
1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890 ‘’“”

The Science of Making Torque from Wind (TORQUE 2018) IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1037 (2018) 042006  doi :10.1088/1742-6596/1037/4/042006

Gravo-aeroelastic scaling of very large wind turbines

to wind tunnel size

H Canet1, P Bortolotti1, CL Bottasso1,2
1 Wind Energy Institute, Technische Universität München, Garching, Germany
2 Department of Aerospace Science and Technology, Politecnico di Milano, Milano, Italy

E-mail: carlo.bottasso@tum.de

Abstract. This work focuses on the design of wind turbine rotors of wind tunnel size that
match the aerodynamic (for both rotor and wake) and aeroelastic behavior of multi-MW
machines, including gravitational effects. The approach follows the classical definition of length,
time and mass scaling ratios to respect nondimensional scaling parameters. The sub-scale model
is obtained by a complete aero-structural re-design procedure, considering airfoils with similar
polars at sub-scale Reynolds and the use of adequate materials. The approach is applied to the
design of a sub-scale wind tunnel rotor that mimics the behavior of a 10 MW wind turbine.
Results illustrate the main characteristics of the proposed method as well as its limitations,
highlighting the challenges posed by representing a gravo-aeroelastic system at a much reduced
scale.

1. Introduction
Significant research efforts are currently being devoted to the development of very large wind
turbines. Motivated by the reduction in cost of energy, the size of rotors has indeed dramatically
increased in the last decades, and it is expected to grow even more in the next generation of wind
turbines. Nonetheless, the design of very large machines remains a challenging activity, especially
because of the currently only limited understanding of the aeroelastic and gravitational effects
on very flexible rotors and towers. In addition, there is a need for validated numerical models
that are capable of simulating such complex systems with the necessary level of confidence.
Indeed, high-quality full-scale experimental data is difficult, expensive and sometimes altogether
impossible to obtain.

In this scenario, scaled models offer a viable mean to overcome these hurdles. Complementary
to full-scale experiments, tests performed on scaled models can provide relevant experimental
data, obtained in the controlled environment of a lab, capturing selected aspects of the behavior
of the full-scale system. This can be achieved at costs that are orders of magnitude lower than
the ones associated with full-scale field testing. In addition, some measurements are possible
in a wind tunnel that are not achievable at full-scale with the same level of accuracy or in the
same conditions. Of course, these advantages come at a price, as it is typically impossible to
match exactly all physical processes that take place at full-scale using a scaled model. Therefore,
scaled models have to be designed with specific goals in mind, and they will inevitably suffer
from limitations.

Aeroelastic sub-scale models of wind tunnel size have been developed for years, but the
scaling of gravitational effects has so far been typically neglected, as the enforcement of other
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quantities was prioritized. However, the larger the rotors, the more prevalent the effects of
gravity, which should therefore be included in the scaling procedures. This research work aims at
closing this gap, proposing an aeroelastic scaling design methodology that includes gravitational
effects. A modern automated multi-disciplinary design procedure is used to support and ease
the implementation of the proposed scaling approach.

The paper is divided into three main sections. The first is devoted to the description of
the theoretical background from which the scaling laws are derived. These conditions are then
formulated as design drivers within an aero-structural design procedure, which is described in
Sect. 2.2. In the last section, the described approach is applied to design a 2.8 meter sub-scale
rotor reproducing the aerodynamic and dynamic behavior of a 10 MW offshore wind turbine.

2. Design methodology
2.1. Scaling laws
The starting point for the formulation of scaling laws lies on seven nondimensional numbers,
which are obtained from the application of Buckingham Π Theorem to the equations governing
the dynamic behavior of wind turbines [1]. One can classify these quantities into two categories.
The first corresponds to the numbers that can be simultaneously enforced in the sub-scale model.
These include the tip-speed ratio (TSR, describing the kinematics of the rotor aerodynamics),
the nondimensional time, the nondimensional natural frequencies (which determine the ratio
of elastic to inertial forces, in relation to the rotor speed), and the Lock number (which sets
the relation between aerodynamic and inertial forces). The second category includes instead
quantities that cannot be simultaneously guaranteed in the sub-scale model, when testing in air
in standard wind tunnels. These include the Reynolds number (representing the ratio of inertial
to viscous forces), the Mach number (which describes the flow compressibility), and the Froude
number (defined as the ratio of aerodynamic to gravitational forces). For modern very large
machines, gravitational loads play an important role, and the correct representation of their
effects requires the enforcement of the Froude number in the sub-scale model. This however
typically generates a mismatch in the Reynolds and Mach numbers. While the latter may be
neglected —at least for today’s typical tip speeds—, the former is of much greater importance
and leads to marked changes in the aerodynamic performance of the blades.

Enforcing these matching conditions allows for the derivation of the scaling ratios that define
the sub-scale characteristics. The length scaling ratio ηl between sub-scale (Rs) and full-
scale (Rf ) rotor radius is defined as

ηl =
Rs

Rf
. (1)

Enforcing the Froude number, one obtains the following relation between sub-scale (Ts) and
full-scale (Tf ) time:

ηt =
Ts
Tf

=
√
ηl. (2)

Finally, the mass scaling ratio ηm, expressed as sub-scale mass (Ms) over full-scale mass (Mf ),
is obtained from the matching of the Lock number and writes

ηm =
Ms

Mf
= ηl

3. (3)

An overview of these scaling conditions, as well as their implications in the definition of the
time and mass scaling ratios, is given in Fig. 1.
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Figure 1: Scaling laws for very large wind turbines and their implications on the scaling ratios
(E indicates Young modulus).

The simplest possible scaling strategy consists in a straightforward zooming-down of the full-
scale machine, where all system characteristics are scaled according to the aforementioned scaling
ratios [2]. When aiming at a wind tunnel model size, this approach is however typically difficult
to implement. First, the effect of the Reynolds mismatch between the two scales would lead to
very significant deviations in the aerodynamic performance of the airfoils. Furthermore, zooming
down the structural characteristics would imply extremely thin components made of materials
with peculiar and possibly unrealistic mechanical properties. Therefore, an alternative approach
must be taken, based on a complete aero-structural re-design.

2.2. Aero-structural re-design
An aero-structural re-design approach is here proposed by formulating two separate optimization
problems. Both are implemented in the wind turbine design tool Cp-Max [3, 4]. This code is
wrapped around the high-fidelity aeroservoelastic multibody simulation model Cp-Lambda (Code
for Performance, Loads, Aeroelasticity by Multi-Body Dynamic Analysis) [5], which performs
the necessary aeroelastic calculations. The design tool is coupled to the 2D finite-element cross
sectional code ANBA, which implements the theory of Giavotto et al. [6]. This tool provides the
structural and inertial characteristics of each beam section, serving as input for the multibody
model.

The optimization algorithms implemented within Cp-Max perform the complete design of a
wind turbine, including its control laws. The present sub-scale design activity represents a special
application of these general design procedures. In particular, the present case demands the
sequential solution of the blade aerodynamic and structural optimization problems, as illustrated
in Fig. 2. Both procedures employ a Sequential Quadratic Programming (SQP) optimization
algorithm, in which gradients are computed by means of finite differences.

The first design problem focuses on the definition of a scaled shape that mimics the
aerodynamic behavior of the full-scale system. This is obtained by ensuring a number of
conditions. First, the two rotors should have the same TSR for optimal power coefficient.
Second, they should have the same spanwise circulation distribution, which ensures the same
shed vorticity in the wake. Third, the airfoils should have the same efficiencies. Unfortunately,
this last requirement cannot be met in general, because of the very different sectional Reynolds
numbers of the two rotors. To approximate this condition, the scaled rotor is equipped with
airfoils that differ from the ones of the full-scale machine, but that have similar (or as similar as
possible) polars at their lower operating Reynolds. Based on these requirements, the scaled rotor
is designed by optimizing its maximum power coefficient at the desired TSR, while satisfying
a target spanwise distribution of the circulation. The resulting shape will be in general quite
different from the one of the full-scale rotor, but matches as well as possible its aerodynamic
characteristics.

In the second optimization, given the aerodynamic shape defined in the first problem, the
blade structure is re-designed to mimic the full-scale aeroelastic behavior, considering available
materials and feasible geometries. The structural solution is obtained by designing a blade that
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has the same placement of natural frequencies with respect to the rotor speed, as well as the
same Lock number of the full-scale one.
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Figure 2: Overview of the proposed aero-structural re-design process.

The structural configuration of the scaled blade can be very different from the one of the
full-scale machine. In the present work, we consider a solid blade —in contrast to the typical
thin-walled structures used at full-scale—, made with a lightweight foamy material, two spar
caps and a thin layer of glue that ensures a smooth finish to the surface. The modeling of the
cross sections in ANBA is based on quadrilateral planar finite elements, where a meshing procedure
implemented in Matlab guarantees simultaneously an accurate representation of the geometry
and good aspect ratios for the elements. The geometry is parameterized in terms of spanwise
shape functions and associated degrees of freedom. In turn, these structural parameters are
computed by solving a design problem that minimizes the difference between the scaled and
full-scale mass and flapwise stiffness distributions, while satisfying the frequency placement and
Lock number constraints.

3. Scaling of a 10 MW rotor to wind tunnel size
The proposed scaling laws and design method are used to develop a sub-scale rotor of 2.8 meters
based on the INNWIND.EU 10 MW wind turbine [7]. The length, time and mass scaling ratios
for this problem are reported in Table 1, together with the scaling factors for other key quan-
tities. The scaling of all system characteristics only depends on the ratio between the full- and
the sub-scale rotor diameters. The re-designed sub-scale machine will have a different external
shape and internal configuration, under the enforcement of the scaled parameters reported in
Table 2. However, the matching of shape and configuration are irrelevant, as long as the signif-
icant scaling conditions are preserved between the two models.
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Table 1: Scaling factors derived from the scaling laws.

Quantity Scaling factor

Length nl 1:63.68
Time

√
nl 1:7.98

Mass nl
3 1:258214

Rotor Speed
√
nl 1:7.98

Wind Speed
√
nl 1:7.98

Reynolds nl
3/2 1:508.16

Stiffness nl
5 1:32360

Table 2: Full-scale and sub-scale model characteristics.

Data Full-scale Sub-scale

Rotor diameter 178.3 m 2.8 m
Hub height 119 m 1.87 m
Total blade mass 42 t 0.165 kg
TSR for max CP 7.2 7.2
Rotor speed 8.9 rpm 71.1 rpm
First flapwise frequency 0.57 Hz 4.52 Hz
First edgewise frequency 0.72 Hz 5.77 Hz

3.1. Aerodynamic re-design
The airfoil chosen for the aerodynamic re-design is the RG14 [8], whose shape is compared to the
full-scale tip airfoil in Fig. 3a. This airfoil has already been successfully adopted in the context of
the INNWIND.EU project [9] to design the rigid rotor of a floating wind turbine. The goal there
was to represent the aerodynamic characteristics of the same 10 MW wind turbine considered
here.

Although less efficient than the full-scale tip airfoil (Fig. 3a), the RG14 airfoil is found to
approximate the polars of the full-scale blade sufficiently well at the low Reynolds generated in
the wind tunnel, as shown in Fig. 3c and 3d. The airfoil is used from 20% blade span to the
tip. The blade root cylinder smoothly deforms into the RG14 airfoil in the blade inner region,
resulting in the relative thickness distribution shown in Fig. 4b.

The blade chord and twist distributions are optimized to reproduce the aerodynamic
performance of the full-scale machine as closely as possible. A comparison between the initial and
the re-designed blade shapes and nondimensional spanwise circulation distributions are reported
in Fig. 4. The enforcement of circulation matching —which is quite good except at 0.22% span—
is the active driver for the outer blade shape. In terms of performance, the re-designed blade
can only approximate the full-scale one, mostly because of the unavoidable differences in the
airfoil behavior at the much reduced Reynolds number.

3.2. Structural re-design
The structural re-design of the blade starts from the work of Campagnolo et al. [10], where an
aeroelastically scaled blade for wind tunnel testing was designed and manufactured. For that
blade, the time scaling ratio was not driven by the enforcement of the Froude number, but it
was based on a trade-off between Reynolds mismatch and an excessive control bandwith. This
implied a lower time scaling ratio than the present one, which in turn led to a significantly
stiffer blade. In addition, the blade was designed to mirror the full-scale aeroelastic behavior, by
achieving a realistic distribution of the inertial and stiffness properties, as well as ensuring the
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Figure 3: Comparison of aerodynamic characteristics for the full-scale model tip airfoil FFA-
W3-241 (Re=1E7) and the low-Reynolds airfoil RG14 (Re=5E4).

same placement of natural frequencies with respect to the rotor speed between the two models.
The blade structure adopted a solid sectional layout filled with a foam core made of Rohacell,
which was machined to provide the outer blade shape. Two unidirectional carbon spar caps
provided the required flapwise stiffness distribution. The surface smoothness was obtained by
a very thin layer of skin made of glue. The blade re-design was able to replicate the placement
of the lowest four rotor natural frequencies and it approximated the mass and flapwise stiffness
distributions, but it was stiffer than the full-scale reference in the edgewise direction.

Despite the differences in scaling laws, and thus in desired aeroelastic behavior, the layout
developed in Ref. [10] was found to be a suitable solution even in the present case. The selection
of materials is a critical aspect of the problem, and the mechanical properties listed in the
Cambridge University Materials Data Book [11] are used to guide the material selection process
for spar caps and core. A Rigid Polymer Foam (LD) [11] is chosen as filler, because of its
relatively high stiffness and lightness. For the spar caps, thermoplastic polymers are found to
be the most suitable family of materials. Even though their stiffness to density ratio is much
lower than materials traditionally used for spar caps, such as CFRP, they are well suited to this
application. Moreover, the use of thermoplastics allows for alternative and easier manufacturing
methods, leading to a higher flexibility in the spar cap design. From this family, polypropilene
(PP) is chosen because of its low stiffness modulus. Finally, the external shell is covered by a
very thin layer of the epoxy structural adhesive Scotch Weld AF 32 [12].

The structural design procedure implemented in Cp-Max [4] and described in Sect. 2.2 is
then used to optimize the spar caps thickness and width and ensure the matching of all desired
scaling constraints. The problem formulation also includes manufacturability constraints for
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Figure 4: Comparisons of external shape and nondimensional circulation in Region 2, for the
full- and the sub-scale models.

the components, establishing a 1 mm minimum thickness of the spar caps. The constraint
satisfaction tolerance is set at 5%. Figure 5 reports the results of the optimization. The desired
matching of mass and flapwise stiffness is achieved, except at blade root. The requirement
on edgewise stiffness is instead not met due to the large chord of the sub-scale model. The
placement of the first flapwise and edgewise frequencies with respect to the rotor speed is also
successfully achieved. However, the corrected placement of higher frequencies is not exactly met.
Finally, small disparities in mass distribution introduce a slight mismatch in the Lock number.

4. Conclusions
This work has proposed an approach to develop sub-scale models of wind tunnel size to mimic
the gravo-aeroelastic behavior of large wind turbines. The formulation was applied to the design
of a 2.8 meter sub-scale model of a 10 MW machine.

The aero-structural re-design approach is able to obtain the desired results, although subject
to limitations. Specifically, the replication of the power coefficient vs. TSR behavior is limited
by the availability of suitable low-Reynolds airfoils. Furthermore, the structural re-design is
constrained by the manufacturing process and by the mechanical properties of existing materials.
As a result, only a partial matching of the inertial and elastic behavior can be achieved. More
precisely, flapwise stiffness and mass distributions are well matched from 20% of blade span
to blade tip, resulting in the correct placement of the lowest two natural frequencies of the
blade. These results highlight the challenges posed by representing a gravo-aeroelastic system
at a much reduced scale. Although it is clear that the resulting scaled model is unable to
exactly replicate the one at full scale, several relevant physical processes are nonetheless well
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Figure 5: Distribution of spar cap thickness and width along blade span, and comparison between
the cross sectional properties of the sub-scale and scaled full-scale model.

represented at the smaller scale. Keeping always well in mind the limits of scaled models, wind
tunnel experiments can still play a crucial role in the validation and verification of simulation
models, in the understanding of the physics, in the testing of control laws, the exploration of
new configurations, and many other relevant activities.

The present research will continue by further investigating the blade structural design, looking
in particular at the manufacturing process and the corresponding design limits. Moreover, efforts
will be devoted to improve the scaled model edgewise behavior, either by identifying materials
with more suitable mechanical properties, or relaxing the aerodynamic constraints.
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