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Abstract. In the field of metal forming the effect of springback is of great importance and is one
of the research areas. The amount of springback depends substantially on the materials’ elastic
behavior and the degree of strain hardening. Former studies showed that Young’s modulus is
influenced by strain hardening and thus detailed knowledge about this correlation is necessary.
For an accurate description of strain dependent Young’s modulus, a generally valid and
consistent formulation in terms of continuum mechanics is required. To reconsider existing
formulations, a close examination of the additive decomposition of elastic and plastic strains is
necessary that is revealed within this study. Cyclic tensile tests with mild steel DX56 are
performed to investigate the strain dependency of Young’s modulus experimentally. The
theoretically derived formulation is applied to the experimental results. On this basis different
determination methods for identifying Young’s modulus are utilized and finally analyzed in
terms of springback prediction. Finally a new strategy to predict springback is proposed.

1. Introduction

High strength steel is common in vehicle body manufacturing, because of its high yield stress compared
to its density [1]. However, the high yield stress to Young’s modulus ratio of this steel grades possibly
leads to critical geometric deviations caused by springback [2]. Springback occurs after opening the
tools of a forming process, because of releasing stored elastic energy. This elastic recovery is one of the
challenges in the metal forming industry [3]. The extent of springback is mainly influenced by the
elastic-plastic behavior [4]. Hence, many former studies investigated the behavior of elastic recovery
showing a dependency between strain hardening and Young’s modulus. Morestin and Boivin [5]
investigated the variation of Young’s modulus with increasing prestrain in cyclic tensile-compression
tests for several steel grades. Their results show a decrease of Young’s modulus up to 20 % in relation
to the work hardening. Findings of Andar et al. [6] reveal similar behavior. Hence, for precise prediction
of springback using FE analysis, deep understanding of Young’s modulus’ strain dependency is
mandatory. Cleveland and Ghosh [7] showed in cyclic tensile tests that the elastic unloading behaves
nonlinear in contrast to Hooke’s law. There are various conjectures and explanations for this nonlinear
behavior [7-9]. Depending on the determination method, the nonlinearity influences the value of
Young’s modulus significantly [10]. A consistent determination of Young’s modulus is possible based
on suitable strain and stress measures only. Thus, within this study a continuum mechanics based theory
for the formulation of Young’s modulus is established. Based on results of cyclic tensile tests with mild
steel DX56, different methods to determine Young’s modulus are used and compared. Furthermore, a
data-based method to predict elastic recovery is shown incorporating experimental results of cyclic
tensile tests and avoiding an explicit determination of Young’s modulus.
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2. Theoretical description of elasticity

For the modeling of an elastic-plastic material behavior, a consistent additive decomposition of the
total strain into elastic and plastic strain is essential. Therefore, the multiplicative decomposition of the
deformation gradient F into elastic and plastic portions is utilized (eq. 1). It is adequate to add an
intermediate configuration /B between reference °B and current configuration B, as shown in fig. 1
[11]. A consistent additive decomposition of strains can be shown for the Euler-Almansi strain

tensor 4&. It acts on the current configuration and is defined as shown in eq. 2.
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Figure 1. Configurations in In addition to the Euler-Almansi strain tensor, the logarithmic strain
clastic-plastic formulation. ~ tensor or Hencky strain tensor (eq. 4) is a common strain measure for
modeling plasticity in metal forming [13].
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A simple way to show the possibility of additive decomposition for the Hencky strain tensor is to
compare its Taylor series (eq. 6) with the Taylor series of the Euler-Almansi strain tensor (eq. 5)
around 1 respectively. It is obvious that for small strains the terms of higher order can be neglected.
Then, the Taylor series of Euler-Almansi and Hencky strain tensors are equivalent. Hence, the Hencky
strain tensor can be used for gauging small Euler-Almansi strains.
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In metal forming elastic strains can be considered as small strains. Consequently, the elastic Euler-
Almansi strain tensor can be represented by the elastic Hencky strain tensor (l&, ~ jf&,) and the
additive decomposition of the Hencky tensor is possible:

Io — 1 I 7
HEp = HE — g€ )
Small elastic strains also allow to model metal elasticity as a linear-elastic isotropic solid, also known

as Hooke solid. This elastic constitutive tensor maps the linearized elastic strain tensor (eq. 8) to the
Cauchy stress o as described in eq. 9.

1
lingezz(Fg-l'Fe)_l (8)
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Ineq. 9 E is the Young’s modulus and v is the Poisson’s ratio. For homogeneous uniaxial deformations
caused by a stress g, 1, the uniaxial Hooke law results [11]:

10
011 = E jin€e11 (10)
For small strains, different strain measures are almost equal, so it holds:
_r . I 11
011 = E HEe11 =o0=F HEe ( )

In addition, using Cauchy stress is appropriate, because it is work conjugate for both Euler-Almansi and
Hencky strain measures [14]. Eq. 11 shows the possibility to determine a strain dependent elastic
modulus consistently using a cyclic uniaxial tensile test. Based on the force F and longitudinal
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displacement [, the Cauchy stress o is calculated as the force divided by the actual cross sectional area
perpendicular to the force vector. Constant volume is assumed for the whole test (eq. 12). In chapter 3.2,
the error that occurs due to this assumption is examined more closely.

v _ _ _FE__1 Fl_F1 (12)
gy —detiF) =1 = 0 =2 =550 = 05,
For the uniaxial tensile test the total Hencky strains are calculated as follows:
l
u€e = In (0—1) (13)
© ! Finally, Young’s modulus is determined according to (compare fig. 2):
E()="2=FLt 1
O == won (14)
0] f By conducting cyclic loadings at various prestrains, it is possible to
Loyt calculate a strain dependent Young’s modulus E(y€). Therewith, it is
Figure 2. Schematic possible to determine a flow curve a( Hsp) using the consistent additive
explanation for /. decomposition of Hencky strains:
" (15)
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3. Determination of Young’s modulus

The recommendation for the determination of an initial Young’s modulus utilizing an uniaxial tensile
test is defined in the standard DIN EN ISO 6892-1:2017-02 [15]. In an iterative process a line of best fit
of engineering strain and stress in the elastic domain has to be calculated numerically and visually
revised. Due to the small amount of elastic strains, it is feasible to use engineering strain and stress,
because differences between different strain and stress measures are negligible. The slope of the best fit
line is used as Young’s modulus. Former studies showed, that lower and upper borders of the line of
best fit are crucial for the calculation of Young’s moduli, because of the mentioned nonlinear elastic
behavior. Young’s moduli differ widely depending on the determination method [16]. In the standard
borders depending on R, are suggested. However, to determine R,, Young’s modulus is necessary,
which obviously leads to a conflict [16]. Thus, different determination methods are described in the
following.

3.1. Methods for Young’s modulus determination

In each cycle, loading and unloading data are split by the point of maximum strain. Young’s modulus
determination with fixed lower and upper borders is described in Sonne [16]. As already mentioned, it
is not expedient to have borders depending on R,.2, hence the borders are defined according to the tensile
strength (7). For the method called ‘Simple Fit’ (Sim.) within this study, the lower border is defined as
0.05, the upper border as 0.18 times 7S in case of loading. In case of unloading, Yoshida et al. [10]
proposed to divide the unloading curve into four sections depending on the stress before unloading o,:
Yosh. 1: 0.750,< 0 <0.950,; Yosh. 2: 0.500, <0 <0.950,; Yosh. 3: 0.250, <0 <0.950,; Yosh. 4: 0 <
o0 < 0.950,. Young’s modulus is the average slope of each section. The comparison of the resulting
Young’s moduli clarifies the effect of using different borders. Furthermore, a dynamic regression, called
‘Regression’ (Reg.) within this study, is applied. Starting from zero stress, a regression line is calculated
with the first 21 measurement points. Afterwards the area of 21 points is expanded step by step until 0.7
times 7S. Furthermore, the starting point for the dynamic regression moves along the measurement data.
For each area lines of best fits are calculated and the slope obtaining the least squared errors, is stored.
Young’s modulus is identified as the maximum value of all stored slopes. The method ‘Secant’ (Sec.)
fits a line through the points of intersections of the hysteresis and its slope is taken as Young’s modulus.

3.2. Examination of the approach of constant volume
For the evaluations of this study, constant volume is assumed during the whole test, but in fact, lateral
contraction changes during elastic and plastic deformation. Hence, by taking constant volume for the
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whole test, an error occurs. To examine this error, the specimen were strained up to three different
prestrains (3 %, 6 % and 9 % engineering strain) and unloaded afterwards. The cross sectional area of
the specimen was measured manually before the test, before and after unloading. These measured cross
sectional arecas were compared to the corresponding cross sectional areas calculated using the
assumption of constant volume. The percent error between experimental data and calculated values is
0.025 % for 3 %, 0.042 % for 6 % and 0.069 % for 9 % prestrain. The accuracy is assumed to be adequate
to use the assumption of constant volume for the calculation of Cauchy stress.

4. Experimental Method

Cyclic tensile tests were performed. For the tensile test a standard tensile testing machine is used. The
specimen is clamped with a hydraulic clamping system and the strain is tactually measured directly on
the specimen. Every cross sectional area is manually measured before the test. For the tests flat specimen
of the mild steel DX56 with a thickness of 1.5 mm were used. The initial length °l is 50 mm. The
specimen were unloaded and reloaded every 1.5 % engineering strain with a position-controlled speed
of 0.048 mm/min. Each cycle until uniform elongation is considered for the evaluation. To ensure that
cyclic loading and unloading has no influence on the materials’ flow curve, standard tensile tests were
performed, too. The specimens were strained until 3 %, 6 % and 9 % engineering strain respectively and
unloaded subsequently. These curves were compared to the cyclic tensile test curves and no significant
deviation of hardening behavior was noticed.

5. Results

To examine the approach, which was derived in chapter 2, fig. 3 shows the comparison of Young’s
modulus’ behavior for Euler-Almansi and Hencky strain measures. Young’s modulus is calculated using
‘Regression’ for loading and unloading as well as ‘Secant’ for corresponding hysteresis. The differences
between Young’s moduli are negligibly and thus the approach is expedient.

——o— Hencky —¥— Euler-Almansi

Loading Unloading Secant
200 ﬁ\s\k@% 200 200
< 180 < 180 ‘ < 180
S S S
160 160 < 160 XM
140 140 140
0 5 10 0 5 10 0 5 10
Displacement [mm] Displacement [mm] Displacement [mm]

Figure 3. Comparison of the influence of Hencky and Euler-Almansi strain on Young’s modulus.

Fig. 4 shows the resulting Young’s moduli of the cyclic tensile tests. For the determination of the loading
moduli, the methods ‘Simple Fit” and ‘Regression’ were used. With a determined initial Young’s
modulus of 201 GPa, the method ‘Regression’ is in good agreement with the common value for steel
210 GPa. Young’s moduli determined by ‘Simple Fit’ are about 7 GPa lower. For both methods the
loading Young’s modulus decreases by around 5 % until uniform elongation.

The unloading Young’s moduli were determined with the methods ‘Regression’, ‘Secant’ and “Yoshida
1 - 4’ for each cycle (chapter 3.1). The initial Young’s modulus varies by about 35 GPa depending on
the determination method. All methods show a strain dependent decrease of the unloading Young’s
modulus between 5 % (‘Regression’) and 12 % (‘Yosh. 4°).
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Figure 4. Strain dependency of Young’s modulus for loading and unloading. Comparison of different
evaluation methods.

It is obvious, that the determination method strongly influences Young’s modulus. The calculation of
flow curve and springback is in turn influenced by Young’s modulus and hence the effect of different
values for Young’s modulus are investigated. Fig. 5a shows the experimental (Exp.) unloading curve at
0.094 Hencky prestrain in comparison to the unloading behavior derived from the different Young’s
moduli. At zero Cauchy stress the maximum deviation occurs between Yosh. 4 and the initial Young’s
modulus (Ini.). This deviation of 7-10* elastic recovery strain is small compared to the total strain and
thus has no significant influence on the flow curve. However, for an accurate prediction of springback
it is crucial to model the unloading curve appropriately. Because the calculation of Young’s modulus
significantly depends on the determination method, an insensitive approach would enhance springback

1000 a) Unloading b) Unloading response surface
—_—— '©
- 3 £ 1000 \
=xp. / o 0 0.05
s 600 | / 6 4 05
o 2 0 Prestrain [-
Z «107 el 0 [-]
o 400 1 / h .
Yosh. 3 Yosh. 2 c) Loading response surface
. Yosh. 4 —
200 ,, < 1000
Sec. Y S
X / f ! ) — 0 01
0 ° 0.05
0.086 0.088 0.09 0.092 0.094 6 4 5 0 0 Préstrain[]
we [ <107 ye [

Figure 5. a) llustration of evaluation methods in comparison with experimental unloading curve.
Response surface for unloading (b) and loading (c¢) elastic recovery strain.

calculation. That is why a three dimensional table of Cauchy stress, prestrain and elastic strain is
proposed for predicting arbitrary unloading.
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Fig. 5b shows the ‘Unloading response surface’ based on the cyclic tensile test data. A response surface
for loading can be established analogously in case of complete unloading (fig. 5c). The black lines
represent the unloading curves of the particular cycles. By implementing the response surface in a FE
analysis software, elastic recovery strain for arbitrary stresses and prestrains can be obtained, without
assuming linear elastic unloading behavior. A cyclic tensile test of at least one loading and unloading is
required for this method merely.

6. Conclusion and Outlook

Under the assumption of small elastic strains the additive decomposition of Euler-Almansi was adopted
for Hencky strain and validated using cyclic tensile tests. The strain dependency of Young’s modulus
was shown a different determination methods were applied and compared. It was noted, that Young’s
modulus is varying significantly depending on the method. For an accurate springback prediction, a
data-based approach is proposed, which allows a precise prediction of the elastic recovery strain in
numerical analysis. Further investigations of the nonlinear elastic unloading behavior are necessary to
improve springback analysis. An investigation of a strain dependent lateral contraction in comparison
to the assumption of constant volume, especially in the region of elastic plastic transition, should be
focused. Furthermore, microscopic analysis are essential to investigate and prove macroscopic
conjectures and explanations of the material behavior.
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