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Abstract

Scores to identify patients at high risk of progression of coronavirus disease

(COVID‐19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS‐

CoV‐2), may become instrumental for clinical decision‐making and patient man-

agement. We used patient data from the multicentre Lean European Open Survey

on SARS‐CoV‐2‐Infected Patients (LEOSS) and applied variable selection to develop

a simplified scoring system to identify patients at increased risk of critical illness or

death. A total of 1946 patients who tested positive for SARS‐CoV‐2 were included
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in the initial analysis and assigned to derivation and validation cohorts (n = 1297 and

n = 649, respectively). Stability selection from over 100 baseline predictors for the

combined endpoint of progression to the critical phase or COVID‐19‐related death

enabled the development of a simplified score consisting of five predictors: C‐

reactive protein (CRP), age, clinical disease phase (uncomplicated vs. complicated),

serum urea, and D‐dimer (abbreviated as CAPS‐D score). This score yielded an area

under the curve (AUC) of 0.81 (95% confidence interval [CI]: 0.77–0.85) in the

validation cohort for predicting the combined endpoint within 7 days of diagnosis

and 0.81 (95% CI: 0.77–0.85) during full follow‐up. We used an additional pro-

spective cohort of 682 patients, diagnosed largely after the “first wave” of the

pandemic to validate the predictive accuracy of the score and observed similar

results (AUC for the event within 7 days: 0.83 [95% CI: 0.78–0.87]; for full follow‐

up: 0.82 [95% CI: 0.78–0.86]). An easily applicable score to calculate the risk of

COVID‐19 progression to critical illness or death was thus established and validated.

K E YWORD S

COVID‐19, logistic models, machine learning, risk factors

1 | INTRODUCTION

The first human cases of coronavirus disease (COVID‐19) were de-

scribed in December 2019 in Wuhan.1 COVID‐19 subsequently de-

veloped into one of the most disastrous pandemics experienced in

our civilization since the Spanish flu at the beginning of the 20th

century.2,3 The exponential spread of the disease‐causing severe

acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), as hap-

pened throughout Europe during the first wave of the pandemic, can

result in excessive hospital overload and a shortage of healthcare

resources, which may negatively impact patient outcomes.4 This

experience underpinned the importance of an effective process to

allocate limited healthcare resources to the COVID‐19 patients most

likely to benefit. To guarantee functional patient care, disease se-

verity assessment for patients presenting at the emergency depart-

ment (ED) may prove useful and guide frontline physicians in the

decision‐making process. A considerable number of patients dete-

riorate rapidly following hospital admission and require transfer to

the intensive care unit (ICU). Conversely, the clinical conditions of

other COVID‐19 patients improve rapidly. Therefore, a prediction

model can guide physicians in determining whether patients require

hospital admission or can be followed up in outpatient care.

A risk assessment score may additionally be a useful tool to es-

timate the individual risk–benefit trade‐off for therapeutic

interventions.

This study aimed to develop a simplified risk prediction model

based on clinical and demographic characteristics and laboratory

findings at the time of COVID‐19 diagnosis to estimate the risk of

clinical deterioration to critical illness. We used data from the Lean

European Open Survey on SARS‐CoV‐2 (LEOSS) project, a pro-

spective European multicenter cohort study.5

2 | METHODS

2.1 | Study design and patient cohort

This analysis included patients who received care at a LEOSS partner

site (inpatient or outpatient) beginning March 16, 2020. Cases

documented in the LEOSS registry up till August 6, 2020 comprised

the initial cohort, which was split into derivation and validation sets.

Cases entered from August 7, 2020 to November 18, 2020 com-

prised the additional test sets (Figure 2A). The design of the LEOSS

study and data acquisition was previously described.5

Data were recorded anonymously, and no patient‐identifying

data were stored. The requirement for written informed consent was

therefore waived. Continuous parameters were categorized. To en-

sure anonymity at all stages of the analysis process, an individual

LEOSS Scientific Use File (SUF) was created, which is based on the

LEOSS public use file (PUF) principles, as described previously.6

Following these principles, a minor portion of patients and variable

values were removed from the data set and set to missing values to

ensure anonymization. Approval for LEOSS was obtained by the

applicable local ethics committees of participating centers, and the

study was registered at the publicly accessible German Clinical Trials

Register (DRKS, No. DRKS00021145).

All predictors included in the stability selection are listed in

Tables 1 and S1. We predefined a combined endpoint of progression

to critical disease or COVID‐19‐related death. The definitions of the

disease phases are summarized in Figure 1. The baseline (Day 0) was

defined as the day of the first positive SARS‐CoV‐2 test. Only

baseline predictors were included in the analysis (laboratory values

collected within 48 h of diagnosis). If no CT was conducted within

48 h of positive testing, an exception was made and those CT‐scan
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TABLE 1 Characteristics of patients in the derivation and validation data sets

Predictor Deriv. Valid. Test, f. Test, l. Predictor Deriv. Valid. Test, f. Test, l.

Total patients CRP (mg/L)

1297 649 682 219 <3 181 (14%) 101 (16%) 97 (14%) 37 (17%)

Event during follow‐up (7d/all) 3–29 454 (35%) 222 (34%) 250 (37%) 80 (37%)

No 1095/1036 555/522 613/597 198/190 30–69 266 (21%) 132 (20%) 140 (21%) 47 (21%)

(84%/80%) (86%/80%) (90%/88%) (90%/87%) 70–119 166 (13%) 85 (13%) 92 (13%) 28 (13%)

Yes 202/261 94/127 69/85 21/29 120–179 124 (10%) 55 (8%) 67 (10%) 18 (8%)

(16%/20%) (14%/20%) (10%/12%) (10%/13%) 180–249 52 (4%) 26 (4%) 18 (3%) 6 (3%)

Type of patient care (not used for analyses) >249 32 (2%) 17 (3%) 6 (1%) 0 (0%)

Outpatient 16 (1%) 11 (2%) 9 (1%) 1 (0%) Missing 22 (2%) 11 (2%) 12 (2%) 3 (1%)

Inpatient 1255 (97%) 627 (97%) 648 (95%) 207 (95%) PCT (ng/ml)

Missing 26 (2%) 11 (2%) 25 (4%) 11 (5%) <0.005 78 (6%) 28 (4%) 27 (4%) 12 (5%)

Age (year) 0.005–0.5 562 (43%) 282 (43%) 367 (54%) 161 (74%)

≤25 22 (2%) 17 (3%) 36 (5%) 9 (4%) 0.51–2 58 (4%) 35 (5%) 28 (4%) 10 (5%)

26–35 78 (6%) 42 (6%) 64 (9%) 29 (13%) 2.1–10 0 (0%) 0 (0%) 13 (2%) 5 (2%)

36–45 105 (8%) 50 (8%) 86 (13%) 29 (13%) >10 10 (1%) 6 (1%) 4 (1%) 1 (0%)

46–55 189 (15%) 98 (15%) 104 (15%) 38 (17%) Missing 589 (45%) 298 (46%) 243 (36%) 30 (14%)

56–65 244 (19%) 117 (18%) 120 (18%) 45 (21%) D‐dimer (LN)

66–75 214 (16%) 118 (18%) 89 (13%) 25 (11%) Normal 232 (18%) 123 (19%) 158 (23%) 83 (38%)

76– 85 317 (24%) 140 (22%) 133 (20%) 30 (14%) >1x, ≤2x 211 (16%) 109 (17%) 126 (18%) 72 (33%)

>85 110 (8%) 59 (9%) 47 (7%) 13 (6%) >2x, ≤5x 159 (12%) 69 (11%) 72 (11%) 34 (16%)

Missing 18 (1%) 8 (1%) 3 (0%) 1 (0%) >5x, ≤10x 39 (3%) 27 (4%) 24 (4%) 9 (4%)

Sex >10x, ≤20x 20 (2%) 11 (2%) 8 (1%) 2 (1%)

Male 768 (59%) 360 (55%) 390 (57%) 133 (61%) >20x 21 (2%) 12 (2%) 6 (1%) 4 (2%)

Female 529 (41%) 289 (45%) 292 (43%) 86 (39%) Missing 615 (47%) 298 (46%) 288 (42%) 15 (7%)

Disease phase Neutrophils (×1000/μl)

Uncompl. 876 (68%) 430 (66%) 488 (72%) 162 (74%) <0.1 11 (1%) 3 (0%) 4 (1%) 1 (0%)

Compl. 421 (32%) 219 (34%) 194 (28%) 57 (26%) 0.1 to <0.3 14 (1%) 3 (0%) 2 (0%) 0 (0%)

Any cardiovascular comorbidity 0.3 to <0.5 22 (2%) 10 (2%) 2 (0%) 0 (0%)

Yes 727 (56%) 370 (57%) 346 (51%) 104 (47%) 0.5 to <2 118 (9%) 62 (10%) 47 (7%) 15 (7%)

No 545 (42%) 262 (40%) 326 (48%) 113 (52%) 2 to <5 524 (40%) 262 (40%) 275 (40%) 105 (48%)

Missing 25 (2%) 17 (3%) 10 (1%) 2 (1%) 5 to <9 262 (20%) 139 (21%) 144 (21%) 54 (25%)

Malignant neoplasia ≥9 71 (5%) 40 (6%) 39 (6%) 6 (3%)

No 1263 (97%) 635 (98%) 678 (99%) 218 (100%) Missing 275 (21%) 130 (20%) 169 (25%) 38 (17%)

Yes 34 (3%) 14 (2%) 4 (1%) 1 (0%) Lymphocytes (×1000/μl)

LDH (LN) <0.1 16 (1%) 8 (1%) 7 (1%) 1 (0%)

<Normal 0 (0%) 0 (0%) 8 (1%) 2 (1%) 0.1 to <0.3 56 (4%) 30 (5%) 18 (3%) 1 (0%)

Normal 439 (34%) 218 (34%) 249 (37%) 98 (45%) 0.3 to <0.5 95 (7%) 43 (7%) 33 (5%) 9 (4%)

>1x, ≤2x 596 (46%) 312 (48%) 305 (45%) 95 (43%) 0.5 to <0.8 230 (18%) 124 (19%) 118 (17%) 39 (18%)

>2x, ≤5x 87 (7%) 51 (8%) 38 (6%) 11 (5%) 0.8 to <1.5 421 (32%) 212 (33%) 231 (34%) 94 (43%)

(Continues)
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variables collected after this time but during the same clinical phase

that was present at baseline were included. We additionally calcu-

lated a separate predictor describing whether the patient had cardi-

ovascular (CV) comorbidities, defined as any of the following: history

of (H/O) myocardial infarction, aortic stenosis, atrioventricular block,

carotid artery disease, chronic heart failure, peripheral vascular dis-

ease, hypertension, atrial fibrillation or coronary artery disease. An

additional variable was also calculated for neurological comorbidities,

defined as any of the following reported for the patient: hemiplegia,

dementia, cerebrovascular disease or stroke, multiple sclerosis,

myasthenia gravis, neuromyelitis optica spectrum disorder (NMOSD),

movement disorder (e.g., Parkinson's disease, dystonia, ataxia, and

tremor), motor neurone diseases (e.g., amyotrophic lateral sclerosis,

and spinal muscular atrophy), other neurological autoimmune

diseases and other prior neurological diagnoses. We defined a pre-

dictor for any malignant neoplastic disease as any of the following: H/

O lymphoma, leukemia, solid tumor, solid metastasized tumor, and

stem cell transplantation.

2.2 | Statistical analysis

All analyses were performed using R (version 3.6.3). Random forest

(RF) analyses (including missing value imputations and individual

Boruta stability selection steps) were calculated using the “random-

ForestSRC” package by Ishwaran and Kogalur.7

Among the available baseline variables of the LEOSS data set

(≈170 predictors), we selected those with <50% missing values

among the combined derivation and validation data set (n = 1946

patients, Figure 2), with the exception of troponin T (52% missing)

and pancreatic lipase (56% missing). This resulted in a total of 104

predictors (Tables 1 and S1). The time‐to‐event data in the anon-

ymized LEOSS cohort was grouped for patients experiencing an

event at ≥8 days after study inclusion, the time variable was coded

accordingly as 1–7 days and ≥8 days, resulting in eight bins for the

time variable (Table S1). These were used for the time‐to‐event ap-

proaches: random survival forest and Cox models, and for C‐index

calculation. Continuous predictors were binned as value ranges in the

LEOSS cohort due to anonymization, and the ranges were coded as

consecutively increasing integers.

We performed RF missing value imputation using multivariate

unsupervised splitting as described by Tang and Ishwaran8 and two

iterations per imputation. An RF approach has been previously shown

to be the method of choice for ordinal variables,9 which are the main

target of imputation in our data set (because continuous variables

were categorized). The imputations were performed either for the

data of the combined derivation and validation data set (n = 1946

patients) or, separately, the full test set (n = 682 patients, Figure 2),

while withholding the outcome variables. Twenty imputed data sets

were thus generated for each cohort.

TABLE 1 (Continued)

Predictor Deriv. Valid. Test, f. Test, l. Predictor Deriv. Valid. Test, f. Test, l.

>5x 4 (0%) 1 (0%) 3 (0%) 2 (1%) 1.5 to <3 198 (15%) 104 (16%) 100 (15%) 34 (16%)

Missing 171 (13%) 67 (10%) 79 (12%) 11 (5%) ≥3 15 (1%) 13 (2%) 17 (2%) 4 (2%)

Urea (LN) Missing 266 (21%) 115 (18%) 158 (23%) 37 (17%)

<Normal 8 (1%) 9 (1%) 33 (5%) 8 (4%)

Normal 846 (65%) 408 (63%) 445 (65%) 173 (79%)

>1x, ≤2x 195 (15%) 106 (16%) 89 (13%) 26 (12%)

>2x 63 (5%) 32 (5%) 30 (4%) 8 (4%)

Missing 185 (14%) 94 (14%) 85 (12%) 4 (2%)

Abbreviations: 7d, event (critical phase or COVID‐19‐related death) within 7 days of diagnosis; CRP, C‐reactive protein; LDH, lactate dehydrogenase; LN,
laboratory normal range, “x” indicates multiples of the upper limit of the normal range; PCT, procalcitonin; Test, f., full test set (as shown in Figure 2); Test,

l., limited test set (as shown in Figure 2).

F IGURE 1 Definition of COVID‐19 disease phases in the LEOSS
registry. Patients were assigned to the highest phase for which at
least one characteristic was fulfilled. ALT, alanine transaminase; AST,
aspartate transaminase; INR, international normalized ratio of
prothrombin time; PaO2, partial pressure of oxygen in arterial blood;
qSOFA, quick sequential organ failure assessment score; sO2, blood
oxygen saturation; ULN, upper limit of normal
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We performed a split into a derivation and validation cohort with

similar characteristics based on the following predefined potential

confounders: age, sex, presence of dyspnea, neutrophil count, lym-

phocyte count, lactate dehydrogenase (LDH), bilirubin, CRP, pro-

calcitonin (PCT), D‐dimer, H/O malignant neoplasia, presence of CV

comorbidity (as defined above) and the number of events. We per-

formed 1000 random splits at 2/3 and 1/3 ratios and calculated the

standardized mean difference for each split, selecting the split with

the smallest maximal standardized mean difference between these

predictors.

Variable selection was performed using the Boruta algorithm10

at 100 iterations using equal proportions of the 20 imputed deri-

vation data sets and a p value of 0.01 for selection. For the clas-

sification RFs, we used the presence of an event (critical phase or

COVID‐19‐related death) within 7 days of diagnosis as the out-

come of interest during Boruta selection. We used the balanced

method by Chen et al.11 both during Boruta selection and modeling

with the selected variables. We used survival random forest (RSF)

as described by Ishwaran et al.,12 during Boruta selection, and

during the final modeling of time‐to‐event data. As RSFs take time

to event into account, events occurring beyond 7 days after di-

agnosis were also included. Variable importance was calculated

using permutation. For Cox and logistic (binomial) regression

models, we performed ridge (L2) penalization optimized using 20×

fold cross‐validation on the imputed derivation data sets. Score

values were calculated from the ridge penalized binomial regres-

sion coefficients of the model containing the five selected pre-

dictors on the derivation data set with missing values replaced

with the most common value of the 20 imputed data sets for this

patient, and predictor and event within 7 days as the outcome.

Finally, the regression coefficients were divided by the smallest

value and rounded to the next integer.

Two‐sided p values for the binomial ridge penalized coefficients

were obtained as suggested by Cule et al.,13 by repeating the ridge

regression procedure on a data set with randomly permuted out-

comes 1000 times (using equal numbers of the 20 imputed data sets).

The area under the receiver operating characteristics curve

(AUC) and Harrell's C‐indices were calculated using linear predictors

from the binomial and Cox ridge‐penalized regression models or out‐

of‐bag predictor estimates for the RF approaches. The 95% con-

fidence intervals (CIs) for AUC and C‐indices were calculated using

1000 bootstraps of patients' scores using equal contributions from

the imputed data sets.

3 | RESULTS

3.1 | Patient population

Important characteristics of the LEOSS cohort were previously de-

scribed.5 More diagnosed SARS‐CoV‐2 cases were available for the

current analysis compared with the previous report (2969 in the first

data set, patients from the first wave of the pandemic, and 1233

patients in the second test set; Figure 2).5 Based on the predefined

disease phase (Figure 1) and the availability of laboratory values, a

total of 1946 patients were included in the first round of analysis and

assigned to derivation and validation groups with similar character-

istics (Figure 2). Important characteristics are summarized in Table 1,

with a summary of the remaining predictors provided in Table S1.

The age distribution in the first data set was centered, with ap-

proximately equal contributions of patients aged ≤65 and >65 years.

There were more men than women (55%–59% vs. 41%–45%). At

least 56% presented with known CV comorbidity. The incidence of

the combined endpoint, critical phase or COVID‐19‐related death

F IGURE 2 Patient flow diagram (A) and months of COVID‐19 diagnosis (B) for the different data sets
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within 7 days was 14%–16%, and 20% when including any time point

during the follow‐up period (Table 1).

From the second test set (patients entered into the registry

after the first data export for score derivation), 682 patients

fulfilled the selection criteria. This set largely consisted of pa-

tients diagnosed after June 2020 (Figure 2). Compared with the

derivation/validation cohorts, the patients were younger (60%

≤65 years) and more were diagnosed during an uncomplicated

phase (72% vs. 64%–68%). Consequently, the event rate was

lower, with only 10% experiencing an event within 7 days of di-

agnosis and 12% during follow‐up (Table 1). Both the derivation

and validation data sets consisted almost exclusively of patients

receiving inpatient care.

3.2 | Predictor selection

We performed Boruta variable stability selection using RF for clas-

sification, resulting in the selection of 5 (out of 104) predictors

(Table 2). These were CRP, disease phase, age, serum urea, and

D‐dimer levels (Figure S1A). Interestingly, including only these five

predictors in a logistic regression model achieved results almost on

par with the full set of variables (Table 2, “RF Boruta,” binomial ridge,

median AUC = 0.81 in the validation cohort).

We additionally performed a Boruta stability selection using an

RSF approach. Twenty‐four predictors were retained, with the five

predictors from RF Boruta among the most important variables

(Figure S1B). Increasing the number of predictors from 5 to 24 had a

minor impact on the model's performance in the validation data set as

measured by Harrell's C‐index (median C‐index: 0.76 vs. 0.77, re-

spectively; Table S2).

3.3 | Derivation and validation of a simplified
predictive score

Based on the encouraging results and simple interpretability, we used

the coefficients obtained in the binomial ridge regression model with

five predictors (Table 3) to derive an additive score to predict COVID‐

19 progression to the critical phase or death. The score is listed in

Table 4. It exhibited similar performance as the binomial model in

TABLE 2 Summary of the predictive performances of the analyzed models

AUC, 7d (imp. range) AUC, all (imp. range)
Selection Model N pr. Derivation Validation Derivation Validation

All pr. RF 104 0.83 (0.82–0.83) 0.83 (0.82–0.83) 0.83 (0.82–0.83) 0.83 (0.82–0.83)

Binomial ridge 104 0.88 (0.87–0.89) 0.81 (0.80–0.81) 0.86 (0.86–0.87) 0.81 (0.80–0.82)

RF Boruta RF 5 0.74 (0.72–0.75) 0.73 (0.71–0.76) 0.73 (0.72–0.75) 0.74 (0.73–0.77)

Binomial ridge 5 0.80 (0.80–0.80) 0.81 (0.81–0.81) 0.80 (0.80–0.80) 0.81 (0.81–0.81)

Score 5 0.80 (0.80–0.80) 0.81 (0.81–0.81) 0.80 (0.80–0.80) 0.81 (0.81–0.81)

95% CI, 0.77–0.83 95% CI, 0.77–0.85 95%CI, 0.77–0.83 95% CI, 0.77–0.85

Validation on the full
test set

0.83 (0.82–0.83) 0.82 (0.82–0.83)

95% CI, 0.78–0.87 95% CI, 0.78–0.86

Validation on the

limited test set

0.82 (0.82–0.82) 0.83 (0.83–0.84)

95% CI, 0.73–0.90 95% CI, 0.76–0.90

Note: Initial derivation and validation analyses were performed on the respective data sets (n = 1297 and 649, respectively) as summarized in Figure 2. As

indicated, the final score was additionally independently validated on the full and the limited test sets (n = 682 and 219, as described in Figure 2). Indicated
are the median values and the full range for the imputed data sets (in brackets). AUC values were calculated for an event within 7 days of diagnosis (“7d”)
and for all time points (“all”). 95% confidence intervals (95% CI) were calculated for score predictions using bootstrapping with equal contributions of the
imputed data sets. Results of the performance of the final score (median AUC and 95% CI) in the resprective validation and test datasets are highlighted
in bold.

Abbreviations: AUC, area under the receiver operating characteristic (ROC) curve; imp., imputation; N pr., number of predictors in the model;
pr., predictors; RF, random forest for classification.

TABLE 3 Results of the ridge‐penalized binomial regression on
the five variables selected by RF Boruta

Predictor Ridge β p value Weight

Age 0.07 0.024 1

Disease phase 0.40 0.003 5

Urea 0.26 0.013 3

CRP 0.14 0.002 2

D‐dimer 0.09 0.041 1

Note: Indicated are β coefficients from binomial ridge regression
(outcome: event within 7 days) and the resulting weights per step increase
in the respective predictor group (all groups are listed inTable 4). p values
were calculated using ridge regression on the derivation data set with

permutations of the outcome.

Abbreviation: CRP, C‐reactive protein.
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both the derivation and validation data sets (median AUC in valida-

tion data set for events within 7 days of diagnosis: 0.81, 95% CI:

0.77–0.85; for all events, 0.81, 95% CI: 0.77–0.85; Table 2). Inter-

estingly, the simplified score yielded a similar performance as a Cox

regression or an RSF approach with both 5 and 24 predictors as

measured by Harrell's C‐index (median C‐index of 0.76, 95% CI:

0.73–0.80 in the validation cohort; Table S2).

We used the second test set of patients whose data were en-

tered into the registry after the initial data export (n = 682 patients,

“full test set” in Figure 2) as an independent prospective validation

group. To further reduce the impact of missing values on the esti-

mation of score performance, we additionally removed patients

from centers with >20% missing values for D‐dimer, the variable

with the most missing values (42%–47% missing). Centers that en-

rolled <5 patients were also excluded, which produced an additional

“limited test set” (n = 219 patients; Figure 2). This data set had few

missing values (CRP, 1%; serum urea, 2%; D‐dimer, 7% missing;

Table 2).

In both full and limited test sets, we confirmed the similar per-

formance of the developed scoring system, with a trend toward

higher AUC and C‐index values compared with the validation data set

(full test set, median AUC for 7 days: 0.83, 95% CI: 0.78–0.87; all

events: AUC 0.82, 95% CI: 0.78–0.86; limited test set, median AUC

for 7 days: 0.82, 95% CI, 0.73–0.90; all events: AUC 0.83, 95% CI,

0.76–0.90; Table 2; median C‐index for full test set: 0.80, 95% CI,

0.76–0.84; limited test set: 0.81, 95% CI: 0.74–0.87; Table S2).

Depending on the clinical application, different cut‐off values

may be considered. Therefore, we provide the predictive metrics of

the score, such as sensitivity, specificity, and positive and negative

predictive values (PPV and NPV) versus the cut‐off (Figure 3), as well

as the absolute event risks for specific score values (Figure S2).

Apart from the discriminative performance, we observed good

calibration with a slope ranging from 0.949 to 1.113 in the different

validation/test data sets (Figure S3). Interestingly, the Brier score was

tendentially smaller in the “full test” compared to the validation data

set (0.076–0.091 vs. 0.106–0.124, respectively; Figure S3), mirroring

the tendency toward better discriminative performance in this data

set (Tables 2 and S2). Calibration‐in‐the‐large for the “full test” set,

which yielded a lower event per case rate, was similar to that in the

validation set for an event within 7 days (intercept: −0.160

vs. −0.174, respectively), but lower for all events (intercept: −0.314

vs. 0.010, respectively, potentially reflecting the differences in event

rates between the cohorts).

One method for selecting a cut‐off is to optimize the modified

Youden's J.14 For the proposed score, the optimal J in the combined

validation and full test data set was at a cut‐off of ≥17, both for

predictions at 7 days after diagnosis and for all events. Applying this

cut‐off, on average, 69% of patients were predicted not to progress

to critical illness (Table 5, combined validation/test data set) at an

NPV of 95% for 7 days after diagnosis and an NPV of 94% for full

follow‐up. Patients with scores at or above this threshold had ~3‐fold

increased odds of experiencing an event, whereas patients below this

threshold had ~3‐fold decreased odds as measured by the respective

likelihood ratios (Table 5).

4 | DISCUSSION

We describe the derivation and validation of a COVID‐19 risk score

for the prediction of the combined endpoint of critical disease or

COVID‐19‐related death using five predictors. We derive the score in

an untargeted manner by selecting the most stable predictors among

over 100 available at baseline in the LEOSS registry in an RF ap-

proach and using regularized regression to calculate the coefficients.

A number of approaches for COVID‐19 risk stratification have

been reported (reviewed by Wynants et al.15); several had a similar

aim of predicting critical disease, as indicated by admission to the

ICU16–19 or death.17,18,20,21

The availability of factors such as hospital or ICU beds was limited

during the height of the pandemic with the resulting strain on healthcare

systems. Thus, difficulties in generalizing outcome predictions obtained

under these constraints in the currently available scores may arise. Some

important limiting factors must be considered. If hospital beds are limited,

the study population for inpatient analyses may overrepresent patients

with symptoms of exceptional severity and high‐risk groups, which may

limit generalizability. Similarly, if ICU resources are limited, the indications

for admission may be more conservative; a patient may be identified as

having a favorable outcome (not admitted to ICU) despite having fulfilled

the clinical criteria at some point.

TABLE 4 Calculation of the CAPS‐D score

Predictor Score Predictor Score

Age (year) CRP (mg/L)

≤25 ‐ <3 ‐

26–35 +1 3–29 +2

36–45 +2 30–69 +4

46–55 +3 70–119 +6

56–65 +4 120–179 +8

66–75 +5 180–249 +10

76–85 +6 >249 +12

>85 +7 Disease phase

D‐dimer (LN) Uncomplicated ‐

Normal ‐ Complicated +5

>1x, ≤2x +1 Urea (LN)

>2x, ≤5x +2 <Normal ‐

>5x, ≤10x +3 Normal +3

>10x, ≤20x +4 >1x, ≤2x +6

>20x +5 >2x +9

Maximum score 38

Abbreviations: CRP, C‐reactive protein; LN, laboratory normal range, “x”
indicates multiples of the upper limit of the normal range.
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Another important consideration is the generalizability of mor-

tality as an outcome in patient stratification. Case fatality rates differ

widely across countries,22 perhaps partly attributed to country‐

specific differences in the clinical management of COVID‐19 patients

and to resource availability during the first wave of the pandemic.4

This may limit generalizability and potentially require an update to

existing scores for mortality prediction,23 as care providers gain ex-

perience with COVID‐19 management and the strain on hospitals is

reduced.

A previous review on COVID‐19 prognosis scores came to an

overall negative assessment of the potential bias of these scores,

which discouraged their use.15 To our knowledge, a combination of

characteristics sets our approach apart from those available at the

time of writing making it potentially more generalizable for clinical

application: (a) the outcome was not defined in terms of a specific

treatment (or lack thereof, i.e., admission to the ICU), but based on

clinical features (a predefined “critical phase”); (b) the inclusion was

based on predefined clinical criteria (“uncomplicated” or “compli-

cated” phase), and (c) the use of a stability selection approach to

reduce the number of predictors, as discussed below. Additionally,

the majority (>90%) of patients enrolled in the LEOSS cohort were

from Germany,5 where the capacity of the healthcare system was not

generally exceeded during the first wave of the pandemic.24

To address bias in predictor selection, we used an untargeted

approach and resampling techniques (stability selection and cross‐

validated ridge regression) to internally test the predictions on the

derivation data set and then validate them on a withheld validation

cohort. Stability selection aids in ensuring the internal validity and

F IGURE 3 Summary of key characteristics of
the score for predicting the combined endpoint of
critical phase or COVID‐19‐related death (A)
within 7 days of the diagnosis or (B) at any time
point during follow‐up in the validation and test
cohorts. Color codes distinguish the different data
sets as indicated. Sensitivity and NPV are indicted
by continuous lines and the corresponding y axis
scaling on the left, while specificity and PPV are
indicated by dashed lines and y axis scaling on the
right side of the respective panels. Bottom panels
show cumulative fractions of patients meeting
respective score cut‐offs for the combined
validation and full test set (combined n = 1331).
For all panels, the median score (rounded to the
next whole integer) of the imputations was
calculated for patients with missing values
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adequate sample size for the derivation data set; too small a sample

will typically reduce variable stability and lead to fewer variables

being selected. Ridge regression shrinks the regression coefficients to

achieve improved predictions in a binomial model with internal

(cross‐) validation in the derivation data set.

We successfully confirmed the performance of our score in an

independent test set, consisting of the majority of COVID‐19 cases

diagnosed after the first wave of the pandemic.

An important contributor to the predictive performance of the

final score was the predefined clinical phase (“complicated” vs. “un-

complicated”), which summarizes the presence of manifest organ

involvement of the lungs, heart, or liver. Of note, some parameters of

the complicated phase, such as arterial partial pressure of oxygen

(PaO2) and pericardial effusion, were acquired by indication (e.g., if an

echocardiography or arterial blood gas analysis was performed, but

not routinely). Therefore, for phase assignment, these do not have to

be taken into account in the absence of an indication for the re-

spective measurement.

Serum urea, likely as a measure of kidney involvement, was an

important predictor and outperformed creatinine previously for

mortality.20,25 This predictor potentially summarizes both pre‐

existing chronic kidney disease as a risk factor (Williamson et al.26;

Figure S1B) and acute kidney injury (AKI) due to COVID‐19 as organ

involvement (also stable in RSF Boruta; Figure S1B). Different me-

chanisms of AKI in COVID‐19 patients have been observed, including

indirect involvement, such as cardiorenal syndrome, direct virus‐

induced injury, and immunological causes such as complement

activation.27,28 Differentiating the type of acute kidney involvement

in COVID‐19 patients may provide further insights and refine risk

stratification in future analyses.

Overall, our score, despite being limited to five predictors and

applying a point system, compared favorably to more complex pre-

diction models.17,20 We suggested a threshold for patients with an

increased risk of critical disease at ≥17 points, based on the modified

Youden's J. At this threshold, we obtained a positive likelihood ratio

of threefold while retaining a good negative predictive value of

94%–95%. Different cut‐offs may be considered based on the ap-

plication and local circumstances (e.g., different local ratios of critical

disease per case, and travel time to the next hospital in case of de-

terioration in an outpatient setting). The graphs provided in Figure 3

for sensitivity/specificity and PPV/NPV (based on the prevalence in

the validation and test data sets) as well as in Figure S2 for absolute

risk prediction may assist in determining such thresholds.

4.1 | Limitations

Our study had several limitations. The LEOSS registry is anonymized,

and continuous parameters are categorized, thus potentially reducing

the predictive performance of laboratory measures. As a real‐world

data set, given the heterogeneity of clinical procedures across cen-

ters, our analysis had to compensate for missing values. This typically

reduces the predictive performance of the respective variables and

the probability that they pass the stability selection criteria. There-

fore, some predictors may have been underestimated or missed.

Our analysis was limited to predicting disease progression with

information obtained at the time of the first positive SARS‐CoV‐2

testing (typically occurring during presentation at the medical facility),

without considering the dynamics of the predictors. The days since

the onset of symptoms (uncomplicated phase) to the diagnosis were

included as a variable; however, the stability criteria were not met. In

addition, there were differences between the validation and the test

data set, with the latter having a higher proportion of patients di-

agnosed in the uncomplicated phase (suggesting earlier diagnosis,

possibly due to expanded testing capacities after the first wave).

Nevertheless, the score exhibited similar or better performance in the

test set. This indirect evidence suggests that the application of our

score may be valid for time points after diagnosis (or initial pre-

sentation), such as if the patient's condition or laboratory values

deteriorate. Further studies are required to evaluate its suitability in

such settings.

No information on patient race/ethnicity was available for this

analysis, and it may be assumed that the distribution follows that in

the German population and represents largely Caucasians, which may

limit generalizability. External validation in different patient popula-

tions is therefore required, also with regard to socioeconomic factors

and local standards of care.

Extensive information on comorbid conditions for study partici-

pants was available. Although some passed the criteria in RSF sta-

bility selection, none passed the RF stability criteria. However, more

predictors (24 vs. 5) did not improve the overall predictive perfor-

mance. This suggests that the increased risk due to these co-

morbidities may already be reflected by the remaining five predictors

(collinearity), thereby relieving the need for inclusion in the score.

However, this may not hold true for less common comorbidities, as

the overall prediction improvement will be low for low prevalence

predictors, even if they strongly affect the patients suffering from

these comorbidities. A score based on the total population, as

TABLE 5 Score characteristics at the selected cut‐off of ≥17

Validation set
(7d/all)

Full test set
(7d/all)

Combined
(7d/all)

Sensitivity 0.73/0.73 0.74/0.72 0.74/0.73

Specificity 0.72/0.75 0.77/0.79 0.75/0.77

PPV 0.31/0.41 0.27/0.32 0.29/0.37

NPV 0.94/0.92 0.96/0.95 0.95/0.94

LR+ 2.6/2.9 3.3/3.3 2.9/3.1

LR− 0.37/0.36 0.34/0.36 0.35/0.36

%score < cut‐off 65% 72% 69%

Abbreviations: 7d, event (critical disease or COVID‐19‐related death)

within 7d of diagnosis; all, all events during follow‐up; LR+/−, positive/
negative likelihood ratio; NPV, negative predictive value; PPV, positive
predictive value; %score < cut‐off, percentage of patients with scores
below the cut‐off value (≤16).
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presented here, may underestimate high‐risk constellations due to

rare comorbidities, such as specific cancers or autoimmune diseases/

immunosuppressive treatments. To our knowledge, this limitation

applies to most, if not all, available COVID‐19 prognosis scores de-

rived from the total population. Unfortunately, these patients may

deteriorate rapidly. It is therefore important to establish the addi-

tional risk for such rare conditions in addition to the score used in

future studies.
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