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Abstract
We demonstrate dispersive readout of the spin of an ensemble of nitrogen-vacancy centers in a
high-quality dielectric microwave resonator at room temperature. The spin state is inferred from
the reflection phase of a microwave signal probing the resonator. Time-dependent tracking of the
spin state is demonstrated, and is employed to measure the T1 relaxation time of the spin
ensemble. Dispersive readout provides a microwave interface to solid state spins, translating a
spin signal into a microwave phase shift. We estimate that its sensitivity can outperform optical
readout schemes, owing to the high accuracy achievable in a measurement of phase. The scheme is
moreover applicable to optically inactive spin defects and it is non-destructive, which renders it
insensitive to several systematic errors of optical readout and enables the use of quantum
feedback.

Ensembles of solid-state spin qubits, most prominently nitrogen-vacancy (NV) centers in diamond, are
prominent candidates for a new generation of quantum sensors, promising sensitive magnetometers and
gyroscopes in a compact device [1–4]. The sensor signal is the expectation value of a spin component
(typically 〈σ̂z〉), that needs to be measured to read out the sensor. For NV spin qubits, spin-dependent
fluorescence provides a straightforward way to measure the spin, and has been the workhorse technique for
readout in laboratory implementations of ensemble sensors [5]. This optical readout has also been
employed in the first generation of integrated sensor devices [6, 7], but it presents a roadblock to further
integration, because miniaturization of optics is difficult. The technique is also prone to systematic
errors, such as a varying fluorescence background from spin-inactive NV centers in the neutral charge
state NV0.

These limitations have prompted a search for all-electric readout techniques, that directly provide a
measurement of the spin state as a current or voltage. Most prominently, spin-dependent photo-ionization
of NV centers has been used to induce a spin-dependent photocurrent [8, 9], which has enabled
photo-electric spin readout down to the level of a single spin [10]. However, the readout accuracy of this
all-electric method is limited by background impurities, dark currents, and fluctuations in electric
properties, such as the ionization cross section.

Experiments on spin ensembles at milli-kelvin temperatures frequently employ dispersive spin readout
in a superconducting resonator [11], where the spin signal is encoded in the phase of a microwave signal
rather than a voltage or current. This technique is also the state-of-the art solution for single-shot readout
of superconducting qubits [12, 13]. Briefly, qubits (σ̂) are coupled to a microwave cavity (â, â†), resulting in
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Figure 1. Experimental setup. A densely NV-doped diamond is embedded in a stack of two cylindrical dielectric resonators with
Q ≈ 8 × 103. Laser excitation provides optical spin initialization and optical readout. A microwave interferometer performs
dispersive readout of the resonator. PD: photodiode; MW: microwave. PMW: microwave power.

a system described by the Jaynes–Cummings Hamiltonian

Ĥ = �ωcâ
†â + �ω0σ̂z +

�g

2
(âσ̂+ + â†σ̂−), (1)

with ω0 and ωc denoting the qubit and cavity transition frequencies and g the qubit–cavity coupling.
Presence of the qubit imparts a spin-dependent dispersive shift to the cavity. To first order in
g/Δ = g/(ωc − ω0), this shift is given by

δωc = g2/Δ (2)

[14]. It can be probed by measuring the transmission or reflection phase of a microwave resonant with the
cavity. This phase varies linearly with Δ within a bandwidth of ≈ωc/Q (Q denoting the cavity quality
factor) around the cavity resonance ωc + δωc . Sensitive detection of a small shift δωc hence requires a high Q.
This is most easily achieved in superconducting cavities, which reach Q values between 104 (stripline
transmission-line cavity [14]) and 1010 (bulk-cavity [15]).

Interestingly, comparably high (104–105) quality factors can be achieved at room temperature, in
dielectric resonators made from low-loss high-permittivity ceramics. These devices have already been used
for detection of electron paramagnetic resonance [16], based on measurements of absorption or dispersion,
although their use is limited by background signals from intrinsic defects in the dielectric material [17],
overlapping with many relevant sample spins. This issue is of no concern for spins with an intrinsic
zero-field splitting, such as the NV center. Dielectric resonators have already been interfaced with NV
centers, to amplify driving pulses [18] and to provide resonant feedback in NV-based masers [19]. Masers
have also been proposed as a magnetometry device [20], and recent related work has demonstrated a
cavity-assisted magnetometry protocol that does not rely on masing [21]. However, both masers and the
novel approach are restricted to continuous-wave operation and do not provide a way for generic spin
readout yet.

Here we demonstrate that dielectric resonators enable dispersive readout of the spin state in
ensemble-based quantum sensors at room temperature. Our work has been performed in the setup
displayed in figure 1. We study a diamond densely doped with NV centres ([NV] = 2.7 ± 0.3 ppm, created
by electron irradiation and annealing of a 100 oriented type Ib diamond (Sumitomo)) interfaced to a cavity
formed by a stack of two cylindrical dielectric resonators (diameter 16.8 mm, height 5.6 mm,
g/2π = 2.4 × 10−2 Hz estimated by an analytical model ([22], chapter 4.4)). Stacking is employed to
homogenize coupling to the cavity and to tune the resonance frequency close to the NV zero field splitting.
This resonator is housed in a shielded enclosure and is probed by a microwave signal, magnetically coupled
by a tuneable coupling loop. Probing is performed in a single-sided reflection geometry, where the phase of
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Figure 2. Spin spectroscopy in the dielectric resonator. (a) Optical spin readout for varying detuning. Δ = ωc − ω0 is varied by
changing the magnetic field, shifting the NV ensemble across the cavity resonance. An optical spin signal is evoked at the
resonance frequencies ω0 and ωc of the spin and the cavity. PMW = 9 dBm (b) line plots of the optical signal for Bz = 26.5 G
(orange), Bz = 32.5 G (green) and Bz = 38.5 G (blue). Lines have been offset by increments of 0.03. (c) Reflection phase of the
resonator; black: measurement; blue: fit to the model of [23] with Q = 8.0(2) × 103. PMW = −14 dBm.

the reflected microwave arg(S11) is measured by homodyne detection, and subsequently serves as the
readout signal for the sensor. A strong laser (532 nm, 300 mW), focused onto the diamond, is employed to
polarize the NV spins. This laser also implements optical spin readout as a complementary signal, recorded
by monitoring fluorescence of the NV centers by a photodiode. A tuneable magnetic field is applied along
the [100] direction by a moveable permanent magnet. Since its projection along [111] is equal for all four
[111] orientations, all four NV orientations experience the same detuning.

This setting allows for a study of NV-cavity coupling for a wide range of detuning Δ = ωc − ω0

(figure 2). For all values of Δ, we observe that an optical spin signal (figures 2(a) and (b)) is evoked at the
two frequencies ω0 and ωc of the spins and the cavity. At ω0, spins are resonantly driven, resulting in a
significant signal despite inefficient off-resonant coupling into the cavity. At ωc, the drive is resonantly
enhanced by the cavity, so that spins can be driven efficiently despite their detuning. We do not see a
splitting of the cavity component when tuned into resonance with the spins, which indicates that the
spin-cavity system is not in the strong-coupling regime. However, reaching this regime is not required for
the demonstration of dispersive readout.

The reflection phase of the cavity varies steeply in vicinity of the resonance (figure 2(c)). We fit this
response to the model [23]

arg(S11) = arctan

[
4βQδ

(2Qδ)2 + (1 − β2)

]
+ kδ + φ0, (3)

to obtain a quality factor of Q = 8.0(2) × 103 and a coupling coefficient of β = 0.28(4). δ = (ω − ωc)/ωc

denotes relative detuning of the probe microwave to the cavity resonance. NV centers dispersively shift the
cavity resonance (figure 2(c)), so that arg(S11) provides a direct electric measurement of the spin state for a
microwave tuned to the cavity resonance.

We employ this readout scheme for time-dependent tracking of the spin state (figures 3(a) and (b)).
Here, the laser is modulated by a mechanical chopper wheel, resulting in alternating bright and dark cycles
of 2 ms duration. As spins polarize into their ground state under illumination, the dispersive phase shifts by
up to 4 mrad within T1,Laser on = 427(5) μs. In the dark phase of the cycle, this spin polarization is lost by
thermal relaxation and excitation by the probe microwave, resulting in a recovery of the dispersive phase
shift within T1,Laser off = 740(10) μs. The unperturbed spin relaxation time T1 can be obtained by
performing the MW after a delay τ without any drive applied. This measurement (figure 3(d)) yields
T1 = 2.68(4) ms, in agreement with previous measurements on comparable samples (2.9(1) ms [24]). The
dispersive shift grows for small detunings Δ and changes sign with Δ, as expected from the expression
δωc = g2/Δ. At the point of maximum spin contrast (t = 2.2 ms, figure 3(c)), the data is well described by a
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Figure 3. Time-dependent dispersive spin readout. The laser is modulated so that spins alternate between optical polarization
(laser on) and spin relaxation (laser off). An offset has been subtracted from every line of data such that the temporal average is
zero. (a) Temporal evolution of the reflection phase for varying Δ = ωc − ω0 (500 averages, PMW = −14 dBm). The dispersive
signal grows for small values of Δ and changes sign with Δ. (b) Temporal evolution for Bz = 32 G. Blue, orange:
mono-exponential fits, yielding T1,Laser off = 740(10) μs and T1,Laser on = 427(5) μs; (c) dispersive signal at maximum spin
polarization (average of a 200 μs window around t = 2.2 ms). Blue: fit to spin-cavity model (see main text) with parameters
NNV = 2.0(2) × 1013, T∗

2 = 18(1) ns. Data deviates for magnetic fields of B < 28 G, presumably due to a nonlinear field profile
of the magnet in this range. This range has been excluded from the fit. (d) Non-destructive probe of the spin evolution (103

averages, PMW = −18 dBm). Multiple measurements (blue to red traces) are performed with the microwave probe (MW)
switching on after a varying delay τ . Fit: T1,Laser off = 2.68(4) ms. Measurement has been performed at a different cavity coupling
β than (a)–(c).

Table 1. Parameters of the current setup and an optimized device.

Parameter This work Optimized

g/2π (Hz) 2.4 × 10−2 3 × 10−1

ω0/2π (GHz) 3 10
Q 8 × 103 104

Δ/2π (MHz) 10 10
T2 (ms) Not measured 1
N 2 × 1013 1014

numerical model computing the shift of equation (2) for an ensemble of NV centers with a Gaussian
distribution of transition frequencies with a width of σω = 1/T∗

2 and T∗
2 = 18(1) ns.

We finally turn to a quantitative analysis of the ultimate performance that can be reached by the
dispersive readout scheme. We assume the technical parameters of table 1. The coupling strength is
increased by an order of magnitude over the present work, which appears realistic by the use of a
higher-frequency resonator with a smaller mode volume. The number of spins is increased by one order of
magnitude to the level of reference [19]. This improvement requires more efficient laser illumination to
polarize more spins. With improved excitation optics, polarization can also be achieved in more dilute NV
ensembles, pushing the coherence time to T2 = 1 ms [25], T∗

2 = 1 μs. The optimized cavity thus operates at
the border of strong-coupling (

√
g2N � ωc/Q, 1/T∗

2 ). In a sensor, it will be desirable to choose the
detuning large against all these parameters (e.g. to a value of Δ/(2π) = 107 Hz), in order to preserve
sensitivity to magnetic fields. Still, the dispersive shift induced by the spins could be as large as

arg(S11) =
πQNg2

ω0Δ
= 3 rad. (4)

The sensitivity of a sensor will be limited by the measurement accuracy on arg(S11), which will be limited
by electronic phase noise and intrinsic noise of the dielectric resonator. Both of these mechanisms become
stronger for decreasing frequencies, so that a naive implementation would be hampered by low-frequency
noise such as thermal drift of the resonator. This problem can be overcome by lock-in schemes (figure 4(a)),
where the spin is modulated to create an oscillating signal. Such a modulation could be implemented by
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Figure 4. Performance estimate for an optimized device. (a) Readout sequence. Periodic flips during readout enable lock-in
detection of the dispersive shift, removing phase noise below a cutoff frequency f. (b) Performance estimate. Phase noise is
estimated from published values of a dielectric oscillator ([26], providing a conservative estimate) and a phase detector ([27],
optimistic estimate). The performance of optical readout has been estimated by assuming a sensitivity 150 times worse than the
spin shot noise limit, as in reference [5].

mere T1 decay (as in our present work), or by a sequence of periodic control pulses. Readout sensitivity
would then be limited by the phase noise Sφ( f) at the modulation frequency f.

ηB =
�

gμBT2

ω0Δ

πQg2N
Sφ( f ). (5)

The phase noise Sφ( f) can be estimated from similar existing devices (figure 4). Dielectric oscillators
present a conservative estimate, because their phase noise includes contributions from measurement,
feedback, and intrinsic noise of the resonator. An optimistic estimate can be obtained from phase
measurement circuits, which do not contain the latter two sources. In both cases, readout sensitivity can
reach the limit of spin projection noise, which is currently out of reach for optical spin readout in
ensembles. However, the worst-case scenario requires modulation at a frequency of several 10 kHz or
higher. We note that the microwave power required for a measurement at the spin shot noise limit would be
still much less than the Rabi frequency required to drive spin flips. Readout would require a minimum flux
of N/T2 microwave photons. N photons are required to overcome photon shot noise. They have to pass the
resonator within T2, because this is the lifetime of the spin signal under dynamical decoupling (figure 4(a)).
This microwave signal will populate the resonator with an average NQ/[ωcT2] ≈ 1010 photons,
corresponding to a Rabi frequency of ΩR/2π ≈ 3 × 104 Hz, which is much smaller than Δ.

The sensitivity of microwave readout (equation (5)) is linear in the number of spins N, in contrast to the
square root dependence of fluorescence readout [1]. This implies that dispersive readout is most
advantageous for large ensembles. A phase-noise-optimized implementation of our current
experiment—retaining one order of magnitude lower g and N compared to the optimized scenario—would
thus reach, but not surpass, the performance of fluorescence readout.

In summary, we have demonstrated a dispersive approach to spin readout in quantum sensors. Similar
to related work [21], our approach promises a higher detection efficiency than optical readout, potentially
down to the limit of spin projection noise. Future implementations of the scheme will have to address one
key challenge: dispersive readout requires a narrowband cavity, where fast pulsed control is not easily
implemented. Combining both requirements would be most straightforward in a dual-port cavity with the
ability of rapid Q-switching [28]. Alternatively, optimal control schemes could be employed to enable spin
manipulation in a narrowband cavity [29].

The technique has several complementary advantages over optical readout beyond sensitivity. It is
applicable to a wider range of spin species, as there are spins that can be optically polarized, but cannot be
efficiently read out optically (such as the silicon-vacancy in silicon-carbide [30]). Cavity readout is
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moreover non-destructive, so that spin states can be weakly probed during their evolution, as demonstrated
here for the measurement of spin relaxation times. This is a crucial requirement for the implementation of
quantum feedback schemes [31, 32]. It also mitigates several problems of optical readout, such as a
background of luminescent but spin-inactive centers in the neutral charge state NV0. These would
contribute fluorescence background but no dispersive signal. Finally, the mere technical simplicity of the
scheme will enable straightforward integration into compact devices as it is required for large-scale
application of quantum technologies.
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