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Abstract: Despite the substantial improvement of therapeutic approaches, multiple myeloma (MM)
remains mostly incurable. However, immunotherapeutic and especially T cell-based approaches
pioneered the therapeutic landscape for relapsed and refractory disease recently. Targeting B-cell
maturation antigen (BCMA) on myeloma cells has been demonstrated to be highly effective not
only by antibody-derived constructs but also by adoptive cellular therapies. Chimeric antigen
receptor (CAR)-transgenic T cells lead to deep, albeit mostly not durable responses with manageable
side-effects in intensively pretreated patients. The spectrum of adoptive T cell-transfer covers
synthetic CARs with diverse specificities as well as currently less well-established T cell receptor
(TCR)-based personalized strategies. In this review, we want to focus on treatment characteristics
including efficacy and safety of CAR- and TCR-transgenic T cells in MM as well as the future potential
these novel therapies may have. ACT with transgenic T cells has only entered clinical trials and
various engineering strategies for optimization of T cell responses are necessary to overcome therapy
resistance mechanisms. We want to outline the current success in engineering CAR- and TCR-T cells,
but also discuss challenges including resistance mechanisms of MM for evading T cell therapy and
point out possible novel strategies.

Keywords: multiple myeloma; adoptive cellular therapy; CAR-T cells; TCR-T cells; T cell engineering

1. Cellular Therapy in Multiple Myeloma

Multiple myeloma (MM) remains an incurable B cell malignancy in many patients
although the advancement of novel therapeutic approaches is constantly improving the
outcome of this disease. However, most patients are relapsing and survival in these patients
is often short, especially for triple refractory patients progressing after receiving multiple
lines of proteasome inhibitors (PI), immunomodulatory drugs (IMiDs) and anti-CD38
treatment [1,2]. Thus, novel therapeutic approaches are urgently needed. Cellular therapy
represents a treatment strategy, which has shown great success in the treatment of B cell
leukemias and lymphoma especially by targeting CD19 using chimeric antigen receptor
(CAR) T cells. Within multiple clinical trials, high and durable responses were achieved
in patients suffering from acute lymphocytic leukemia or B cell non-Hodgkin lymphoma
after infusion of T cells engineered to express this synthetic receptor [3–5]. Attempting
to reach similar responses in MM patients, B cell maturation antigen (BCMA) targeting
CAR-constructs has been developed with impressive results. Idecabtagene vicleucel (ide-
cel, also called bb2121) [6,7] was recently approved by the FDA and EMA for clinical
application in patients with relapsed and refractory MM. These developments pave the
way for broader application of T cell-based adoptive cellular therapies (ACT) in MM which
are not limited to CARs. As artificial chimeric fusion receptors CARs are empirically
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designed to mimic signaling downstream antigen-specific T cell receptor (TCR) stimulation.
However, the diversity and adaptive potential of a T cell response are likely not reflected
by these constructs. More physiological T cell signaling may be achieved by equipping
patient T cells with tumor reactive TCRs (Figure 1A–D).
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Figure 1. Engineering CAR- or TCR-transgenic T cells in MM. Transgenic CD8+ (blue) and CD4+
(red) T cells are shown encountering MM cells (violet). As an exemplary immunosuppressive element
for ACT in MM a FOXP3+CD25+ Treg cell (dark red) is present amongst the cells. The levels on
which T cell engineering can take place (1–3) are indicated. The genetically transferred constructs
are depicted schematically in proximity to their target structures—TCR associated with the chains
of the CD3-complex (A) or CAR (1st (B), 2nd (C) and 3rd (D) generation)—as well as different
potential surface targets on MM cells (E). The typical surface expression of senescence markers in T
cells for MM as well as the upregulation of inhibitory markers is also depicted as a T cell-intrinsic
characteristic (F).
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ACT is not a completely new concept in MM: non-genetically modified cell products on
the one hand comprise allogeneic stem cell transplantation (SCT) or autologous lymphocyte
infusions, including particularly administration of marrow infiltrating lymphocytes (MIL).
Both approaches are exploiting endogenous myeloma-reactive T cells—as well as the less
abundant natural killer (NK) cells—to enable tumor recognition [8,9]. The alternative,
on the other hand, covers all forms of genetically modified cell products. Those mainly
comprise transgenic T cells engineered to either express a natural TCR (Figure 1A) targeting
tumor associated antigens (TAA) or neoantigens or a CAR (Figure 1B–D) targeting a specific
antigen on the tumor cell surface in its native conformation (Figure 1E). Both receptors
aim for potent T cell activation with subsequently efficient tumor cell killing as well as
the initiation of stable, long-term immune memory for tumor control [10–12]. Alongside
approved antibody- [13–15] or still experimental vaccine-based [16,17] treatment options,
transgenic T cell-based ACT harbors great hope for long term tumor surveillance and
complete, stable disease control in MM patients [18,19].

2. CAR-T Cell Therapy in MM and the Evolving Generations of CARs
2.1. General Aspects of CAR Constructs

CARs are designed to mimic the signal pathway downstream the native TCR based on
our understandings of T cell signaling. Therefore, a CAR traditionally consists of an antigen
recognition domain (a single-chain Fv (scFv), containing the variable domains of light and
heavy chain of an antibody), a spacer and transmembrane region as well as a signaling
domain. The latter comprises for all, so far, clinically approved CARs the CD3ζ chain as
well as the CD28 (28ζ) or 41BB (41BBζ) (also known as CD137) intracellular costimulatory
domain [20].

While the complete native CD3 complex is built of six subunits with ten total im-
munoreceptor tyrosine-based activation motifs (ITAMs) involved in signal transduction [21],
it has been shown that singular subunits, such as the CD3ζ chain, alone induce signaling
events identical to those downstream of TCR ligation in T cell hybridomas in vitro [22,23].
The first attempts towards artificial fusion receptors built from antibody recognition do-
mains and TCR-signaling chains were conducted three decades ago with CARs containing
the CD3ζ-chain [24] or the CD3γ-chain alone [25,26]. These first-generation CARs (see
Figure 1B) were sufficient to induce cell lysis, but not sustained tumor control due to
insufficient signal strength for the activation of resting T cells [27].

Beyond this core element of imitating TCR signaling, the addition of one [3,28–30]
and then another [31–33] costimulatory domain, respectively CD28 or 4-1BB, paved the
way up to the third generation of CAR-constructs substantially improving the transgenic
T cells’ efficacy (see Figure 1B,C). The choice of the the costimulatory domain, mostly
investigated in CD19 CARs, thereby influences antigen recognition sensitivity, strength of
T cell activation, longevity and clinical applicability: 28ζ stimulatory domains seem to be
more sensitive in antigen recognition [34], produce larger amounts of cytokines [32,35], rely
mostly on oxidative glycolysis, cause more rapid expansion and induce a rather effector-
like phenotype [36]. 41BBζ CARs, on the contrary, reach prolonged T cell persistence
in vitro, predominantly metabolize fatty acids and maintain a more central memory-like
phenotype—with some of these effects appearing to be antigen-independent [31,32,36,37].

Overall response rates for CARs directed against CD19 in adults with relapsed or
refractory B cell lymphoma are, so far, in a comparable range despite different costimula-
tory domains. Yet, further investigations are currently ongoing for different entities and
indications. Two second generation constructs are approved for clinical use in the EU,
so far: axicabtagene ciloleucel engineered to express a CD28 co-stimulatory domain and
tisagenleucel with 41BB co-stimulation [3,30]. Longer T cell persistence for 41BB-CARs is
suggested by clinical follow-up of infused CAR products. Persistence for roughly 30 days
for CD28ζ-CARs in acute lymphocytic leukemia [38] and for up to 4 years for 41BBζ-CAR
constructs in chronic lymphocytic leukemia [39] were reported. However, a clear compari-
son between patient cohorts is not possible and entity-associated factors may play a role.
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An additional aspect to compare is the rate of severe side effects, such as cytokine release
syndrome (CRS) and immune effector cell associated neurotoxicity (ICAN). Both remained
lower for 41BBζ CARs in preclinical studies. Meta-analyses of 40 clinical studies, however,
could not report these differences in toxicity profile [33,40,41].

Attempting further enhancement of CAR-T cell functionality and longevity, a third gen-
eration of CARs (see Figure 1C) is engineered nowadays by combining two co-stimulatory
elements in one intracellular domain—mostly the above mentioned CD28 and CD137
signaling site [31,32,42]. Some advantages in a proliferative capacity, increased activation of
intracellular signaling pathways over their predecessors in vitro, and elevated anti-tumor
control in pre-clinical in vivo models [43,44] could be reported. However, few clinical trials
have investigated these constructs in the patient so far, and clear superiority to second
generation CARs has not been published yet [31,45,46].

Further engineering, nevertheless, has already yielded a fourth generation of CAR
constructs. The addition of inducible IL-12-release at the tumor site by so called “armored”
CARs, also known as TRUCKS (“T cell redirected for antigen-unrestricted cytokine-initiated
killing”), shall further enhance efficacy in solid and at least partially antigen-negative
tumors by attracting other immune cells, especially from the innate immune system, to
the tumor site [47–49]. Additional adaptations under current investigation include further
co-stimulatory domains [50] or integrated suicide switches for better control of adverse
events [51].

So far, most of these investigations employed CD19-CAR models to enhance con-
struct efficacy. Whether the choice of optimal signal domain composition or the addition
of internal autocrine cytokine release and suicide switches depend on the tumor entity,
qualitatively or quantitatively on the target antigen or on other factors, requires further
investigation for other malignancies and constructs—such as BCMA CARs in MM [32].
However, while these artificial receptors are mainly considered a breakthrough in tumor
therapy, their potential for application in other disease settings, exemplarily infectious [52]
or autoimmune [53,54], should also be mentioned.

2.2. Potential Target Structures for CAR-Therapy in MM

After the success of CD19 CARs for the treatment of B cell lymphoma, MM, another
immune cell derived cancer entity, displays potential for successful CAR therapy. Especially
patients relapsed after at least three to four therapy lines, non-transplant eligible as well as
high risk patients might benefit from CAR therapy as an alternative to already established
therapy regimens. One substantial aspect of successful CAR-T cell administration is the
identification of suitable target structures on the surface of malignant cells. For myeloma,
several surface markers, all preferentially expressed on mature B cells, qualify as potential
candidates (see Table 1 and Figure 1E) which have been reviewed elsewhere in more
detail [55]. The target amongst them, which reached most attention and which shall also be
in the focus of this review, is BCMA. In the meantime, CD19 should not be neglected as a
potentially attractive target for MM therapy [56] and recently, also SLAMF7-specific CAR
constructs are increasingly tested in the clinic [55,57].

Important, when choosing a target for ACT, is its specificity for the tumor tissue.
Cell-lineage markers such as CD19, CD20 as well as BCMA—the currently most common
target antigens in CAR-therapies—are not ideal in terms of specificity. Healthy B cells and
their precursors, if not already cleared by high dose chemotherapy before ACT, are also
targeted by reactive CARs. B cell aplasia, the resulting on-target off-tumor toxicity, however,
is manageable with antibiotics and/or infusion of immunoglobulins but can though impact
morbidity if persisting over a longer period [58,59]. Compared to these relatively mild
consequences, a lack of specificity can, however, be fatal for other CAR constructs. After
the application of an ERBB2-recognizing CAR construct in a colon cancer patient, severe
respiratory distress immediately after CAR-T cell-infusion with eventually lethal CRS,
despite previously high in vitro specificity, was reported. Dramatic pulmonary infiltrates
suggest the recognition of low levels of ERBB2 on lung epithelium as the cause [60]. On-
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target off-tumor effects, therefore, must be assessed for their toxicity and can be tolerated
only, if outweighed by the clinical benefit. Though specificity of BCMA suffices for effective
use of CAR-T cells, increasing specificity of CAR constructs in MM ultimately aims at more
specific targets for malignant cells only. Exemplarily, G-protein–coupled receptor class C
group 5 member D (GPRC5D) is expressed BCMA-independently on CD138+ MM cells,
but only minimally in healthy tissue, except for hair follicles [61]. First-in-human studies
showed a manageable safety profile as well as promising efficacy in highly pretreated
patients [62].

Table 1. Surface antigens in MM: potential targets for CAR-based ACT.

Target Other Names
Physiological Single

Cell-Type Enrichment
(Proteinatlas.Org)

Identified
Ligands

(Uniprot)

Involvement in
Biological Process

(Uniprot)

Car-Based Clinical
Trials in Mm

(Selection from
Clinicaltrials.Gov)

CD19 (naïve and memory)
B cells

co-receptor for B cell
receptor, B cell activation,

proliferation,
differentiation and

antibody-production

NCT04194931,
NCT03706547,
NCT04603872,
NCT02794246

CD38

ciliated cells, erythroid
cells, granulocytes,

Kupffer cells, T cells,
NK cells

NAD, NADP

production of second
messengers cyclic
ADP-ribose and

nicotinate-adenine
dinucleotide phosphate,

cADPr hydrolase activity

NCT03464916,
NCT03767751,
NCT03778346

CD138 Syndecan 1,
SDC1

hepatocytes, urothelial
cells, cholangiocytes,

memory B cells

linking of cytoskeleton
and interstitial matrix,

regulation of
exosome biogenesis

NCT03672318,
NCT03778346

BCMA
(B cell

maturation
antigen)

TNF receptor
superfamily
member 17,
TNFRSF13a,

CD269

melanocytes, erythroid
cells, (naïve and
memory) B cells,

plasmacytoid DCs)

TNFSF13B/BLyS/
BAFF and

TNFSF13/APRIL

B cell survival, regulation
of humoral immunity,

activation of NF-kappa-B
and JNK

see Table 2

Integrin β7 B cells, granulocytes,
T cells

Magnesium,
Metal-binding

cell adhesion,
lymphocyte migration

and homing to gut tissue
NCT03778346

SLAMF7/SLAM-
family

member 7
CS1, CD319 Monocytes

immune cell activation,
connection of innate and

adaptive immunity

NCT04499339,
NCT03958656,
NCT03778346

GPRC5D
(G-protein-coupled

Receptor Class C
Group 5

Member D)

early spermatids,
melanocytes, late

spermatids, B-cells

not yet determined
in detail

NCT04555551,
NCT05016778

Immunoglobulin
light chain B cells NCT00881920

CD229 Lymphocyte
antigen 9 (LY 9)

melanocytes, B cells,
T cells, erythroid cells,

plasmacytoid DCs

member of the
SLAM-family, activation
and differentiation of a
variety of immune cells

TACI
(Transmembrane

activator and
CAML interactor)

TNF receptor
superfamily
member 13B

TNFSF13/APRIL and
TNFSF13B/

TALL1/BAFF/BLYS

stimulation of B and T
cell function,

Calcineurin-dependent
NFAT-activation, NFkB

and AP-1

2.3. Targeting BCMA in MM CAR-Treatment

Like the above-mentioned Ide-cel, most CAR-approaches for MM to date focus on
BCMA (also referred to as TNFRSF17 or CD269), a member of the tumor necrosis factor
receptor (TNFR) superfamily. BCMA is predominantly expressed on maturated B cells and
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therefore plasma cells, and plays a role in B cell development, while its presence is not oblig-
atory for their maturation [63–66]. Its two ligands are B cell activating factor (BAFF, also
known as BLyS)—which also binds to the transmembrane activator and CAML interactor
(TACI) and B cell activating factor receptor (BAFF-R)—and a proliferation inducing ligand
(APRIL). Both are known to influence MM cell growth [67]. The consistent expression
on the MM cell surface—albeit at various levels in different patients—renders BCMA a
suitable target antigen for CAR therapy [67–69].

Several clinical trials (see selection in Table 2) were or are investigating the efficacy and
safety of BCMA-targeting T cells. The first-in-human study of a BCMA-CAR was performed
with a construct incorporating a mouse scFv (11D5-3), CD8α-hinge/-transmembrane do-
main, a CD28 co-stimulatory domain and a CD3ζ-chain [70]. The median event-free
survival duration of this study was 31 weeks, however, all patients developed disease
progression [70].

Ide-cel, the recently approved CAR product, integrates the same murine scFv for
antigen recognition but is designed with a 4-1BBζ intracellular stimulatory element. In
phase I clinical trials, the median progression free survival (PFS) ranked at 11.8 months with
an overall response rate (ORR) of 85% [7,71]. In the following pivotal phase II KarMMa
study (NCT03361748), 128 relapsed and refractory patients after three to sixteen (median of
six) preceding therapy lines, received ide-cel infusion (of 140 total enrolled patients) [6].
The study supports substantial antitumor activity of ide-cel in heavily pre-treated patients
with an ORR of 73%, complete response (CR) of 33% and a PFS of 8.8 months over all
applied doses (slightly better outcomes occurred for the highest dose chosen). In 36% of all
patients, CAR-T cells were detectable in the blood after 12 months, which, however, did
not protect from relapse. At the time of relapse, most patients still had detectable levels
of BCMA on their tumors, which renders antigen loss an unlikely sole cause for tumor
progression. Adverse events, especially transient hematologic toxic events, were detected
in all and those of grade 3 or 4 in almost (127 of 128 patients) all patients. CRS occurred in
84% of cases (grade 3 to 4 in 5% only), and neurotoxic effects were seen in 18% [6].

A similarly heavily pretreated patient group (n = 97) received CAR-T cell infusion
with Ciltacabtagene autoleucel (Cilta-cel, also known as LCAR-B38M and JNJ-68284528), a
41BBζ-construct with two alpaca-derived single domain BCMA-recognizing antibodies,
during the combined phase Ib/II clinical trial CARTITUDE-1 (NCT03548207). An ORR of
97% and CR of 67% were reported at a manageable safety profile with numerous hemato-
logic adverse events, but few cases of severe (grade 3–4) CRS (4%) or neurotoxicity (9%).
PFS was not reached at clinical cutoff after a median follow-up time of 12.4 months [72,73].
Drawing a comparison between the patients enrolled in this single-arm study and an exter-
nal, comparable study cohort representative for real-world data for current MM standards
of care, a significant improvement in ORR, PFS and overall survival (OS) could recently be
reported for CAR T cell treatment (LocoMMotion, NCT04035226) [74]. For further assess-
ment of minimal residual disease rates upon Cilta-cel infusion, patients for CARTITUDE-2
are currently recruited (NCT04133636). Moreover, the previous success of Cilta-cel led
to an extended investigation in phase III clinical studies: CARTITUDE-4 investigates the
effects of Cilta-cel when administered to relapsed and lenalidomide-refractory patients
(NCT04181827), while the meanwhile launched CARTITUDE-5 study focusses on the com-
bination treatment of Bortezomib, Lenalidomide and Dexamethasone (VrD) with Cilta-cel
in newly diagnosed MM patients (NCT04923893).

Despite all success, it becomes evident that the plateau phase of tumor progression as
seen after CD19-CAR administration for B cell lymphoma [75,76] has not been achieved
in a similar fashion with BCMA-CARs in MM so far. Further adjustment and engineering
of the CAR-constructs themselves, the dose or administration scheme therefore might be
considered for improving CAR-T cell-performance, tumor killing and control.
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Table 2. Selection of important clinical trials for BCMA-CAR transgenic T cells (information from clinicaltrials.gov).

Trial Num-
ber/Name Sponsor CAR

Construct Phase n 1 Origin
of scFv

Co-Stimulatory
Domain Dose 2 Conditioning

Therapy 3 ORR 4 CRS 4

(All/gr 3–4)
ICAN 4

(All/gr 3–4)

Further
Modifications/

Comments
References

NCT02215967 National Cancer
Institute (NCI) I 30 murine CD28 0.3–9.0 × 106 CP/Flu 81% 94% N.A. [70]

NCT03070327
Memorial

Sloan Kettering
Cancer Center

MCARH171 I 20 N.A. 4-1BB 1 × 106–
1 × 107 CP N.A. N.A. N.A.

±lenalidomide
EGFRt (suicide

gene)

NCT03274219/
CRB-402 bluebird bio bb21217 I 72 murine 4-1BB 150, 300 or

450 × 106 CP/Flu 69% 75%/4.2% 15%/N.A.

PI3K inhibitor
bb007 during ex
vivo culture to
enrich the drug

product (DP) for
memory-like

T cells

[77]

NCT03288493 Poseida Therapeu-tics,
Inc.

P-BCMA-101
(CARTyrin) I/II 220 human 4-1BB 0.75–15 × 106 CP/Flu N.A. N.A. N.A.

stem cell memory
T cell subset;

Rimiducid (safety
switch activator)

can be
administered as

indicated

NCT03338972
Fred Hutchinson
Cancer Research

Center
FCARH143 I 28 human 4-1BB 50–150 × 106;

potential second dose CP/Flu N.A. N.A. N.A.

EGFRt (suicide
gene);

infusion of CD8+
and CD4+ T cells

in a 1:1 ratio

NCT03361748/
KarMMa Celgene bb2121/

Ide-cel II 149 murine 4-1BB 150–450 × 106 CP/Flu 73% 84%/5% 18%/3% [6,7]

NCT03430011/
EVOLVE Juno Therapeutics, Inc. JCARH125

/Orva-cel I/II human 4-1BB
lower: 50 or

100 × 106, higher: 300,
450 or 600 × 106

CP/Flu 91% N.A./2% N.A./4%

1:1 CD4/CD8
ratio preselected

prior to
transduction and

expansion

[78]

NCT03548207/
CARTITUDE-1

Janssen Research &
Development, LLC

JNJ-68284528/
LCAR-B38M/
Ciltacabtagene

autoleucel
(Cilta-cel)

Ib/II 126 alpaca 4-1BB 0.75 × 106 CP/Flu 97,9% 95%/4% 21%/9% [72,73]

NCT03602612 National Cancer
Institute (NCI) FHVH33 I 31 human 4-1BB 0.75–12 × 106 CP/Flu N.A. N.A. N.A.

fully human
heavy-chain

variable domain
[79]
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Table 2. Cont.

Trial Num-
ber/Name Sponsor CAR

Construct Phase n 1 Origin
of scFv

Co-Stimulatory
Domain Dose 2 Conditioning

Therapy 3 ORR 4 CRS 4

(All/gr 3–4)
ICAN 4

(All/gr 3–4)

Further
Modifications/

Comments
References

NCT03758417/
CARTIFAN-1

Nanjing Legend
Biotech Co.

JNJ-68284528/
LCAR-B38M/
Ciltacabtagene

autoleucel
(Cilta-cel)

II 60 alpaca 4-1BB N.A. N.A. N.A. N.A. N.A.

NCT04133636/
CARTITUDE-2

Janssen Research &
Development, LLC

JNJ-68284528/
LCAR-B38M/
Ciltacabtagene

autoleucel
(Cilta-cel)

III 160 alpaca 4-1BB 0.75 × 106 CP/Flu 95% 85%/10% 20%/0%

+Lenalidomide/
Daratumumab/

Bortezomib/
Dexamethasone

[80]

NCT04309981 Sara V. Latorre ARI0002h I/II 36 humanized 4-1BB
fractionated

3 × 106 + second
infusion

CP/Flu 96% 87%/0% 0%/0%

fractionated
(10%/30%/60%
with at least 24 h
in between) and

multiple infusions;
higher CD4/CD8
ratio correlated

with more
stringent CR

[81,82]

NCT05066646/
FUMANBA-1

Nanjing IASO
Biotherapeutics

Co., Ltd.
CT103A I//II 132 human 4-1BB 1.0 × 106 CP/Flu 94.4% 93%/2.8% 1.4%/0%

enrollment of
patients with prior

murine
BCMA-CAR

administrations

[83,84]

1 estimated number of patients enrolled or to be enrolled, 2 per kg bodyweight, 3 CP = cyclophosphamide, Flu = fludarabine, 4 completed study results or interim results at the time of
publication of this review.



Cells 2022, 11, 410 9 of 36

2.4. Engineering the BCMA-CAR Construct

Despite all the progress made in construct development, the artificial nature of CARs
allows for a very systematic engineering of each compound. Various “adjustment screws”
for CARs exist and some of them shall be outlined in the following.

2.4.1. Extracellular Target-Binding Domain: scFV

The standard design for CAR ectodomains is based on monoclonal antibodies. The
variable heavy (VH) and light (VL) chains are linked by a flexible peptide into a single-
chain variable fragment. Originally, these antibody domains were of murine origin, like,
for example, the BCMA-targeting 11D5-3 scFv in Ide-cel [69,70]. To circumvent potential
anti-murine immunogenicity, which must be especially considered if multiple infusions
are scheduled, increasing efforts are put into fully human recognition domains. As the
causes for CRS and therapy related ICAN are not fully clear to date, attempts to reduce
the overall immunogenic potential could lead to increased clinical safety. One example for
anti-CD19 CARs in B cell lymphoma treatment is Hu19-CD828Z (NCT02659943), which
was assessed in a small clinical trial already and led to lower neurotoxicity compared to
the clinically applied axicabtagene ciloleucel [75]. Further reduction of the CAR binding
domain size by deletion of the potentially immunogenic linker fragment and consequently
reduced immunogenic potential, moreover, led to CAR-designs with a human heavy chain
only [79].

Another crucial factor with potential for severe overstimulation of the immune system
and thus toxic side effects, is the affinity between scFv and target. For effective CAR
signaling and T cell activation, it must not fall below a certain level, on the one hand,
but there is evidence, that increased affinity beyond a certain threshold does not lead to
increased T cell activation. Instead, this might have disadvantages for longevity. Serial
triggering of T cells due to a faster off-rate subsequent to lower affinity is suggested as
one possible mechanism for induction of stronger proliferation. Decreasing discrimination
between low and high antigen expression on tumor cells with increasing scFv affinity,
furthermore, bears a greater risk for systemic toxicity [85–88]. The other way round,
lower affinity scFv depict a possibility to manipulate differential targeting of tumor versus
healthy tissue: investigations on a trastuzumab-based CAR-construct in response to HER2+

breast cancer showed specific CAR-T cell activation encountering malignant cells without
recognition of healthy tissue [87]. Reports from a ROR1-specific CAR on the other hand
suggest higher anti-tumor efficacy for scFv with higher affinity towards their target [89].
Possibly, a window of optimal affinity exists, though varying antigen densities might
complicate the choice of CAR-construct. This window, however, still must be defined more
precisely for different constructs–also those targeting BCMA.

2.4.2. Hinge Region/Spacer Domain and Transmembrane Domain

Despite different specificities, one common structural compound of CARs is the spacer
element between the extracellular scFv and transmembrane (TM) region. At least certain
constructs require this spacer element for stable CAR-expression and activation. It originally
comprised the constant IgG1 hinge-CH2-CH3-Fc-domain. Especially target epitopes close
to the cell membrane seem to depend upon a certain degree of flexibility of the CAR which
a spacer element provides [90–92]. At the same time, this exposed IgG-CH2-Fc domain
poses the risk of off-target activation and thereby activation induced cell death (AICD)
of CAR-T cells binding IgG Fc-receptors (FcγR) on innate immune cells–which likewise
activates those. Reduced CAR-T cell persistence, a lack of anti-tumor control and off-target
toxicities are the consequences [92]. Therefore, further adaptations were made: the deletion
or modification of distinct regions in the CH2-domain of the spacer for FcγR-binding can
effectively reduce this interaction [93,94]. Yet, the exact optimal spacer length, varying
from 12 to 299 amino acids for CD19-CARs, for example, depends on the distinct location
of the target epitope and most likely the construct [91,95,96]. As an alternative to these
IgG-derived spacer/hinge regions native motifs from CD28 or CD8α can be used [97,98].
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Regarding, for example, Ide-cel (bb2121), this BCMA-CAR is equipped with the hinge
region of CD8α [69].

The TM-region—generally a hydrophobic α-helix spanning the cell membrane anchor-
ing the CAR—of bb2121 is obtained from the natural sequence of CD28 [69]. CD4, CD8α
and CD28 have been extensively used to design numerous CARs [99–101]. Meanwhile,
the TM-domain of inducible T cell costimulator (ICOS) even enhanced T cell activity in
one report [35] and thereby underlines, how such fine manipulations of the construct can
immensely impact overall CAR-T cell functionality. It becomes evident, that the role of
these different TM-regions for T cell activation, in general, is incompletely understood to
date and requires further investigation.

2.4.3. Intracellular Signaling Domain

The CAR-part, which probably experienced the greatest engineering already, is the
intracellular signaling domain whose modifications define the CAR-generations. As out-
lined above in more detail the incorporation of either CD28 or 41BB signaling domains
can significantly alter T cell activation threshold and longevity. Phosphoproteomic anal-
yses of CD28ζ- versus 41BBζ-CARs pictured the phosphorylation of similar signaling
intermediates for both, yet to a larger extent for CD28ζ-constructs [102]. When the same
group, Salter et al. [103], performed similar analyses between ROR1-CAR and EBV-specific
TCR-activated T cells, they showed fewer phosphorylation of the canonical T cell signaling
molecules CD3δ, CD3ε and CD3γ as well as linker for activation of T cells (LAT) for CAR
cells. Supraphysiological phosphorylation of CD3ζ and CD28 are suggested to compensate
for this lack. These investigations nevertheless describe major differences in signaling
cascades between CAR and TCR [103].

Though being able to induce tumor cell killing downstream artificial receptor con-
structs, the signaling cascade leading there still does not entirely mimic physiological
TCR-induced T cell activation. Which consequences do these artificially created signaling
differences have for T cell qualities going far beyond immediate activation and anti-tumor
control such as T cell differentiation towards terminal effector cells, memory formation
and longevity? How is, for example, T cell metabolism altered? Questions like these
demand further investigation to get a better understanding of potential harms and to find
optimization strategies for CAR-T cell therapy. In this respect, such phosphoproteomic
comparative analyses between CAR and TCR at different signaling strengths as well as
more detailed metabolic comparisons might be useful for CAR design. Salter et al., for
example, concluded an optimized CAR-construct aiming at increased phosphorylation
of LAT from their studies by inserting the CD3ε or GRB2 signaling motif. These modifi-
cations improved CAR sensitivity, anti-tumor activity and T cell persistence [103]. Other
groups are focusing on altering the ITAM domains of CAR constructs for fine-tuned T cell
activity by either eliminating them for over-activating CD28ζ or introducing them for less
antigen-sensitive 41BBζ CARs [104,105].

Another way of modifying CAR signaling is the addition of cytokines or chemokines:
while the current clinical success rates were mostly reached with second-generation BCMA-
CARs, first-in-human data are collected with fourth generation constructs with expanded
intracellular domains. One example is a BCMA-targeted CAR including expression of IL-7
and CCL19 which was reported superior concerning expansion, differentiation, migration
and cytotoxicity while proving safe and efficient in the first patients (NCT03778346) [106].

2.4.4. Tonic Signaling

One further important aspect to be considered in the choice and design of the whole
CAR-construct is antigen-independent signaling in the absence of cognate ligand and other
exogenous stimuli (e.g., cytokines or allogenic feeder cells) mostly referred to as “tonic
signaling”. Consequently, elevated constitutive secretion of cytokines, persistent prolifer-
ation for several month without further addition of stimuli, more rapid exhaustion and
impaired anti-tumor effects occur [107,108]. At least partly, these effects can be explained
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by high surface expression levels of CARs caused by strong constitutive promotors and
subsequent CAR-clustering at the T cell surface [35]. Higher basal activation and a more
differentiated phenotype correlate with higher CAR-surface expression as well as a higher
percentage of terminally differentiated effector cells. High surface expression of CARs
moreover was enriched in non-responders [109]. Moreover, there is evidence, that the
insertion of the CAR-DNA into the endogenous TRAC locus—similarly to orthotopic TCR
replacement (OTR)—by homology-directed recombination can prevent tonic signaling.
Ameliorated internalization kinetics are suggested to delay effector differentiation and
exhaustion then [110], but the procedure might also decrease T cell longevity as other
reports showed [111].

The specific construct also influences the strength of tonic signaling: CD28ζ leads to
higher, 41BBζ lower levels of tonic signaling. Considering the subsequently more rapid
exhaustion and terminal effector differentiation of T cells, this could provide one reason for
increased persistence of 41BBζ-CAR transgenic cells compared to CD28-costimulation [112].
Other, earlier reports, however, described antigen-independent proliferation in 41BBζ-
CARs as potentially beneficial for longevity in vivo [32]. Tonic signaling per se in T cells
is a common phenomenon: TCRs of quiescent cells transiently bind with low affinity to
self-peptides in peripheral lymphoid organs causing subthreshold activation by low level
phosphorylation of CD3ζ. The relevance of these contacts still remains controversial, but
they are expected to impact maintained TCR-sensitivity [113]. This raises the question of
whether a defined window of such low, constitutive, or maybe fluctuating T cell activation
might in fact be necessary for T cell persistence. Too strong chronic T cell activation
including tonic CAR-signaling, however, most likely impairs T cell functionality and must
be assessed systematically for different CAR-constructs.

2.4.5. Reducing Toxicities

Overstimulation cannot only affect the transgenic T cells, but their excessive sig-
naling and other immune cells reacting to ACT can also lead to strong cytokine release
and is known as one major toxicity of CAR-T cell infusion. Clinically, CRS manifests as
fever within hours or days after infusion followed by sinus tachycardia, hypotension,
depressed cardiac function, dyspnea and hypoxia. Inflated circulating cytokine levels
can entail capillary leak syndrome and consequently pulmonary edema causing lung
failure [4,39,70,114–116]. Ill-defined and highly heterogenous neurological toxicities (ICAN)
can also succeed CAR-therapy and almost exclusively occur in patients who also developed
(mostly beforehand) CRS. Correlation with high pretreatment tumor burden and high peak
CAR-T cell expansion is moreover described [4,39,114,116–118]. Furthermore, several other
end-organ toxicities—most of them reversible—and especially hematologic toxicities are
reported subsequent to CAR therapy [116].

However, especially the severity of CRS and ICAN demands a better understanding of
the pathophysiology and the identification of prediction markers. Further experience with
CARs in the clinic will help to improve the management of these side effects [4,119,120].
Nevertheless, reduction or abrogation of toxicities through T cell-engineering strategies
should be the ultimate goal. Exemplarily, introducing suicide genes into CAR-T cells de-
picts one option to eliminate these engineered cells permanently and irreversibly from the
circulation by administration of defined drugs targeting these genes in case of severe side
effects [121]. Furthermore, several approaches aim at an inducible and reversible switch
inhibiting CAR-T cells via administration of drugs such as the IMiD lenalidomide [122]
or Doxycycline [123]. Thereby, circumventing the need to destroy CAR-T cells and in-
stead applying more precise control over dose and toxicity due to reversibility might
be advantageous.
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3. The TCR-Based Therapy Approach and Its Potential for Treatment of MM

As CARs are based on our understanding of T cell activation downstream TCRs, ACT
cannot only employ artificially constructed receptors, but also native TCR sequences to
target a tumor. This strategy, despite being less-well established for clinical application to
date, is also promising for MM.

3.1. General Aspects of the TCR-Peptide-MHC Interaction

The TCR (see Figure 1A) is the naturally encoded main trigger for clonal expansion
of T cells upon specific antigen-binding [124]. Most TCRs are heterodimers composed of
disulfide bonded α- and β-chains, both consisting of a constant and a variable domain [125].
The latter, containing the antigen-recognition site, underlies somatic recombination of the
variable (V), diversity (D)—only for the β-chain—and joining (J) sequence on the genetic
level during its maturation. This leads to a stochastic amount of more than 1013 different
TCR-clonotypes for each human [126] of which usually only the non-self-reactive sur-
vive negative thymic selection [127]. These TCRs recognize with immense specificity
their antigen presented on the surface of a tumor or antigen-presenting cell (APC) on a
major-histocompatibility complex (MHC) class I or II—the counterpart for either CD8-
or CD4-derived TCRs [128]. Compared to the synthetically engineered CARs, the TCR
complex lacks an own intracellular signaling domain and only upon association with the
six subunits of CD3–CD3εγ, CD3εδ and CD3ζζ—the necessary binding motifs (in total ten
ITAMs) for the intracellular signal transduction machinery are provided (see Figure 1A).
Following conformational changes of the TCR upon recognition of the cognate peptide
presented in the binding cleft of the MHC-complex [129] a variety of different pathways
downstream the phosphorylation sites of these ITAMs promotes T cell activation [21,130].
TCRs are distinguished by their enormous sensitivity: It has been shown, that one sin-
gle or at least very few TCR-pMHC interactions (other studies vary between three and
200 contacts) are sufficient to effectively provoke cytokine secretion and target cell killing
by the formation of TCR-clusters triggering serial activation events [131–133]. However,
usually a much larger number of TCRs is present on the cell surface detecting its respec-
tive pMHC-counterpart, reflected by TCR avidity [134]. Generally, T cell clones bearing
TCRs of higher functional avidity which is defined as a T cell activation threshold for
its effector functions determined in vitro in dependance of a certain epitope density all
co-signaling taken into account [134,135], are expected to elicit stronger anti-viral [136–139]
or anti-tumor [140–143] responses. These cells do not only react more potently to lower
doses of antigen in terms of effector functions, but they also seem to lyse their targets
faster irrespective of antigen dose [144]. Keeping this higher activation level in mind, one
would expect high avidity TCR clones to easily outcompete those of lower avidity on a
population level [145,146]. This, however, does not necessarily seem to be the case: For
CD4+ T cells it has been shown with respect to affinity, that TCR with a lower level of
binding strength to their pMHC-complex and thereby most likely extent of activation, are
at least as frequent as TCR clones with higher affinity and contribute to the overall adaptive
immune effector function [147]. In addition, there is evidence for activation and expan-
sion capacity of CD8+ cells in response to acute, microbial infection at very low affinity
pMHC-TCR interactions [148]. Despite or maybe because of diminished overall activation,
T cell clones with lower affinity TCRs persist at higher frequencies after ACT compared
to high affinity TCRs in some studies in humans [149,150]. They might maintain a lower
and more persistent, rather than strong and pulsatile stimulation resulting in beneficial
proliferation patterns [151]. Meanwhile, very high binding strength leads to deteriorated
signaling, such as poor mitogen-activated protein kinase (MAPK) phosphorylation [151].
Isolating neoantigen-reactive MHC-class I-restricted TCR from CD8+ T cells from a ma-
lignant melanoma patient, we also detected a higher overall frequency of TCR of lower
functional avidity in different patient tissues over the course of several years [152,153].
All these findings suggest a “goldilocks” window of optimal T cell activation for in vivo
application [154,155]. The strength of T cell stimulation determined by TCR activation
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threshold might thus imprint the T cell phenotype and thereby functionality, which might
be of therapeutic relevance [148,156].

However, additional factors likely play a role. The clearance or persistence of the
cognate antigen in settings like either acute or chronic disease—infections as well as
tumors—may influence the role of avidity for TCR clones. Moreover, the TCR requires co-
stimulation in addition to the antigen-specific signal [157]. It is provided by the integration
of a multitude of different stimulatory or inhibitory receptor-ligand interactions, which
strengthen or dampen T cell responses. Co-signaling from receptors upregulated in different
phases of T cell activation to various extents in dependency of stimulation strength [158]
exerts crucial roles in differentiation fate, effector function, proliferation and longevity. The
two largest families of co-receptors comprise the immunoglobulin superfamily (IgSF) on
the one hand and the tissue necrosis factor receptor (TNFR)-superfamily (TNFRSF) on the
other hand [159]. CD28 derives from the first, CD137/41BB from the latter—from those
two the previously mentioned most frequently used intracellular signaling domains used
in CARs originate. Further understanding of the exact integration of these signals in T cell
differentiation, activation, effector response and survival as well as their versatile response
to the surrounding tumor microenvironment (TME) and the present ligands will help to
make use of co-signaling events in T cell engineering as potential “adjusting screws”.

3.2. Potential Targets for TCR-Based Therapy in MM

While antigen recognition by CARs only allows the detection of surface antigens,
the choice of target is more diverse and highly personalized in TCR-based therapy. One
part of TCR antigens derives from protein-sequences undergoing a multi-step intracellular
processing and presentation machinery [160,161]. More recently also non-coding and in-
tronic regions, as well as post-translational modifications, became known as a source for
epitopes in the immunopeptidome of a cell [162,163]. Both allow in addition to extracel-
lular targets access to the intracellular peptidome—one major difference and advantage
compared to CAR therapy. However, the restriction of peptide-presentation to a highly
patient-individual HLA repertoire, renders TCR-based approaches less broadly applicable
than CARs. Currently, TCR-based therapies already find use fighting chronic infections,
viral [164–166] as well as fungal [167], and especially in anti-tumor treatment. For the
latter, two options arise in principle: targeting the MHC-presented epitopes of common
tumor-associated antigens (TAA)—basically similarly to CARs—or the identification of
neoantigens presented individually per patient.

The first option comprises various TAAs: cancer-testis antigens (CTAs), those derived
from wildtype proteins but overexpressed in malignant cells as well as lineage-restricted
proteins. CTAs distinguish themselves by the restriction to gametogenic tissues with mei-
otic function as well as pathologically certain tumors [168]. Several CTAs are expressed to
different extents depending on the patient and disease stage in MM (see Table 3) and depict
potential targets for TCRs: amongst these is the most immunogenic CTA NY-ESO-1 ex-
pressed in one third of stage III myeloma patients. To name some more examples, members
of the MAGE and GAGE families, LAGE-1 and SSX-2 are also present in malignant plasma
cells of which especially MAGEC1/CT7, MAGEA3/6 and LAGE-1 represent promising
targets for immunotherapy with a coverage of 85% of MM patients. Furthermore, there
is a correlation between the number of different CTAs expressed and the prognosis de-
scribed [169,170]. However, there is limited information about presentation of defined
peptides derived from CTA in MM.

Concerning overexpressed wildtype proteins as TAAs in MM, all surface proteins
previously listed as potential candidates for CAR-based therapy, also depict possible targets
for TCR-based approaches, as they are generally (over)expressed in MM cells (see Table 1
and Figure 1E).
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Table 3. Frequently expressed cancer-testis antigens in MM patient cohorts.

Gene Expression in BM-Samples from MM Patients Across Different Studies [in %]

Andrade et al.,
2008 [169] (n = 39)

Van Duin et al., 2011 [171]
Atanackovic et al.,
2007 [172] (n = 55)

Condomines et al.,
2007 [173] (n = 64)newly diagnosed

(n = 320)
relapsed
(n = 264)

BAGE1 32 14.5

CTAGE5 95.6 48.5

CTNNA2 60.6 26.5

FAMI133A 86.3 79.2

GAGE (family) 36 17

GAGE8 15 61.4

GAGEA 16.6 71.2

JARID1B 82.5 33.7

LAGE-1 49

MAGE A3/6 46 37.8/45 47.3/49.2 54.5 33/31

MAGE A9 10.9 5.7

MAGE B1 5.3 3.8 0.9

MAGEA1 31 21.9 42 3.7

MAGEA12 20.5 15.3 33.7 25

MAGEA2 41 9.4 8.3 2.0

MAGEA4 3.1 5.7 0.2

MAGEB2 47.2 27.7

MAGEB4 5.3 1.1

MAGEC1/CT7 77 71.3 60.6 66

MAGEC2 29.1 9.5 56.4 13

NY-ESO-1 36 7.3

PAGE2 5.9 2.3

PBK 94.1 86.4

PRAME 23 31.9 37.9

SPA17 38.1 9.1

SPAG9 100 99.6

SPANXC 5 3 0.1

SSX1 28 30.3 29.5 34.5 20

SSX2 6.6 6.4 16.4 0.6

SSX3 2.5 5.7 0.4

SSX5 20.0

TEX14 7.2 3

TSPY1 10.6 13.6

ZNF165 83.1 13.6

The limitation of targeting wildtype proteins is their presence in healthy human tissue.
On the one hand, on-target, off-tumor toxicities can result if the antigen is expressed—
even at very low levels—in healthy human tissue [174]. On the other hand, due to the
mechanisms of central tolerance, the natural TCR repertoire is specifically designed to
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spare self-antigens. Therefore, if at all, only a small amount of TAA-targeting TCR should
remain in the T cell pool, which is furthermore expected to have a low affinity towards
their pMHC and exert lower anti-tumor function [175,176].

Clinical data, however, show that adoptive TIL therapy, often in combination with
checkpoint inhibitor blockade, can induce potent responses in melanoma patients suggest-
ing the presence of tumor reactive TCR-clonotypes [177,178]. Nowadays, it is suggested,
that large parts of these therapy-induced or -enforced T cell reactivities could in addition
to recognition of TAAs be based on their specificity for neoantigens [179]. These peptides
presented on MHC-complexes on the tumor cell surface originate from tumor- and patient-
specific, nonsynonymous somatic mutations. Missense mutations, insertions, deletions
(indel mutations), frameshift mutations and gene fusions entail these alterations and post-
translational processing as well as antigen presentation moreover influence changes in the
peptidome [180–184]. As these novel epitopes are foreign by nature and exclusive for the
tumor, they embody optimal target candidates for ACT [185]. Yet, the direct identification
of these neoepitopes beyond in silico predictions (e.g., by mass spectrometry) and then
eventually the responsive TCRs, remains difficult, so far.

In the past, most studies on the MS-based identification of neoepitopes were conducted
in highly immunogenic metastatic melanoma [153,180,186], while to date neoantigens were
predicted for several entities, such as for example non-small cell lung, breast, ovarian
or gastrointestinal cancer [187–190]. Especially for more clonal tumor entities with high
mutational burden, an increasing number of tumor-recognizing T cells following ICB
suggests a major role for the neoantigen-reactive T cell pool in immunotherapy. For these
diseases, thus, mutational and neoantigen load correlate as tissue-agnostic predictive
biomarker with therapy response rates and survival [179,187,191].

This correlation, however, is not reported to this extent for malignancies with lower
mutational burden and higher tumor heterogeneity, such as MM. Is there, though, the
potential to exploit neoepitopes for ACT in MM? Whole-exome and RNA sequencing
analyses from MM tumor material detected several hundred non-synonymous somatic
mutations per patient [192–194], of which, depending on the cohort, an average of roughly
20 [194] to 150 [193] could be presented on an HLA-molecule on the tumor cell surface
according to prediction algorithms [195,196]. Different myeloma subgroups differ in their
overall mutational load, with highest rates for t (14;16) MM. This suggests a different
potential for neoantigen-based therapies for these groups [197]. The predicted neoantigen
load generally increases with the overall number of genetic alterations as well as in the
course of the disease from newly diagnosed to a relapsed situation. Higher neoantigen
burden, thus, correlates with decreased survival of MM patients, as could be concluded
from the Multiple Myeloma Research Foundation (MMRF) CoMMpass (NCT01454297)
study cohort [193,194,197]. Nevertheless, especially among these risk groups of myeloma
patients, higher quantity of putative neoepitopes suggests a potentially higher success
rate for immunotherapeutic approaches including TCR-based ACT. Indeed, Perumal and
colleagues could show for three different relapsed MM patients, that neoantigen-specific
CD8+ T cell responses were enhanced by checkpoint therapy [193].

The mutational profile in MM is especially coined by translocations involving chro-
mosome 14, single nucleotide mutations of the immunoglobulin heavy and light chain
genes as well as genes involved in the MAPK-pathway, such as NRAS, KRAS (especially
in pretreated patients) and BRAF. Several studies, however, reported that the majority of
putative neoepitopes are private for individual patients, even if the mutation occurred
within the same gene [193,194,198,199]. Aiming towards personalized, precision medicine
with TCRs, thus, seems more feasible, than creating “off the shelf” therapeutics for relapsed
MM patients. Thereby especially patients with no further immunotherapeutic and even
CAR-based therapy options might profit from a selection of TCR for T cell engineering.
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3.3. Application and Engineering Approaches for TCR-T Cells in MM

Compared to the synthetic CARs, the bottleneck for TCR-based ACT remains receptor
identification at present. Tumor-reactive T cells are obtained from tumor specimens or blood
samples and can be enriched for antigen-specific activity, exemplarily by sorting for CD137+,
CD134+ or PD-1+ cells [200–203]. Afterwards, these cells are tested in vitro for reactiv-
ity against peptides from TAAs or neoantigens by either using barcoded pMHC-peptide
multimers [204,205] or co-culture systems with autologous or allogenic peptide-pulsed or
minigene-transduced APCs [180,206,207]. Originally, ELISPOT assays measuring IFNγ-
secretion, or the upregulation of activation markers were applied. Over the past few years,
single cell deep sequencing methods became more and more broadly applicable for the iden-
tification of TCR sequences expanding throughout these stimulation assays [150,206,207].
Nevertheless, TCR identification remains expensive and time-consuming—at least several
weeks from initial mutation calling to TCR isolation are reported in the fastest pipelines
currently available [204,208]. Facing the instability of tumor mutations and consequently
immunopeptidome, acceleration of these processes is substantial for a broader application.

While CAR-based approaches are already tested in various clinical trials for the
treatment of MM, the way for TCR-based T cell products into the clinic for MM therapy as
well as for other entities remains more troublesome at present. Some TAAs can be targeted
by “off the shelf” TCR-constructs which can be introduced genetically into autologous
patient T cells and then reinfused. Yet, these products remain HLA-restricted and large
patient cohorts usually needed for drug development are often not feasible the more
personalized these therapies become.

For MM, T cells modified to express receptors against epitopes derived from the CTAs
NY-ESO-1 or LAGE-1 (NCT01892293, NCT01352286 [209] and NCT03399448 [210]) are
clinically evaluated in a small set of patients already. Here, they show responses in high-
risk relapsed or refractory HLA-matched MM patients after myeloablation and ASCT (see
Table 4). For the NY-ESO-1/LAGE-1 (the target epitope represents a shared peptide of both
highly homologous CTAs) specific peptide enhanced affinity receptor (SPEAR) transgenic
T cells [211] an ORR of 80% with a median PFS of 13.5 months could be achieved. After
one year, 52% of patients remained disease progression-free. T cells were homing to the
bone marrow, the tumor site, and showed proliferative capacity and longevity (quantifiable
for 100 days in 23 of 25 patients; for two patients even for 5 years). At the same time, the
occurrence of severe side effects such as CRS or ICAN remained low as, so far, experienced
for TCR-based approaches in contrast to CARs [209].

These SPEAR-TCR were altered in their amino acid sequence before in silico recon-
stitution to increase affinity [212,213] since the major predictive factor in TCR-based ACT
for effective anti-tumor control still is high TCR affinity [213,214]. This affinity maturation
reaches an acceleration of the human T cell response towards their cognate antigen yet
deteriorates the ability to recognize the target at low densities [215]. As outlined above
the suggested “goldilocks” activation strength and decreased T cell effector functions
at too high TCR affinity [154,155], suggest an upper limit for this modification, which,
however, still has to be defined. No further precise criteria for the “best” TCR for ACT
are established to date—if such a best receptor even exists, rather than different qualities
necessary at different disease stages, antigen densities or under different TME conditions.
The heterogeneity in functional avidity of different TCRs in the anti-tumor T cell pool from
melanoma patients as mentioned above suggests, that a deeper understanding of favorable
TCR qualities is necessary across different entities [150,152]. Understanding, which TCR
clonotypes have the greatest impact on immediate tumor killing, but also long-term tumor
control and memory formation, will be essential to choose the optimal combination of TCR
for ACT improving patient survival.
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Table 4. Clinical trials for TCR-based therapy in MM (information from clinicaltrials.gov).

Trial
Number/Name Sponsor TCR-Specificity HLA-Restriction Phase n Diagnosis Dose 1 Conditioning

Therapy 2
Further

Modifications Reference

NCT01892293 Adapt-immune NY-ESO-1c259 HLA-A*0201 I/IIa 6 relapsed or
progressive MM

1 × ≥ 0.1–1 × 1010;
in case of progression:
second dose of up to

5 × 1010

NCT01352286 Glaxo SmithKline NY-ESO-1c259
(high affinity) HLA-A*0201 I/IIa 25

relapsed or
refractory MM (at

least one prior
therapy line)

>0.1–1 × 1010

affinity maturated
TCR/ specific

peptide enhanced
affinity receptor
(SPEAR) T cells

[209]

NCT03399448 University of
Pennsyl-vania

NY-ESO-1c259
(high affinity) HLA-A*0201 I/IIa 3

refractory metastatic
sarcoma, relapsed or

refractory MM (at
least three prior

therapy regimen)

1 × 108 CP, FLU

electroporated with
CRISPR guide RNA

to disrupt
expression of

endogenous TCRα,
TCRβ and PD-1
(NYCE T Cells)

[210]

NCT02457650 Shenzhen Second
People’s Hospital NY-ESO-1 HLA-A*0201 I 36 various entities,

amongst them MM N.A. CP, FLU

1 per kg bodymass, 2 CP = cyclophosphamide, FLU = fludarabine.
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Further development of NY-ESO-1-TCR-engineered T cells in the group around Stadt-
mauer et al., added not only the CRISPR-Cas9 based deletion of the endogenous TCR-α-
and β-chain to the lentiviral manufacturing procedure of these cells, but also included
further engineering: the knockout (KO) of the immune checkpoint molecule Programmed
cell death protein-1 (PD-1). PD-1 deficient T cells were previously shown to exert better
anti-tumor function of CAR T-cells in xenograft mouse models [216,217], while the combi-
nation of NY-ESO-1 specific TCR-T cells with anti-PD-1 blockade augmented efficacy [218].
Stadtmauer et al. thus performed the first-in-human pilot study for CRISPR-Cas9 engi-
neered TCR-T cells for two refractory MM patients and one sarcoma patient, demonstrating
not only feasibility but also the safety of this engineering approach [210]. The KO of PD-1,
however, demands a more detailed understanding of PD-1 signaling and the potential
negative influences of T cell differentiation. The contraction of putative PD-1 KO-T cells
(identified by sequenced editing events in the gene) from 25% to 5% of all T cells in four
months within the study, rather suggests a deficit in longevity than the advantage expected
from previous publications [219]. PD-1, moreover, was identified as a haploinsufficient
tumor-suppressor for T cells suggesting a certain degree of oncogenic potential of PD-1
KO [220], why such engineering strategies must be applied with caution.

Apart from NY-ESO, other TAAs currently targeted in preclinical investigations are the
B cell-specific transcription factors BOB1, FCRL5 and VPREB3 showing anti-tumor efficacy
against several B cell malignancies, amongst them MM [221,222]. MAGE-A1 specific TCR
are moreover evaluated clinically for a cohort of refractory MM patients in a German study
(DRKS00020221). Additional clinical trials evaluating in-patient responses are, however,
still necessary to further assess therapeutic potential here.

While these TAAs, if overexpressed in their wildtype form in the tumor, allow “off
the shelf” TCR-constructs with restriction only to the matching HLA—this already highly
limits the feasibility of large-patient cohorts—targeting neoantigens is highly personalized.
The extremely patient-specific nature of most epitopes recognized on top of the TCR’s HLA-
restriction claim for single-patient protocols promising high specificity and minimized
toxicity. Despite the preclinical success and progressive identification of various neoantigen-
specific TCR with anti-tumor effector functions [150,152,153,207], no results from clinical
trials are available, so far. Currently, one single-arm first-in-human phase Ia/Ib trial is open
and recruiting patients for investigating the efficacy of a single dose of neoantigen-specific
TCRs with and without additional anti-PD1 treatment in locally advanced or metastasized
solid tumors (NCT03970382).

It will depend on results from studies like this, whether such a highly personalized
and thereby surely laborious therapeutic approach, becomes more feasible and will be
expanded to more entities such as relapsed patients with MM. The hypothesis is that the
potentially broader range of extra- and intracellular immunologically relevant epitopes
targeted via private TCRs compared to CARs targeting one single surface antigen, might
be a promising therapeutic option for patients refractory to “off the shelf” products due to
tumor escape mechanisms such as antigen loss.

4. Therapy Resistance: Obstacles for CAR as Well as TCR T Cell-Based Therapy
Approaches in MM and Engineering Strategies

Despite the clear potential CAR- as well as TCR-based therapeutic approaches promise
for MM further optimization is required on various levels to efficiently eradicate MM cells.
The players in this game are, on the one hand, the tumor cells with a certain antigen
or peptide-MHC complex presented on their surface as well as a tumor-specific, highly
immune-suppressive microenvironment. On the other hand, we redirect T cells towards
this particular antigen by genetically engineering them to express a specific receptor to
target and kill the tumor cells. We are aware that this is, of course, a vast simplification of
the complex cellular interplay between the innate and adaptive immune system as well
as the surrounding tissue. Even though, we first need a deeper understanding of how to
optimize T cell engineering strategies on these “simple” three levels: the receptor itself,
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the isolated, transduced T cell population and the tumor with its surface expression and a
defined microenvironment (see also Figure 1). Several mechanisms on each of these levels
can lead to therapy resistance. We already elaborated on strategies for fine-tune engineering
on the level of CAR- and TCR-constructs themselves and thereby improving qualities such
as target recognition, T cell activation, tumor cell killing, toxicity profile and longevity. In
the following, we want to shed more light onto the other two, equally important levels.

4.1. Counteracting Unfavorable T Cell Intrinsic Qualities

The infusion product is made from living cells with different in vivo fates prior to
transduction—often various pretreatment lines fighting the malignancy. Each cell product,
thus, is distinguished by its highly individual properties. Beneficial subsets and markers
have been mostly described for CAR T cells but can be, at least in part, transferred into the
TCR-ACT setting.

In vitro transduction and expansion processes as well as antigen-specific T cell stimu-
lation in the patient afterwards lead to differentiation towards a terminal effector state with
reduced multipotency and overall functionality [223,224]. Therefore, the enrichment for
less differentiated T cells—naïve (TN), stem cell memory (TSCM) or central memory (TCM)
phenotypes—leads to improved T cell persistence in the patient [225–227]. Furthermore, re-
tarding terminal differentiation of T cells by the addition of PI3Kδ-inhibitors during in vitro
culture restored functional capacity [228]. Autologous T cells, however, might already be
dysfunctional consecutively to disease progression—one hallmark of cancer—or exposure
to chemotherapeutic agents. To circumvent cellular malfunction, one further possibility—
also critically accelerating the time between therapy indication and administration—might
be allogeneic T cell therapeutics as discussed elsewhere in more detail [229]. Tightly balanc-
ing the potential of increased T cell fitness and “off the shelf” availability on the one hand,
with graft-versus-host disease, on the other hand, these approaches demand for extremely
precise matching of the highly polymorphic HLA molecules between donor and recipient
or effective T cell engineering including for example HLA-modification or inclusion of
off-switches. So far, these approaches are especially investigated for CAR-T cells [229,230].
Nevertheless, the stimulation, these T cells experience during manufacturing processes
and in the patient, leads to terminal differentiation and senescence as well as counterreg-
ulatory processes often termed exhaustion. In both cases, diminished effector capacity
results, which leads to diminished anti-tumor response. Exhaustion has been suggested
as a major reason for T cell dysfunction in the setting of chronic T cell stimulation due to
antigen persistence instead of clearance like in acute infections—chronic viral infections,
as well as tumors, provide this condition. In response to continuous TCR signaling T cells
upregulate inhibitory receptors such as PD-1, CTLA-4, Tim3, Lag3 or TIGIT and loose
effector function [231,232]. Since high expression of inhibitory receptors like PD-1 is found
in TILs, they are expected to be exhausted already—the reversibility of these processes is
still controversially discussed [233–235]. Consequently, the use of TCR-transgenic T cells
instead of expanded TILs for ACT is already a strategy to circumvent impaired functionality.
However, of course, adoptively transferred T cells also face the same persistent antigen
stimuli as endogenous tumor-specific T cells and are prone to become dysfunctional in
the course of this counter regulation as well. Developing strategies against exhaustion,
such as a combination of TCR- (e.g., clinically tested in NCT03970382) and CAR-T cells
with checkpoint inhibitors [236] or genetic modification such as the KO of PD-1 [210] may
represent important steps towards long term anti-tumor control subsequent to ACT.

In the opposed case—extremely low or absent antigen-specific stimulation—the num-
ber of unstimulated T cells rapidly declines after infusion due to the lack of expansion
triggers. The combination of CAR-engineered T cells with RNA vaccines for body-wide
presentation of the target epitope in all lymphoid compartments, thereby may bypass
insufficient engraftment by providing continuous stimuli to transgenic T cells [237,238].

T lymphocytes, however, do not only differentiate subsequently to stimulation, but
already commit to either CD4 (MHC-class II restricted) or CD8 (MHC-class I restricted)
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lineages in the thymus [239]. CD4+ T-cells are considered “helper cells” interacting with
professional APCs and secreting cytokines to provoke immune responses and attract other
immune cells. CD8+ T cells are also called “killer” or cytotoxic T cells. While direct tumor
cell killing is mainly attributed to the latter, the former hold important accessory functions
for anti-tumor immunity [240–242]. Antitumor reactivity was indeed enhanced by infusing
precisely defined compositions of CD4 and CD8 T cells for transgenic cell products [243]
and these combinations are currently evaluated further in the clinic for CD19-CAR therapies
(NCT01865617 and NCT01865617) [114,118]. Similar combinations also have to be tested for
TCR-based therapeutics, limited by the necessity for parallel discovery of target peptides
and matching TCR for MHC-class I and MHC-class II.

4.2. Tumor Resistance Related to Antigen Expression

Stable expression of the antigen of interest on the cell surface—either as a whole
antigen or as a peptide on an MHC-complex—and its coverage of the tumor entirety
before therapy initiation determine therapeutic response. For BCMA [93] and even more
pronouncedly for neoepitopes, it is highly unlikely, that all tumor cell clones express the
target of interest to the same extent at diagnosis and the start of therapeutic intervention.
Generally, a large degree of intratumoral heterogeneity is expected before the start of
treatment already [199] and therapeutics targeting antigens with incomplete coverage, thus,
specifically select for target-negative and thereby therapy-resistant tumor cell clones. The
development of reliable strategies and methods for intratumor-heterogeneity assessment at
therapy baseline, therefore, is essential for successful long-term tumor control [199].

Regarding stability and coverage of the BCMA-surface expression in MM, its level can
also be highly variable. Heterozygous BCMA loss before treatment initiation, for exam-
ple, is reported for some MM cases and can also occur later throughout therapy-induced
immunoediting as the clonal selection pressure largely comprises stability of surface ex-
pression [93,244]. Each slightest alteration in the expression of the target in response to
therapy potentially leads to refractory tumor residues which are resistant to the adoptively
transferred cells [245]. Moreover, the BCMA surface-level seems largely heterogeneous
for different myeloma cell lines as well as patients [246,247] and can fluctuate within one
cell line depending on in vitro culture conditions [unpublished own data]. This suggests
cell-intrinsic mechanisms for up- and downregulation in response to environmental stimuli.
Cleavage mechanisms of the ubiquitous multi-subunit γ-secretase complex are, exemplar-
ily, known to reduce target density on the MM cell surface resulting in a soluble BCMA
(sBCMA) form [248]. Consequently, inhibiting BCMA cleavage augmented antigen surface
expression and CAR-T cell mediated antitumor activity while proving safe and tolerable in
first clinical trials [249,250]. Especially for CARs, which are known to be much less sensitive
than TCR [103], the sensitivity of the receptor-construct must therefore be considered for
antigen choice: Low or decreasing levels of BCMA-expression beneath the detection limit
can already lead to failure of CAR therapy.

For TCR-based approaches, tumor cells become unrecognizable for the T cell compart-
ment, for example, by downregulation, loss and/or mutation of the antigen processing
and presentation machinery, like the beta-2-microglobulin domain of the MHC-I com-
plex [251,252]. In this manner, antigen-negative subclones are selected by the therapies
applied according to Darwinian principles. Likewise, other immune therapies are also
shown to alter the surface expression landscape of tumor cells: ICB, for example, leads
to loss of certain neoantigens probably due to loss of tumor subclones. Consequently,
this can result in acquired resistance to ICB and influences therapeutic decisions for the
administration of ACT [253].

Taking these tumor escape mechanisms into consideration, a panel of several targets
for ACT could be a potential solution to reduce the risk of tumor escape. For CAR-based
approaches, on the one hand, several strategies can be followed: to avoid the risk of therapy
resistance due to structural BCMA-alterations, biepitopic CAR-constructs are currently
developed and tested [72,254,255]. Counteracting the complete loss of BCMA during
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CAR-treatment, cocktails or sequential administration of CARs with several surface target
antigens (see Table 1) are furthermore evaluated in other entities already [256].

For TCR-based strategies, on the other hand, the enormous range of possible and
detectable neoepitopes, their patient-specificity and intratumor heterogeneity complicate
target selection. The prioritization of candidate neoantigens usually is based on a diversity
of aspects such as their detection by mass spectrometry or predicted binding affinity to
the MHC molecule, as well as the number of reads including the alteration in NGS data.
Neoepitopes binding to several HLA-molecules might be moreover beneficial for stable
presentation when facing mutations in the antigen-presentation machinery. The most
important features of neoepitopes, thus, are the likelihood of their presentation on the
tumor cell surface and the expected T cell response they elicit [257–260]. In addition,
qualitative characteristics, such as homologies to infection-derived peptides were shown
to correlate with longer survival in pancreatic cancer patients [259]. This is in line with
findings of a correlation between better therapy response to PD-1 checkpoint blockade and
higher dissimilarity of predicted neoepitopes to the self-proteome of these patients [261].

Despite all progress made with in silico predictions of neoepitopes, it remains ill-
defined, which particular epitopes lead to strong immune responses, which remain ne-
glected by the immune system and which can and should be therapeutically exploited [262].
Various studies underline the complexity of the immunogenic potential of different tumor
epitopes and demonstrate, that algorithms still lag behind: ex vivo testing of previously
established T cell responses against neoantigens shows potential for either anti-tumor
efficacy or immune-inhibitory function [263]. Furthermore, even if in vitro anti-tumor
response can be measured in response to a neoantigen, this does not necessarily mean
antigen recognition and T cell activation in vivo, where numerous other factors such as the
TME have to be considered.

4.3. MM-Defined Suppression of T Cell Action

The T cells’ opponent, the tumor entity, of course, immensely influences their fates.
Especially for solid tumors, from which TILs can be directly isolated, it is known, that the
presence of potentially tumor-reactive T cells is not necessarily accompanied by tumor
rejection. This dysfunction of tumor reactive T cells after their infiltration into the highly
immunosuppressive TME has been described by Hellström and colleagues [264,265]. In a
similar fashion, the immunosuppressive bone marrow (BM) niche in MM can silence cyto-
toxic activity of reactive T cell clones [266,267]. While the composition of immune cells in
this BM niche has been reviewed elsewhere in more detail [268], some immunosuppressive
factors with special relevance for MM shall be highlighted here.

On the one hand, crosstalk between T cells and other tumor-promoting immune cells
in the tumor niche can lead to dysfunction of T cells. Various interactions contribute
here, but one should be briefly elaborated on in the context of ACT: regulatory T cells
(Tregs) defined as CD4 + CD25 + FOXP3 + play an important role for immune tolerance to
self-antigens. However, by competitive IL2-consumption, immunosuppressive cytokine
secretion (IL-10, TGF-β) or suppression of APCs via CTLA-4 they can also reduce anti-
tumor immunity [269]. The balance between anti-tumor activity by cytotoxic CD8+ T cells
and immunosuppression by CD4+ Treg cells is considered a key driver of progression in
myeloma from the preliminary monoclonal gammopathy of undetermined significance
(MGUS) to MM by many reports [270]. In some investigations, either elevated absolute Treg
numbers or an imbalance in the ratio of Treg to TH17 or CD4 effector cells are correlated with
myeloma progression and impaired clinical outcome [271–273]. Others, however, report
decreased numbers or dysfunctionality of Treg cells in MM patients as well as alterations
in the course of treatment (e.g., with thalidomide). This also suggests one possible reason
for inter- and intra-cohort differences in the evaluation of the Treg-role [274,275]. Depletion
of Treg cells is suggested to, nevertheless, play a role in MM treatment and represents
one possible mechanism of action of anti-CD38 antibodies such as Daratumumab and
Isatuximab [276,277].
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Thinking about adoptive T cell product infusion, the role of Tregs requires further
understanding. Most investigations in this respect have been rolled out with CD19-targeting
CARs in B-cell malignancies, so far, but will also be necessary for optimizing administration
of CAR- and TCR-based therapeutics in MM. In the first place, the presence of prior
established tumor specific Treg populations might impair the anti-tumor response of
infused transgenic T cells [278]. Due to the lack of natural Treg cells in xenograft mouse
models, these effects remain hard to follow-up [278]. The improvement of ACT approaches
by prior lymphodepletion regimens, however, might at least partly be explained by the
depletion of these immunosuppressive, regulatory T cell populations [279]. Moreover, the
tumor specific activation of CAR- or TCR-T cells itself—including high IL-2 secretion—
potentially induces the formation of Treg populations [280,281]. Several strategies are
employed, to prevent this. One of them is the disruption of the IL-2 axis by engineering
CAR- (and in the future possibly also TCR-) T cells to express the IL-7-receptor [282] or a
IL-7R/IL-2β hybrid receptor [283]. This should selectively promote the growth of effector
CAR-T cell populations via IL-7. Engineering the co-stimulatory CAR domains—and
along this line the CD28-induced LCK phosphorylation and thereby IL-2 secretion—might
also influence Treg induction; results though stay contradictory, so far [283–285]. Besides,
CAR-T cells themselves have been shown to acquire a regulatory-like phenotype in the
presence of TGFβ, which depicts one further requirement for engineering tumor-redirected
T cells [286].

Apart from MM-specific Treg cells, myeloid derived suppressor cells (MDSCs), B
regulatory cells or MM cells themselves can express and secrete immunosuppressive
factors impairing T cell functionality [268,287]. Interaction of surface co-signaling receptors
especially got into the focus in the past few years. By blocking inhibitory receptors (e.g.,
PD-1, CTLA-4) or their ligands (e.g., PD-L1) T cell inhibition via these interactions shall be
reverted and T cell functionality reinvigorated [288,289]. Despite initially promising in vitro
results [290], clinical outcomes of ICB as a single agent in MM remained unsatisfactory,
so far [291], while combination with IMiDs even led to unfavorable risk-profiles [292].
This lacking benefit might at least partially correlate with the phenotype of T cells in the
BM niche of MM patients. Compared to the clearly “exhausted” phenotype of T cells in
the TME of other entities, like melanoma [234], T cells in MM express rather low levels of
inhibitory receptors (such as PD-1, CTLA-4, Lag3 or Tim3). Instead, these cells were CD28−,
KLRG1+ and CD57+ (see Figure 1F)—characteristics of a late-differentiated, senescent
status—and showed impaired proliferation. However, this state was accompanied by
normal-for-age telomere-lengths suggesting potential reversibility of this proliferative
impairment [293,294].

Hypo-responsiveness of T cells in MM, thus, might require therapeutic strategies other
than targeting inhibitory receptor axes alone. Immunomodulatory drugs (IMiDs) are estab-
lished in standard procedures in MM treatment already and enhance T cell responses by
boosting proliferation, increasing IL-2 and IFN-γ secretion (TH1 cytokines), downregulating
immunosuppressive cytokine secretion and inhibiting Treg formation [295]. It suggests that
equally to the advantage on endogenously present tumor-reactive T cells, combinations of
IMiDs and CAR-/TCR-based therapies promise improved clinical outcome [296]. Several
other combinatorial approaches with antibodies (e.g., anti-CD38 [297]) or armored CAR-
transgenic T cells (TRUCs) resisting immunosuppressive factors [298–300] are exploited
already. They exemplarily demonstrate the immense number of “adjusting screws” and
engineering approaches executed in order to optimize T cell-based therapeutic strategies
responding to the TME in MM.

5. Conclusions

Many important steps have been made in immunotherapeutic treatment of MM
patients in summary. Amongst them are, on the one hand, FDA- and EMA-approved
BCMA-CAR-constructs for T cell-based ACT. However, to make CAR-based treatment in
MM more broadly applicable many more hurdles as discussed in this review need to be
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overcome: it will be necessary to aim at a better understanding of CAR-signaling as well
as increased knowledge of the effect these artificial receptors have on T cell reactivity and
longevity. Thus, we need to assess the opportunities, but also difficulties and downsides
of certain modifications in these constructs and therapy regimens. On the other hand, we
may have to remember that physiological T cell-activation happens downstream a TCR
and that the immense sensitivity and specificity, as well as the broad target repertoire,
promise personalized approaches with reduced toxicities. Yet, we still lack the ability to
identify suitable HLA-presented epitopes and reactive TCR on a large scale and require
understanding, which qualities of TCR are most beneficial for which target and entity. For
both, CAR as well as TCR, there are many approaches assessed already to face resistance
mechanisms. Despite conceptual attractiveness, they still must prove clinical superiority,
more durable response rates and prolonged survival in MM patients.
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