
RESEARCH ARTICLE

Exposure to Repetitive Head Impacts
Is Associated With Corpus Callosum
Microstructure and Plasma Total Tau
in Former Professional American

Football Players
Janna Kochsiek,1,2 Lauren J. O’Donnell, PhD,3,4

Fan Zhang, PhD,3,4 Elena M. Bonke, MS,1,2,5 Nico Sollmann, MD, PhD,1,2,6,7,8

Yorghos Tripodis, PhD,9,10 Tim L. T. Wiegand,2 David Kaufmann, MD,1,2,11,12

Lisa Umminger, BS,1,2 Maria A. Di Biase, PhD,1,13 Elisabeth Kaufmann, MD,1,2,14

Vivian Schultz, MD,1,2,6 Michael L. Alosco, PhD,10,15 Brett M. Martin, MS,16

Alexander P. Lin, PhD,1,17 Michael J. Coleman, MA,1 Yogesh Rathi, PhD,1,4

Ofer Pasternak, PhD,1,4 Sylvain Bouix, PhD,1 Robert A. Stern, PhD,10,15,18

Martha E. Shenton, PhD,1,4,13 and Inga K. Koerte, MD1,2,5,13*

Background: Exposure to repetitive head impacts (RHI) is associated with an increased risk of later-life neurobehavioral
dysregulation and neurodegenerative disease. The underlying pathomechanisms are largely unknown.
Purpose: To investigate whether RHI exposure is associated with later-life corpus callosum (CC) microstructure and
whether CC microstructure is associated with plasma total tau and neuropsychological/neuropsychiatric functioning.
Study Type: Retrospective cohort study.
Population: Seventy-five former professional American football players (age 55.2 � 8.0 years) with cognitive, behavioral,
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Assessment: Subjects underwent diffusion MRI, venous puncture, neuropsychological testing, and completed self-report
measures of neurobehavioral dysregulation. RHI exposure was assessed using the Cumulative Head Impact Index (CHII).
Diffusion MRI measures of CC microstructure (i.e., free-water corrected fractional anisotropy (FA), trace, radial diffusivity
(RD), and axial diffusivity (AD)) were extracted from seven segments of the CC (CC1-7), using a tractography clustering
algorithm. Neuropsychological tests were selected: Trail Making Test Part A (TMT-A) and Part B (TMT-B), Controlled Oral
Word Association Test (COWAT), Stroop Interference Test, and the Behavioral Regulation Index (BRI) from the Behavior
Rating Inventory of Executive Function, Adult version (BRIEF-A).
Statistical Tests: Diffusion MRI metrics were tested for associations with RHI exposure, plasma total tau, neuropsychologi-
cal performance, and neurobehavioral dysregulation using generalized linear models for repeated measures.
Results: RHI exposure was associated with increased AD of CC1 (correlation coefficient (r) = 0.32, P < 0.05) and with
increased plasma total tau (r = 0.34, P < 0.05). AD of the anterior CC1 was associated with increased plasma total tau
(CC1: r = 0.30, P < 0.05; CC2: r = 0.29, P < 0.05). Higher trace, AD, and RD of CC1 were associated with better perfor-
mance (P < 0.05) in TMT-A (trace, r = 0.33; AD, r = 0.31; and RD, r = 0.28) and TMT-B (trace, r = 0.31; RD, r = 0.34).
Higher FA and AD of CC2 were associated with better performance (P < 0.05) in TMT-A (FA, r = 0.36; AD, r = 0.28), TMT-
B (FA, r = 0.36; AD, r = 0.27), COWAT (FA, r = 0.36; AD, r = 0.32), and BRI (AD, r = 0.29).
Data Conclusion: These results suggest an association among RHI exposure, CC microstructure, plasma total tau, and clin-
ical functioning in former professional American football players.
Level of Evidence: 3
Technical Efficacy Stage: 1

J. MAGN. RESON. IMAGING 2021;54:1819–1829.

Exposure to repetitive head impacts (RHI) is commonly
observed in contact sports such as American football.

Exposure to RHI may lead to symptomatic brain injury such as
concussion, as well as the more common asymptomatic sub-
concussive injuries.1 RHI exposure sustained over longer periods
of time is associated with an increased risk of later-life cognitive
impairment, neurobehavioral dysregulation, and neurodegenera-
tive disease.2 The underlying pathomechanisms of potential
cumulative effects are, however, not fully understood.

RHI exposure has previously been linked to brain alter-
ations.3 Structural alterations of the brain can be noninvasively
characterized using advanced neuroimaging. Diffusion MRI
(dMRI) is particularly sensitive to subtle microstructural alter-
ations of brain tissue following RHI.3 More specifically, studies
have revealed decreased fractional anisotropy (FA) and increased
radial diffusivity (RD), axial diffusivity (AD), and mean diffusiv-
ity (MD) following RHI.4,5 Of note, the corpus callosum (CC)
is predominantly affected, likely due to its central location and
increased vulnerability to shear strain.6 Importantly, the CC is
involved in brain functions that are often impaired following
brain injury, such as cognition, mood, and behavior.7 A previous
study found an association between younger age at first exposure
to American football and later-life microstructural alterations of
the anterior CC.5 However, whether exposure to RHI while
participating in professional American football leads to later-life
alterations in CC microstructure is not known. Moreover, the
pathomechanism underlying microstructural alterations follow-
ing exposure to RHI is not fully understood.

Exposure to RHI has been associated with increased levels
of total tau in former National Football League (NFL) players.8

Total tau is a nonspecific marker of general neurodegeneration
and axonal damage,9 mainly expressed in neuronal axons where
it regulates the stability of microtubules and supports axonal
transportation.10 Additionally, tau crosses the blood–brain

barrier (BBB) and, thus, can be detected and measured in blood
plasma.11 There are few studies that have investigated the associ-
ation between brain structure and total tau in former contact-
sport athletes. One such study reported higher cerebrospinal
fluid (CSF) total tau in a group of 22 former professional
contact-sport athletes (mean age: 55.9 � 12.2 years; American
football (n = 12), ice hockey (n = 9), and snowboarding
(n = 1)) compared with five community control participants.9

Athletes with higher CSF total tau showed lower FA, as well as
higher RD and MD across several white matter (WM) tracts
and impaired neuropsychological performance on the Trail Mak-
ing Test Part B (TMT-B).9

RHI has also been linked to impaired neuropsychological
and neuropsychiatric functioning in former professional Ameri-
can football players.2 Progressive cognitive impairment (specifi-
cally episodic memory deficits and/or executive dysfunction) and
neurobehavioral dysregulation (e.g., explosiveness, impulsivity,
rage, “short fuse”) are the core clinical features of the NINDS
Consensus Diagnostic Criteria for Traumatic Encephalopathy
Syndrome (TES), which is the clinical syndrome associated with
underlying pathology of the neurodegenerative disease, chronic
traumatic encephalopathy (CTE).12 However, it is not clear
whether or not RHI exposure is associated with CC microstruc-
ture in former professional American football players. It also
remains to be elucidated whether or not later-life CC micro-
structure is associated with increased later-life plasma total tau
and with clinical functioning following exposure to RHI.

Thus, the aim of this study was (1) to investigate
whether or not RHI exposure is associated with alterations in
CC microstructure, (2) to determine whether or not CC
microstructure is associated with plasma total tau levels, and
(3) to assess the association between CC microstructure
and neuropsychological functioning and neurobehavioral dys-
regulation in former professional American football players.
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Methods
Study Design
This study was part of the Diagnosing and Evaluating Trau-
matic Encephalopathy using Clinical Tests (DETECT) project.
The aim of this project was to develop in-vivo biomarkers to
diagnose CTE during life. Between 2011 and 2015, participants
were tested in a single 2- to 3-day visit. The test protocol
included an interview to quantify previous exposure to RHI
from football, as well as neuropsychological testing, completion
of self-report measures of neuropsychiatric functioning, collec-
tion of blood, and MRI acquisition. More details regarding the
study design can be found elsewhere.13 The study was approved
by the respective Institutional Review Board and was conducted
in accordance with the Declaration of Helsinki. Written
informed consent was obtained from all participants prior to
enrollment.

Study Participants
The DETECT sample includes 96 symptomatic former NFL
players. Inclusion criteria were as follows: (1) male sex,
(2) age between 40 and 69 years, (3) minimum of 12 years of
participation in organized American football, (4) playing at
least 2 years in the NFL, and (5) self-reported (at time of tele-
phone screening) cognitive, behavioral, and mood symptoms
for a minimum of 6 months prior to study enrollment. Exclu-
sion criteria were as follows: (1) having sustained a concussion
or other traumatic brain injury (TBI) within 1 year prior to
study enrollment, (2) contraindications for MRI, (3) presence
of another disease affecting the central nervous system, and
(4) a primary language other than English.

For the present study, 15 of the 96 former NFL players
were excluded because of missing dMRI data. Another six
participants were excluded due to artifacts in imaging data
(e.g., motion artifacts). Thus, the final sample consisted of
75 former NFL players. Cohort characteristics and demo-
graphics of these participants are shown in Table 1.

Exposure to RHI
The Cumulative Head Impact Index (CHII) was used to
quantify the players’ estimated exposure to RHI.2 The CHII
is based on information about the individual’s football his-
tory, including the number of seasons played, position(s)
played, and levels played (youth, high school, college), as well
as on an estimation of head impact frequencies established
based on helmet accelerometer studies.2 Because helmet accel-
erometer data at the professional level have not been publi-
shed or made available, head impact frequencies from college
level studies were extrapolated to estimate participants’ post-
college head impact frequencies.

Assessment of Plasma Total Tau
Blood was drawn by conventional venous puncture. Plastic
dipotassium ethylenediamine-tetraacetic acid (EDTA) tubes

were used for the collection. Plasma was centrifuged,
aliquoted, and stored at a temperature of �80 �C. The frozen
plasma tubes were sent out for analysis. Tests were performed
in duplicate from each sample using the Simoa HD-1 ana-
lyzer (Quanterix, Lexington, MA, USA). For the procedure,
two monoclonal antibodies were used for binding specific
parts of human tau. The detection antibody recognizes the
N-terminus, while the capture antibody connects to the mid-
domain. Samples were tested in triplicate calculating standard
curves and individual sample measurements. On average, a
coefficient of variation of 4% across all samples was detected.
More details concerning the procedure can be found
elsewhere.14

Neuropsychological and Neuropsychiatric
Assessment
All participants were administered a neuropsychological test
battery and completed self-report measures of neuropsychiat-
ric symptoms. We chose the following tests to include in the
present study because they are both sensitive to frontal system
executive functioning15 and frequently affected in people
exposed to RHI2,13: Trail Making Test Part A and Part B
(TMT-A, TMT-B), measuring visual scanning, psychomotor
speed, and cognitive flexibility;16 Controlled Oral Word
Association Test (COWAT), measuring phonemic fluency;17

the Stroop Interference Test, measuring selective attention
and inhibition;18 and the Behavioral Regulation Index (BRI)
from the Behavior Rating Inventory of Executive Function,
Adult version (BRIEF-A), measuring neurobehavioral dys-
regulation.19 Raw scores of the tests were transformed into
T scores using normative data that account for age, sex, and
education.13

Magnetic Resonance Imaging

IMAGE ACQUISITION. All dMRI data were collected using a
3-Tesla MRI scanner (Magnetom Verio, Siemens
Healthineers AG, Erlangen, Germany) with a 32-channel
head coil. A diffusion-weighted echo-planar imaging (EPI)
sequence was acquired with the following parameters: repeti-
tion time (TR) = 11,700 msec, echo time (TE) = 85 msec,
matrix = 128 � 128, field of view = 256 � 256 mm2, slice
thickness = 2 mm, and parallel imaging using GRAPPA with
an acceleration factor of 3. In total, 73 slices were acquired
using 64 diffusion directions, consisting of 59 diffusion-
weighted images with multiple b-values from 80 to 3000 s/
mm2 and five images with a b-value of 0 s/mm2 for anatomi-
cal reference.

IMAGE PROCESSING. Visual inspection of the raw dMRI
data (LO, FZ, JK with 20, 10, and 3 years of experience
in the analysis of MRI data) was followed by generating
whole-brain tractography maps using a two-tensor model. We
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applied the Unscented Kalman Filter (UKF, part of the
ukftractography package (https://github.com/pnlbwh/
ukftractography)) method,20 which has previously been
shown to sensitively and consistently trace fibers across
various populations.21 This two-tensor model accounts
for crossing fibers,20 which are particularly relevant in the
context of tracing the CC fibers. This two-tensor model asso-
ciates the first tensor with the main direction of the fiber tract
that is being traced. The second tensor represents fibers cross-
ing through the tract of interest. Whole-brain tractography
was then again visually inspected and also quantitatively
assessed for quality using the quality control tool in the
whitematteranalysis (WMA) software (https://github.com/
SlicerDMRI/whitematteranalysis).

The CC was identified in each subject by applying a
fiber clustering pipeline in combination with an anatomical
tract atlas.22 This approach applies machine learning to dMRI
data to identify WM tracts of each individual based on a
neuroanatomist-curated WM atlas that was trained using
tractography data from 100 healthy young adults (stemming
from the Human Connectome Project).23 Using the anatomi-
cal atlas, the CC was automatically divided into seven anatomi-
cal subregions24: CC1 = rostrum, CC2 = genu, CC3
+ 4 = anterior half of the body, CC5 + 6 = posterior half of

the body, and CC7 = splenium (Fig. 1). The division into
seven subregions is based on a segmentation scheme by
Witelson et al.25 The CC tractography of each individual case

TABLE 1. Cohort Characteristics (n = 75)

Mean SD Range

Sample characteristics

Age (years) 55.16 7.98 40–69

Body mass index (kg/m2) 33.15 5.18 25.2–52.1

Education (years) 16.49 0.98 15–20

CHII 20,352.3 7,236.02 6,860.4–48,218.3

Race W 44; B/A 23; NA 8

Fluid biomarkers

Plasma total tau (pg/mL) 2.56 0.98 0.77–5.68

Neuropsychological tests

Trail Making Test Part A 49.37 11.52 20–66

Trail Making Test Part B 45.21 15.75 20–74

Stroop Test 10.99 2.63 2–15

COWAT 49.86 11.41 24–80

BRI 63.01 12.32 37–95

Summary of demographical data, fluid biomarkers, and neuropsychological test performance represented as mean, standard deviation,
range, and numeric variables.
CHII: Cumulative Head Impact Index; Race: W, White, B/A, Black or African American, NA, no data available; BRI, Behavioral Regu-
lation Index; COWAT, Controlled Oral Word Association Test; SD, standard deviation.

FIGURE 1: White matter (WM) fibers passing through corpus
callosum (CC) subregions; green = CC1 (rostrum), red = CC2
(genu), white and yellow = CC3 + CC4 (anterior half of the body),
purple and pink = CC5 + CC6 (posterior half of the body),
turquoise = CC7 (splenium). WM tracts consist of grouped fiber
clusters. Predefined subregions of the CC (CC1–CC7) were
selected and WM fibers passing through each subregion are
depicted in different colors.
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was visually inspected for quality and the number of fibers was
quantitatively assessed (Fig. 2). 3D Slicer (The SlicerDMRI
project (http://dmri.slicer.org))26 was used to extract free-water
corrected diffusion parameters (FA, trace, AD, and RD) of
these seven subregions of the CC. Of note, to quantify the
total amount of diffusion, one can either calculate the mean of
the three eigenvalues (MD) or compute the sum (trace).

Statistical Analyses
Statistical analyses were performed using the Statistical Analy-
sis System (SAS version 9.4; SAS Institute Inc., NC, USA).
Three sets of generalized linear models (GLMs) for repeated
measures with an unstructured covariance matrix were used
to investigate associations among RHI exposure, CC micro-
structure, plasma total tau, and neuropsychological/neuro-
psychiatric test scores. The first set of GLM tested for
associations between RHI (independent variable) and each
dMRI parameter (FA, trace, AD, and RD) extracted from
the seven CC subregions (dependent variables). To reduce
model complexity, each dMRI parameter was tested sepa-
rately. The second set of GLM investigated associations
between each dMRI parameter (FA, trace, AD, and RD)
from the seven CC subregions (dependent variables) with
plasma total tau levels (independent variable). The third
set of GLM investigated associations between neuropsy-
chological/neuropsychiatric test scores (dependent vari-
ables) and each dMRI parameter (FA, trace, AD, and RD)
from each CC subregion that revealed significant effects in
previous GLM tests (independent variables). For all three
sets of GLM, covariates included body mass index
(BMI = body weight divided by height squared (kg/m2))
and age (in years), in addition to years of education for
the third set of GLM investigating neuropsychological/
neuropsychiatric measures. BMI was included as a covari-
ate due to evidence for a negative correlation between

BMI and CC microstructure.27 The results from the
GLMs were adjusted for multiple comparisons across the
number of CC subregions tested using a false discovery
rate (FDR) of 5%. We set the level of statistical signifi-
cance at P < 0.05 (FDR-corrected).

Results
Cohort Characteristics
Demographics, neuropsychological test scores, and total tau
in blood plasma of the 75 former American football players
included in this study are shown in Table 1.

Association Between RHI Exposure and Diffusion
Measures
The average CHII was 20,352.3 � 7,236.02 (range 6,860.4–
48,218.3). Among the seven subregions of the CC, AD of CC1
was associated with RHI exposure (r = 0.32, P < 0.05; Fig. 3).
Thus, the higher the CHII (indicating greater exposure to RHI),
the higher the AD in CC1. No other subregional dMRI param-
eters were significantly associated with CHII (p ≥ 0.05) (FA:
CC1 P = 0.2831, CC2 P = 0.2831, CC3 P = 0.3198, CC4
P = 0.5820, CC5 P = 0.4396, CC6 P = 0.3198, CC7
P = 0.5220; Trace: CC1 P = 0.2331, CC2 P = 0.7622,
CC3 P = 0.7622, CC4 P = 0.2331, CC5 P = 0.7688, CC6
P = 0.6465, CC7 P = 0.7622; AD: CC2 P = 0.2402, CC3
P = 0.9462, CC4 P = 0.2402, CC5 P = 0.9462, CC6
P = 0.8669, CC7 P = 0.9462; RD: CC1 P = 0.8361, CC2
P = 0.5558, CC3 P = 0.5558, CC4 P = 0.5558, CC5
P = 0.5558, CC6 P = 0.8361, CC7 P = 0.5558).

Association Between Diffusion Measures and
Plasma Total Tau
AD of CC1 and CC2 were associated with plasma total tau
(CC1: r = 0.30; CC2: r = 0.29, both P < 0.05; Table 2 and

FIGURE 2: Violin plots depicting the number of fibers for each of
the corpus callosum (CC) segments (CC1–CC7).

FIGURE 3: Scatter plot displaying the association between the
Cumulative Head Impact Index (CHII) and axial diffusivity (AD) of
the rostrum of the corpus callosum (CC1).
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TABLE 2. Corpus Callosum Diffusion MRI Measures and Plasma Total Tau

Region Mean SD Partial r P value

FA CC1 0.6096 0.0406 0.1584 0.4374

CC2 0.6738 0.0366 0.2093 0.4374

CC3 0.7069 0.0367 0.1528 0.4374

CC4 0.7306 0.0323 0.0249 0.8705

CC5 0.7346 0.0373 0.0733 0.8705

CC6 0.7281 0.0242 0.0190 0.8705

CC7 0.7391 0.0238 �0.0557 0.8705

Trace (mm2/s) CC1 0.0014 0.0001 0.2424 0.2439

CC2 0.0016 0.0001 0.1387 0.4064

CC3 0.0015 0.0001 �0.0535 0.7536

CC4 0.0015 0.0001 �0.1565 0.4064

CC5 0.0016 0.0001 �0.0121 0.9171

CC6 0.0016 0.0001 �0.1412 0.4064

CC7 0.0016 0.0001 �0.0979 0.5602

AD (mm2/s) CC1 0.0009 0.0001 0.2996 0.0440

CC2 0.0011 0.0001 0.2850 0.0440

CC3 0.0011 0.0001 0.0499 0.7797

CC4 0.0011 0.0001 �0.1268 0.5544

CC5 0.0012 0.0001 0.0129 0.9119

CC6 0.0012 0.0001 �0.1164 0.5544

CC7 0.0012 0.0001 �0.0890 0.6227

RD (mm2/s) CC1 0.0003 <0.0001 0.0970 0.7583

CC2 0.0003 <0.0001 �0.1013 0.7583

CC3 0.0002 <0.0001 �0.1340 0.7583

CC4 0.0002 <0.0001 �0.0711 0.7583

CC5 0.0002 <0.0001 �0.0142 0.9034

CC6 0.0003 <0.0001 0.0804 0.7583

CC7 0.0002 <0.0001 �0.0342 0.8973

Associations of plasma total tau with diffusion parameters of corpus callosum (CC) subregions (CC1–CC7). Mean, standard deviation,
partial r, and P values are presented. Significant results are marked in bold.
For CC1 there were only 74 subjects included since one data point was missing after clustering.
FA, fractional anisotropy; AD, axial diffusivity; RD, radial diffusivity; SD, standard deviation.

FIGURE 4: Scatter plots displaying the association between plasma total tau and axial diffusivity (AD) of rostrum (CC1) and genu
(CC2) of the corpus callosum (CC). Arrow indicates outlier.
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TABLE 3. Results Neuropsychological Tests

Region DTI Test Estimate SE Partial r P value

CC1 FA TMT-A 63.40 25.92 0.2752 0.0657

TMT-B 64.25 36.96 0.1993 0.1440

STROOP 9.09 7.76 0.1358 0.2452

COWAT 60.75 26.78 0.2566 0.0657

BRI 36.88 27.61 0.1544 0.2324

Trace (mm2/s) TMT-A 25,950.00 8,649.23 0.3313 0.0184

TMT-B 34,753.00 12,675.00 0.3056 0.0192

STROOP 3,472.81 2,469.56 0.1624 0.2049

COWAT 10,628.00 9,368.05 0.1316 0.2603

BRI 15,057.00 9,696.93 0.1788 0.2049

AD (mm2/s) TMT-A 33,384.00 12,142.00 0.3063 0.0376

TMT-B 37,878.00 17,933.00 0.2400 0.0952

STROOP 4,289.61 3,318.86 0.1496 0.2003

COWAT 17,530.00 12,985.00 0.1561 0.2003

BRI 24,962.00 13,331.00 0.2141 0.1086

RD (mm2/s) TMT-A 116,384.00 45,840.00 0.2848 0.0331

TMT-B 199,840.00 64,483.00 0.3410 0.0138

STROOP 14,044.00 12,597.00 0.1294 0.4476

COWAT 18,110.00 49,205.00 0.0430 0.7139

BRI 25,984.00 50,898.00 0.0596 0.7139

CC2 FA TMT-A 87.56 26.27 0.3613 0.0024

TMT-B 121.35 36.67 0.3590 0.0024

STROOP 10.77 8.61 0.1439 0.2150

COWAT 88.37 26.63 0.3599 0.0024

BRI 39.41 28.86 0.1568 0.2150

Trace (mm2/s) TMT-A 19,528.00 11,525.00 0.1933 0.1246

TMT-B 29,599.00 17,755.00 0.1903 0.1246

STROOP �2,438.43 4,546.17 �0.0622 0.5933

COWAT 21,430.00 11,654.00 0.2090 0.1246

BRI 21,122.00 12,289.00 0.1959 0.1246

AD (mm2/s) TMT-A 39,231.00 15,393.00 0.2841 0.0215

TMT-B 59,037.00 24,880.00 0.2659 0.0253

STROOP �1,143.55 6,289.49 �0.0211 0.8562

COWAT 44,808.00 15,418.00 0.3201 0.0215

BRI 42,016.00 16,377.00 0.2858 0.0215
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Fig. 4). AD in CC2 from one participant represents an outlier
that seems to drive the regression line (Fig. 4, indicated by
arrow in the right panel) and was therefore reevaluated for
data quality. Of note, data quality of this particular case is
sufficiently high and therefore we did not exclude this partici-
pant from the statistical analysis. Other subregional dMRI
parameters are not significantly associated with plasma total
tau (see Table 2 for absolute P values).

Association Between Neuropsychological Function
and Diffusion Measures
In light of significant associations between CHII and
plasma total tau levels with WM microstructure in the
anterior regions of the CC (i.e., CC1 and CC2), dMRI
parameters in these specific callosal subregions were exam-
ined for associations with neuropsychological test scores
and a measure of neurobehavioral dysregulation (Table 3
and Fig. S1).

More specifically, CC1 microstructure was associated
with better performance (P < 0.05) on TMT-A (trace,
r = 0.33; AD, r = 0.31; and RD, r = 0.28) and better per-
formance (P < 0.05) on TMT-B (trace, r = 0.31; RD,
r = 0.34). CC2 microstructure was associated with better
performance (P < 0.05) on TMT-A (FA, r = 0.36; AD,
r = 0.28) and on TMT-B (FA, r = 0.36; AD, r = 0.27).
Higher scores on COWAT were significantly (P < 0.05) and
positively associated with FA (r = 0.36) and AD (r = 0.32).
Moreover, the BRI was associated with higher AD (r = 0.29,
P < 0.05) of CC2. There were no significant associations
between Stroop Test scores with dMRI parameters for CC1
or CC2 (Table 3).

Discussion
This study revealed that greater estimated RHI exposure is
associated with CC microstructure in former professional

American football players. CC microstructure and plasma
total tau are associated, which possibly reflects the direct
effects of RHI (while playing football) on WM microstruc-
ture or the secondary effects caused by later-life neu-
rodegeneration. Measures of CC microstructure were also
associated with features of neuropsychological performance,
including psychomotor speed, cognitive flexibility, and pho-
nemic fluency, as well as neurobehavioral dysregulation.

Association Between RHI Exposure, WM
Microstructure, and Neuropsychological Function
Greater exposure to RHI was associated with higher AD in
the rostrum of the CC. The CC has previously been shown
to be particularly susceptible to RHI.3 Findings from this
study confirm previous studies that observed that within the
CC, the anterior parts seem to be most often affected by
exposure to RHI.5 The anterior parts of the CC are character-
ized by densely packed, thin axons28 and may therefore be
especially vulnerable to shear forces.29

Our results indicated that greater exposure to RHI may
lead to long-term microstructural alterations in the anterior
CC in former professional American football players. It has
previously been hypothesized that higher AD may reflect per-
sistence of axonal injury in patients with mild TBI.30 Such
axonal damage may be expressed by axonal swelling and
edema. However, whether AD also captures neu-
roinflammation, neurodegeneration, or axonal injury needs
further investigation.

The interpretation of diffusion metrics remains challenging
because a given voxel contains various structures and types of
cells that influence diffusion characteristics. Additionally, animal
models that use both dMRI and histology to inform the inter-
pretation of dMRI metrics are sparse.3 In human neuroimaging,
a decrease in FA has often been interpreted as damage to axon
and myelin sheath leading to less directed diffusion. An increase

TABLE 3. Continued

Region DTI Test Estimate SE Partial r P value

RD (mm2/s) TMT-A 3,135.01 48,670.00 0.0075

TMT-B 5,916.46 68,358.00 0.0101 0.9846

STROOP �7,448.39 12,534.00 �0.0689 0.9846

COWAT �20,847.00 49,322.00 �0.0491 0.9846

BRI �1,004.26 51,702.00 �0.0023 0.9846

Association between TMT-A, TMT-B, COWAT, Stroop Test, and BRI with diffusion parameters of the anterior corpus callosum (CC; rostrum
(CC1) and genu (CC2)). Estimate, standard error, partial r, and P values are listed for every item. Significant results are marked with bold letters.
For CC1 there were only 74 subjects included since one data point was missing after clustering.
Test scores were partly incomplete. Number of individuals with missing test scores: TMT-A, n=2; TMT-B, n=2; COWAT, n=1.
TMT-A: Trail Making Test Part A; TMT-B: Trail Making Test Part B; COWAT: Controlled Oral Word Association Test; BRI: Behav-
ioral Regulation Index from the Behavior Rating Inventory of Executive Function, Adult version (BRIEF-A); SE: standard error.

1826 Volume 54, No. 6

Journal of Magnetic Resonance Imaging



in trace or MD, on the other hand, is thought to reflect an
increase in diffusion and one cause for such an increase could be
neuroinflammation. A decrease in AD has been associated with
axonal injury and dysfunction, whereas an increase in RD has
been associated with myelin injury.31

Our results indicated that higher diffusion measures
(FA, trace, RD, and AD) were also associated with better cog-
nitive performance as assessed using the TMT-A, TMT-B,
and COWAT, and with fewer symptoms of neurobehavioral
dysregulation. While the positive association between FA and
better cognitive function is in line with the literature,3 in our
study, higher AD also correlated with better performance.
Importantly, the cross-sectional study design of this study
limits the interpretation of this finding. Accordingly, future
studies need to include a longitudinal study design to capture
individual changes of cognitive and neuropsychiatric func-
tioning associated with WM microstructure.

Association Between CC Microstructure and Plasma
Total Tau
In this study, we found an association between higher plasma
total tau and higher AD in the anterior regions of the CC. A
previous study in a cohort of 17 male high-school football
players (age range: 16–17 years) has shown that higher plasma
total tau was associated with both higher MD and lower fiber
density in the anterior part of the CC.32 The authors hypoth-
esized that RHI may disrupt axons and lead to axonal degen-
eration and, at the same time, may release tau from its
microtubule bindings.

The pathophysiological processes underlying the associa-
tion of later-life plasma total tau and WM microstructure are
unclear. Higher levels of t-tau have been linked to lower levels
of FA, and higher levels of MD, AD, and RD across the
brain. This was the case for preclinical neurodegenerative dis-
ease stages33 as well as in cohorts of cognitive impairment.34

Moreover, a longitudinal study on patients with mild cogni-
tive impairment (MCI) reported a significant decrease in FA
and an increase in RD in multiple brain regions in a high-tau
group of MCI patients compared with the controls.35

In regard of RHI, possible explanations include that
exposure to RHI directly leads to injury of WM microstruc-
ture. As a result, there may be neuronal death and subse-
quently elevated plasma total tau. However, it is unlikely that
increased plasma total tau levels due to direct effects of shear
injury would persist years and even decades following RHI
exposure as it did in our sample of former professional
American football players in their 40s, 50s, and 60s.
Another pathway may be that exposure to RHI sets in
motion a progressive neurodegenerative disease that results
in neuronal death and elevations in plasma total tau. Micro-
glial activation has also been discussed as a potential under-
lying mechanism.36 More specifically, activated microglia
release cytokines, particularly proinflammatory cytokines

and excitotoxins that are purported to play a role in the
development of neurodegeneration.36

We suggest that the underlying pathophysiology of WM
alterations and increased plasma total tau is a combination of
both direct injury and secondary neurodegenerative and neuro-
inflammatory processes. Moreover, there may be additional
pathomechanisms at play. For example, in other tauopathies
(e.g., Alzheimer’s disease), an increase in plasma total tau has
been associated with cerebral hypoperfusion resulting from cere-
brovascular disease.37 Hypoperfusion is also thought to increase
perfusion of small molecules such as tau through the axonal
membrane.37 Thus, tau may accumulate in extravasal space and
likely also in plasma given its ability to cross the BBB.11 Interest-
ingly, cerebrovascular dysfunction, including hypoperfusion, has
also been described in the context of RHI exposure.38 In
Alzheimer’s disease, chronic neuroinflammation and BBB dys-
regulation have been associated with increased plasma total
tau.39 Of further note, RHI exposure has been related to BBB
dysregulation occurring predominantly in regions with high den-
sity of perivascular phosphorylated tau depositions.40 Taken
together, we hypothesize that the association between WM
microstructure of the CC and plasma total tau may be due to a
combination of pathomechanisms including direct injury,
chronic inflammatory, and neurodegenerative processes, as well
as cerebrovascular dysfunction.

Limitations
First, this is a cross-sectional study, which limits the interpreta-
tion of our results and, thus, a causal relationship cannot be
determined. More specifically, the effects of acute or chronic
injury cannot be differentiated from progressive neu-
rodegeneration. Future studies using a longitudinal design are
needed to further our understanding of changes in brain struc-
ture associated with exposure to RHI. Second, the results from
this study cannot be generalized beyond the specific sample
investigated, i.e., former professional American football players
who played in the NFL during the 1970s–1990s. Third, the
lack of a comparison group with asymptomatic former profes-
sional football players reflects a limitation. Fourth, our estima-
tion of exposure to RHI approximates the real head impacts of
the players. Fifth, interpretation of diffusion metrics remains
challenging because a given voxel contains various structures
and types of cells that influence diffusion characteristics. More-
over, to date, there are no normative values of diffusion mea-
sures in the CC. Despite these important limitations, our
study contributes to understanding better the relationship
between RHI exposure from American football, WM alter-
ations, plasma total tau, and clinical measures of executive
functioning and neurobehavioral dysregulation.

Conclusion
This study identified an association between RHI exposure and
WM microstructure as well as an association between WM

December 2021 1827

Kochsiek et al.: Corpus Callosum Microstructure in American Football Players



microstructure, plasma total tau, and measures of executive func-
tioning and neurobehavioral dysregulation in former professional
American football players. WM alterations potentially reflect a
combination of pathomechanisms including shear injury, chronic
neuroinflammatory, and neurodegenerative processes, as well as
cerebral hypoperfusion following exposure to RHI. Longitudinal
studies are, however, needed to determine causal relationships
between exposure to RHI and alterations in WM microstructure.
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