Ptrain ∶= Algorithm 3(P,Ptrain,Psol,𝝁
(j+1))

33: j ∶= j + 1
34: output
35: xl(𝝁i) with ‖A(𝝁i)xl(𝝁i) − bl(𝝁i)‖2∕‖bl(𝝁i)‖2 ≤ 𝜀tol ∀𝝁i ∈ P, ∀l ∈ {1, … ,nrhs}

The singular values and vectors are determined with respect to X⟂(𝝁(j)) which only contains the part of the solution
that is orthogonal to the current reduced basis Xj−1. The subspace spanned by X||(𝝁(j)), on the other hand, is parallel to
the subspace spanned by the reduced basis basis Xj−1. Hence, its columns are the orthogonal projection of X(𝝁(j)) onto
Xj−1, that is,

X||(𝝁(j)) = Xj−1

(
X∗

j−1Xj−1

)−1
X∗

j−1X(𝝁(j)). (22)

This ensures that the first t left singular vectors in Equation (21) are orthogonal to the reduced basis Xj−1 and that no
redundant information is introduced when adding them to the reduced basis. Since the columns of the reduced basis are
orthogonal to each other, Equation (22) simplifies to X||(𝝁(j)) = Xj−1X∗

j−1X(𝝁(j)). In each iteration of the greedy algorithm,
the value of t is determined by

t = min
t∈N

{
𝜎
(j)
t+1 ≤ 𝜀svd𝜎

(j)
1

}
, (23)
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with a prescribed tolerance 𝜀svd > 0. Choosing a small truncation tolerance leads to large values of t and thus to an exten-
sion of the reduced basis by a larger quantity of left singular vectors in each iteration. In contrast, 𝜀svd close to one leads to
small values of t and thus significantly limits the number of vectors added to the reduced basis in each iteration. Extend-
ing the basis by a smaller quantity of vectors in each iteration does not generally imply an overall smaller reduced basis
since an essential characteristic of the system response might be cut off by the truncated singular value decomposition.
This in turn would result in a larger number of iterations of the greedy algorithm.

4 NUMERICAL EXAMPLES

4.1 Point-excited spherical shell in water

The first example features a spherical shell submerged in water. The shell is made of steel and excited by a point force
of F = 1 N. The geometry and material properties are summed up in Table 1. The finite element mesh consists of 384
eight-noded quadrilateral shell finite elements based on the Reissner–Mindlin plate theory. This corresponds to eight
elements on a 𝜋∕2 arc. A mesh conforming boundary element discretization is employed on the sound radiating boundary
using discontinuous nine-noded quadrilateral boundary elements with four sound pressure degrees of freedom. Forming
the Schur complement with respect to the pressure degrees of freedom, compare Equation (6), yields a system of linear
equations with 1536 degrees of freedom. The parameter-independent mesh coupling matrices are obtained by a Galerkin
projection.34

The parameter domain is spanned by the frequency f and the Young’s modulus E. A nonuniform sampling is employed
in frequency direction using n1 = 89 points between 1 and 100 Hz. In contrast, the Young’s modulus is uniformly sampled
with n2 = 11 points ranging between 189 and 231 GPa. This results in a total of m = 979 parameter samples. Figure 1
shows the absolute sound pressure at an angle of 𝜋 with respect to the point of excitation of the spherical shell throughout
the parameter domain  . The parameter samples are highlighted by red dots and the underlying solution is computed
analytically.41 Six distinct resonances occur within the considered parameter domain and change with both frequency
and Young’s modulus. Storing the 979 linear systems requires 35.24 GB of memory. The conventional approach as well
as the greedy algorithm (Algorithm 1) and the adaptively enriching greedy algorithm (Algorithm 2) are applied to this
problem.

In the conventional approach, the generalized minimum residual method (GMRes) solves the Schur complement
systems with a relative residual tolerance of 𝜀 = 10−4. The solution for all parameter samples within the parameter set
requires 224.89 s of wall clock time. This corresponds to an average of 0.23 s per system. The greedy algorithm requires 27
iterations to determine a solution with a relative residual of 𝜀tol = 10−4 for each parameter sample. Generating the basis
vectors takes 10.35 s which involves the solution of 27 linear systems using the GMRes solver within a relative tolerance
of 10−7. Setting up the least squares problems requires 20,086 matrix-vector multiplications which correspond to 148.96 s
and solving the least squares problems takes 18.32 s. In total, the wall clock time equals 179.55 s and hence the greedy
algorithm is 20.2% faster than the conventional approach.

The adaptively enriching greedy algorithm contains the additional parameter mtrain which defines the size of the train-
ing set. The parameter samples within the initial training set are randomly chosen out of the full parameter set and the
replacement algorithm (Algorithm 3) randomly picks a new parameter sample whenever a converged solution is deter-
mined. To address this random component of the algorithm, 10 individual runs are preformed and the computational
efficiency is evaluated based on the maximum, minimum, and average values of the wall clock time and number of

T A B L E 1 Geometry of the sphere and material properties
of steel and water

Radius of sphere r 5 m

Shell thickness t 0.05 m

Density of steel 𝜌s 7860 kg∕m3

Poisson’s ratio 𝜈 0.3

Density of water 𝜌f 1000 kg∕m3

Speed of sound c 1482 m∕s
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F I G U R E 1 Analytical solution of the absolute sound pressure on the surface of the spherical shell at the opposite side of the point of
excitation. The red dots mark the parameter samples
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F I G U R E 2 Wall-clock time for the solution process using the conventional approach, Algorithm 1 (Greedy) and Algorithm 2
(GreedyAE mtrain) with varying values of mtrain. Mean values for the solution time are marked by crosses whereas maximum and minimum
values are given by the error bars

iterations, respectively. The adaptively enriching greedy algorithm with a training set size of mtrain = 10 requires an
average amount of 30.5 iterations which corresponds to an average run time of 142.32 s. The fastest and slowest
runs require 29 and 32 iterations and take 134.79 and 153.83 s, respectively. Hence, Algorithm 2 solves the problem
between 31.6% and 40.0% faster than the conventional approach and between 14.3% and 24.9% faster than the greedy
algorithm. Although exhibiting a slightly higher number of iterations, the adaptively enriching technique manages to
compute significantly less matrix-vector products. This is achieved by performing the linear approximation only on the
small training set and by iteratively building the linear approximation for each new parameter sample. Figure 2 shows
the individual timings for the conventional approach, the greedy algorithm (Greedy) and the adaptively enriching greedy
algorithm (GreedyAE) with varying sizes of the training set. The adaptively enriching version solves a slightly higher
number of linear systems but compensates the additional computational effort by a significantly reduced number of
matrix-vector products and linear least squares solves. The results indicate that the choice of the training set size only has
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a minor impact on the computational time. However, the impact on the memory requirements is significant. Doubling
the size of the training set requires to assemble and store twice as many linear systems which can be a bottle neck for
large-scale problems. Fortunately, Figure 2 shows that a small size seems to be a good choice in terms of computational
time. The number of matrix-vector products is minimized at the cost of an increase in the number of iterations, that is, an
increase in the dimension of the reduced basis, as shown in Figure 3.

Both greedy algorithms generate one basis vector in each iteration by evaluating the system response at the
parameter sample which is currently approximated worse. Algorithm 1 assesses the quality of the approximation through-
out the whole parameter set whereas Algorithm 2 takes only the small training set into account. Hence, the former leads
to a global approximation of the solution and the latter leads to a local approximation. The markers in Figures 4 and 5
indicate the locations of the parameter samples which are chosen by the two greedy algorithms. The greedy algorithm
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F I G U R E 3 Number of iterations of Algorithm 1 (Greedy) and Algorithm 2 (GreedyAE mtrain) with varying values of mtrain. Mean
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F I G U R E 4 The red crosses mark the parameter samples at which the greedy algorithm (Algorithm 1) generates the basis vectors. The
contour displays the analytical solution of the absolute sound pressure on the surface of the spherical shell at the opposite side of the point of
excitation



JELICH et al. 7421

20 40 60 80 100
190

200

210

220

230

Frequency in Hz

Y
o
u
n
g
s
m
o
d
u
lu
s
in

G
P
a

0.01 0.1 1 10 100 1000

Absolute sound pressure in Pa

F I G U R E 5 The black circles and white triangles mark the parameter samples chosen by the adaptively enriching greedy algorithm
(Algorithm 2) in two different runs with mtrain = 10. The contour displays the analytical solution of the absolute sound pressure on the
surface of the spherical shell at the opposite side of the point of excitation

(Algorithm 1) generates a majority of the basis vectors in close proximity to resonances as presented in Figure 4. Note that
this choice is based on the greedy approach in conjunction with the residual and not based on solving the corresponding
nonlinear eigenvalue problem. The adaptively enriching greedy algorithm (Algorithm 2) leads to a similar selection of
parameter samples. Although, an increased number of basis vectors are evaluated at parameter points apart from reso-
nances, a significant number of samples are still located close to resonance peaks. Despite the small training set size, the
algorithm selects parameter samples with high approximation power, some of which even coincide with the ones chosen
by Algorithm 1.

For the purpose of analyzing the convergence behavior of the two greedy algorithms, Figures 6 and 7 show the rela-
tive residual within the parameter domain at iterations 1, 9, 14, and 20, respectively. Let us first discuss the convergence
behavior of the adaptively enriching greedy algorithm depicted in Figure 6. The first basis vector is generated at a ran-
domly chosen parameter sample among the mtrain = 10 samples within the training set. In this specific run, the first
parameter sample lies between two resonances at 93.5 Hz and 214.2 GPa as indicated in the top left plot of Figure 6.
Solving the linear least squares problems yields the depicted relative residual with a maximum value of 0.9988 at the
top left corner of the parameter domain (1 Hz, 231 GPa). Note that for the sake of the analysis here, the relative resid-
ual is explicitly calculated throughout the full parameter set, although in an actual application, the adaptively enriching
greedy algorithm would only compute them for the parameter samples within the training set. The second basis vector
is generated at 16 Hz and 210 GPa since this parameter point is associated with the largest relative residual among the
current training set. The corresponding relative residual equals 0.9983. A total of nine basis vectors are available subse-
quent to the ninth iteration. The evaluated parameter samples are highlighted in the top right plot of Figure 6 together
with the relative residual of the linear approximation. Adding the system response of a parameter sample to the reduced
basis increases the quality of the linear approximation along certain lines within the parameter domain. These lines fol-
low the direction of the nearby resonance peaks of the underlying solution which indicates that the system responses
are similar along these lines. This behavior stems from the low rank property of the solution within the parameter
domain which allows to build a sufficiently accurate solution by superposing adequately chosen system responses. When
reaching iteration 14, the adaptively enriching greedy algorithm has found a sufficiently accurate solution throughout
a large part of the parameter domain, compare the bottom left plot of Figure 6. Converged solutions are found in the
proximity of the evaluated parameter samples and along the aforementioned lines. Large relative residuals still exist at
the higher frequency end of the parameter domain. After 20 iterations, a solution is found for the majority of the parame-
ter samples. By adding further system responses to the reduced basis, the algorithm finds a sufficiently accurate solution
once reaching iteration 31. The standard greedy algorithm exhibits a similar convergence behavior as depicted in Figure 7.
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F I G U R E 6 Relative residuals of the solution after iteration 1, 9, 14, and 20 (top left, top right, bottom left, and bottom right) for the
solution of the submerged spherical shell using the adaptively enriching greedy algorithm (Algorithm 2). The relative residual tolerance
is 𝜀tol = 10−4 and mtrain = 10. Black circles mark the parameter samples at which basis vectors are generated

However, a comparison between the two greedy strategies provides a rather unexpected result: The relative residuals in
iterations 14 and 20 are larger than in the adaptively enriching version, compare bottom left and right subplots. This may
seem nonintuitive, since the standard greedy algorithm chooses the basis vectors according to the relative residual in the
whole parameter set, while the adaptively enriching version is limited to a small training set. An immediate interpretation
of this result is that the standard greedy choice does not necessarily yield the basis vectors with the highest approxima-
tion power, that is, those basis vectors, which are capable of covering large portions of the parameter domain. Indeed, the
greedy strategy is most efficient when the basis vectors with the highest approximation power are added to the basis as
early as possible.

This issue is addressed from another point of view in Figure 8. The plot shows the number of parameter samples for
which the approximate solution is found using a certain number of basis vectors. The bars of zero basis vectors belong to
linear systems which are solved by GMRes. On average, the solution at a specific parameter sample requires significantly
less basis vectors when using the adaptively enriching variant instead of the standard algorithm. For example, after itera-
tion 15, both the standard and the adaptively enriching algorithms have built a reduced basis containing 15 basis vectors.
In the case of the standard greedy algorithm, the linear combination of these basis vectors is only capable of providing
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F I G U R E 7 Relative residuals of the solution after iteration 1, 9, 14, and 20 (top left, top right, bottom left, and bottom right) for the
solution of the submerged spherical shell using the standard greedy algorithm (Algorithm 1). The relative residual tolerance is 𝜀tol = 10−4.
Red crosses mark the parameter samples at which basis vectors are generated

F I G U R E 8 Number of basis vectors required to approximate the solution at a number of parameter points for Algorithm 1 (Greedy)
and Algorithm 2 (GreedyAE). The bars of zero basis vectors belong to linear systems which are solved by GMRes. The bars of nonzero basis
vectors indicate the number of parameter points at which a sufficiently accurate solution is found based the specified number of basis vectors
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the solution at 17 other parameter points. In contrast, the reduced basis of the adaptively enriching greedy algorithm
yields accurate enough solutions at 148 other parameter points. This behavior also stretches out to higher iteration num-
bers and is the main reason for the computational efficiency of the adaptively enriching greedy algorithm. Calculating a
sufficiently accurate solution at the majority of parameter samples with a smaller number of basis vectors significantly
reduces the number of matrix-vector products and linear least squares solutions. The top right subplot of Figure 7 shows
that up until the ninth iteration, the standard greedy algorithm exclusively chooses parameter samples which are located
at the boundary of the parameter domain. Apparently, these points are associated with the largest relative residuals but
do not necessarily yield basis vectors with the highest approximation power. On the other hand, the random choice of the
training set in the adaptively enriching strategy yields parameter samples which are better distributed across the whole
parameter domain.

Analyzing the maximum value of the relative residuals within the parameter domain provides a further view
on the convergence behavior. Figure 9 shows the maximum relative residual over the number of greedy itera-
tions. The maximum values decrease monotonically in the case of the greedy algorithm (Greedy). In contrast, the
residuals decrease nonmonotonically within the adaptively enriching greedy algorithm (GreedyAE). It assesses the
residuals only locally within the training set Ptrain which results in fluctuations since the parameter samples are
repeatedly removed from the set and replaced. When assessing the relative residuals globally within the full param-
eter set P, a monotonic decrease of the maximum relative residual is reported (GreedyAE global). Note that this
information is not readily available within the GreedyAE algorithm and only postprocessed for the purpose of
visualization.

4.2 Satellite structure

Space telescopes for astronomical observations are subject to heavy acoustic loading during the launch of the
carrier rocket. Sound pressure levels up to 180 dB account for the main load case determining the design
of the payload. During launch, scientific instruments such as cameras are usually enclosed by a primary
structure made of honeycomb sandwich panels. Therefore, it is crucial to accurately predict the structural
acoustic behavior of such sandwich closures, which often feature gaps and slits to address thermal
expansion.

In this second numerical example, a simplified radiator structure made of aluminum honeycomb panels is con-
sidered. Its geometry is shown in Figure 10. The structure consists of six sandwich panels and is rigidly mounted
at four locations on the bottom panel. All panels are connected with each other by either rigid or elastic joints.
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F I G U R E 9 Maximum relative residual in each iteration of the greedy algorithm (Greedy) and adaptively enriching greedy algorithm
with mtrain = 10. The relative residuals are assessed either locally within the training set (GreedyAE) or globally at all parameter samples
(GreedyAE global)
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F I G U R E 10 Satellite structure made of six sandwich panels. The geometry and boundary conditions are symmetric along the
dash-dotted plane. The structure is rigidly mounted at four nodes on the bottom panel and partly connected with elastic joints which are
modeled by series of springs with stiffness values k1 and k2. The face sheets are purple whereas the cores are teal

T A B L E 2 Properties of the face sheets and the core

Aluminum face sheet

Thickness t 0.28 mm

Density 𝜌a 26,600 kg m−3

Young’s modulus Ea 70 GPa

Poisson’s ratio 𝜈a 0.34

Foam core

Thickness h 29 mm

Density 𝜌c 80 kg m−3

Young’s modulus Ec 50 MPa

Poisson’s ratio 𝜈c 0.1

The latter are numerically modeled by a series of springs along the edges of the panels with a node-to-node contact
formulation. Each spring features a translational stiffness in all three dimensions. The value k1 is used on the side panel
joints and k2 is used on the front panel joints. Every sandwich panel consists of a 29 mm thick foam core and two 0.28 mm
thick aluminum face sheets. Both materials are isotropic and their mechanical properties are given in Table 2. The sur-
rounding air has a density of 𝜌f = 1.225 kg m−3 and speed of sound of c = 340 m s−1. The face sheets are discretized
by eight-noded quadrilateral Reissner-Mindlin shell finite elements whereas the cores are discretized by twenty-noded
hexahedral solid finite elements. This results in a total of 68,802 displacement dofs. Quadrilateral boundary elements
with linear discontinuous sound pressure approximation are employed for the discretization of the surrounding acous-
tic domain which yields 4024 sound pressure dofs. The structural and acoustic meshes are nonconforming on the face
sheets and coupled by a Galerkin projection.34 Comparing the radiated sound power in the frequency range of inter-
est to the results obtained with a finer mesh featuring four times the acoustic pressure dofs yields a difference of less
than 0.51 dB.

A diffuse incident sound pressure field excites the satellite structure during the liftoff of the carrier rocket. Following
the approach of Rafaely,39 a total of 50 individual right-hand sides are calculated to represent this excitation. Additional
structural forces are neglected. Each right-hand side is given by a summation of 1145 random incident plane waves with
uniformly distributed directions in space. The final vibro-acoustic response is the mean of the system responses to all 50
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right-hand sides. The dynamical behavior of the satellite structure subject to the diffuse sound pressure field excitation
is investigated in the frequency range between 10 and 50 Hz. This study analyzes different combinations of stiffness
values k1 and k2 which lie in the interval of 103 and 104 N m1, and represent different types of elastic joints. The influence
of modifying the elastic joint on the front edge, that is modifying k2, while keeping the elastic joint on the side edges
unmodified is presented in Figures 11 and 12. The former shows the total kinetic energy of the satellite structure whereas
the latter shows the radiated sound power. The three dimensional parameter domain is spanned by the frequency f and
the stiffness values k1 and k2. A uniform sampling with 81 frequency points and five stiffness values each yield a total
of m = 2025 parameter samples. Storing a single linear system requires 1.8 GB of memory and hence, applying Algorithm 1
is infeasible on standard desktop computers due to memory limitations. However, assuming a memory size of 64 GB,
Algorithm 4 can be run with a training set size of ntrain ≈ 30. This estimation also includes the memory required for storing
the greedy basis Xj and the least squares system matrices A(𝝁i)Xj as well as a conservative estimation of the number of
iterations.

A training set size of mtrain = 10 is chosen based on the results of the first numerical example. The block generalized
minimum residual method (BGMRes) is employed within the algorithm to solve Equation (19) with a relative toler-
ance of 10−7. The BGMRes method significantly reduced the solution time for linear systems with multiple right-hand
sides compared to the standard GMRes method.42 The adaptively enriching greedy algorithm terminates when a
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solution is found within a relative tolerance of 𝜀tol = 10−4 for every parameter sample. In each iteration, the t left singular
vectors Uj of the system responses extend the reduced basis, compare Lines 12 and 30 of Algorithm 4. The value of t is
determined by Equation (23) given the tolerance 𝜀svd = 0.01. The study assesses the performance by means of an average
of 10 runs.

The adaptively enriching greedy algorithm with 𝜀svd = 0.01 finds a solution within an average of 19.5 iterations
which corresponds to a run time of 7.5 h. Setting up the linear least squares problems requires the most time with
6.5 h whereas their solution only takes 3.3 min. The BGMRes method solves an average of 19.5 linear systems
in 56.5 min and the final reduced basis consists of 135.3 vectors on average. The fastest and slowest runs require 18
and 22 iterations, build a reduced basis with 126 and 139 vectors and take 7.1 and 8.0 h, respectively. In contrast,
solving the linear systems of all 2025 parameter samples by BGMRes with the same accuracy would take a run time
of 51.5 h.

Figures 13 and 14 visualize the impact of the truncation tolerance 𝜀svd on the solution time and, respectively, on the
number of iterations and the size of the reduced basis. As expected, Figure 14 shows that smaller values of 𝜀svd lead to less
iterations of the greedy algorithm. However, a smaller number of iterations does not necessarily imply a smaller reduced
basis. In fact, Figure 14 even shows that the algorithm builds a significantly larger basis featuring an average of 163.5 and
194.5 vectors. This leads to an increased number of matrix-vector products and hence to further computational effort. In
this case, the time spent on performing the additional matrix-vector products outweighs the reduction in system eval-
uations and the total run time increases. The runs take an average of 8.0 and 9.2 h, respectively. When increasing the
truncation tolerance instead, the reduced basis is extended by a smaller quantity of vectors in each iteration. This leads
to an increase in the number of iterations while decreasing the size of the reduced basis. For 𝜀svd = 0.1, the algorithm
builds a basis with 116.3 vectors in 34.6 iterations on average. Although this setting leads to the smallest reduced basis,
the number of matrix-vector products does not significantly change compared to the 𝜀svd = 0.01 runs. Since the number
of system evaluations doubles, the average run time is increased to 8.1 h with 6.4 h spent on matrix-vector products and
1.7 h spent on solving the linear systems.

The run time analysis shows that the choice of the truncation tolerance 𝜀svd imposes a tradeoff between the
computational effort of matrix-vector products and solutions of the high-fidelity systems via BGMRes. This is similar to
the choice of the training set size mtrain in Section 4.1. In the present example, a truncation tolerance of 𝜀svd = 0.01 yields
the fastest solution time. Decreasing the truncation tolerance yields a steady increase in the reduced basis size and a
decrease in the number of iterations. Apparently, explicitly evaluating the solution at only 9 parameter samples gathers
enough information to find a solution at all parameter samples for each of the 50 right-hand sides. On average, the basis
is extended by 3.4, 7.0, 13.0, and 20.1 vectors in each iteration when prescribing a truncation tolerance of 0.1, 0.01, 0.001,
and 0.0001, respectively.
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training set size of mtrain = 10 and a varying truncation tolerance 𝜀svd. Mean values for the solution time are marked by crosses whereas
maximum and minimum values are given by the error bars
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5 CONCLUSION AND FUTURE WORK

An adaptively enriching greedy reduced basis scheme has been proposed for the solution of structural acoustic sys-
tems with parameter and implicit frequency dependence. The algorithm starts on a small subset of the discretized
parameter domain and iteratively builds a reduced basis by adding the system response at the parameter sample where
the approximation is currently worst. Working on a small subset allows to solve large-scale problems with a possibly
high-dimensional parameter domain. Whenever the solution at a parameter sample is found, the sample is removed
from the small subset and a parameter sample at which a solution has not yet been found is added. The first numeri-
cal example, the submerged elastic sphere, has indicated that working with a small training parameter set instead of the
full parameter set is computationally more efficient. The run time analysis illustrated that the algorithm works best on
very small subsets in the presented case. It has been shown that assessing the residual allows to choose parameter sam-
ples which yield basis vectors with high approximation power despite working on a small subset. A significant speedup
has been documented for the example presented in this work when compared to both the conventional solution strategy
and the globally working greedy algorithm. The algorithm has been adapted to vibro-acoustic problems featuring many
right-hand sides. Instead of extending the basis by all system responses, only a few left singular vectors of the responses
are added which are determined by a truncated singular value decomposition. The truncation is based on a comparison
of the singular values of the system responses to a scaled reference singular value. The algorithm has been applied to a
second numerical example, a satellite structure subject to a diffuse sound pressure field excitation. The impact of the scal-
ing factor, that is, the truncation tolerance, has been studied and a region of optimal values has been identified. In both
case studies, a linear combination of the system responses at a few parameter samples has led to a sufficiently accurate
solution at all parameter samples.

The adaptively enriching greedy algorithm randomly chooses the initial subset as well as the parameter samples
replacing samples at which a solution is found. This aspect was considered by presenting the results of 10 individ-
ual runs. In both numerical examples, the run time varied within a single digit percentage of the mean value and
the above drawn conclusions are also valid for the run that performed worst. However, diminishing this random
aspect by introducing a semideterministic way of choosing samples for the subset is part of future work. Analyz-
ing the distribution of the samples within the parameter domain and limiting the choice to certain parts of the
parameter domain might be a good starting point. Employing a multigrid scheme, that is, starting the algorithm on
a coarse discretization of the parameter domain and introducing subsequent refining steps is also a possibility.43 Fur-
thermore, incorporating the greedy reduced basis scheme into a nongradient based optimization algorithm might be
beneficial. These algorithms usually require repeated evaluations of a parameter dependent system. Although in this
case, the parameter samples are not chosen based on the residual but an underlying cost function, it might be benefi-
cial to combine the system responses in order to approximate the solution by linear combinations. Solving a linear least
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squares problem and assessing the residual can be more efficient than explicitly solving the system at the parameter sam-
ple. Finally, a suitable a priori error estimator would accelerate the greedy algorithm and improve the choice of basis
vectors
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