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Abstract. The antikaon-nucleon interaction close to threshold provides crucial information
on the interplay between spontaneous and explicit chiral symmetry breaking in low-energy
QCD. In this context, the importance of kaonic deuterium x-ray spectroscopy has been well
recognized, but no experimental results have yet been obtained due to the difficulty of the
measurement. To measure the shift and width of the kaonic deuterium 1s state with an
accuracy of 30 eV and 75 eV, respectively, an apparatus is under construction at the Laboratori
Nazionali di Frascati. A detailed Monte Carlo simulation has shown that an increase of the
signal to background ratio by a factor of ten will be required compared to the successfully
performed kaonic hydrogen measurement (SIDDHARTA). Three pillars are essential for the
newly developed experimental apparatus: a large area x-ray detector system (consisting of
Silicon Drift Detectors), a lightweight cryogenic target system and a veto system, consisting
of an outer veto detector (Veto-1) for active shielding and an inner veto detector (Veto-2) for
charged particle suppression. For both veto systems, an excellent time resolution is required to
distinguish kaons stopping in gas from direct kaon stops in the entrance window or side wall
of the target. First test measurements on the Veto-2 system were performed. An average time
resolution of (54 ± 2) ps and detection efficiencies of ∼ 99 % were achieved.
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1. Introduction
The SIDDHARTA-2 experiment (Silicon Drift Detector for Hadronic Atom Research by Tim-
ing Application), located at the DAΦNE collider in Frascati, Italy, aims to perform precision
measurements on kaonic deuterium in the non-perturbative regime of quantum chromodynamics
(QCD) with strangeness.
The kaon is captured in an atomic orbit with principal quantum number n∼25 and cascades
down. A shift ε1s and broadened width Γ1s of the ground state are induced via the strong
interaction which are obtained by measuring 2p − 1s x-ray transitions [1]. The combination
of the existing kaonic hydrogen results [2] with the deuterium measurements will allow for the
extraction of the isospin-dependent (I = 0, 1) antikaon-nucleon scattering lengths a0 and a1
and further constrain the theoretical description of the low-energy K̄ N interactions, e.g. chiral
symmetry breaking [3, 4].

The experimental challenge of the proposed measurement is the very small kaonic deuterium
x-ray yield and the high radiation environment of an accelerator. A profound knowledge of
each possible background source is essential in order to control and to improve the signal to
background ratio. Using the experience gained with SIDDHARTA, a detailed study of the back-
ground was performed, using the theoretical input for shift and width of the kaonic deuterium
1s state and assumption for the x-ray yield [5, 6]. The Monte Carlo (MC) calculation using the
GEANT4 framework (GEometry ANd Tracking) has been crucial to finalise the realisation of
the experimental setup and to eventually prove the possibility to perform the kaonic deuterium
experiment with a precision determination of the shift and width in the order of 30 and 75 eV,
respectively.

The outcome of the detector developments and dedicated MC studies can be summarised in
three main updates essential for a successful kaonic deuterium x-ray experiment:

• An improved x-ray detection system based on newly developed Silicon Drift Detectors
(SDDs) with excellent timing capability (300 ns) and energy resolution (≈ 150 eV), to
build up a compact, large area (246 cm2), highly efficient detector system.

• A lightweight cryogenic target (sidewall thickness between 140 to 180 µm made of 2 layers
of 50 µm Kapton glued together with an epoxy adhesive) with a working temperature of
30 K and a maximum working pressure of 0.3 MPa, allowing for an x-ray transmission of
approximately 90% for 8 keV x-rays.

• A veto system, consisting of an outer veto detector (Veto-1) as active shielding and an inner
veto detector (Veto-2) for the suppression of charged particles. Additionally, for both veto
systems an excellent time resolution is required to distinguish between kaons stopped in
gas and kaons stopped in the target entrance window or sidewall. MC studies require the
time resolution of the veto devices to be better than 500 ps (Full Width Half Maximum,
FWHM).

For SIDDHARTA-2, an improvement of the signal to background ratio of at least one order of
magnitude as compared to the K−p measurement of SIDDHARTA is crucial. Firstly, the yield
of the K−d x-rays is an order of magnitude lower in comparison to kaonic hydrogen as a result of
the possibility of two-nucleon-absorption in kaonic deuterium. Secondly, theoretical predictions
of the 1s ground state width are in the order of 800 to 1000 eV, approximately larger than in
the K−p case by a factor of two [7].
Therefore, one of the necessary improvements is the Veto-2 system, which will suppress the beam-
correlated background originating from minimum ionizing particles (MIPs, mostly protons and
pions) accompanying the x-ray signals. Depending on the position of the MIP passing the SDD,
a signal mimicking an x-ray event can be produced. Thus, the charged particle suppression will
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be based on the determination of the spatial correlation between a signal in the SDD and a
Veto-2 signal.

2. Experimental Setup
The SIDDHARTA-2 setup is shown in figure 1. Passing the beam pipe, degrader, kaon trigger,
entrance window of the vacuum chamber and target window, the K− will enter the cryogenic
target cell and be stopped in gaseous deuterium. The target cell will be made of two glued layers
of 50 µm Kapton with a diameter of 144 mm and height of 130 mm and will be surrounded by
48 SDD arrays, resulting in 384 readout channels. The SDDs will be surrounded by the two
veto detector systems.
In order to determine the position of the MIPs traversing the SDDs, the Veto-2 system will
be mounted directly behind the x-ray detectors (figure 2). The size of the scintillator tiles is
optimised to reduce the MIPs-associated background by at least a factor of two, while keeping
the losses of good x-ray signals below 10% [5]. The other veto system, consisting of an outer
ring of scintillator panels, will act as active shielding.

Figure 1. Schematic setup of SIDDHARTA-
2: Beam pipe, kaon trigger system, target cell,
veto systems and mounting frame

Figure 2. Cryogenic target cell (yellow)
surrounded by the SDDs and the charged
particle veto system (blue)

3. The Veto-2 System
The Veto-2 system consists of 96 plastic scintillator tiles (Scionix Holland EJ-200) of size
50 × 12 × 4 mm3, with one Silicon PhotoMultiplier (SiPM) manufactured by AdvanSiD attached
to the short side of each scintillator. The SiPMs operate in the near-UV region with their
maximum photo detection efficiency at 420 nm, featuring an active area of 4 × 4 mm2. A
clear two-component epoxy adhesive (EPO-TEK® 301) is used for gluing the SiPMs to the
scintillators.
The cable length between the SiPM and the amplifier usually plays a crucial role by influencing
the time resolution and leading to an increase of the pick-up noise. Different lengths of twisted
pair cables were tested with the dedicated readout electronics. It was concluded that a cable as
long as 125 cm can be used without influencing the performance of the SiPMs, which is necessary
for the final SIDDHARTA-2 setup.
The scintillator tiles with attached SiPMs are placed in 24 black, 3D-printed boxes, with one of
them shown in figure 3. Each box contains four detectors separated by a Teflon layer to avoid
cross talk between the scintillator tiles. For a permanent light-tight closure of the boxes, black
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epoxy adhesive (Aremco-Bond 2310) is used. The 24 housing panels will be adjusted around an
aluminium mounting ring. For the amplification of the SiPM signal, dedicated boards developed
at SMI with 12 pairs of analog and digital channels are used. The digital output provides a
Time-over-Threshold (ToT) LVDS signal, thus allowing for an increase in cable length of up to
10 m of simple twisted-pair cables to the data acquisition system (DAQ).

Figure 3. Housing unit containing two scintillator-SiPM tiles

3.1. The SiPM readout electronics
The Intelligent Front-end Electronics for Silicon photo detectors (IFES) was developed at Stefan
Meyer Institute for the operation of SiPMs. These IFES modules feature a feedback loop
controlled constant current source based on a boost-converter. The readout of the detector
provides both an amplified analog signal in the form of a differential signal and a Low Voltage
Differential Signal (LVDS) for the digital output, delivering a time-over-threshold (ToT) pulse
with a remotely adjustable threshold. The design of the system enables the operation of larger
detector arrays with simple remote control of the comparator threshold and the current source
for biasing the SiPM. The block diagram of the IFES modules is shown in figure 4.

Figure 4. IFES block diagram. (A) Detector bias, differential amplifier and comparator, with
the signal production within the detector (SiPM). (B) Power supply with filter and reference
voltage. (C) Control bus with daisy chain capability and DAC connections [8]

4. First Test Results
4.1. Time Resolution
The time resolution of the scintillator-SiPM tiles was examined by using a pulsed diode laser
with a wavelength of 450 nm as probing radiation. The laser pulse amplitude (4.2 V) and
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width (2.8 ns) were chosen in a way that the jitter of the laser pulse was minimised, which,
without beam splitter or attenuation, leads to an operation of the SiPM-amplifier combination
in saturation. The saturation mode provides the advantage of a faster rise time of the output
signal with less jitter, allowing to achieve satisfying results with a simple threshold trigger, by
measuring the time delay between the laser pulse and the signal of the SiPM.
This simple test setup was used for quality control of the produced scintillator tiles as well as
to extract information on the position depending timing resolution.
Three or five different laser incident positions on each scintillator were irradiated in order to
study the homogeneity of the timing of the scintillator tiles, as shown in figure 5. Specifically,
the three positions aligned along the longitudinal centre of the scintillator were measured each
time. The time resolution for each position was determined by applying a Gaussian fit to the
data set and calculating the FWHM, with an example being shown in figure 6.
To give an approximation of the time resolution for all SiPM-scintillator tiles, the average of
all measured results was calculated and found to be (54.0 ± 0.1stat ± 2.0syst) ps. The statistical
uncertainty originates from the Gaussian fit and is much smaller compared to the dominating
systemic uncertainty which represents the scattering of the data around the mean as shown in
figure 7. It can be explained by the possibility of a deviation of the irradiation angle of the
laser, irregularities on the surface or inhomogeneously distributed colour collection centres of
the scintillators.
Despite the scattering of the data points around the mean in dependence of the irradiation
position, figure 8 shows that no systematic trend correlates the measured time resolution and
the path length covered by the laser light.
No attempt was made to improve the setup, since the achieved result was already by at least
a factor of 9 better than required and in addition shows that the production process of the
scintillator tiles is very well under control.

Figure 5. Different laser incident
positions on the scintillator

Figure 6. Time resolution of one
scintillator observed to be (54.4 ± 0.2) ps
(FWHM) (red: Gaussian Fit)
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Figure 7. Time resolution measurements for five
scintillators and total average (red line)

Figure 8. Time resolution mea-
surements for different light path
lengths measured for five scintilla-
tors

4.2. Detection Efficiency
The detection efficiency of the scintillator-SiPM tiles was studied. For this, four scintillators
were arranged vertically and cosmic rays were used as radiative source in order to measure the
pulse height spectra of all four detector units. Given a coincidence of the outermost detector
signals, the abundance of signals of the SiPMs in the middle was determined.
Due to the relatively low rate of cosmic rays passing the stack in this configuration, the
measurement acquired data for four days. The observed pulse height distributions are shown in
figure 9. For the detectors at the top and bottom positions (SiPM 1 and SiPM 4, respectively),
a threshold of 400 mV was set in order to suppress low-energetic background as well as events
triggered by cosmics passing the stack in a diagonal way, depositing less energy in the outer
scintillators.
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Figure 9. Pulse height spectra for the stack of four detector units with a threshold of 400 mV
for SiPM 1 positioned at the top and SiPM 4 at the bottom
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In order to determine the detection efficiency for SiPM 2 and SiPM 3, only signals above a
threshold of 300 mV were taken into consideration. This threshold was chosen in a way to
constrain the calculation to cosmic ray events only, while also accounting for the possibility of
grazing particle hits due to the scintillators not being aligned perfectly.
In this way, detection efficiencies of (99.05 ± 0.14) % for SiPM 2 and (99.14 ± 0.14) % for
SiPM 3 were achieved.

A MC simulation of the cosmic ray spectrum for one of the detectors in the middle of the
stack was performed. Figure 10 shows the energy spectrum observed in this measurement and
the calculated MC spectrum (red). The simulated spectrum results from muons with normally
distributed momenta between 150 and 700 MeV/c. As shown in figure 10, the simulation is
overall in good agreement with the obtained cosmic ray data. At lower energies between 650
and 700 keV, the MC calculation does not accurately describe the observed data, because the
simple MC simulation does not include the low-energetic part of the cosmic ray spectra. In
general, the simulation confirms the observed spectra for SiPM 2 and SiPM 3 (figure 9).

Figure 10. MC simulation of an energy spec-
trum originating from muons with momenta
between 50 and 750 MeV/c (red) compared
to the observed cosmic ray energy spectrum
for SiPM 2

Figure 11. MC simulated energy spec-
trum resulting from expected decay prod-
ucts from antikaon-nucleon reactions at the
SIDDHARTA-2 setup

Since under realistic conditions the Veto-2 system will be exposed mainly to MIPs originating
from kaon-absorption on the nucleons and not cosmic rays, a dedicated MC simulation with
the radiative background expected at SIDDHARTA-2 was performed to compare it with the
energy spectra measured using cosmics (figure 11). The K−N reaction products taken into
consideration are Σ±π∓, Σ0π0, Λπ−, Σ0π− and Σ−π0, leading to the production of mainly
charged pions, protons, neutrons and gammas. Resulting from these particles, the simulated
spectrum shows a shift to higher energies in comparison to the cosmic ray data due to the higher
energy deposited by the decay products. However, it is expected that this shift will not impact
the detection efficiency.
Therefore, it can be concluded that the observed efficiency values provide a reasonable measure
for the detection efficiency expected at SIDDHARTA-2.
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5. Summary and Outlook
The construction of the Veto-2 system has been finished and both severe requirements on
efficiency and time resolution have been successfully accomplished with an average time
resolution of (54 ± 2) ps and detection efficiencies of 99 %.
Further test measurements for the Veto-2 system are planned, mainly to study the correlation
between pulse height and time-over-threshold of the SiPMs, since for the final experiment only a
multi-hit Time-to-Digital-Converter (CAEN V1190A) will be used and the energy deposit in the
scintillator will be determined by the ToT lengths. On-site installation of the SIDDHARTA-2
setup at the LNF is foreseen for autumn 2018 with the commissioning run at DAΦNE being
planned for beginning of 2019 and the production beam-time starting in spring 2019.
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