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C ourse assignment is a very widespread problem in education and beyond. Typically, students have preferences for
bundles of course seats or course schedules over the week, but courses have limited capacity. This is an interesting

and frequent application of distributed scheduling, where payments cannot be used to implement the efficient allocation.
First-Come First-Served (FCFS) is simple and the most widely used assignment rule in practice, but it leads to inefficient
outcomes and envy in the allocation. It was recently shown that randomized economic mechanisms that do not require
monetary transfers can have attractive economic and computational properties, which were considered incompatible for
deterministic alternatives. We use a mixed-methods design including field and laboratory experiments, a survey, and sim-
ulations to analyze such randomized mechanisms empirically. Implementing randomized scheduling in the field also
required us to develop a solution to a new preference elicitation problem that is central to these mechanisms. The results
of our empirical work shed light on the advantages that randomized scheduling mechanisms have over FCFS in the field,
but also on the challenges. The resulting course assignment system was adopted permanently and is now used to solve
course assignment problems with more than 1700 students every year.
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1. Introduction

Scheduling is ubiquitous in organizations and often
involves the assignment of people with preferences to
scarce resources or tasks. Examples include the alloca-
tion of surgeons to hospital operating rooms, workers
to shifts or projects over time, or students to different
courses on a weekly schedule. There is a huge litera-
ture on optimization formulations and decision sup-
port tools for rostering, staffing, or scheduling, which
typically analyzes such problems from the point of
view of a single decision maker or planner (Sampson
2004, May et al. 2011, Jung et al. 2019, Ou et al. 2010).
Kreipl and Pinedo (2004) provide an excellent over-
view of the variety of scheduling problems that arises
in and across organizations. For most of these prob-
lems, peoples’ private preferences matter. Surgeons
have preferences for certain time slots for their opera-
tions (May et al. 2011), and workers have preferences
for times of the day and free time (Burke et al. 2004).
However, almost all of the scheduling literature

assumes complete information about the participants’
preferences. The focus is on the mathematical solution
of the resulting optimization problem, given that the
true preferences are available. This might be a too
strong assumption for most applications, but leads to
a fundamental question: How can participants be
incentivized to reveal their preferences truthfully?
Mechanism design investigates economic mecha-

nisms with a focus on incentive-compatibility. A
mechanism is incentive-compatible if every participant
can achieve the best outcome to themselves just by
acting according to their true preferences. If partici-
pants have dominant strategies to reveal preferences
truthfully, we talk about strategy-proofness. Auction
designs such as the Vickrey–Clarke–Groves (VCG)
auction have been shown to be strategy-proof for pay-
off-maximizing bidders (Clarke 1971, Groves 1973,
Vickrey 1961). The payment rule in the VCG mecha-
nism can be used to turn simple but also complex
resource allocation problems into a strategy-proof
and efficient economic mechanism, as long as the allo-
cation problems can be solved to optimality. A num-
ber of authors have dealt with mechanisms with
money in the domain of scheduling (Heydenreich
et al. 2007).
Unfortunately, important scheduling problems can-

not be addressed with auction mechanisms. First,
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monetary transfers are not allowed or desired. Sec-
ond, cardinal utility and interpersonal utility compar-
ison is too much to assume and we can only hope to
get ordinal preferences. Finally, most scheduling
problems are computationally hard and for realistic
problem sizes an exact solution might not be tractable.
However, the VCG mechanism requires exact solu-
tions to the allocation problem.
Course assignment is a case in point. Students have

preferences for different combinations of courses
across the week. It is considered unacceptable to have
students pay for course assignments in most environ-
ments, and we cannot expect from students the
assignment of cardinal utilities to course bundles,
only ordinal rankings of these bundles. Besides, the
allocation problem is equivalent to a multi-unit com-
binatorial auction as we show in Section 2.1, which is
known to be NP-hard (Lehmann et al. 2006). For lar-
ger problem sizes, such problems become intractable.
Currently, course schedules are often determined

based on First-Come First-Served procedures (FCFS).
As it is hard for students to influence whether they
are first, second, or third in a row, this procedure is
similar to random serial dictatorship (RSD), the only
widely used and well-studied mechanism that is
incentive-compatible and (Pareto) efficient. Students
log on to the registration system at some time and
select the best bundle of courses among the remaining
course seats according to their preferences. Unfortu-
nately, FCFS is not envy-free (Mas-Colell et al. 1995).
Envy-freeness is a central notion of fairness and
ensures that a student prefers the matching she is
faced with to that offered to other students. The fact
that FCFS leads to substantial envy in course schedul-
ing leads students to switch assignments until late in
the semester, and the resulting schedules for students
are undesirable because tutorials are scattered across
the week. This has been a growing concern at the
Technical University of Munich (TUM) due to
increasing student numbers over the past 10 years.
The theory of matching under preferences analyzes

mechanisms which set incentives for participants to
reveal their preferences truthfully without monetary
transfers. Since winning the Noble Prize in Market
Design in 2012, the field has drawn significant aca-
demic attention, with important applications in the
matching of residents to hospitals, in school choice, or
in kidney exchanges (Manlove 2013). Until recently,
this theory was largely restricted to problems where
participants have unit demand (e.g., a single course
seat). However, new approaches have been devel-
oped which allow for more complex preferences such
as preferences for packages of course seats or sched-
ules and other complex constraints (Budish et al.
2013, Kamada and Kojima 2017, Nguyen et al. 2016).
Interestingly, randomization and approximation

turned out to be powerful tools for designing new
mechanisms with good properties such as efficiency,
envy-freeness, and incentives for truthful reporting in
the presence of complex preferences (Nguyen et al.
2016). So far, such mechanisms have not been used in
the field and the empirical performance of random-
ized mechanisms has not been studied. We analyze
randomized approximation mechanisms in the con-
text of course scheduling in the field and in the lab.
Course assignment will be our focus in this study, but
we discuss alternative applications at the end of this
study.

1.1. Course Assignment and Distributed
Scheduling
While some universities use matching mechanisms
such as the deferred acceptance algorithm (Diebold et
al. 2014, Gale and Shapley 1962) or course bidding
(Krishna and Ünver 2008, Sönmez and Ünver 2010),
in most cases scarce course seats are allocated via
FCFS policies. Although many course assignment
problems are similar to the widely studied school
choice problems (Abdulkadiroğlu and Sönmez 2003,
Ashlagi and Shi 2016) with students having private
preferences for one out of many courses, often stu-
dents are interested getting combinations of courses
across the week, not just a seat in a single course.
Assigning schedules of courses has been referred to
as the combinatorial assignment problem (CAP) (Budish
2011).
The need to assign course schedules rather than

courses individually became apparent in an applica-
tion of matching with preferences at the TUM that we
will discuss. The TUM uses the deferred acceptance
algorithm for two-sided matching problems and RSD
for one-sided matching problems in situations where
only one out of a single course seat is required (i.e.,
unit demand). These algorithms are used to assign
students to seminars or practical courses, and every
semester about 1500 students are being centrally
matched.
However, in many situations, students’ preferences

do not only concern a single course. For example, in
the first three semesters of the study programs there
are large courses with hundreds of students. These
courses include a lecture and small tutor groups. Stu-
dents need to attend one tutor group for three to four
courses in each semester. These tutor groups should
not overlap and they should be adjacent to each other
such that students do not have a long commute for
each of the tutor groups individually. For example, a
student might want to have two tutorials in the morn-
ing and one after lunch on a particular day to reduce
his commute time, and he would have a strong prefer-
ence for this schedule over one where the tutorials are
scattered across the week. In any case, students have
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timely preferences over course schedules that need to
be considered, which makes it a combinatorial assign-
ment problem.
While FCFS is widespread, the Approximate Compet-

itive Equilibrium from Equal Incomes mechanism
(A-CEEI) provides an alternative, which was recently
introduced by Budish (2011). This mechanism was
implemented in the Course Match system and used at
the University of Pennsylvania (Budish et al. 2017). In
this system, students report their complete prefer-
ences over schedules of courses and the mechanism
assigns a budget of fake money to each student that
she can use to purchase packages (or schedules) of
courses. Then an optimization-based mechanism
computes approximate competitive equilibrium
prices, and the student is allocated her most preferred
bundle given the preferences, budgets, and prices. It
is well known that serial dictatorships are the only
strategy-proof and efficient mechanisms for multi-
unit and also combinatorial assignment problems
(Ehlers and Klaus 2003, Pápai 2001). Therefore,
A-CEEI has to relax design goals such as strategy-
proofness and envy-freeness to approximate notions.
Budish and Kessler (2021) summarize the results of
laboratory experiments.
The work was breaking new ground, but the

A-CEEI mechanism is also challenging. First, the
problem of computing the allocation problem in A-
CEEI is computationally very hard (PPAD-complete)
and the algorithms proposed might not scale to larger
problem sizes required in the field (Othman et al.
2016). The problems reported in Budish and Kessler
(2021) already take 48 hours to solve on a compute
cluster based on an elaborate implementation of the
mechanism using various types of heuristics to speed
up the solution time. There is no guarantee that some-
what larger problem sizes can still be solved. Second,
it is not guaranteed that a price vector and course allo-
cation exists that satisfies all capacity constraints,
which leads to clearing errors. Third, students might
not be able to rank-order an exponential set of bun-
dles, which is a well-known problem (aka. missing
bids problem) in the literature on combinatorial auc-
tions (with money) (Bichler and Goeree 2017). The lat-
ter is a general problem in CAP not restricted to A-
CEEI, which we also focus on in our paper.
Randomization can be a powerful tool in the design

of algorithms, but also in the design of economic
mechanisms. Nguyen et al. (2016) recently provided
two randomized mechanisms for one-sided matching
problems, one with cardinal and one with ordinal
preferences for bundles of objects. The mechanism for
ordinal preferences is a generalization of probabilistic
serial (Bogomolnaia and Moulin 2001), called Bun-
dled Probabilistic Serial (BPS). Nguyen et al. (2016)
show that this randomized mechanism is ordinally

efficient, envy-free, and weakly strategy-proof. These
appealing properties come at the expense of feasibil-
ity, but the constraint violations are limited by the size
of the packages. In course assignment problems, the
size of the packages is typically small (e.g., packages
with three to four tutor groups) compared to the
capacity of the courses or tutor groups (around 30
seats or more). Even if capacities of a tutor group are
violated by two or three seats, and this does not hap-
pen too often, tutors could cope with it by adding a
few more seats. The mechanism does not have a need
for prices or budgets, and only ordinal preferences
are required from the participants. Computationally,
the mechanism runs in polynomial time. Actually,
even large instances can be solved in minutes, which
makes the mechanism a practical alternative to FCFS
that is easy to implement for university administra-
tors with appropriate preference elicitation, as
described in this study.
These properties make BPS a very attractive and

fair (in the sense of envy-free) alternative to the wide-
spread FCFS or RSD mechanisms, which is of impor-
tance to operations management way beyond the
course allocation applications, which we focus on in
this study. In Section 6, we discuss alternative appli-
cations in production and operations management.

1.2. Contributions
We provide results of a mixed-methods study includ-
ing field and laboratory experiments, a survey, and
simulations to analyze the BPS mechanism in the con-
text of course assignment. The field experiments are
based on a first implementation of this randomized
scheduling mechanism in a large-scale course assign-
ment application. The evaluation of the field data
from two initial pilots (with 1438 and 1778 students,
respectively) led to the permanent adoption of the
new system, the first real-world implementation we
know of.
Preference elicitation is a central challenge in mech-

anisms for the combinatorial assignment problem,
which is why we discuss it in more detail. In contrast
to preference elicitation in multi-attribute decision
making (Stewart 1995), it is the combinatorial explo-
sion of possible packages of interest that leads to chal-
lenges for the decision maker. This problem has not
received much attention in the literature yet. We
introduce a new approach to rank the exponential set
of bundle preferences a priori based on a domain-
specific scoring function and elicit parameters of this
scoring function from the participants. The approach
is able to capture the specifics of the students’ prefer-
ences in our domain, as we show.
The empirical analysis of BPS is the focus of our

analysis. We ran two large-scale field experiments
and compare BPS to FCFS (i.e., a simulation as RSD).
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We focus on this comparison because RSD is the de
facto standard in all application domains for this type
of scheduling problem.1 We report the size of the
matchings (i.e., the number of students matched), the
average rank of the bundle that a student got, the
probability of being matched, the rank profile (i.e.,
how many students got their first, second, or third
ranked bundle), and the popularity of BPS among stu-
dents compared to FCFS (i.e., whether students
would prefer the BPS outcome to FCFS). These prop-
erties are of central importance for the choice of mech-
anisms and important to understand beyond the
theoretical properties of the mechanism.
The results of our field experiment show that BPS

actually dominates FCFS in all of the empirical met-
rics introduced earlier in our field experiments. While
the differences in most criteria are small, envy-free-
ness turns out to be an important advantage of BPS.
The level of envy that we find in FCFS is substantial
in spite of the limited complementarities in student
preferences, who are only interested in packages with
at most four tutor groups.
These results are based on the assumption that par-

ticipants submitted their preferences truthfully in the
field experiments. In contrast to FCFS, BPS is only
weakly strategy-proof and the preferences elicited
might not be the true preferences of bidders. We orga-
nized a laboratory experiment and conducted a sur-
vey with 80 students and found that students actually
hide their least preferred bundles. Fortunately, such
manipulation has little impact on the overall effi-
ciency of the outcome, as we found in simulations
where we even truncated the reports to only the top
10 or top 30 preferences of each student. The mecha-
nism is robust as long as the top preferences reported
reflect the true preferences of the students. The long
tail of the preference reports primarily serves the pur-
pose not to be assigned a random (and possibly very
low preference) bundle in situations where none of
the top preferences can be assigned.
In summary, our study shows that BPS is at least as

good as FCFS in all criteria, and it clearly dominates
FCFS as participants do not have envy in an expected
sense. This advantage has to be traded off with the
added complexity of preference elicitation and the
fact that participants might manipulate or make mis-
takes, a risk that is much reduced in FCFS.
Our work is positioned at the intersection of opera-

tions management and information systems (Kumar
et al. 2018). It is in line with a stream of research in
information systems on multi-unit and combinatorial
auctions, where monetary transfers can be used to
allocate goods efficiently (Adomavicius et al. 2012,
Bapna et al. 2010, Goetzendorff et al. 2015). In opera-
tions management, there is substantial recent litera-
ture on scheduling (Diamant et al. 2018, Lee et al.

2018, Yu et al. 2020, Zhou et al. 2021). Typically, this
research addresses mathematical models and algo-
rithms to compute optimal schedules. In some appli-
cations preferences of participants play a role on top
of hard scheduling constraints, but these preferences
are assumed to be given (Lemay et al. 2017). Our
paper contributes to this literature and discusses an
economic mechanism that elicits ordinal preferences
from the participants in a truthful manner.

2. Problem Definition and Design
Desiderata

We now define the combinatorial assignment prob-
lem (CAP) in the context of course assignment appli-
cations, desirable properties, and randomized
mechanisms.

2.1. Problem Definition
Assigning objects to agents with preferences but with-
out money is a fundamental problem referred to as as-
signment problem with preferences or one-sided matching
with preferences. We use the term assignment or match-
ing interchangeably. In course assignment, students
express ordinal preferences, which need to be consid-
ered in the assignment. A one-sided one-to-many course
assignment problem consists of a finite set of n students
(or agents) S and a finite set of m courses (or objects) C
with the maximum capacitiesq¼ðq1, q2, . . ., qmÞ.
In the combinatorial assignment problem in the context

of course allocation, every student i ∈ S has a com-
plete and transitive preference relation ⪰i∈P over all
possible subsets (or bundles) b ∈ B of packages.
Courses in our application are actually tutor groups
and each tutor group belongs to one of ‘ classes. Stu-
dents in our application can only select bundles with
at most one tutor group in each of these classes. For
example, a student might select a bundle with a
course seat in a tutor group for mathematics on Mon-
day at 1 pm, and another tutor group in software
engineering two hours later, but no additional tutor
group in mathematics or software engineering in this
bundle. As a result, the possible size of a bundle b is
size(b) ≤ ‘ ≪ m. The web interface takes care that stu-
dents only submit valid bundles, which have at most
one tutor group for each of the ‘ classes and a size less
than or equal to ‘. A preference profile
⪰ ¼ ð⪰1, . . ., ⪰nÞ∈PjSj is an n-tuple of preference rela-
tions. For most of the paper we will assume strict
preferences, but we discuss indifferences in the con-
clusions section of our paper. We will discuss differ-
ent ways to elicit these preferences ⪰i from all
participants.
We can model feasible assignments with linear con-

straints. Thereby, bundles are described with binary
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vectors b∈f0, 1gm, where bj ¼ 1 if a seat in course j is
included in bundle b. We define the size of b with
sizeðbÞ¼∑m

j¼1bj, the number of different courses
included in the bundle. Let xib be a binary variable
describing if bundle b is assigned to student i. The sup-
ply constraints make sure that the capacity of the courses
are not exceeded, and the demand constraints determine
that each student can win at most one bundle.

∑
i∈S, b∈B

xibbj ≤ qj8j∈C (supply)

∑
b∈B

xib ≤ 18i∈S (demand)

xib∈f0, 1g8i∈S, b∈B (binary)

A deterministic combinatorial assignment (determinis-
tic matching) is a mapping M ⊆ S × B of students S
and bundles B of courses C. M describes the set of all
deterministic matchings. A matching is feasible if it is
a feasible integer solution to the 2 and 1 constraints.
Random combinatorial assignments (random matchings)
are related to fractional assignments with 0≤ xib ≤ 1
and random assignment mechanisms can be used to
fractionally allocate bundles of course seats to stu-
dents. A lottery L is a probability distribution over fea-
sible deterministic matchings. A lottery of bundles
induces probability shares over these bundles that
satisfy 2 and 1 constraints. However, a fractional solu-
tion respecting 2 and 1 does not need to have a lottery
over deterministic assignments.
For assignment problems with single-unit demands

(size(b) = 1), the Birkhoff–von Neumann theorem
(Birkhoff 1946, Von Neumann 1953) says that every
fractional allocation can be written as a unique proba-
bility distribution over feasible deterministic assign-
ments. That is, any random assignment can be
implemented as a lottery over feasible deterministic
assignments, such that the expected outcome of this lot-
tery equals the random assignment. One can describe a
random assignment as a bistochastic matrix P, where
pic is the probability that student i is assigned to course
c. The Birkhoff–von Neumann theorem shows that
such a bistochastic matrix can be decomposed into a
convex combination of permutation matrices, which
describe feasible deterministic assignments.
Unfortunately, the Birkhoff–von Neumann theorem

fails when bundles b with size(b)>1 need to be
assigned. However, any fractional solution respecting
the 2 and 1 constraints can be implemented as a lot-
tery over integral allocations that violate the 1 con-
straints only by at most ‘−1 course seats (Nguyen
et al. 2016). This allows implementing the fractional
solution as a lottery and leads to a practical

mechanism with economic properties that would be
incompatible with a deterministic mechanism,
namely efficiency, envy-freeness, and strategy-proofness.
These design desiderata need to be refined for ran-
domized mechanisms because they can only be guar-
anteed in an expected sense.

2.2. Design Desiderata of Randomized
Mechanisms
Stochastic dominance (SD) is the key concept among
all of these definitions, as it provides a natural way to
compare random assignments. Let Δ describe the set
of all possible random matchings. With pi we refer to
the assignment of student i in the random matching p,
and denote with pib the probability that student i gets
allocated bundle b. We will omit the subscript i when
it is clear which student is meant. Given two random
assignments p, q ∈ Δ, student i SD-prefers p to q if for
every bundle b, the probability that p yields a bundle
at least as good as b is at least as large as the probabil-
ity that q yields a bundle at least as good as b. More
formally, a student i ∈ S SD-prefers an assignment
p ∈ Δ over q ∈ Δ, p⪰SD

i q, if

∑
b0⪰ib

pib0 ≥ ∑
b0⪰ib

qib0 , 8b∈B:

In other words, a student i prefers the random
assignment p to the random assignment q if pi
stochastically dominates qi. Note that ⪰SD is not a
complete relation. That is there might be assign-
ments p and q, which are not comparable with this
relation. First-order stochastic dominance (pi domi-
nates qi if pib ≥ qib for all b ∈ B) holds for all increas-
ing utility functions and implies second-order
stochastic dominance, which is defined on increas-
ing concave (risk-averse) utility functions. In other
words, risk-averse expected-utility maximizers pre-
fer a second-order stochastically dominant gamble
to a dominated one (Müller and Stoyan 2002).
One desirable property of matchings is (Pareto) effi-

ciency such that no student can be made better off
without making any other student worse off. A deter-
ministic matching M is efficient with respect to the stu-
dents if there is no other feasible matching M0 such
that M0ðiÞ⪰iMðiÞ for all students i ∈ S and M0ðiÞiMðiÞ
for some i ∈ S. One can generalize this to random
matchings and lotteries:

DEFINITION 1. (Efficiency). A random assignment p
∈ Δ is called

1. ex post efficient, if p can be implemented into a lot-
tery over Pareto efficient deterministic assignments.

2. ordinally efficient, if there exists no random assign-
ment q stochastically dominating p, that is,
∄q∈Δ : 8i∈S : q⪰SD

i p and 9i∈S : qSDi p.
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Ordinal efficiency comes from the Pareto ordering
induced by the stochastic dominance relations of indi-
vidual students. It can be shown that ordinal effi-
ciency implies ex post efficiency (Bogomolnaia and
Moulin 2001).
Fairness is another important design goal. A basic

notion of fairness for randomized assignments is the
equal treatment of equals, that is, students with identical
preferences receive identical (symmetric) random
allocations. A stronger property is envy-freeness.

DEFINITION 2. (Envy-Freeness). A random assignment p
∈ Δ is called

1. (strongly) SD-envy-free, if 8i, j∈S : pi⪰SD
i pj.

2. weakly SD-envy-free, if ∄i, j∈S : pj
SD
i pi.

SD-envy-freeness implies equal treatment of equals
and means that student i weakly SD-prefers the ran-
dom matching she is faced with to the random assign-
ment offered to any other student, that is, a student’s
allocation stochastically dominates the outcome of
every other student. For weak SD-envy freeness, it is
only demanded that no student’s allocation is stochas-
tically dominated by the allocation of another stu-
dent.
An assignment mechanism is an algorithm, which

computes a matching M for given preferences of stu-
dents. More formally, a deterministic assignment mecha-
nism is a function χ : PjSj !M that returns a feasible
matching M∈M of students to courses for every pref-
erence profile of the students.
A randomized assignment mechanism is a function

ψ : PjSj !Δ that returns a random matching p ∈ Δ.
The mechanism ψψ(≽)=p is ordinally efficient if it pro-
duces ordinally efficient allocations. We call ψψ ex
post Pareto efficient, if p can be decomposed as a convex
combination of Pareto optimal matchings. ψψ is sym-
metric, if for every pair of students i and j with ⪰i ¼⪰ j

also pi ¼ pj. This means that students that have the
same preference profile also have the same outcome
in expectation. A randomized mechanism is envy-free
if it always selects an envy-free matching.
An important property of a mechanism is strategy-

proofness. This means that there is no incentive for any
student not to submit her truthful preferences, no
matter which preferences the other students report.

DEFINITION 3. (Strategy-Proofness). Let ⪰ ∈ PjSj be the
(true) preference profile. A deterministic assignment
mechanism χ is strategy-proof if for every student i ∈ S
and ⪰0

i ∈ P we have χið⪰Þ⪰i χið⪰0
i, ⪰�iÞ.

Thereby, ⪰�i denotes the preference profile of all
agents i0∈S∖fig. It has been shown that participants in
strategy-proof mechanisms such as the Vickrey

auction do not necessarily bid truthfully in practice.
Due to this, there was a recent discussion about obvi-
ous strategy-proofness of extensive form games (Li
2017). Intuitively, a mechanism is obviously strategy-
proof if the dominant strategy is very easy to under-
stand. For randomized mechanisms, we need to adapt
the definition of strategy-proofness.

DEFINITION 4. (SD-Strategy-Proofness). Let ψ : PjSj !Δ
be a random assignment mechanism and ∈PjSj the
(true) preference profile.

1. ψψ is called (strongly) SD-strategy-proof if for

every student i ∈ S with ⪰0
i∈Pψð⪰Þ⪰SD

i ψð⪰i0, ⪰�iÞ.
2. ψψ is called weakly SD-strategy-proof if there

exists no ⪰0
i∈P for some student i ∈ S such that

ψð⪰0
i, ⪰�iÞ⪰SD

i ψð⪰Þ.

In other words, an ordinal mechanism is strategy-
proof if for any agent, the allocation resulting from
misreporting is weakly stochastically dominated by
the allocation from truthful reporting, with respect to
an agent’s true preferences. Weak strategy-proofness
means that there may not be any student i, who
strictly prefers ψð⪰0

i, ⪰�iÞ over the truthful outcome,
but there may be students i who neither prefer
ψð⪰0

i, ⪰�iÞ nor ψψ(≽). We will omit the prefix SD for
brevity in the following.

3. Randomized Mechanisms

We now discuss different randomized mechanisms
for the combinatorial allocation problem that satisfy
design desiderata discussed in the previous section.
Much is known about assignment problems with sin-
gle-unit demand. RSD selects a permutation of the
agents uniformly at random and then sequentially
allows agents to pick their favorite course among the
remaining ones. Gibbard (1977) showed that random
dictatorship is the only anonymous and symmetric
(i.e., equals are treated equally), strongly SD-strategy-
proof, and ex post efficient assignment rule when
preferences are strict. Pycia and Troyan (2018) proved
that RSD is the unique mechanism that is obviously
strategy-proof, efficient, and symmetric in mecha-
nisms without monetary transfers. A version of RSD
is explored in simulations in the context of course
matching Li (2020).
However, RSD is not always ordinally efficient,

only ex post efficient, which is somewhat weaker
(Bogomolnaia and Moulin 2001). Zhou (1990) actually
showed that no random mechanism for assigning
objects to agents can satisfy strong notions of strat-
egy-proofness, ordinal efficiency, and symmetry
simultaneously with more than three objects and
agents. So, we also cannot hope for these properties in
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combinatorial assignment problems. RSD can also be
applied to the combinatorial assignment problem.
The Bundled Random Serial Dictatorship (BRSD)
orders the students randomly and assigns the most
preferred bundle which is still available to each stu-
dent in this order. Although the package preferences
take some toll on the runtime, it is still very fast.
First-Come First-Served (FCFS) can be interpreted

as a serial dictatorship. Students log in during a cer-
tain registration time and then reserve the most pre-
ferred bundle of courses that is still available.
Although the arrival process is not uniform at ran-
dom, students have little control over who arrives
first, which can be seen as a reasonable approximation
of BRSD. While there is a certain time when the regis-
tration starts, hundreds of students log in simultane-
ously to get course seats and it is almost random who
arrives first. We simulate FCFS via BRSD and run the
algorithm repeatedly to get estimates for performance
metrics of FCFS in expectation.
Probabilistic Serial (PS) (Bogomolnaia and Moulin

2001) is a mechanism for the assignment problem
with unit demand, which has drawn considerable
attention in the literature. PS produces an envy-free
assignment with respect to the reported unit-demand
preferences, and it is ordinally efficient, but it is only
weakly SD-strategy-proof. The algorithm is such that
agents simultaneously “eat” fractions of individual
objects leading to a fractional allocation. As an exam-
ple, suppose two students both have the highest pri-
ority for a course with only a single seat. The agents
have equal rights and a uniform eating speed of 1
unit per minute. After 0.5 minutes, each have one
half of this course seat (a probability share) before
they start eating their next preferred item from those
that are still left. If a student would prefer a proba-
bility share of a different good rather than the one
she is eating at a point in time, then that preferred
good must have already been eaten away. Bundled
Probabilistic Serial (BPS) by Nguyen et al. (2016) is a
generalization of PS to the CAP also computing frac-
tional solutions. The BPS mechanism is also ordinally
efficient, envy-free, and weakly strategy-proof if
preferences are strict.
Informally, in BPS all agents eat their most pre-

ferred bundle in the time interval [0, 1] simultane-
ously with the same speed as long as all included
objects are available. As soon as one object is
exhausted, every bundle containing this object is
deleted and the agents continue eating the next avail-
able bundle in their preference list. The duration with
which every bundle was eaten by an agent specifies
the probability for assigning this bundle to this agent.
Then, in the polynomial time lottery algorithm, one
computes at most d+1 integral points, the convex hull
of which includes or is arbitrarily close to the

fractional solution x� which results from BPS. The lot-
tery algorithm then returns a lottery over these d+1
integral vectors, which is close to x� in expectation.
Finally, one of the deterministic outcomes is drawn
from the lottery. Such a deterministic outcome over-
allocates each course by at most ‘−1 seats. This means
the two constraints are fulfilled and only the one con-
straints are relaxed (Nguyen et al. 2016). Overall, the
BPS mechanism is ordinally efficient, SD-envy-free,
weakly SD-strategy-proof, and under preferences that
demand at most k objects can be implemented so that
it over-allocates each good by at most k−1 units
(Nguyen et al. 2016).

4. Preference Elicitation

The BPS mechanism described in the previous section
and its properties require that the designer has access
to a strict preference relation ≽i for all students and
bundles b ∈ B. Note that with q course seats in m
courses, jBj ¼ ðqþ1Þm. Naturally, preference elicita-
tion becomes a central problem in the implementation
of BPS in the field. In what follows, we first introduce
the environment and the problem for students before
we discuss different approaches to elicit their prefer-
ences.

4.1. Overall Process and Background
The Department of Computer Science at the TUM has
been using stable matching mechanisms for the
assignment of students (with unit-demand prefer-
ences) to individual course seats in seminars and lab-
oratories since 2014. The system provides a web-
based user interface and every semester almost 1500
students are matched to laboratory courses or semi-
nars via the deferred acceptance algorithm for two-
sided matching.
First, the students specify their preferences for a set

of courses in the upcoming semester until a certain
deadline. Then the students are assigned to courses
via the deferred acceptance algorithm and informed
about their assignment via e-mail. Since the resulting
outcomes of the deferred acceptance algorithm are
envy-free, attempts to change to another course are
very limited. Only a few students drop out before the
semester starts and overall the assignment procedure
has proven very stable in practice. The software did
not support combinatorial assignments until 2017.
Therefore, the web-based software was extended with
BPS, the lottery mechanism for decomposing frac-
tional solutions, and BRSD, which were described in
the last section.
The overall process for the combinatorial assign-

ment followed that of the standard matching process
(with unit demand) that was in use since 2014. A few
numbers from the initial field experiments should
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provide a background and information about the
scale of the application. During the summer term in
2017, 1439 students in their second semester of com-
puter science and information systems participated in
the matching and they could choose tutorial groups
from several courses, including linear algebra, algo-
rithms, software engineering, and operations
research. A computer science student could have
preferences for up to 5760(=10�24�24) bundles2 and an
information systems student could have preferences
for up to 5184(=9�24�24) bundles.3 A computer science
student in the winter term could have even more than
700,000 different bundle preferences.4 To rank order
such a long list of preferences, students need decision
support.

4.2. Automated Ranking of Packages
A naive approach to preference elicitation would be
to let the students rank bundles on their own by
choosing the time slots they want to have in their
preference list. It would take a significant amount of
time to rank even a small subset, and the students
would only be able to rank order a few course bun-
dles leading to a substantial missing bids problem. At
most, one could expect students to rank their top 10
or 20 preferences manually. However, there is no
guarantee that they actually receive one of their top
ranked bundle. Without a ranking of all preferences,
students face the risk of either getting a random
assignment or no assignment at all. The problem how
to elicit ordinal preferences for an exponential set of
course bundles has not received much attention, and
we are only aware of one related paper by Budish and
Kessler (2021) that we will compare with in Sec-
tion 4.3.
We propose a new approach to address the missing

bids problem. This approach is based on a domain-
specific scoring function. After discussions with stu-
dents, it turned out that a few obvious aspects matter
for students. The students’ preferences for the tutori-
als mainly concern their commute and the possibility
of having free, large contiguous blocks of time (e.g., a
day or a half-day) that they can plan for other activi-
ties (e.g., a part-time job). When they register for tuto-
rials, they do not know the name of the tutor, so only
timely preferences matter. In larger cities, the time
that students spend in commuting is significant and
students want to minimize the commute time. Also,
long waiting times between courses are perceived as a
waste of time, as it is often hard for them to work pro-
ductively in several one- or two-hour breaks. The
minimal length of the break and recovery time dif-
fered, however, as well as the maximum number of
tutorials a student wanted to have per day or the
times of the day available on each day. After the inter-
views, it was clear that after eliciting only a few

parameters such as the minimal length of the breaks,
the acceptable times of each day, and the maximum
number of tutorials per day, one could define a scor-
ing function that ranks all possible packages automat-
ically. Students could inspect the resulting ranking,
revise the parameters of the scoring rule or individual
ranking results.
Figure 1 shows screen shots of the overall process.

First, students choose the lectures and tutorials they
are interested in. The selected lectures will be consid-
ered in the bundle generation as constraints, that is, if
a time slot of a tutorial for one lecture overlaps with
the time of another selected lecture, then it will no
longer be considered in order to allow students to
participate in the lecture. In the second step, the stu-
dent marks available time ranges in a weekly schedule
for each day (see Figure A.4 in Appendix A of the
online companion). The day is partitioned into week-
days and time blocks of 30 minutes from 8:00 AM to
8:30 PM. If a tutorial is selected, all time slots of this
tutorial will be highlighted with a specific color. Thus,
students can see when the tutorials and lectures of
interest take place.
A student can set a minimal amount of time for a

lunch break and a minimal amount of time between
two events (default value is 15 minutes). We also
allow students to provide weights {1, . . ., 5} for the
different days. That is, the students can express
preferences over the days. With this information
from students, we parameterize a scoring function
to rank order the different combinations of course
bundles.
An algorithm first generates bundles that satisfy all

constraints and then ranks them based on the scoring
functions. Bundles are generated one by one for all
students. Finding the bundles that do not violate con-
straints of the students (e.g., lectures to be attended)
can be cast as a constraint satisfaction problem. After
the feasible bundles are generated, the bundles are
scored. The score considers

1. How many days a student needs to come to
the university per week,

2. The preference ordering over the days,
3. The total time a student has to stay at the uni-

versity each day, and
4. The length of the breaks between courses.

The score for a bundle b of courses across the week
is the sum of the daily score (score(b, day)) for all
weekdays d. The daily score is then computed as

scoreðb, dayÞ¼ wðb, dayÞ
spðb, dayÞ �fðspðb, dayÞþbrðb, dayÞ

� �
�prioðdayÞ: (4)

This score is scaled between 0 and 27.5 at a maxi-
mum and it considers how well the day is utilized
with courses based on the preference parameters
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Figure 1 Process to Rank-Order Packages [Color figure can be viewed at wileyonlinelibrary.com]

Bichler and Merting: Randomized Scheduling Mechanisms

3548
Production and Operations Management 30(10), pp. 3540–3559, © 2021 The Authors. Production and Operations Management published by

Wiley Periodicals LLC on behalf of Production and Operations Management Society

www.wileyonlinelibrary.com


specified by the student. The time spent at the univer-
sity per day sp(b, day) is considered relative to the
time a student attends courses on that day (w(b, day)).
These courses include tutorials and lectures. The ratio
is used to weigh the score for a day (f(sp(b, day))).
Hence, a day where students do not spend more time
in breaks than the minimum number of minutes spec-
ified by the student maximizes the score. The function
f(�) assigns points according to the number of hours
spent at the university per day.
A second component in the daily score (score(b,

day)) is the lunch break. Based on the student’s prefer-
ences, for example, a 1-hour break would be consid-
ered best and therefore would lead to the highest
score for the lunch break. Longer times or shorter
times would lead to lower scores. The daily scores are
then multiplied by the priority of the day [1..5]. If stu-
dents do not have to visit the university at day d, they
get a fixed score of 30 for this day. The overall score of
a bundle b is the sum of the score(b, d) for all week-
days. As a result of this scoring rule, the more days
the student can stay at home, the higher is the score of
this bundle. As a simplified example, if a student had
to come to the university on three different days to
attend one course per day, this bundle would get a
score of less than 25, but if he could attend all courses
on a single day with minimal breaks, this bundle will
get an overall score of more than 80 (for these three
days). In other words, the scoring rule will place bun-
dles that use a minimal number of days (ideally the
most preferred days) with only a few breaks on top of
the preference list. This would minimize the commute
time and maximize the contiguous time a student can
devote to learning or other activities. If the breaks
between courses grow larger or courses take place on
different or more days, this decreases the score. Ties
are not impossible but almost never occur such that
the algorithm typically generates a strict ranking of
the feasible packages. Note that we only need an ordi-
nal ranking of the course bundles at the end and the
very score of a bundle does not matter. Also, the
scores are not compared across students, only the
ordinal ranking of the bundles.
Students enter their preferences into a database in

parallel or sequentially during the preference elicita-
tion phase and before the BPS algorithm is executed.
After one of the students enters his preferences and
generates a ranking of bundles, he might not be
happy with the resulting rank order of bundles. In
this case, he can manually rearrange the bundles in
the ranking or he can go back and score again with
different parameters (see Figure A.5 in the online
companion). The first page shows the 30 top-ranked
bundles. Note that ≈90% of the students received one
of their top 10 ranked packages and only very few
students received a package with a rank larger than

30. So, if a student manually inspects and confirms
the ranking of the first 10–30 packages, this covers the
most important quantile of the overall ranking list.
This exercise can be done in a few minutes based on
the generated ranking.
Of course, there are different ways of how such a

scoring function can be specified. Obviously, any
scoring function is only a heuristic helping students
determine the strict ranking which is required by BPS,
and any attempt to score and rank a large set of bun-
dles can also be challenged (see discussion in Sec-
tion 5.6). We have conducted extensive tests with
students to understand how well the resulting rank-
ing reflects their preferences. The feedback in these
tests and that of the survey organized after the match-
ings was very positive, emphasizing the flexibility
that it provides in specifying preferences.
The details of the scoring function are specific to

our course assignment application. We argue, how-
ever, that one can find a reasonable scoring rule to
help participants rank order in most application
domains. For example, when assigning packages of
time slots to carriers in retail logistics, these packages
could simply be rank-ordered by computing the
round-trip times for the various acceptable tours and
rank by shortest time (Karaenke et al. 2019). Timely
preferences, such as in our application, could also
play a role in allocating surgeons to operating rooms,
etc.

4.3. Challenges of Course-Level Scoring
Ranking an exponential set of packages is a general
issue in course assignment problems, and one might
ask for alternative methods. The only related work by
Budish et al. (2017) that we are aware of will be dis-
cussed next. Budish et al. (2017) describes the prefer-
ence elicitation used at the Wharton School of
Business for the A-CEEI mechanism. Students could
report cardinal item values on a scale of 1 to 100 for
any course they were interested in taking. In addition,
they could report adjustments for pairs of courses,
which assigned an additional value to schedules that
had both course sections together. Courses were then
scored and transformed into an ordinal ranking over
feasible schedules. The authors argue that they felt
that “adding more ways to express non-additive pref-
erences would make the language too complicated.”
Wharton also provided a decision support tool listing
the 10 most-preferred bundles, which allowed stu-
dents to inspect top-ranked schedules and modify the
cardinal values. The authors write that “if the prefer-
ence language given to students is not sufficiently rich
. . . then Course Match may not yield desirable
results.” Assigning course-level scores is fast and sim-
ple, but two problems make this method challenging
to apply in our domain.
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First, the ranking is sensitive to minor changes in
the weights, which is a well-known issue in multi-cri-
teria decision making with additive value functions.
Evaluation is characterized by a substantial degree
of random error, and the amount of error tends to
increase as the decision maker attempts to consider
an increasing number of attributes (or courses in
our case) (Bowman 1963, Fischer 1972). Difficulties
in the calibration of scores for each course can lead
to substantial differences in the resulting ranking. It
is very hard to precisely calibrate such weights in
general.
Second, and more importantly, significant non-

linearities arise due to the timely preferences of
students in the assignment of tutorials in our
course assignment application, making it impossi-
ble to describe the preferences via a course-level
utility function as proposed by Budish et al. (2017).
Even if three tutorials get a high number of points,
this does not mean that their combination is prefer-
able by a student as these tutorials might be on
different days or have long breaks in between. To
see this, we translated the ranking of packages into
a set of inequalities with weights (w) as variables.
Following revealed preference theory (Mas-Colell et
al. 1995), we use these inequalities to understand
whether there is any set of weights that would
allow describing the ranking using a utility func-
tion ∑

i∈C

biwiþ ∑
i, j∈C

j> i

bibjwij. The function r(b) describes

the rank of a bundle, while b is again the binary
parameter vector with each component bi∈f0, 1g
showing whether a course i ∈ C is part of a pack-
age or not. The objective function minimizes the
sum of error variables ɛ in (REV). If there is any
set of weights that could reflect the ranking of
packages in our experiments without these error
variables, the resulting optimal objective value
would be zero. For every violation of a constraint
one has to increase the respective error variable to
a positive value.
We had preferences ranking 4000–12,000 bundles

for the courses of the winter term. None of these set-
tings could be solved with objective value zero, that
is, the generated preference lists are not representable
with a linear model with adjustment-terms used by
Budish et al. (2017). Even if it was possible to find
such a vector of course-level weights, it would proba-
bly be very difficult to parameterize by students.
Overall, eliciting preferences for hundreds of bundles
is a challenging problem and needs to be tailored to
the application, but the quality of any mechanism for
combinatorial allocation problems depends heavily
on this input, which is the reason why we discussed
this issue in more depth.

Min
s:t:

errðɛÞ¼ ∑
b∈B

ɛbþ ∑
i, j∈C

j> i

ɛij ðREVÞ

∑
i∈C

biwiþ ∑
i, j∈C

j> i

bibjwijþ ɛb ≥ ∑
i∈C

b0iwiþ ∑
i, j∈C

j> i

b0ib
0
jwij8b, b0 : rðb0Þ ¼ rðbÞþ1

wiþwjþwijþ ɛij ≥ 0 8i, j∈C, j> i

wi∈ ½0, 1� 8i∈C

wij ≥ �2 8i, j∈C, j> i

ɛb, ɛij ≥ 0 8i, j∈C, j> i, b∈B:

5. Empirical Evaluation

We now provide the results of our empirical mixed-
methods study. First, we discuss the empirical metrics
used. Second, we provide results from our field
experiments. We take the preferences elicited for BPS
in the field, compute another matching with BRSD
with these preferences, and compare the various met-
rics for BPS and BRSD. As indicated in Section 3,
BRSD is used as a proxy for the results of FCFS.
Although BPS is weakly SD-strategy-proof, we do not
know from the field experiment whether students
indeed report their true preferences. Therefore, we
organized a laboratory experiment with induced pref-
erences. This laboratory experiment was comple-
mented by a survey where we explicitly asked
students how well they were able to specify their pref-
erences and whether they were intentionally manipu-
lating their induced preferences or not. The results of
both the laboratory experiments and the survey indi-
cate that students truncate their least preferred pack-
ages, that is, the ones including days for which they
have a very low preference. In Subsection 5.5, we
report results of simulations, where we truncate the
original preferences to the top 10, 20, or 30 only, in
order to understand how robust the efficiency results
are against manipulation or imprecisions in the pref-
erences of higher ranks.

5.1. Metrics
In this subsection, we introduce empirical metrics that
allow us to compare BPS and BRSD in our experi-
ments. The size and the average or median rank can
be used as efficiency metrics. The size of a matching
simply describes the number of matched agents. The
average rank is only meaningful in combination with
the size of the matching because a smaller matching
could easily have a smaller average rank. We report
the average rank because it has been used as a metric
to gauge the difference in welfare of matching algo-
rithms in Budish et al. (2017) and Abdulkadiroğlu
et al. (2009), two of the few experimental papers on
matching mechanisms.
The profile contains more information as it com-

pares how many students were (fractionally) assigned
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to their first choice, how many to their second choice,
and so on. The profile of two matchings is not
straightforward to compare. We wanted to compare
multiple profiles based on a single metric, and
decided to use a metric similar to the area under the
curve of a receiver operating characteristic in signal pro-
cessing (Hanley and McNeil 1982) which was also
used in Diebold and Bichler (2017). The area under the
profile curve ratio (AUPCR) is the ratio of the area
under the profile curve (AUPC) and the total area
(TA) and is scaled between 0 and 100%, where the
AUPC describes the integral below the profile curve.
The AUPCR up to a specific rank n is equal to the
probability that a matching mechanism will match a
randomly chosen student higher than his n-th prefer-
ence.

DEFINITION 5. (AUPCR). Let C be the possible courses
with c ∈ C and Q be the sum of all capacities, regarding
the students i ∈ S the AUPCR is defined as follows:

TAðMÞ ¼ jCj �minfjSj, Qg

AUPCðMÞ ¼ ∑
jCj

r¼1

jfði, cÞ∈Mjrankði, cÞ≤ rgj

AUPCRðMÞ ¼AUPCðMÞ
TAðMÞ :

Aside from efficiency, fairness, and strategy-proof-
ness, popularity was raised as a design goal. An
assignment is called popular if there is no other
assignment that is preferred by a majority of the
agents. Popular deterministic assignments might not
always exist, but popular random assignments exist
and can be computed in polynomial time (Kavitha
et al. 2011). Unfortunately, Brandt et al. (2017) have
proven that popularity is incompatible with very
weak notions of strategy-proofness and envy-free-
ness; however, it is interesting to understand the pop-
ularity of BPS vs. BRSD. In our empirical evaluation,
we analyze whether BPS or FCFS are more popular.
To measure popularity, we first define the function
ϕiðb, b0Þ : B�B!f�1, 0g associated with the prefer-
ence relations:

ϕiðb, b0Þ ¼
þ1 ifbib

0

�1 ifb0ib
0 else:

8><
>:

DEFINITION 6. (Popularity). A random assignment
p ∈ Δ is more popular than an assignment q, denoted
p▲q, if pop (p, q) > 0 with

popðp, qÞ¼ ∑
i∈S

∑
b, b0∈B

pib �qib0 �ϕiðb, b0Þ:

A random assignment p is popular, if ∄q ∈ Δ: q▲p.

5.2. Field Experiments
The overall process of the field experiment and how
students submitted preferences was explained in the
Section 4. Table 1 provides the main evaluation met-
rics, not only for the initial two field experiments in
the summer term 2017 and the winter term 2017/18,
but also those for the subsequent two years in which
the combinatorial assignment was carried out. Taking
the preferences for bundles of tutor groups elicited
for the BPS allows for a comparison with BRSD on
equal footing. To really compare the result of BPS and
BRSD, we actually would have to run the BRSD for all
permutations of the students. A single run is clearly
not sufficient, as we need to compare probability dis-
tributions. Note that computing probabilities of alter-
natives in RSD explicitly is a computationally very
challenging (#P-complete) problem (Aziz et al. 2013).
Therefore, we ran BRSD 1000 to 1,000,000 times with
the same preferences but random permutations of the
order of students and derived estimates for the differ-
ent metrics. Since these results are very close, one can
assume that one million runs of BRSD generate a
good approximation to the (real) induced random
matching.5 Details on the BPS lottery of the summer-
term instances can be found in the online companion
in Appendix B. We discuss these metrics in more
detail.
The computation times were negligible for BRSD

(0.007 seconds per run). BPS required 0.12 seconds
computation time with an additional 6 minutes for
the lottery algorithm in the summer term 17, for
example. This shows that BPS is a practical technique
even for large assignment problems, which can be run
on standard computers. In contrast, solving determin-
istic scheduling problems of this size as integer prob-
lems would typically be intractable. Also, the A-CEEI
mechanism and the Course Match system that is used
for related applications is computationally very
demanding (Budish et al. 2017).
In terms of average rank, average size, and the prob-

ability of being matched to one of the first 100 ranks,
BPS is better than BRSD in all four instances, but not
by much. The AUPCR is sometimes slightly higher for
BPS, sometimes for BRSD. In addition, Table 2 reports
the probability of being matched to one of the top 10
ranks and the AUPC in percentage for BPS and BRSD.
Differences in these metrics are minimal.
Our field experiments confirm the theoretical result

that BPS is (strongly) envy-free (see Definition 2) as can
be seen by the respective entries in Table 1. In contrast,
BRSD is neither weakly nor strongly envy-free. In the
summer term 17, 1067 students do not fulfill the envy-
freeness condition (see Definition 2), from which 374
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students do not even fulfill the weak envy-freeness
condition (see BRSD in Table 1). Similarly, for the win-
ter term 1200, students do not SD-prefer their outcome
over the outcomes of every other student, and 454 of
those students even prefer an outcome of another stu-
dent. We see the same pattern in later years.
A positive popularity score as described in Defini-

tion 1 means that BPS is more popular than the BRSD
outcome and the score for BPS is 2.97 for the summer
term 17 and 3.09 for the winter term 17/18, for exam-
ple. In all four instances, BPS is more popular than
BRSD. For the data from the winter term 17/18 740,
students prefer BPS to BRSD, while 125 students pre-
fer BRSD to BPS. 871 students are indifferent. The
syntax for the SD-preference is the number of students
preferring (BPS|BRSD). It shows that BPS is preferable
to BRSD according to SD-preference.

5.3. Laboratory Experiments
In order to study whether students submit their pref-
erences truthfully, we report results of a laboratory
experiment. The experiment was conducted from
June 8, 2020 until June 16, 2020 at the TUM. The par-
ticipants were able to participate in the experiment
online within a period of nine days. In total, 91 stu-
dents participated. Eleven students either did not
complete the matching or the survey, which is why
they were excluded, resulting in 80 participants that
were evaluated. The students were all studying com-
puter science or information systems, which is repre-
sentative for the type of students that usually
participate.
After having sent out the link to the experiment

platform with an individualized authorization code,
participants could start the experiment by logging

Table 1 Summary Statistics for all Instances

Summer term 17 Winter term 17/18 Winter term 18/19 Winter term 19/20

Metric BPS BRSD BPS BRSD BPS BRSD BPS BRSD

Exp. rank 2.202 2.208 1.97 1.98 2.55 2.57 1.5670 1.5697
Exp. size 1086.7 1085.8 1602.9 1600.9 1549.1 1548.7 1414.90 1413.5
Prob. match(%,top 100) 76.79 76.73 92.33 92.14 92.04 92.02 94.39 94.30
AUPCR (%) 74.74 75.08 88.94 88.81 88.06 89.56 92.38 92.28
Weak envy 0 374 0 454 0 482 0 617
Strong envy 0 1067 0 1200 0 1262 0 1439
Popularity 2.97 3.09 1.80 2.35
SD-preference (669|94) (740|125) (772|92) (1019|35)

Table 2 Rank Profiles for all Instances

Rank 1 2 3 4 5 6 7 8 9 10

Summer Term 2017 – BPS
Prob match(%) 54.18 5.69 4.54 2.02 1.51 0.94 1.17 0.94 1.14 0.61
AUPC in (%) 54.18 59.87 64.41 66.44 67.94 68.88 70.04 70.98 72.13 72.74
Summer Term 2017 – BRSD
Prob match(%) 53.97 5.73 4.54 2.05 1.53 0.93 1.18 0.95 1.15 0.61
AUPC in (%) 53.97 59.70 64.24 66.29 67.82 68.75 69.93 70.88 72.03 72.64
Winter Term 17/18 – BPS
Prob match(%) 73.58 7.07 3.40 1.66 1.04 0.70 0.47 0.45 0.37 0.30
AUPC in (%) 73.58 80.66 84.05 85.71 86.76 87.46 87.92 88.37 88.74 89.04
Winter Term 17/18 – BRSD
Prob match(%) 73.45 7.05 3.38 1.67 1.04 0.70 0.49 0.44 0.36 0.31
AUPC in (%) 73.45 80.50 83.88 85.55 86.59 87.30 87.78 88.22 88.58 88.89
Winter Term 18/19 – BPS
Prob match(%) 67.84 7.94 4.24 2.28 1.77 0.82 0.76 0.71 0.40 0.55
AUPC in (%) 67.84 75.78 80.01 82.29 84.06 84.87 85.63 86.33 86.73 87.27
Winter Term 18/19 – BRSD
Prob match(%) 67.73 7.97 4.25 2.28 1.77 0.82 0.76 0.69 0.40 0.55
AUPC in (%) 67.73 75.70 79.95 82.23 84.00 84.82 85.58 86.27 86.67 87.22
Winter Term 19/20 – BPS
Prob match(%) 75.33 8.87 3.66 1.74 1.17 0.73 0.49 0.45 0.22 0.29
AUPC in (%) 75.33 84.20 87.86 89.60 90.77 91.50 91.99 92.43 62.65 92.94
Winter Term 19/20 – BRSD
Prob match(%) 75.19 8.88 3.67 1.76 1.18 0.73 0.49 0.45 0.22 0.29
AUPC in (%) 75.19 84.07 87.74 89.50 90.67 91.40 91.89 92.33 92.55 92.84
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into the experiment’s platform. The platform we used
for this experiment was provided by soscisurvey.6
We ensured an anonymous treatment of participants’
data at all times. Furthermore, the authorization code,
allocated by the platform, allowed for an anonymous
processing as well as stopping and continuation of a
student’s progress in the experiment if necessary. At
the beginning, participants could download instruc-
tions, which explained the experimental setting, the
procedure, and rules of the experiment (see online
companion D). On top of that, watching an additional
instruction video was mandatory for being able to
continue the experiment. In the video, we gave an
overview of the instructions and explained the func-
tionality of the matching tool.
Before students could start working with the

matching tool, they had to take a quiz so that we
could make sure that they understood the environ-
ment and the task. After they participated, they had
to fill in a survey, which we discuss in the next sub-
section. Budish and Kessler (2021) argue that, at least
in the setting of preferences over course topics, no
monetary incentive is needed because most partici-
pants will take decisions as seriously as in a real set-
ting. However, monetary incentives increase the
external validity of the experiment, which is why we
introduced a winning lottery. The reward mechanism
was such that, the better the outcome of the matching
fit the induced ranking of bundles, the higher the par-
ticipant’s chances of winning in a lottery of five times
40 EUR. This mitigated the risk of participants sub-
mitting random input.
The experimental design was simple. The only

treatment in our experiments was the variation in
preference profiles (see Figure 2). These were mod-
eled after preference profiles we found in field data.
In the analysis, we were only interested in the degree
to which students reported their induced preferences
truthfully.
The results of the experiment showed a clear pat-

tern. Students often omitted the least preferred day in
her induced preferences when reporting, as can be
seen in Table 3. By least preferred day, we define the
day or days in the preference profile with the lowest
preference weight.
Aside from omitting a day altogether, students

could also reduce the number of hours acceptable on
a day. We state that a day is de-emphasized by choos-
ing a time interval of less or equal than 2 hours,
although a student would be available all day. Table 4
shows those days that were either omitted or de-em-
phasized. These simple descriptive statistics show a
very clear profile that students truncate their reports
and do not report low preferences. These findings
were supported by a survey we took among the stu-
dents participating in the laboratory experiment.

5.4. Survey Results
The survey was taken right after students submitted
their preferences but before they learned the results
such that the results do not influence the survey
results in Table 5. The responses indicate that the
majority of the students responding found the system
easy to use and that they could express their prefer-
ences well. While 76.2% of the participants had no dif-
ficulties selecting time intervals in the weekly
schedule (Question 1), 59.9% found it easy to rear-
range the ten pre-ranked bundles (Question 2). Also,
69.9% of participants found their given preferences to
be realistic (Question 6). This is in accordance to the
finding that 73.7% of the respondents could infer their
preferred tutorials from their given preferences
(Question 7). A high proportion of participants
(86.2%) could express their day priorities with ease
(Question 9).
As the given preferences were clearly visible on the

same scale as the day priorities, 91.2% of the partici-
pants indicated that they expressed their preferences
in the matching tool in accordance with the given day
priorities (Question 10). We furthermore see that
98.7% of participants perceive their preference report-
ing as being truthful (Question 11). However, 27.5%
of the students report that they were hiding the least
preferred time slots (Question 13). According to stu-
dents’ self-reporting, manipulation is mainly done by
de-emphasizing least preferred days in the input of
time slots (Question 14).

5.5. Sensitivity Analysis with Truncated
Preferences
The fact that a part of the students indicate that they
did not report low preferences truthfully is concern-
ing. In FCFS, students only provide their single best
package at the point in time when they log in. This is
simple, intuitive, and obviously strategy-proof. This
property has to be traded off against the level of
envy in FCFS. So, the question is how truncation of
the reports (omitting the least preferred bundles)
impacts the overall results. We ran simulations
where we took into account only the top 10, 20, or 30
bundles in the preference relations of all partici-
pants. This can be considered an extreme case of
truncation. In our notation, BPS-10 reports the statis-
tics for those instances, taking into account only the
top 10 preferences. The resulting summary statistics
can be found in Tables 6 and 7. Table C.8 in
Appendix C in the online companion shows the rank
profiles with and without truncation for all
instances.
Interestingly, the impact of truncation is low.

This is due to the fact that most students could be
matched to one of their top 30 preferences. If we
take into account only the top 10 preferences, the
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expected rank improves at the expense of the num-
ber of people matched. In other words, if a student
is not assigned at all, this leads to less competition
for the highly ranked bundles and to higher aver-
age ranks overall. With respect to popularity, more
students prefer the results with truncated valua-
tions. Except from WS19/20 BPS-30, students SD-
prefer the version with truncation of the
preferences to that with all preferences taken into
account.

5.6. Discussion
In theory, the comparison between BRSD (as a proxy
for FCFS) and BPS is clear: BRSD is obviously strat-
egy-proof, efficient, but not envy-free. In contrast, BPS
is weakly SD-strategy-proof, SD-envy-free, and ordi-
nally efficient. An empirical analysis allows us to con-
sider various empirical metrics to measure the quality
of the matching beyond efficiency. Also, lab experi-
ments help us understanding whether participants
are indeed truthful in a mechanism that is weakly SD-
strategy-proof.

Overall, we find that BPS dominates BRSD on most
empirical metrics in our empirical evaluation (such as
rank, size, and probability of being matched), but that
the differences are very small. For the profile curves
(AUPCR) there is no clear winner, which is interesting
given the fact that only a small number of preferences
per student are considered via BRSD.
There are a number of reasons that help in explain-

ing the close performance of BPS and BRSD in these
metrics. First, Che and Kojima (2010) have found that
RSD and probabilistic serial become equivalent when
the market becomes large, that is, the random assign-
ments in these mechanisms converge as the number
of copies of each object type grows and the ineffi-
ciency of RSD becomes small. Our empirical results
suggest that differences might also be small in large
combinatorial assignment markets with limited com-
plementarities.
Second, ordinal preferences do not allow express-

ing the intensity of preferences. Suppose there are
two students who both prefer course c1 to c2, each
having one course seat only. No matter who gets

Figure 2 Perference Profiles with Weights for Individual Days of the Week. A Higher Weight Means a Higher Preference
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course c1, the average rank and size of the matching
as well as the profile will be the same even though
one student might desperately want to attend c1,
while the second student only has a mild preference
for c1. Without cardinal information about the inten-
sity of a preference the differences in aggregate met-
rics can be small.
Third, an earlier comparison of FCFS with a

deferred acceptance algorithm by Diebold et al.
(2014) in environments with unit demand for a single
course seat also showed that FCFS yielded surpris-
ingly good results. While the average rank of FCFS
was worse, the size of the matching resulting from

FCFS was significantly larger compared to that from
the deferred acceptance algorithm. For the combinato-
rial assignment problem, BPS also had a slightly lar-
ger average size. It is important to understand these
trade-offs for applications of matching in practice.
A central theme of this study is that care needs to

be taken in how preferences are elicited in any form
of combinatorial assignment. Although our sensitivity
analysis shows that the top preferences matter most,
oversimplified scoring functions might not reflect the
real preferences of participants and lead to bad out-
comes for individuals. Our laboratory experiments
provide empirical evidence that students attempt to

Table 3 Number of Omitted Days Per Preference Profile in Total. Boxed Entries Mark the Least Preferred Day in the Respective Profile. The Right
Column Denotes the Number of Students who were Assigned this Profile

Preference profile Monday Tuesday Wednesday Thursday Friday Participants

1 0 0 0 1 3 12
2 4 0 0 0 0 12
3 1 0 0 0 4 13
4 1 0 0 0 1 12
5 0 0 5 0 0 10
6 5 0 0 0 1 11
7 0 0 1 0 0 10

Table 4 Number of de-emphasized and omitted days per preference profile in total. Boxed entries mark the least preferred day in the respective
profile. The right column denotes the number of students who got this profile assigned

Preference Profile Monday Tuesday Wednesday Thursday Friday Participants

1 0 0 0 1 6 12
2 7 6 0 0 0 12
3 1 0 0 0 11 13
4 7 2 0 0 6 12
5 0 6 8 0 0 10
6 9 4 0 0 4 11
7 1 3 2 0 0 10

Table 5 Survey Results, Values in % for “Strongly Disagree” (1) to “Strongly Agree” (5)

Strongly disagree Strongly agree Don’t know
Question 1 2 3 4 5

1 I had no problem in selecting my time intervals in the weekly schedule. 2.5 10.0 11.2 31.2 45.0 0.0
2 The ranking of the generated bundles was easy. 1.2 12.5 25.0 31.2 28.7 1.2
3 The instructions on the matching system were sufficient. 2.5 2.5 11.2 32.5 51.2 0.0
4 I found the matching tool too complicated to understand. 43.7 41.2 8.7 6.2 0.0 0.0
5 I already had experience in using the matching tool before the experiment. 3.7 3.7 10.0 82.5 0.0 0.0
6 I felt like my day priorities were realistic. 1.2 15.0 13.7 36.2 33.7 0.0
7 I could easily infer my preferred tutorials from my day priorities. 1.2 7.5 15.0 38.7 35.0 2.5
8 The generated sets (bundles) of tutorials met my expectations. 2.5 17.5 8.7 36.2 35.0 0.0
9 I was able to express my day priorities well in the matching tool. 1.2 3.7 8.7 30.0 56.2 0.0
10 I was expressing my preferences in accordance with my day priorities. 1.2 1.2 6.2 15.0 76.2 0.0
11 I indicated my preferences truthfully. 0.0 0.0 1.2 15.0 83.7 0.0
12 I was strategically hiding some of my most preferred time slots. 75.0 18.7 3.7 1.2 1.2 0.0
13 I was strategically hiding some of my least preferred time slots. 47.5 13.7 11.2 15.0 12.5 0.0
14 I was not selecting time slots for days which had the lowest priority in my

day priorities.
22.5 21.2 7.5 10.0 33.7 5.0

Bichler and Merting: Randomized Scheduling Mechanisms
Production and Operations Management 30(10), pp. 3540–3559, © 2021 The Authors. Production and Operations Management published by

Wiley Periodicals LLC on behalf of Production and Operations Management Society 3555



provide their preferences truthfully. However, they
might make mistakes and they frequently truncate
their least preferred bundles. In contrast, preference
elicitation for FCFS is as simple as possible.

6. Conclusions and Managerial
Implications

Many organizations have distributed scheduling
problems where ordinal and private preferences of
participants matter. Designing incentive-compatible,
efficient, and envy-free mechanisms for such prob-
lems without monetary transfers appeared impossible
until recently. RSD is the de-facto standard for such
types of scheduling problems, but it is not envy-free,
which often leads to concerns. Bundled Probabilistic
Serial uses approximation and randomization and
satisfies randomized notions of efficiency, strategy-
proofness, and envy-freeness.
We have studied randomized approximation

mechanisms in the context of course assignments,
which allowed us to run large-scaled field experi-
ments. The informational requirements of BPS
about student preferences are challenging, because
a strict rank-ordering of exponentially many bun-
dles is needed. As in many scheduling applica-
tions, student preferences in our course assignment
application are about times of the week. We intro-
duced a way to rank order the many possible
schedules based on a few parameters. The feedback
of students was that this automated ranking met

their preferences well and we argue that this is a
good way to address the missing bids problem in
similar applications. Of course, other domains
might have different requirements and the way
how preferences are elicited needs to reflect the
domain specifics. We argue that for most domains
it will be possible to define a good scoring function
that helps participants finding an initial ranking.
Together with the possibility to manually rearrange
the top ranked bundles, this is a practically viable
approach to address the preference elicitation prob-
lem in the combinatorial assignment problem with
time-dependent and ordinal preferences.
Although BPS provides a powerful new alternative

to scheduling problems with private preferences,
there are trade-offs. First, in contrast to FCFS, the BPS
mechanism is not obviously strategy-proof and a part
of the students in the survey already indicated that
they hid their least preferred time slots strategically.
This might partly be due to the fact that students were
unexperienced with this new mechanism. Second, the
assumption of strict preferences is strong in the pres-
ence of exponentially many bundles. Unfortunately,
extending PS or BPS to preferences with ties is not
without loss. On the one hand, Katta and Sethuraman
(2006) extended PS to preferences with indifferences
and showed that it is not possible for any mechanism
to find an envy-free, ordinally efficient assignment
that satisfies even weak strategy-proofness, as in the
strict preference domain. On the other hand, with
indifferences and random tie-breaking efficiency

Table 6 Summary Statistics for all Truncated Instances SS17 and WS 17/18

Summer term 17 Winter term 17/18

BPS BPS-10 BPS-20 BPS-30 BPS BPS-10 BPS-20 BPS-30

Exp. rank 2.20 1.96 2.13 2.14 1.97 1.51 1.76 1.90
Exp. size 1086.7 1077.8 1085.6 1085.8 1602.9 1581.8 1595.2 1600.3
Prob. match(%,top 100) 76.79 76.17 76.72 76.74 92.33 91.17 91.89 92.19
AUPCR (%) 74.74 74.34 74.66 74.65 88.94 89.18 89.17 89.02
Popularity 0.52 −0.26 0.18 −8.49 −3.11 −0.68
SD-preference (76|737) (199|489) (177|468) (31|1258) (53|1126) (295|660)

Table 7 Summary Statistics for all Truncated Instances WS 18/19 and WS 19/20

Winter term 18/19 Winter term 19/20

Metric BPS BPS-10 BPS-20 BPS-30 BPS BPS-10 BPS-20 BPS-30

Exp. rank 2.55 1.58 1.98 2.19 1.57 1.41 1.52 1.57
Exp. size 1549.1 1513.6 1530.9 1537.8 1414.9 1406.2 1412.4 1414.8
Prob. match(%,top 100) 92.04 89.93 90.96 91.37 94.39 93.81 94.22 94.39
AUPCR (%) 88.06 88.27 88.34 88.26 92.38 91.74 92.36 92.38
Popularity −10.45 −2.22 −1.07 −1.28 0.11 0.24
SD-preference (45|1091) (102|919) (141|861) (86|701) (300|396) (455|271)
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cannot be guaranteed. Our preference elicitation tech-
nique generated a strict and complete ranking of
course bundles based on a few input parameters and
is one way to address these issues.
Implementing and testing new artifacts in organi-

zations is challenging and we are grateful for the
opportunity to run a large-scale field experiment at
the TUM. Such pilots are very valuable but also hard
to organize in most organizations. This is particu-
larly true for a non-standard mechanism such as
BPS, which involves optimization and randomiza-
tion. We report the results of field experiments with
Bundled Probabilistic Serial for course scheduling,
and show that it performs well on a number of crite-
ria including average rank, average size, and the
probability of a matching. The matching based on
BPS is also more popular than the one resulting from
FCFS on average based on the preferences submitted
for BPS.
Most importantly, however, the level of envy in

FCFS is significant, even though the size of the pack-
ages that can be submitted is limited to the number of
classes (three to four groups per package) in our
course assignment application. This has actually
always led to complaints from students in the past.
Many students wanted to change course seats with
peers, which led to administrative overhead and com-
plaints about bad course schedules for students.
These complaints vanished after the BPS mechanism
was adopted. The BPS mechanism is now an accepted
tool among students to deal with the assignment of
multiple tutor groups, and its introduction is consid-
ered a success as expressed by a letter from the Head
of Academic Programs.
The study has implications for the broader field

of production and operations management because
many other applications share similar characteris-
tics: participants have private and ordinal prefer-
ences for packages of objects, and monetary
transfers are either not allowed or not desired. For
example, in a recent paper an auction mechanism
was used for the allocation of time slots at ware-
houses to carriers in retail logistics (Karaenke et al.
2019). Congestion at loading ramps is a significant
problem in practice and it deteriorates the efficiency
in retail logistics. It is well known that this is due to
a lack of coordination among carriers, who all plan
their routes independently. BPS could provide an
alternative to FCFS that is envy-free and does not
require monetary transfers. The problem is related
to the literature on scheduling truck arrivals (Ou
et al. 2010), and more generally to timetabling or
conference scheduling (Sampson 2004). Similarly,
various types of workforce scheduling share similar
characteristics. This includes the assignment of
nurses or doctors to shifts or crews to flights of

airlines. In summary, if envy-freeness matters, the
elegant BPS mechanism has a number of attractive
properties, which otherwise suffer from computa-
tional hardness of the allocation problem and strate-
gic manipulation. The results of this study provide
useful insights to other organizations that want to
adopt distributed scheduling mechanisms in lieu of
simple FCFS heuristics.
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Notes

1A-CEEI and the Course Match implementation provide
an intricate solution with years of development effort and
various heuristics used in the backend. Due to the compu-
tational cost of the mechanism and the implementation
challenges, in our comparison we focus on the widely
used RSD mechanism.
2Consisting of tutorials for the courses: linear algebra,
algorithms, software engineering.
3Consisting of tutorials for the courses: operations
research, algorithms, software engineering.
4The computer science students needed tutorials from all
four classes (<22�25�26�52).
5For brevity, we omit the number of runs in the following
and only report the results for one million runs of BRSD.
6https://www.soscisurvey.de/
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