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Simple Summary: Particle therapy with carbon ions is a promising novel option for the treatment of
recurrent high-grade glioma (rHGG). Lack of initial and sequential biopsies limits the investigation
of rHGG evolution under therapy. We hypothesized that peripheral blood transcriptome derived
from liquid biopsies (lbx) as a minimal invasive method may provide a useful decision support for
identification of glioma grade and provide novel means for longitudinal molecular monitoring of
tumor evolution under carbon ion irradiation (CIR). We demonstrate feasibility and report patient,
tumor and treatment fingerprints in whole blood transcriptomes of rHGG patients with pre-CIR and
three post-CIR time points.

Abstract: Purpose: To assess the value of whole blood transcriptome data from liquid biopsy (lbx)
in recurrent high-grade glioma (rHGG) patients for longitudinal molecular monitoring of tumor
evolution under carbon ion irradiation (CIR). Methods: Whole blood transcriptome (WBT) analysis
(Illumina HumanHT-12 Expression BeadChips) was performed in 14 patients with rHGG pre re-
irradiation (reRT) with CIR and 3, 6 and 9 weeks post-CIR (reRT grade III:5, 36%, IV:9, 64%). Patients
were irradiated with 30, 33, 36 GyRBE (n = 5, 6, 3) in 3GyRBE per fraction. Results: WTB analysis
showed stable correlation with treatment characteristics and patients tumor grade, indicating a pre-
served tumor origin specific as well as dynamic transcriptional fingerprints of peripheral blood cells.
Initial histopathologic tumor grade was indirectly associated with TMEM173 (STING), DNA-repair
(ATM, POLD4) and hypoxia related genes. DNA-repair, chromatin remodeling (LIG1, SMARCD1)
and immune response (FLT3LG) pathways were affected post-CIR. Longitudinal WTB fingerprints
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identified two distinct trajectories of rHGG evolution, characterized by differential and prognostic
CRISPLD2 expression pre-CIR. Conclusions: Lbx based WTB analysis holds the potential for molec-
ular stratification of rHGG patients and therapy monitoring. We demonstrate the feasibility of the
peripheral blood transcriptome as a sentinel organ for identification of patient, tumor characteristics
and CIR specific fingerprints in rHGG.

Keywords: carbon ion irradiation; recurrent high-grade glioma; biomarker; liquid biopsy; whole
blood transcriptome

1. Introduction

Carbon ion particle irradiation (CIR) is a promising novel therapy option for recurrent
high grade glioma (rHGG) [1]. rHGG includes grade III and IV tumors, composed of a vari-
ety of distinct molecular subtypes [2,3] almost exclusively exhibiting a grim prognosis [4,5].
Data reported by Nyazi et al. from a German Cancer Consortium (DKTK) multi-center
retrospective study of rHGG re-irradiated with photons highlighted the importance of
initial tumor grade, performance score and age at reRT as important prognostic factors
(re-irradiation risk score, RRRS) [6] empathizing the heterogeneity of rHGG.

CIR provides high precision particle radiotherapy modality with unique physical
properties as normal tissue sparing steep dose-depth gradient [7], and specific radiobio-
logical characteristics [8–12]. Its cell-killing efficacy is less dependent on the presence of
oxygen [13]. The biological effects differ from conventional therapy and include the induc-
tion of a more immune-accessible environment [9], modulation of angiogenesis [9] and the
eradication of tumor stem cells [8,9]. Tumor recurrences present predominantly at margins
of the high-dose irradiated region following CIR, as opposed to in-field recurrences after
conventional photon radiotherapy [14], supporting the observation of improved tumor cell
killing by CIR. The first clinical data—comparing RRRS matched patients with photon and
carbon therapy—showed promising results, especially for grade III glioma [1].

Indication for re-irradiation (reRT) is often based on imaging and clinical tumor
presentation [15]. A preceding biopsy or resection is not performed regularly, thus a
systematic molecular/histopathologic evaluation in the recurrent setting is not always
possible. This lack of data at reRT time point as well as the non-feasibility of sequential
biopsies during therapy limit the investigation of rHGG evolution and detailed examination
of therapy effects.

Liquid biopsy, utilizing different blood components, such as circulating tumor cells
(CTC), mutation/methylation studies on circulating free tumor DNA (cfDNA), deep single
cell RNSseq and cytometric profiling of immune cells and other novel technologies may
provide minimal-invasive means to dissect the molecular and characteristic features of
otherwise hard to access tumors. To this end liquid biopsy using peripheral blood tran-
scriptome as sentinel organ, is an appealing tool for translational research including patient
stratification and therapy monitoring [16–19]. Peripheral blood transcriptome combined
with deconvolution algorithms (e.g., CIBERSORT/TX for hematopoietic cells) may reflect
tumor/therapy perturbations of cellular composition. Moreover, blood cells are exposed
to drugs, traverse irradiated tissue and may elicit transcriptional responses to a plethora
of factors (e.g., growth factors, immune modulators etc.) released either inherently or
as function of a defined treatment by tumor cells. Therefore, in this study we aimed to
evaluate the value of a specific liquid biopsy application—whole blood transcriptome
analysis—to study the effects of CIR in recurrent high-grade glioma.

2. Materials and Methods
2.1. Study Cohort

Molecular information was extracted from pathology reports or physician letters.
ReRT grade was extracted from radiology reports. Gray equivalent doses were calculated
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according to the Local Effect Model 1, LEM 1 [20]. As control cohort, data from the KORA
F4 study [21,22] was retrieved from ArrayExpress (E-MTAB-1708).

2.2. Ethics Approval and Consent to Participate

All patient consented to participate in this study. The ethical approval was obtained
by the IRB-Ethics Committee of the Medical Faculty of Heidelberg University (approval
number S-540/2010).

2.3. Blood Processing

Whole blood, collected in PAXgene Blood RNA Tubes, was used for RNA extrac-
tion using the PAXgene Blood RNA Kit (Qiagen, Hilden, Germany). RNA quality was
verified with a NanoDropTM 1000 spectrophotometer and on a Bioanalyzer (Agilent, Wald-
bronn, Germany). Illumina BeadChip arrays (HumanHT-12 Expression BeadChip) were
used to quantify expression from 200 ng of RNA in the genomics Core Facility, DKFZ
(Heidelberg, Germany).

2.4. CIBERSORT

Blood cell type fractions were estimated from whole blood expression data using the
CIBERSORT method [23,24]. Detailed variability of CIBERSORT fractions over time is
shown in Figure S5.

2.5. Statistical Analysis

Statistical analyses were conducted in R v 4.0.5 [25]. Low-dimensional representation
of data were calculated with UMAP [26,27] and t-SNE (FI-tSNE) [28]. Non-parametric tests
for repeated measurements were performed with nparLD [29], non-parametric interaction
tests with the rankFD package [30]. Gene signature analysis was performed with the
geneSignatures package [31]. Survival analyses (time from start of re-irradiation until
death/last contact) were performed with Cox-PH models or parametric survival models
(Weibull distribution) [32]. For comparison of prognostic value of tumor grade classification
at different timepoints, both grade assignment at initial diagnosis (initial grade) and re-RT
timepoint (reRT grade) were used with the aforementioned survival data.

The enrichR package [33] was used to perform KEGG pathway enrichment analyses
(Human, 2019), pathway analyses were conducted with REACTOME [34]. Transcriptome
data were log2 transformed and virtual pool normalized [35]. Lme4 was used for mixed
effect model analyses [36]. Benjamini-Hochberg p-value adjustment was used for multi-
plicity correction (FDR). Hierarchical clustering was performed with ward.D2/complete
linkage. Significance level alpha (two-sided) was fixed at 0.05 if not stated otherwise.
Feature selection was performed with the modelBuildR R package [37]. Protein interaction
analyses were conducted with SUMO [35]. Due to the low number of subjects included in
the study, also trends are reported and/or prefiltered data (e.g., most variant genes) was
analyzed. Outliers are shown in boxplots as solid dots and are identified as values below
Q1 − 1.5 × IQR and above Q3 + 1.5 × IQR.

Expression data was batch normalized with ComBat [38] and z-transformed for com-
parative analyses (CIR + KORA F4), only genes present in both datasets were used (CIR:
n = 34,694 genes, on both arrays: n = 23,437 genes). Keras [39] was used for deep learning
model training.

3. Results
3.1. Study Cohort

Fourteen patients with rHGG were enrolled in the study between May 2011 and June
2021 (Figure 1A and Table 1). Blood from four time points was available for 9 of the
patients, while one time point was missing for the remaining (Figure 1A). For three out
of five tumors initially classified as grade II, IDH1 mutation was detected, however, for
the majority of patients, MGMT promoter methylation and IDH1 mutation status was
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not available (Figure 1B). Initial grade II and III tumor patients were mostly male (except
one), initial grade IV was more balanced (3 males, 4 females). Patients with lower grade
tumors were on average younger. Initial (histopathologic) grade yielded better prognostic
separation following CIR (Figure 1C).
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Figure 1. Overview of the study cohort. (A) Patient cohort and available data. (B) Distribution of
main patient and molecular tumor characteristics (WHO grade initial: histopathologic grade at initial
diagnosis). (C) Kaplan-Meier survival curves of patients (time from reRT time point to death/last
follow up) for initial WHO tumor grade (left) and tumor grade at reRT time point (radiographic
grade). Likelihood ratio test p-values, Cox-PH models.

To identify patient/tumor specific and thus stable features over time, least variant
(mad < 2.5% quantile) and highly abundant (median > 97.5% quantile) genes were identified
in serial samples per patient. Representative distributions of expression (median) and
variation (mad) for a single patient is shown in Figure 2B (left), selected genes meeting the
filtering criteria are labeled. Median number of analogously obtained genes were 6 per
patient (0–11), and 81 unique genes in total (Figure S1B), genes per patient are shown in
Table S1. Correlation and hierarchical cluster analysis of these (Figure 2C) identified similar
groups of patients (clusters) associated with sex, age and initial tumor grade. Using only
the most variant 10% of genes (Figure 2D), 10 genes were identified as being associated
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with sex (Figure 2E) and two genes with age (Figure 2F) for FDR < 0.05. The lncRNA XIST
showed high expression levels in females, RPS4Y1 was among the highly expressed genes
in males. XIST and JARID1D expression showed expected fractions of males/females in the
KORA F4 cohort (Figure S7A). Increasing age was associated with decreasing expression
levels of ITFG2 and increasing levels of SL25A37. Inverse correlation between ITFG2 and
SCL25A37 was confirmed in KORA F4 data (Figure S7B).

Table 1. Patient characteristics. % at reRT time point, ! at initial diagnosis time point.

Feature N (%)/Time [Month]

All 14 (100)
Sex

Male 9 (64)
Female 5 (36)

Age [yr] %
<40 2 (14)

40–49 6 (43)
≥50 6 (43)

Grade !
II 5 (36)
III 2 (14)
IV 7 (50)

Grade %
III 5 (36)
IV 9 (64)

Grade ! -> %
II -> III 3 (21)
II -> IV 2 (14)

Time to reRT
II 5 (36)/80.9
III 2 (14)/86.8
IV 7 (50)/11.4

C12 irradiation
Total dose [GyRBE]/#fx 30/10 5 (36)

33/11 6 (43)
36/12 3 (21)

Single dose [GyRBE] 3 14 (100)

3.2. Patient Characteristics Sex and Age Are Mirrored in Transcriptome

For an overview of the whole blood transcriptome, a t-SNE (Figure 2A) were computed.
Repeated measurements for single patients showed mostly similar values in the respective
representations (t-SNE, UMAP, Figure S1A).

3.3. Initial and Re-RT Glioma Grade Are Associated with Transcriptome Profiles

As correlation analyses of least variable and highly expressed genes per patient (n = 81,
Figure 2B,C) revealed similarity between samples w.r.t their initial (histopathologic) tu-
mor grade, more detailed analyses were performed to test for associations with initial
and reRT tumor grade (Figure 3). Logistic regression analyses to differentiate grade IV
vs. lower grade tumors on tSNE representations (main effects: two dimensional tSNE
vectors + interaction term) yielded lowest Akaike information criterion values (AIC, best
separation) for late time points and initial tumor grade (Figure 3A, star, and Figure 3F).

CIBERSORT inferred cell fractions showed the lowest fractions of monocytes in ini-
tial grade II tumor samples, while naïve B cells were sparse in initial grade IV samples
(Figure 3B, p-value < 0.05). Neutrophil fractions were higher in grade IV tumors (both
initial and reRT grade, Figure 3B,G, p-value < 0.05). Full data is shown in Figure S2.
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Figure 2. Patient characteristics reflected in whole blood transcriptome data. (A) t-SNE representation
of gene expression data, multiple longitudinal samples per patients are assigned the same color.
Triangles and dots are used solely for better discernibility. (B) Selection of least variant (median
absolute deviation, mad) and highly expressed (median) genes per patient, left: representative
distributions (mad, median) and genes for patient 1 (median: >97.5% quantile, mad: <2.5% quantile),
right: numbers of selected genes for each patient. (C) Clustered correlation matrix of all genes
identified in (B). (D) Distribution of mad values of all genes. (E) Genes associated with sex, (F) genes
associated with age ((E,F) only 10% most variant genes as shown in (D) were evaluated, linear mixed
model analysis, FDR < 0.05).

On the single gene expression level, HNRPH1 expression decreased in higher grade
tumors (initial histopathologic tumor grade; 10% most variable genes, FDR < 0.05, linear
model, Figure 3C). n = 1141 genes showed significant association with HNRPH1 expression
(Bonferroni adjusted p-value < 0.05, Figure 3D). Form these, 894 (78%) were present in the
KORA F4 dataset, 746 (83%) showing significant association with HNRPH1 expression
(Figure S7C). Among these were genes involved in DNA damage repair (POLD4, ATM),
hypoxia sensing (HIF1AN), and inflammatory signaling (STING/TMEM173) (Figure 3D).
KEGG pathway analysis of common associated gene sets (CIR + KORA F4) identified DNA
replication, T-cell receptor, NFkB and HIF-1 signaling (Figure S7C, right). Association
with hypoxia was further assessed by calculating hypoxia scores from a set of hypoxia
signatures (Figure 3E, left, each row corresponds to a score based on a published hypoxia
signature), showing higher median hypoxic scores in higher grade tumors (Figure 3E, right).
Associations of HNRPH1 with covariates for the KORA F4 dataset are shown in Figure
S7D, observed absolute correlations were mostly <0.2.

ReRT grade of tumors showed association with three genes (10% most variant genes,
FDR < 0.05, Figure 3H). Analogously to Figure 3D, associations of these three candidates
with expression of all genes was assessed (Bonferroni adjusted p-value < 0.05) yielding
111 consensus genes (Figure 3I). KEGG pathway enrichment analysis of these 111 candi-
dates highlighted MHC-II genes HLA-DBM, HLA-DRA, HLA-DPA1 in identified pathways
(Figure S3), CD74 (the HLA class II histocompatibility antigen gamma chain) was lower
expressed in reRT grade IV tumors (Figure 3I, right). Associations in KORA F4 data are
shown in Figure S7E.
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dependent changes (Figure 5). Dose independent tests were performed as global tests (any 

Figure 3. Tumor characteristics in whole blood transcriptome data. (A,F) t-SNE representation of
whole blood transcriptome data (left) and AIC values for logistic regression models to separate grade
IV vs. non-IV samples per time point ((A–E) initial WHO grade, (F–I) WHO grade at reRT time
point). Star: drop in AIC for initial grades at later time points. (B,G) Differential CIBERSORT derived
cell fractions (linear mixed model Wald type p-value, all cell fractions with p < 0.05). (C,H) Genes
associated with tumor grade (10% most variant genes [mad], FDR < 0.05). (D,I) Genes associated
with HNRPH1 (C) and BBS2, CDK2AP1, NQO2 (H) expression (Bonferroni adjusted p-value < 0.05,
linear models). (I) shows a Venn diagram of commonly regulated genes from (H) (left) and CD74
expression (right). (E) Hierarchical cluster analysis of multiple hypoxia scores and association with
initial grade (right, linear mixed model). (B,C,G–I) Dots in boxplot subfigures represent outliers
(see methods).

Finally, we aimed to confirm the presence of a disease signature in the CIR cohort
samples by comparing transcriptome profiles to data from the KORA F4 study (Figure S7F).
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A 2-dimensional umap representation did not reveal a clear separation of both cohorts
(Figure S7, left). A deep learning model however, was able to identify samples belonging
to the CIR cohort with an AUC of 77% (95% CI: 65–89%, Figure S7F, right).

3.4. CIR Induces Sustained and Transient Changes in Transcriptome

CIR effects were evaluated independently from applied dose (Figure 4), and for dose
dependent changes (Figure 5). Dose independent tests were performed as global tests
(any difference between pre- and post-CIR samples), and as pairwise tests (pre-CIR vs.
nth post-CIR time point, Figure 4A). Evaluation of most variant 10% of genes identified
CTSZ and RSPRY1 as late (last time point) and early (first time point post-CIR, no return to
baseline) changing genes (Figure 4B, FDR < 0.05).
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Figure 4. CIR induced transcriptome alterations, (A) gives an overview of outlined analyses.
(B) Differential genes in pre- vs. post-CIR, ~factor(timepoint), linear mixed model, most variant
10% genes (mad). (C) Models tested with more liberal cutoffs (FDR < 0.2, all genes). Hierarchical
cluster analysis (D) of all genes identified in (C) on age, sex and initial WHO grade adjusted ex-
pression data, (E) genes grouped by expression dynamics (see text, (D,E) z-transformed adjusted
data). (F) Pairwise differences between pre and nth post-CIR time point, non-parametric model
analysis (nparLD, FDR < 0.05). (G) Venn diagram and table of genes (H) from (F) with FDR < 0.05.
(I) Commonly identified genes with FDR < 0.2 between all pairwise comparisons (see F), and genes
associated with SBF2 expression ((J), Bonferroni adjusted p-value < 0.05) (no associated genes were
detected for LOC644251).

More liberal analysis (FDR < 0.2 on full expression data) with adjustment for sex,
age, and initial tumor grade (Figure 4C) identified groups of genes with distinct dynamics
post-CIR (Figure 4E) and similar expression patterns within the respective time points
(Figure 4D). One group showed a decrease and sustained lower expression post-CIR
(Figure 4E, (1), a decrease followed by return to baseline or even surpassing initial expres-
sion levels (2), steady or late decrease (3) and early sustained increase (4). Note that the
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data in Figure 4D and E is age, sex and initial grade adjusted, in contrast to data shown
in Figure 4B.

Pairwise differences (control vs. nth time point) calculated from full expression data
are shown in Figure 4F (non-parametric analysis, full expression data, FDR < 0.05). Top
candidates are labeled based on lowest FDR, occurrence in COSMIC cancer mutation census
candidates (7 May 2021) or association with DNA repair.
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Figure 5. Carbon irradiation dose dependent associations in whole blood transcriptome. (A) Protein
interaction networks of genes with significant interaction between pre-CIR and nth post-CIR time
point (rankFD, FDR < 0.05). (B) Venn diagram of identified genes. (C) Gene expression of identified
network proteins. (D) Schematics of tests for least variant pre-CIR genes (left) with dose dependent
interaction (right). Arrows indicate degree of variability. (E) Interaction effects for genes with low
variation pre-CIR (pairwise TOST between dose levels) and linear mixed model analyses in post-CIR
samples. Candidates with lowest p-values are shown in (F).

No genes were found as differentially regulated between the three groups for a
FDR < 0.05 (Figure 4G), however, for FDR < 0.2, two genes (SBF2 and LOC644251) were
identified (Figure 4I). Overlapping genes between two pairwise comparisons are shown in
Figure 4G,H.

SBF2 showed a sustained increase in expression post-CIR. Positively associated genes
included toll like receptors, whereas negative associations were observed for DNA re-
pair gene LIG1, SMARCD1 and FLT3LG (all genes, linear model analysis, Bonferroni
p-value < 0.05, Figure 4J). Expression of labeled genes for non-adjusted and adjusted data
(sex, age, initial tumor grade) is shown in Figure S4.

3.5. CIR Leads to Dose Dependent Transcriptome Alterations

Next, we assessed if CIR dose has an impact on the transcriptome (Figure 5). Test-
ing for an interaction between dose and two time point (pre-CIR and nth post-CIR)
yielded n = 1507 (0 vs. 1), n = 595 (0 vs. 2) and n = 1149 (0 vs. 3) genes with an FDR < 0.05
(rankFD, Wald-type statistic, interaction p-value). The corresponding Venn diagram is
shown in Figure 5B. Resulting gene sets were tested for protein interaction networks
(SUMO), largest identified networks are shown in Figure 5A (networks: ABL2: 0 vs. 1,
CUL7: 0 vs. 2, ACSL4: 0 vs. 3).
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Expression values for the identified network genes are shown in Figure 5C. For high
dose, ABL2 shows expression increase with return to baseline, CUL7 shows a transient
decrease. ACSL4 shows a delayed increase.

To more systematically capture different dynamics of gene expression (see Figure 4E),
the post-CIR part was also analyzed separately from the pre-CIR data (Figure 5D), while
restricting the evaluated gene set to candidates with equivalent expression in pre-CIR time
point (n = 1024, pairwise equivalence tests between dose levels, TOST, p < 0.05).

Interaction terms for these genes are shown in Figure 5E, with expression levels of
candidates with p-values < 0.001 (non-adjusted, linear mixed model analysis without pre-
CIR data) shown in Figure 5F. Both genes—GLIPR1L2 and FRG1B—show a steep, transient
increase post-CIR for high dose. All candidates with p < 0.05 are shown in Table S2.

Cancers 2022, 14, 684 11 of 18 
 

 

3.6. Longitudinal Transcriptome Analysis Identifies Two Trajectories 

Overall changes in gene expression profiles was assessed by repeated evaluation of 

differences and correlations (Figure 6A). This approach identified two main groups of pa-

tients (Figure 6B) that could be separated by CRISPLD2 expression at the pre-CIR time 

point (Figure 6C). Further differential genes are shown in Figure S6. 

Multivariate survival analysis with age, sex and reRT WHO grade revealed that 

CRISPLD2 expression was an independent prognostic marker (Figure 6D). It also im-

proved the model performance when substituting reRT with initial WHO grade (Figure 

6E). 

Finally, REACTOME analysis of genes associated with CRISPLD2 expression (n = 

834, Bonferroni p-value < 0.05) identified two main areas: immune system and cellular 

response to external stimuli (Figure 6F). The former included STAT5 activation, FLT3, IL4 

and 13 signaling, the latter genes associated with senescence phenotype. KEGG pathway 

analysis also highlights a number of immune-associations (Table S3). 

 

Figure 6. Assessment of longitudinal changes (dynamic profiles) in whole blood transcriptomes. (A) 

Schema of performed calculations. (B) Hierarchical cluster analysis of the correlation matrix C. (C) 

CRISPLD2 expression in main clusters shown in C. (D) Multivariate survival analysis (parametric 

survival regression, Weibull distribution) with tumor grade at reRT time point. (E) AIC of multivar-

iate survival models (analogously to E) with initial tumor grade instead of reRT grade, null model: 

without CRISPLD2, full model: with CRISPLD2. (F) REACTOME pathway analysis of genes associ-

ated with CRISPLD2 expression (Bonferroni adjusted p-value < 0.05, n = 834 genes). 

Figure 6. Assessment of longitudinal changes (dynamic profiles) in whole blood transcriptomes.
(A) Schema of performed calculations. (B) Hierarchical cluster analysis of the correlation matrix C.
(C) CRISPLD2 expression in main clusters shown in C. (D) Multivariate survival analysis (parametric
survival regression, Weibull distribution) with tumor grade at reRT time point. (E) AIC of multivariate
survival models (analogously to E) with initial tumor grade instead of reRT grade, null model: without
CRISPLD2, full model: with CRISPLD2. (F) REACTOME pathway analysis of genes associated with
CRISPLD2 expression (Bonferroni adjusted p-value < 0.05, n = 834 genes).
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3.6. Longitudinal Transcriptome Analysis Identifies Two Trajectories

Overall changes in gene expression profiles was assessed by repeated evaluation of
differences and correlations (Figure 6A). This approach identified two main groups of
patients (Figure 6B) that could be separated by CRISPLD2 expression at the pre-CIR time
point (Figure 6C). Further differential genes are shown in Figure S6.

Multivariate survival analysis with age, sex and reRT WHO grade revealed that
CRISPLD2 expression was an independent prognostic marker (Figure 6D). It also improved
the model performance when substituting reRT with initial WHO grade (Figure 6E).

Finally, REACTOME analysis of genes associated with CRISPLD2 expression (n = 834,
Bonferroni p-value < 0.05) identified two main areas: immune system and cellular response
to external stimuli (Figure 6F). The former included STAT5 activation, FLT3, IL4 and
13 signaling, the latter genes associated with senescence phenotype. KEGG pathway
analysis also highlights a number of immune-associations (Table S3).

4. Discussion

Treatment of recurrent high-grade glioma remains a therapeutic challenge [4,5]. Con-
ventional photon re-irradiation might be limited due to a substantial risk of normal-tissue
toxicities and radio necrosis [40]. Here, particle therapy with carbon ions (CIR) confers an
alternative due to its physical [7] and biological properties [8].

In this study, we evaluated whole blood transcriptomics as minimal invasive method
to study the effects of CIR in recurrent high-grade glioma. To our knowledge, this is the
first study incorporating longitudinal analysis of high-grade gliomas treated with CIR.

As blood cells also patrol the tumor, they can exert local (e.g., cytotoxic T cells) and
distant effects via cytokines and growth factors on the bone marrow and hematopoietic
homeostasis. One might hypothesize that such effects might be conserved and mirrored in
the easily accessible sentinel organ blood (respective gene expression profiles of circulating
cells and/or circulating RNAs) [41–46]. Importantly, we assume that the observed changes
following therapy are predominantly indirect effects mostly on leucocytes, arising from
tumor and irradiation interaction, and only to a lesser degree (if at all) a direct measurement
of changes in circulating tumor cells.

Effects especially on circulating T-cells following irradiation have long been known [47–50].
However, our analyses (whole blood transcriptome) were not confined to specific subpopula-
tions of cell types but rather constitute a mixture of all present cells. We evaluated associations
with patient, tumor and treatment characteristics on transcriptome level and used CIBER-
SORT [23,24] to estimate cell fractions from bulk expression data.

Individualized transcriptome fingerprints, however, can be assumed to be a composi-
tion of healthy inter-subject variation (human genetics) and disease (tumor and/or other
disease) specific alterations. We therefore tried to separate these effects, starting by testing
for non-tumor patient characteristics like age and sex: higher XIST expression was observed
in females [51,52], and higher RPS4Y1 expression in males. These two genes have been
reported to be linked to gender in single cell analyses [53]. ITFG2, which was observed
to be less expressed with increasing age, is part of the KICSTOR complex which has been
linked to aging and which modulates mTOR [54,55].

Next, we assessed the disease specific transcriptome fingerprint within the highly
heterogeneous group of rHGG (grade III, IV, each comprising a variety of distinct molecular
subtypes). Interestingly, we found transcriptome profiles linked to initial (histopathologic)
determined tumor grade (grade II to IV) by evaluation of least variant genes per patient.
Together with the observed improved prognostic separation of patients based on the initial
(histopathologic) grade as compared to clinical/radiographically determined grade at reRT
time point, this hints to a persistent transcriptome fingerprint of the initial tumor, preserved
even years after initial diagnosis (up to 17.7 years). Furthermore, transcriptome profiles
could be better separated with initial (histopathologic) grade IV tumors vs. non-grade
IV as compared to reRT (radiographic/clinical) tumor classification after a latency period
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following CIR (second and third time point post-CIR). This hints towards a differential
response to CIR depending on initial tumor grade (see also below).

An increased expression of HNRPH1 correlated with initial (histopathologic) tumor
grade. HNRPH1 has been described in colon cancer development [56,57], and in the
splicing oncogenic switch [58]. We found expression of HNRPH1 to be associated with
genes involved in DNA repair (ATM, POLD3), hypoxia (HIF1AN) and inflammatory
signaling (TMEM173/STING), with the latter showing higher expression levels in lower
initial grade tumors. Higher activity of STING mediated IFN-I signaling has been reported
to enhance anti-glioma immunity [59], a direct link between tumor grade and STING
activity, however, has not been established yet. Higher hypoxia signature scores were
observed in initial grade IV tumors, which might mirror the highly hypoxic state within
glioblastoma [60,61].

Clinical/radiographic determined glioma grade at reRT time point was associated with
differential expression of CDK2AP1 which has been implicated in glioma tumorigenesis
(putative tumor suppressor) [62]. Further associations were found for MHC-II genes: CD74,
e.g., was less expressed in reRT grade IV tumors. CD74 expression has been reported
to be confined to microglia/macrophages in glioma [63] and as marker associated with
response to TMZ therapy [64], highlighting the interdependency between immune system
and therapy efficacy.

Deconvolution of immune cells using CIBERSORT revealed higher neutrophil counts
in higher grade tumors as reported previously [65]. Higher inferred fractions of mono-
cytes were only observed when evaluating differences based in initial (histopathologic)
grade classifications. Monocyte abundance has been linked to levels of tumor associated
macrophages (TAMs) within tumors [66]. Thus, one might hypothesize that detailed sub-
typing of circulating monocytes might help to gain insights into composition of TAMs with
their diverging impacts on tumor development [9].

We performed comparison of samples from our CIR cohort against data from the
KORA F4 study [21,22]. Importantly, only 68% of genes from the CIR dataset were present
in the latter, which might be the reason for the challenging separation of samples from both
cohorts. Nevertheless, using a deep learning approach we achieved a satisfactory AUC
given the small CIR dataset.

Next, we assessed the dynamic aspects of treatment associated transcriptome changes,
comprising time-dependent alterations (pre- vs. post-CIR) and differences associated with
applied dose. We observed qualitatively different time-dependent effects, i.e., transient or
sustained changes in gene expression at early or late time point post-CIR. This indicates a
pleiotropy of CIR induced changes, potentially leading to a long-lasting CIR fingerprint.

Among the differentially expressed genes following CIR, were genes involved in
the regulation of metastatic ability (BAG2 [67]), immunological modification (neopeptide
generation/modification, APOBEC3B [68,69] and TLR3 dependent NK cell modulation,
RHBDD1 [70]) as well as the transcription factor FOXO1 [71].

We observed lasting alternations in SBF2, which was associated with expression of toll
like receptors, DNA-repair machinery, PI3K signaling (FLT3LG) and chromatin accessibility
genes (SMARCD1). FLT3LG seems to exert its anti-tumor activity in conjunction with
macrophages and CD4 + T-cells in glioma [72], supporting the observation of a specific
immune-modulatory effect of CIR [9].

Dose dependent changes revealed transient and sustained changes in gene expression.
Protein interaction network analysis revealed co-regulation of three main networks for each
time point (vs. pre-CIR). For first post-CIR time point, a network centered on the ABL proto-
oncogene 2, non-receptor tyrosine kinase (ABL2) was identified, with highly connected
components SIRT7 and CUL7, all being implicated in tumorigenesis [73–76]. Second post-
CIR time point identified cullin 7 (CUL7) and last time point acyl-coa synthetase long chain
family member 4 (ACSL4) with NF2, OBSL1 and YWHAE as highly connected components,
all being described or hypothesized to play roles in tumor development [77–81]. In addition,
the tp53 target GLIPR1L2 [82] was found to be transiently regulated for high dose. In
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summary, these findings hint towards differential CIR dose-dependent biological effects;
however, future studies are warranted which evaluate in detail the contribution of the
biological tumor background (high molecular heterogeneity in our cohort) and irradiated
tumor/blood volume (not considered here).

Finally, we performed a more global assessment of transcriptome changes over time.
Interestingly, we observed two clearly separated groups of tumors with two distinct changes
of gene expression profiles over time. Initial separation at pre-CIR time point of these
two groups was feasible based on CRISPLD2 expression. Expression of the latter had a
prognostic value in addition to the factors tumor grade (both initial histopathologic and
reRT clinical/radiographic). CRISPLD2 expression associated genes were linked to the
immune system and cellular responses to external stimuli, especially senescence, pathways.
Its expression has been reported as inhibiting proinflammatory mediators in lung epithelial
cells and fibroblasts [83]. REACTOME analyses further indicated IL4/IL3 pathways among
associated genes, which can induce a shift towards immune-suppressive M2 phenotype
of macrophages [84], linked to poor outcome in glioma [9,85]. Thus, evaluation of longi-
tudinal transcriptome changes post-CIR might have captured two groups of tumors with
differential immunological state.

Main limitations of our study are the low number of subjects and the highly heteroge-
neous study cohort. Different analysis techniques—e.g., FACS quantification of specific
cell populations, or RNA sequencing/PCR based quantification of single genes—should
be implemented to overcome shortcomings of the herein utilized methods. In addition,
evaluation of alternative treatment/control groups are warranted to further decipher treat-
ment induced vs. normal disease development caused alterations. Thus, further studies
are warranted to validate our findings in independent cohorts.

5. Conclusions

In this study, we assessed the value of a liquid biopsy (lbx) approach using whole
blood transcriptome analysis for characterization of patients, tumor biology and particle
irradiation with Carbons (CIR) in recurrent high-grade glioma (rHGG) patients. We ob-
served that stable molecular tumor characteristics such as initial tumor grade are preserved
even years after the initial diagnosis, that CIR irradiation leads to transient and long-term
changes in whole blood transcriptome and that the evaluation of patterns of longitudinal
change might help decipher rHGG heterogeneity and interactions with the immune sys-
tem. Thus, the proposed liquid biopsy approach might be a versatile tool to study tumor
characteristics, tumor evolution and treatment effects.
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