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Abstract
Objective.Brain-computer interfaces (BCIs) allow subjects with sensorimotor disability to interact
with the environment. Non-invasive BCIs relying on EEG signals such as event-related potentials
(ERPs)have been established as a reliable compromise between spatio-temporal resolution and
patient impact, but limitations due to portability and versatility preclude their broad application.Here
we describe a deep-learning augmented error-related potential (ErrP) discriminating BCI using a
consumer-grade portable headset EEG, the Emotiv EPOC+.Approach.We recorded and discrimi-
nated ErrPs offline and online from14 subjects during a visual feedback task.Main results:We
achieved online discrimination accuracies of up to 81%, comparable to those obtainedwith
professional 32/64-channel EEGdevices via deep-learning using either a generative-adversarial
network or an intrinsic-mode function augmentation of the training data andminimalistic computing
resources. Significance.OurBCImodel has the potential of expanding the spectrumof BCIs tomore
portable, artificial intelligence-enhanced, efficient interfaces accelerating the routine deployment of
these devices outside the controlled environment of a scientific laboratory.

1. Introduction

A Brain-Computer Interface (BCI) is a communica-
tion and control system optimized for decoding
bioelectric cortical neuronal activity and transforming
it into a control signal for a specifical clinical applica-
tion. For people with neuromuscular disabilities or
neurodegenerative diseases with serious motoric defi-
cits, it is an alternative to natural communication or
neuromuscular pathways, acting in a sense as an
artificial bypass.

Evoked potentials or event-related potentials
(ERPs) can be utilized to guide BCIs. ERPs are any ste-
reotypical responses of the brain to a stimulus, be it
external or internal, sensory, cognitive or motoric,
that can be measured for practical purposes via elec-
troencephalography (EEG) and originate from infini-
tesimal variations of the electric field potential due to
the extracellular summation of synchronous post-
synaptic currents of many neurons from the surface of

the cerebral cortex upon repetition of the same elicit-
ing paradigm [1]. The recorded brain activity is chan-
nelled through several data processing steps in order to
decode the user’s intended action, which is then used
to encode a command to a device that can be observed
by the user as feedback, or which performs an inten-
ded and trainable action [2].

To date, the paradigmmost non-invasive BCIs have
focused on has been the visually evoked potential and,
in particular, its most prominent positive deflection,
the P300 component (or, in short, P3), named by
convention for its polarity and relative latency to
stimulus onset, with the P3 speller being one of the
most commonly used applications in BCI systems [3].
However, these potentials are usually recorded using
high-resolution, professional EEG equipment, which,
besides the large number of electrodes and therefore a
cumbersome attachment to the scalp, requires a high
acquisition cost.
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The past few years have brought about a quantum
leap in the development of low-cost, affordable and
portable EEG devices, extending the application
sphere of BCIs ‘from bench to bedside’ [4]. One such
device is the Emotiv EPOC+, a portable, multichannel
interface. It was designed, initially, for ‘mind hacking’,
but proved its potential in the acquisition and analysis
of EEG signals in preclinical settings as well, mostly
focusing on the P3 component, which has been exten-
sively studied and was therefore easier to establish
[5–8].

In this regard, error-related potentials (ErrPs)
represent a particular case of endogenous ERPs, which
result, in experimental settings, when another subject
or (virtual)machine is being interacted with and inter-
prets the main user’s intention in an erroneous way.
The structure of one such stereotypical signal, typically
originating from cortical electrical dipoles in the pos-
terior medial frontal cortex (pMFC) [9] or in the ante-
rior cingulate cortex (ACC) [10], both corresponding
to the Cz electrode, shows a positive component some
200 ms after stimulus onset and a further negative
deflection around 250 ms followed by another ample
positive component at ca. 320 ms, in short, the
N200/P300 complex [11]. Conveniently, ErrPs by nat-
ure encode a binary/boolean response (true or false,
correct or erroneous) to a choice task. In practice, an
agent equippedwith an ErrP-BCI (i.e., a patient suffer-
ing from tetraplegia) could thus, by mentally marking
the wrong choice and generating an ErrP, select the
correct one from a range of two possibilities offered by
another agent (i.e., a robot able to perform daily tasks).
Since any n-fold multiple-choice task can be sub-
divided into (n–1) consecutive 2-fold or binary choice
tasks (by recursively leaving out one of the remaining
choices and pooling all the others into one single
choice that gets subdivided in the next step), one can
theoretically conceive a method of deciphering a com-
plex intention via an algorithm able to decompose a
complex task in multiple successive binary subtasks,
which a subject could then express his/her choice for,
by the issuing of ErrPs alone.

One of the practical challenges in the fields of
machine learning and of BCI training is represented by
the difficulty of training reliable and generalizable
classifier algorithms with limited subject/patient
data [12]. Due to the dependency on human subject
data, gathering a sufficiently wide and varied training
set for precise online data classification is more
challenging even than in other fields of machine
learning, such as computer vision. We inferred that
either unsupervised learning deep convolutional gen-
erative adversarial networks (DCGANs) [13] or time-
frequency-representations, such as intrinsic mode
functions (IMFs) [14] could be employed to circum-
vent this conundrum, by augmenting the ErrP data-
set after discretization in epochs, in a similar way
that image datasets are augmented in computer
vision [13, 15].

Another challenge in the field of BCIs relates to
improving algorithm classification performance for
practical use in real time applications, particularly in
aspects such as classification accuracy, speed and gen-
eralization capacity across multiple subjects [16]. His-
torically, gaussian classifiers [17], Bayesian filters [18],
logistic regression, k-nearest neighbours [19], linear/
quadratic discriminant analysis and support vector
machines or combinations of the latter [20] have been
employed after heterogenous data pre-processing pro-
tocols in the classification of ErrPs, achieving classifi-
cation performances between 70% and 80% with
professional EEG recording equipment [16]. With the
burgeoning expansion of machine learning applica-
tions by solving the problem of vanishing gradients
[21] in fields such as computer-aided vision, image
recognition, speech and text analysis, interest has
grown for implementing these technologies to the
field of EEG signal processing [16].

We surmised therefore that a supervised machine
learning algorithm based on a Long-Short Term
MemoryNeural Network—a special case of Recurrent
Neural Network (RNN) [22]—could be deployed to
learn features frompre-classified ErrP data epochs and
achieve higher online classification accuracies than
traditional techniques when combined with an artifi-
cially augmented data set.

2.Methods

A total of 14 healthy subjects, 10 male and 4 female,
aged between 21 and 61 years (mean 30.2 years) and
with no history of neurological or psychic disorders
participated in this study. They all expressed informed
consent for voluntary participation in conformity with
the local ethical regulations.

2.1. Experimental paradigm
The experimental paradigm was optimized to elicit a
visual interaction feedback ErrP, characterized by a
feedback-related negativity (FRN) component appear-
ing between 200 and 300 ms after feedback/stimulus
onset [11]. Each participant was instructed to perform
a multiple-choice reaction human-computer interac-
tion task [23, 24] created in Psychtoolbox [25], an
extension of the programming language Matlab (ver-
sion R2012b, Mathworks Inc.). The subject was
required to direct the movements of a virtual device (a
blue square on a black background) towards the
indicated target, which was represented by a green
square located in one of three possible positions, by
quickly pressing an appropriate key, while in each of
the other two positions a distracting red square was
placed. (figure 1). A correct trial was signified by the
virtual device (the blue square) moving towards the
target (the green square), while any movement
towards one of the distractors (the red squares) was
deemed an incorrect trial. The participants were
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comfortably seated 1 m away from a computer screen
displaying all and only the information related to the
experiments. They were allowed to freely move their
eyes and to blink, while other muscular movements
were restricted to resting periods.

Upon key press, signifying one trial, the virtual
device would in 25% of the trials move towards a non-
target stimulus, even if the user response were correct,
the disjunction between the intention and the feed-
back potentially generating the FRN. The protocol was
based on previous findings [10]. Each subject con-
ducted one session comprising four blocks of 30, 60 or
100 trials each, lasting between 5.5 and 14 min over the
course of one day. The initial 20% of trials in each
block were designated as training runs and served the
purpose of training the neural network classifier.

2.2.Headset
For our study, we employed the consumer-grade
Emotiv EPOC+ EEG headset with 14 (+2) channels
corresponding to the standard EEG electrode loca-
tions: AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6,
F4, F8, AF4 (locations P3 and P4 represent CMS and
DRL electrodes, mass and reference potential, respec-
tively) [26]. It represents a lightweight EEG headset
with a single analog-to-digital converter with a max-
imum sampling frequency of 256 Hz, performing
conversion and pre-processing as well as wireless
transmission to a USB receiver, and therefore allowing
EEG recording under naturalistic circumstances [17].
It has already been evaluated, along with other
consumer-grade headsets, among them NeuroSky’s
MindWave, for the P3 speller paradigm, generating
somatosensory, steady-state visual evoked potentials
or basic image or emotion recognition [27–30].
Recorded and pre-processed signals are passed by the
headset itself through a bandpass filter of 0.2–45 Hz.
The fidelity of the recordings depends heavily on the
quality of the electrode contacts, whose state is
continuously monitored and fed back in the form of
an impedance index to the user via the acquisition
software, Emotiv PRO. One downside to the compact-
ness of the headset with regards to our paradigm was

the lack of a Cz electrode, which would have been
especially suitable for recording ErrPs due to its
proximity to the ACC, so that our study focused on its
two nearest available electrodes, FC5 and FC6.

2.3. Signal acquisition
Once electrode contact was established, a consumer-
grade laptop (ASUS ZenBook UX310) was deployed
running the Emotiv PRO software, fromwhich the 14-
channel data stream in the 0.2–45 Hz frequency range
was redirected to a custom-designed driver written in
Python (Python Software Foundation. Python Lan-
guage Reference, version 3.7; available at http://www.
python.org) extracting data via the Emotiv Cortex 1.9
API (available at https://emotiv.gitbook.io/cortex-
api/), allowing them to communicate with other
programming languages and hardware (figure 1).
Accessing raw EEG data requires licensing from
Emotiv and, as of Cortex 1.9 API, a subscription-based
authentication token inherently linked to the Emotiv
user identification code. The Cortex 1.9 API could be
communicated with via WebSocket Secure protocol
server using a JSON-RPC (Java Script Object Notation
- Remote Procedure Call). For interfacing with the
EEG stream and online signal display and classification
we designed a virtual instrument using LabVIEW
(Laboratory Virtual Instrument Engineering Work-
bench) [31], a complex visual programming environ-
ment optimized for quick translation to industrial
platforms. From the front panel, real-time data flow
on the two relevant electrodes (FC5 and FC6) as well as
the numerical values of EEG amplitudes were dis-
played. In the background, the instrument employed a
System Exec VI to launch and execute a custom Python
script that fed continuous data from the headset into
an array through a Spreadsheet string block. As Lab-
VIEW is optimized for designing electronic circuit
pipelines, signal analysis and classification was
achieved withMatlab by the plugins EEGLAB [32] and
ERPLAB [33], while neural network design and train-
ingwas performed inMatlab.

Figure 1.Experimental paradigm and data acquisition pipeline.
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2.4. Signal processing
Data preprocessing in EEGLAB involved reading the
signal stream as well as event timing information,
together with electrode positions, followed by filtering
(0.2–12 Hz band-pass filter with Hamming window
and a transition bandwidth of 4 Hz), relevant electrode
selection (FC5 and FC6), discretization into epochs
(from 0 until +900 ms after stimulus onset), applica-
tion of Independent Component Analysis (ICA) and
hybrid artifact rejection methods (improbable data
epochs of amplitudes over 25 μV, abnormal data
trends, abnormal frequency spectrum amplitudes of
over ±25 dB, values higher/lower than 8 standard
deviations of the data amplitude distribution, as well
as visual signal inspection) followed by the calculation
of grand averages across all of the epochs pertaining to
one subject and the same paradigm.

2.5. Signal data augmentation
Preclinically or clinically recorded EEG data inher-
ently suffers from low signal-to-noise and samples-to-
feature ratios, imbalanced datasets (in the case of rare
target events) as well as non-stationarity [34], thereby
having poor inter- and intraindividual generalization
potential and significantly reducing effectiveness of
deep learning strategies [35]. Not unlike deep learning
revolutionized computer vision, we supposed that
data augmentation approachesmight lead to increased
classifier accuracy, stability and, in the case of artificial
neural network classification, reduced overfitting [35].
The aim would be to artificially generate new data
samples increasing the quantity and diversity of the
original data based on existing training data [34],
either by Empirical Mode Decomposition (EMD)—in
the one case via Intrinsic Mode Functions (IMFs)—or
by using a hidden model to create artificial data with a
similar distribution to the real data—in the other case
via Deep Convolutional Generative Adversarial Net-
works (DCGANs).

2.6.Deep convolutional generative adversarial
networks
Encouraged by the classification improvement after
image dataset augmentation with DCGANs in comp-
uter vision research [13], DCGANs, a more stable
subset of Generative Adversarial Networks (GANs)
based on Convolutional Neural Networks (CNNs),
addressing the problem of meaningless output during
network training [34], have begun to be employed in
generating and labelling artificial EEG signal for
classifier training [12]. To simplify, GANs consist of a
generator G generating artificial data from a tensor
initialized with Gaussian noise of a particular dimen-
sion and trying to confuse the discriminator network
D, which continuously learns and revises its discerning
ability, into classifying generated data as original data,
as in a minimax game until the loss function L [36] is
minimized, the system reaching a Nash equilibrium

[34] (here x is the real data distribution, while y
represents the generator output):
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In analogy with image processing, G creates filters (or
kernels, not to be confused with the bandpass filters
from the signal processing pipeline) based on the CNN
learning pathway and ensures by calibration throughD
that they learn relevant features for the recognition of
the target data. Theoretically, in the Nash equilibrium
state, the distributions of the original and the artificial
data coincide, because D cannot distinguish whether
data fromG is artificial or real [34]. In our case, we used
a magnification factor of 2, i.e., 50% of the data for
training was original, while the rest was generated with
DCGANs. On the one hand, our G converted a
Gaussian noise tensor of size 1×1×100 to a
160×1× 511 tensor using a project and reshape layer,
which then gradually rescaled the output using a series
of transposed convolution layers with 1×5 filters with
a decreasing number of filters for each layer, inter-
spersed batch normalization layers, in order to avoid
internal covariate shifting, and ReLU layers. On the
other hand, D takes the output of G, a 231 × 1 × 1
tensor (231 being the number of samples in an epoch at
a sampling rate of 256Hz) and returns a scalar
prediction score using a series of convolution layers
with batch normalization and leaky ReLU layers
(figures 2(a)–(c)). The numerical relationships between
the dimensions of the convolutional layers were deter-
mined mathematically using a system of linear first-
order equations based on the formula:
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where Nk represents the number of activations (neu-
rons, units) of convolutional layer k, pk—the padding
of the matrix of convolutional layer k (padding means
the process of adding zeros to the input matrix
symmetrically), fk—the size of convolutional filter k
(set of learnable weights which are learned using the
backpropagation algorithm) and sk—the stride of
convolutional layer k (the number of units/neurons
shifted over the input matrix). Given the initial
number of samples in an epoch (231, see above) and
the number of convolutional layers in the network—
which matches those frequently employed in the
literature—one can determine for every layer of the
network the parametersNk, pk, fk, sk recursively, so that
the apparently arbitrary sizes of the layers become
mathematically determined and optimal in the context
of the current task.

2.7. Intrinsicmode functions
Another approach for artificially expanding a set of
EEG data epochs involves the calculation of the
harmonics of each epoch and recombining them in
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Figure 2.Data augmentationmethods. (a)Deep convolutional generative adversarial network (DCGAN). On the left, in blue, the
generator network, providing a 231×1× 1 input to the discriminator network, on the right, in red. (b)Example of a training run of
theDCGAN. Left: Power spectrumof the original (blue) against the artificial (red) signal. Right: Training plot of the scores of the
generator (blue) and discriminator (red)networks. (c)Example plots from the training run in (b), displaying thefirst 6 original epochs
(blue, left) and thefirst 6 artificial epochs (red, left) generated by theDCGAN. (d)Example of thefirst 8 IMFs and the residue generated
from an error trial. Artificial epochswere generated by combining IMFs of corresponding orders between original epochs. (e)
Examples of one standard (above, blue) and one error trial epoch (below, blue) alongwith the corresponding IMF-generated artificial
epochs (above and below, red).

5

Biomed. Phys. Eng. Express 8 (2022) 025006 D-MAncau et al



order to generate artificial ones. Since EEG signals are
non-periodic and non-stationary, simply applying a
Fourier transform to the signal would lead to a
meaningless frequency spectrum [37]. However, even
in these circumstances EEG signals can be decom-
posed into a finite number of nonlinear harmonics of
the initial signal, called IMFs, by applying the EMD
method [14]. These IMFs fulfil two conditions,
namely: first, the number of endpoints must be equal
to the number of zero crossings, or differ by at most
one; secondly, the average value of the envelopes
defined by the maximum and minimum endpoints,
respectively, must be zero. The process of generating
IMFs from an EEG signal x(t) consists theoretically of
the following steps:

(a) Find the maximum and minimum points of the
function x(t). If the number of maximum or
minimum points is sufficient to be able to
calculate their envelopes, then proceed to step b).
Here, each type of interpolation (linear, polyno-
mial, Bézier, spline etc) requires a minimum
number of points. The envelope of the maxima
and minima is calculated in this case by cubic
spline interpolation, for which a minimum num-
ber of 8 points are necessary.

(b) Find, by interpolation, the upper and lower
envelope of the end points, respectively. Depend-
ing on the geometry of the signal, a point of
maximum amplitude of the signal can lie below
zero, just as a point ofminimum amplitude can lie
above zero. The upper and lower envelopes
designate the envelopes of all maxima or all
minima of the signal.

(c) Calculate, for each point t, themean(t) of the two
envelopes.

(d) Calculate the difference diff(t)=x(t)−mean(t).

(e) If diff(t) meets the two conditions to be able to
constitute an IMF, then imfi=diff(t).

(f) Subtract diff(t) from the initial signal and at the
next step x(t) ← x(t) - diff(t), at which point
restart with the new x(t) from step (a).

(g) If diff(t) does not meet the two conditions
mentioned above, then x(t) ← diff(t) and then
return to step (a).

(h) If the number of maximum and minimum
points, respectively, are not sufficient for the
calculation of the envelopes, then the process
stops, and the residue is res(t)← diff(t).

Once the IMFs have been determined, the initial
signal can be restored by simply summing up the IMFs
togetherwith the residue:

( ) ( ) ( ) ( )å= +
=

x t imf t res t 3
k

n

k
1

The total number of generatable IMFs per sample
varies with the structure of the EEG signal. In our
study, we extracted 12 successive IMFs from each
epoch, the remaining signal being designated as resi-
due. To generate artificial epochs, we recombined
IMFs from the same trial (and subject) (figures 2(d)–
(e)). Each recording comprised 60 epochs, out of
which 15 contained an ErrP stimulus (stim) while 45
did not (std). We proceeded as in the following exam-
ple in the case of stim epochs: imf1 from epoch 1
replaced imf1 from the other epochs thus helping gen-
erate 14 artificial stim epochs. Then imf1 from epoch 2
replaced imf1 from the other epochs and so on. In this
way, 196 artificial stim epochs were created. The analo-
gous procedure was performed with imf2, thus gen-
erating other 196 artificial epochs and so on. The same
was then performedwith std epochs.

2.8.Online signal classification using long short-
termmemory networks
Lately, implementation of deep neural networks
(DNNs) has yielded promising results in the classifica-
tion of linguistic, imagistic and acoustic data [34, 38].
DNNs minimize redundant information bias and
improve general classifier accuracy, but especially in
EEG signal decoding they are impaired by the small
number of available samples and suffer from poor
generalizability [34]. LSTMs constitute an advance-
ment of RNNs in recognition of the issue of vanish-
ing/exploding gradients upon learning long data
sequences [22]. They are particularly suitable for
studying word sequence and time-series data, by
learning long-term dependencies between data units.
In our study, we adapted a bidirectional LSTM net-
work initially used for ECG signal classification [39],
consisting of a bidirectional LSTM layer with an
output size of 100, which is fed into a fully connected
layer of size 2, followed by a softmax layer and finally a
classification layer.

2.9.Online classification using LDAandQDA
As a benchmark for classical supervised machine
learning classification algorithms, we employed either
a Linear (LDA) or Quadratic Discriminant Analysis
(QDA), also as a means to compare the methods. In
LDA, the distance between the averages of the two
classes to be discriminated is maximized, while the
variability within each class isminimized, according to
Fisher’s criterion, expressed as:

( )
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˜ ˜
( )

m m
=

-
+

~ ~
J w

s s
; 41 2

2
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2

2
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where m m~ ~,1 2 represent the averages of the projections
of the classes along the direction w, and ˜ ˜s s,1

2
2
2

represent the measure of the variability within the two
classes.
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LDA seeks a vectorw for which J(w) is maximal. In
other words, J(w) has a maximum value when the dis-
tance between the averages of the class projections is
maximum and the measure of variability within the
classes is minimal. Two types of classifiers were gener-
ated inMatlab, a linear and a quadratic one. The clas-
ses to be discriminated against were the sets of
standard epochs and stimulated epochs from each
recording. The 231 potential values within an epoch
were the classifier features and corresponded to an
interval of 900 milliseconds (sampled at 256 Hz). For
the relevant features of the epoch, according to the
type of stimulus, the interval from millisecond 100 to
500 after the stimulus was considered, since relevant
ErrP components (such as N2 or P3) are known to
appear in this interval.

The classifier (LDA or QDA) would then attempt
to express one dependent variable (signal) as a linear or
quadratic combination of the independent variable
(time). As in other cases of machine learning (such as
principal component analysis or neural networkmod-
els), the exact features of the variables (signal) selected
for best discrimination between classes by the algo-
rithm can only poorly be explained or predicted intui-
tively in human terms, making the inner workings of
such algorithms obscure.

To reduce the number of data points in an epoch,
the number of values within the interval 100 and
500 ms was divided into subintervals of 50 milli-
seconds with 50% overlap and the average value
within it was considered to be the feature of each
group. I.e., group 1 ranged from 100ms to 150 ms,
group 2 from 125 ms to 175 ms, and so on. This
reduced the number of features with which the algo-
rithm operated from 103 per epoch (spanning 400 ms
from 100 to 500 ms at 256 Hz sampling rate) to effec-
tively 8 features (8 intervals of 50 ms spanning the
400 ms from100 to 500 ms after stimulus onset).

2.10. Statistical analysis
Wedid not employ a statistical power analysis in order
to determine the minimal number of subjects and
trials, but our sample sizes match those generally
employed in the field. Statistical analysis was per-
formed using R (https://www.R-project.org/, version
4.1.0) and R Studio (version 1.4.1717) software. Data
were tested for normality and equality of variance
using the Shapiro-Wilk test and, respectively, the
Bartlett test.

If the data passed normality and homoscedasticity
criteria, we performed one-way repeated-measures
ANOVA tests with Bonferroni adjustments for multi-
ple comparisons. If they did not, then we performed
the Kruskal-Wallis test with Dunn’s multiple compar-
isons test. All statistical tests were two-sided and per-
formed to a significance level of p<= 0.05.

3. Results

3.1.Offline ErrP detection
As an internal control, we started by verifying that
ErrPs can be validly detected with Emotiv EPOC+ in
thefirst place, by analysing offline recordings from just
3 of the subjects, which performed the same feedback
ErrP generating task over the course of multiple
sessions. The characterization of the shape and timing
of the potentials and their components was achieved
through the computation of time-locked grand aver-
age potentials for the correct (standard, std) and error
(stimulated, stim) trials in channels FC5 and FC6 [24].
A standard topographic interpolation of the potentials
was calculated every 100 ms from timepoint t=0
(feedback stimulus onset) to 500 ms after stimulus
onset. Single-trial potentials in both trial conditions
were plotted as a colour-encoded image (figure 3(b))
with a smoothingwindowof 50 trials, as in [24].

In particular, we observed that grand averages
ErrP time courses from epochs following ErrP eliciting
stimuli (stim) exhibited an FRN/N2 component
between 300 and 450 ms on frontocentral electrodes
FC5 and FC6 following stimulus onset and a P3 comp-
onent between 450 and 600 ms, which have been con-
sistently reported in ErrP eliciting assays [11, 40]. The
higher latency than in previous studies, where the FRN
generally appeared between 200 and 350 ms on elec-
trodes Cz and FCz following stimulus onset [11],
could be, in our opinion, attributed to different elec-
trode positioning due to headset-inherent constraints.
Whereas professional EEG caps allow recordings
from the electrode position Cz, in the case of Emotiv
EPOC+, whichwas not primarily designed for record-
ing ErrPs, this position is not represented, therefore
the closest available electrodes were selected, FC5
and FC6.

Grand average ErrPs across subjects revealed on
both FC5 and FC6 statistically significant (1-way
ANOVA) negative signal components in the 200 to
450 ms range on the stim condition (figure 3(d)). Scalp
2D and 3D mapping hinted towards a frontocentral
localization of the component origins (figure 3(a)),
while power spectrum analysis revealed largely iden-
tical frequency representations with a slight bias
towards lower frequencies (2 to 3.5 Hz) on electrode
FC6 (figure 3(c)). Altogether the data were compatible
with valid recordings of feedback ErrPs, so that we
proceeded to the live recording and classification
scenario.

3.2.Online ErrP classification
Online classification of ErrPs was performed using a
subject-specific trained long short-term memory net-
work (LSTM).

In order to overcome the issue of imbalanced data
due to the lower frequency of occurrence of stim trials,
especially the challenges of learning from the less
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Figure 3.Error-relatedpotentials (ErrPs) in a choice reaction taskdesigned to elicit a feedback-relatednegativity (RFN). (a) 2DErrP scalp
maps at electrodes FC5 andFC6 for correct (std) and error (stim) trials. (b) Single-trial potentials inboth trial conditionswere plotted as a
colour-encoded image (ErrP images)with a smoothingwindowof 50 trials, as in [24], in the correct (std, n=359 epochs from3 subjects)
and error (stim, n=109 epochs from3 subjects) trials. t=0 corresponds to the feedbackpresentationonset. (c)Power spectrum
comparisonbetween correct (std) and error (stim) trials at electrodes FC5 andFC6.The results of a sample-by-sample 1-wayANOVA
with false discovery rate correction formultiple comparisons is depicted below the plot, withblack segments depicting statistically
significant (p<0.05)differences between the power spectrumcurves. (d)GrandaverageErrPs at electrodes FC5 and FC6 for correct
(std) and error (stim) trials time-locked to the onset of feedbackpresentation. t=0 corresponds to the feedbackpresentationonset. The
results of a sample-by-sample 1-wayANOVAwith false discovery rate correction formultiple comparisons is depicted below the plot,
withblack segments depicting statistically significant (p<0.05)differences between the grand average curves.
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represented class, we provided only balanced data to
the LSTM for training, by artificially multiplying stim
trials tomatch the number of std trials.

For training, the dataset was split randomly into
80% epochs for training per se and 20% epochs for
training validation. These epochs should not be con-
fused with the signal epochs, because in the context of
the training of an artificial neural network one epoch
designates the running of an entire dataset through the
neural network once. In this sense, the LSTM network
was in as much efficient in that a training run of 50
epochs took around 8.5 min per subject to complete
usingminimalistic resources (a customer-grade laptop
CPU Intel® i5with 4 cores@1.60 GHz).

On unexpanded datasets (orig), the LSTM mana-
ged an average classification accuracy of (mean±s.e.
m.) 72.64%±1.34% (FC5) and 73.43%±1.34%
(FC6), whereas classical methods such as LDA and
QDAachieved lower, but statistically similar classifica-
tion accuracies: FC5 LDA 64.21%±4.29% (Kruskal-
Wallis test followed by Dunn’s multiple comparisons
test,H=1.11, P=0.14), FC6 61.86%±4.09%LDA
(Kruskal-Wallis test followed by Dunn’s multiple
comparisons test,H=1.53, P=0.06) and FC5 QDA
66.84%±3.84% (Kruskal-Wallis test followed by
Dunn’s multiple comparisons test, H=0.91,
P=0.18), FC6 QDA 66.43%±4.05% (Kruskal-
Wallis test followed by Dunn’s multiple comparisons
test,H=0.89,P=0.19) (figure 4(b), table 1).

However, an augmentation of the training datasets
of factor 1 using DGCANs (orig50dcgan50) sig-
nificantly improved classification accuracies com-
pared to non-augmented datasets (orig) classified
with the LSTM: FC5 orig50dcgan50 76.5%±1.33%
(Kruskal-Wallis test followed by Dunn’s multiple
comparisons test, H=−2.00, P=0.02), and FC6
77.93%±1.17% (Kruskal-Wallis test followed by
Dunn’s multiple comparisons test, H=−1.89,
P=0.03) (figure 4(b), table 1).

This was also the case with a factor 1 augmenta-
tion using IMFs (orig50imf50) compared to non-aug-
mented datasets (orig): FC5 orig50imf50 77.29%±
1.14% (Kruskal-Wallis test followed by Dunn’s multi-
ple comparisons test, H=−2.19, P=0.01) and FC6
orig50imf50 80.86%±1.86% (Kruskal-Wallis test
followed by Dunn’s multiple comparisons test, H=
−2.58, P=0.01) (figure 4(b), table 1).

Expansion of the training dataset of the order 1
using either of DGCANs (orig50dcgan50) or IMFs (ori-
g50imf50) yielded no difference in classification per-
formance: FC5 Kruskal-Wallis test followed by
Dunn’s multiple comparisons test, H=0.19,
P=0.42 and FC6 Kruskal-Wallis test followed by
Dunn’s multiple comparisons test, H=0.68, P=0.
(figure 4(b), table 1).

Experimenting with a mix of the two augmenta-
tion methods did not lead to improved results com-
pared to a single augmentation paradigm. Firstly, we
tried a serial augmentation by initially expanding the

training dataset by a factor of 1 using IMFs and then
expanding the augmented dataset by another factor of
1 using DCGANs (orig25imf25dcgan50). In this way,
the DCGANs also used IMF-generated epochs for
learning. However, accuracies did not improve sig-
nificantly compared to the non-augmented datasets:
FC5 orig25imf25dcgan50 74.57%±1.27% (Kruskal-
Wallis test followed by Dunn’s multiple comparisons
test, H=−1.03, P=0.15) and FC6 orig25i-
mf25dcgan50 75.00%±1.29% (Kruskal-Wallis test
followed by Dunn’s multiple comparisons test,
H=−0.41, P=0.34). Secondly, a parallel augmenta-
tion by a factor 1 using both methods simultaneously
(orig33imf33dcgan33) also could not improve classifi-
cation accuracy significantly when compared with the
non-augmentation paradigm: FC5 orig33imf33dcgan33
71.14%±1.5% (Kruskal-Wallis test followed by
Dunn’s multiple comparisons test, H=0.34, P=
0.37), FC6 orig33imf33dcgan33 72.00%±2.15%
(Kruskal-Wallis test followed by Dunn’s multiple
comparisons test, H=0.52, P=0.30) (figure 4(b),
table 1).

Next, we inquired as to why the classification acc-
uracy was enhanced in the augmentation paradigms
orig50imf50 and orig50dcgan50 compared to classical
classification methods and then to the non-aug-
mented paradigm.

Interestingly, when compared to classical classifica-
tion methods, although classification sensitivity was
marginally, but not significantly higher in the qda para-
digm—FC5 qda 46.71%±9.02% versus orig50imf50
41.86%±5.08% (Kruskal-Wallis test followed by
Dunn’s multiple comparisons test, H=−0.2,
P=0.42), qda versus orig50dcgan50 42.86%±6.92%
(Kruskal-Wallis test followed by Dunn’s multiple com-
parisons test, H=−0.004, P=0.50); FC6 qda
54.50%±6.87% versus orig50imf50 47.07%±6.51%
(Kruskal-Wallis test followed by Dunn’s multiple com-
parisons test, H=−0.82, P=0.21), qda versus
orig50dcgan50 50.64%±3.96% (Kruskal-Wallis test
followed by Dunn’s multiple comparisons test,
H=−0.19,P=0.42) (table 2)— the classification spe-
cificity was significantly higher in the orig50imf50
and orig50dcgan50 paradigms — FC5 orig50imf50
89.64%±2% versus qda 71.93%±4.61% (Kruskal-
Wallis test followed by Dunn’s multiple comparisons
test, H=2.84, P=0.002), orig50dcgan50 87.21%
±3.16% versus qda (Kruskal-Wallis test followed
by Dunn’s multiple comparisons test, H=2.38,
P=0.01); FC6 orig50imf50 90.86%±2.11% versus
qda 70.21%±5.21% (Kruskal-Wallis test followed by
Dunn’s multiple comparisons test, H=3.19,
P<0.001), orig50dcgan50 87.21%±1.81% versus
qda (Kruskal-Wallis test followed by Dunn’s multiple
comparisons test, H=1.89, P=0.03) (table 2).
Another noteworthy aspect concerned improved classi-
fication precision in the LSTM-based paradigms
compared to classical classification methods: FC5 ori-
g50imf50 60.57%±5.76% versus qda 34.14%±
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5.1% (Kruskal-Wallis test followed by Dunn’s multiple
comparisons test,H=3.11,P<0.001), orig50dcgan50
64.54%±7.19% versus qda (Kruskal-Wallis test fol-
lowed by Dunn’s multiple comparisons test,H=3.12,
P<0.001), FC6 orig50imf50 67.71%±6.13% versus
qda 43.71%±6.03% (Kruskal-Wallis test followed by
Dunn’s multiple comparisons test, H=2.77,

P=0.003), orig50dcgan50 58.79%±3.79% versus
qda (Kruskal-Wallis test followed by Dunn’s multiple
comparisons test,H=2.28,P=0.01) (table 2).

When compared to the non-augmented para-
digm, the results were similar to the case of classical
classification algorithms, with marginally higher
precision — FC5 orig50imf50 60.57%±5.76% versus

Figure 4.Online ErrP classification. (a)Example of a training plot of the LSTMnetwork displaying the evolution of classification
accuracy (above) and of the loss function (below) on the training (blue in plot above, orange in plot below) as well as on the validation
dataset (black above as well as below). (b)Box plots of themean±s.e.m. classification accuracies depending onwhether data
augmentation is used and, if so, uponwhichmethod. orig=original, non-amplified training data; orig50imf50=1:1 training data
augmentation using IMF, so that 50%of the training set represent original, 50% represent artificial data; orig50dcgan50=1:1 training
data augmentation usingDCGAN, so that 50%of the training set represent original, 50% represent artificial data;
orig25imf25dcgan50=1:1 training data augmentation using IMF, followed by a 1:1 amplification of the already amplified dataset
usingDCGAN; orig33imf33dgcan33=1:2 training data augmentation using IMF aswell as DCGAN in equal proportions;
lda=linear discriminant analysis; qda=quadratic discriminant analysis. ‘*’ statistically significant difference (KruskalWallis test
withDunn’s correction) p< 0.05; ‘**’ statistically highly significant difference (KruskalWallis test withDunn’s correction) p< 0.001.
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orig 50.79%±5.35% (Kruskal-Wallis test followed
by Dunn’s multiple comparisons test, H=−1.29,
P=0.1), orig50dcgan50 64.54%±7.19% versus orig
(Kruskal-Wallis test followed by Dunn’s multiple
comparisons test, H=−1.33, P=0.1); FC6 ori-
g50imf50 67.71%±6.13% versus orig 43.71%±
2.73% (Kruskal-Wallis test followed by Dunn’s
multiple comparisons test, H=−2.82, P=0.002),
orig50dcgan50 58.79%±3.89% versus orig (Kruskal-
Wallis test followed by Dunn’s multiple comparisons
test, H=−2.32, P=0.01) — and specificity — FC5
orig50imf50 89.64%±2.00% versus orig 82.64%±
2.44% (Kruskal-Wallis test followed by Dunn’s mul-
tiple comparisons test, H=−1.63, P=0.05),
orig50dcgan50 87.21%±3.16% versus orig (Kruskal-
Wallis test followed by Dunn’s multiple compa-
risons test, H=−1.18, P=0.12); FC6 orig50imf50
90.86%±2.11% versus orig 80.64%±1.79%
(Kruskal-Wallis test followed by Dunn’s multiple
comparisons test, H=−2.93, P=0.002), orig50dc-
gan50 87.21%±1.81% versus orig (Kruskal-Wallis
test followed by Dunn’s multiple comparisons test,
H=−1.63, P=0.05) — in the augmented para-
digms, while sensitivity was only marginally, but not
significantly improved: FC5 orig50imf50 41.86%±
5.08% versus orig 42.21%±4.75% (Kruskal-Wallis
test followed by Dunn’s multiple comparisons test,
H=0.24, P=0.41), orig50dcgan50 42.86%±
6.92% versus orig (Kruskal-Wallis test followed by
Dunn’s multiple comparisons test, H=0.48, P=
0.48); FC6 orig50imf50 47.07%±6.51% versus orig
46.21%±5.16% (Kruskal-Wallis test followed by
Dunn’s multiple comparisons test, H=−0.33,
P=0.49), orig50dcgan50 50.64%±3.96% versus
orig (Kruskal-Wallis test followed by Dunn’s multiple

comparisons test, H=−0.66, P=0.25) (table 2).
Between the two alternative augmentation methods,
IMF and DCGAN, there was no significant difference
regarding subsequent classification accuracy, preci-
sion, sensitivity or specificity.

4.Discussion

In this study, we present a viable deep-learning
augmented ErrP discriminating BCI using a consu-
mer-grade portable headset EEG (Emotiv EPOC+) as a
proof-of-concept for more portable, artificial intelli-
gence-enhanced and efficient BCIs that can transgress
the barriers of the controlled scientific laboratory and
offer a practical solution for patients with permanent
neurological disabilities.

We find this approach interesting at least for sev-
eral reasons. Firstly, demonstrating reliable ERP and,
in particular, ErrP detection using a wireless headset
and minimalistic computational resources mitigates
the necessity of using professional EEG recording sys-
tems that constrain the experimental paradigm to the
niche of a scientific laboratory. Secondly, an ErrP-
based interface offers a convenient binary coverage of
the logical space in a choice task, allowing to theoreti-
cally decipher a complex intention by splitting it in
multiple successive binary subtasks. Thirdly, deep-
learning-based dataset augmentation can enhance
classification performance and shorten training time,
thus increasing the applicability range of the BCI and
reducing the burden on potential patients.

In spite of the relative simplicity of the Emotiv
EPOC+ recording setup, we were able to demonstrate
reliable offline ErrP detection. This was inferred by the

Table 1.Mean±s.e.m. online classification accuracy.

Dataset type Electrode LSTM LDA QDA

orig FC5 72.64%±1.34% 64.21%±4.29% 66.84%±3.84%
FC6 73.43%±1.34% 61.86%±4.09% 66.43%±4.05%

orig50dcgan50 FC5 76.5%±1.33%
FC6 77.93%±1.17%

orig50imf50 FC5 77.29%±1.14%
FC6 80.86%±1.86%

orig25imf25dcgan50 FC5 74.57%±1.27%
FC6 75.00%±1.29%

orig33imf33dcgan33 FC5 71.14%±1.5%
FC6 72.00%±2.15%

Table 2.Mean±s.e.m. online classification sensitivity, specificity and precision.

Parameter Electrode LSTM orig50dcgan50 LSTM orig50imf50 LSTM orig QDA

Sensitivity FC5 42.86%±6.92% 41.86%±5.08% 42.21%±4.75% 46.71%±9.02%
FC6 50.64%±3.96% 47.07%±6.51% 46.21%±5.16% 54.50%±6.87%

Specificity FC5 87.21%±3.16% 89.64%±2% 82.64%±2.44% 71.93%±4.61%
FC6 87.21%±1.81% 90.86%±2.11% 80.64%±1.79% 70.21%±5.21%

Precision FC5 64.54%±7.19% 60.57%±5.76% 50.79%±5.35% 34.14%±5.1%
FC6 58.79%±3.79% 67.71%±6.13% 43.71%±2.73% 43.71%±6.03%
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shape and timing of the grand averages exhibiting the
canonical FRN during stim epochs. Consistent with
the choice of electrodes, we noticed an up to 100 ms
higher latency of the FRN than the literature reports,
since most data has been gathered with 32-/64-
electrode professional EEG systems that permitted the
placement of electrodeCz. The recorded latency in our
case could be due to the time necessary for propaga-
tion of the ErrP-induced dipole on the cortex surface
up to the recording sites FC5 and FC6. We also
observed consistent results on both FC5 and FC6 elec-
trodes in spite of inherently more frequent frontal
muscle artefacts than onCz.

For online signal classification we trained an
LSTM consisting of a bidirectional LST layer fed into a
fully connected layer, followed by a softmax layer and
finally a classification layer. We achieved significantly
higher classification accuracies (in average 73%) than
was the case with classical machine learning methods
such as LDA (in average 64%) and QDA (in average
66.5%) andwhichwere slightly inferior or comparable
to previously publishedmodels based on ErrPs [40].

In analogy to the idea in modern computer vision
deep learning paradigms, we hypothesized that data
augmentation via either DCGANs or IMFs could
increase accuracy by providing a broader training
spectrum without the necessity for longer recording
times. Augmenting the training dataset by a factor of 1
(50% original epochs, 50% artificial epochs) proved to
be the most optimal compromise between maintain-
ing enough original data and providing sufficient
variability through augmented epochs. In this way, we
achieved classification accuracies between 77% and
81%, with no significant difference between augmen-
tation using DCGANs or IMFs. Further increase of the
augmentation factor did not lead to significant
improvement but led to an increase in LSTM training
time. Improvement in classification accuracy upon
dataset augmentation was paralleled by increased pre-
cision and specificity, but not increased sensitivity in
the detection of stim epochs.

Future work could focus on how similar models
behave in first virtual reality and then more elaborate
practical settings, exploiting the reliable binarity
offered by the decoding of ErrPs. One drawback of our
study was the lack of a specialized Cz electrode, due to
the constraints imposed by a prefabricated EEG
recording device not primarily designed for recording
ErrPs. It would be of note that previous studies have
shown reliable classification of ErrPs in the context of
choice reaction tasks. For instance, one study reached
high classification accuracies between 86%and 96% in
a sample of 9 subjects using an online adaptation
method for an SVM classifier [41]. In another study
across 12 subjects involved in binary choice tasks,
accuracies between 63% and 76% were achieved
depending on the exact task [42]. Finally, in a human-
robot interaction study, ErrPs were decoded online

with an average accuracy of 82% across 13 subjects
[40]. However, all these studies have used professional
EEG recording equipment with at least 32 electrodes,
did not employ wireless headsets and also did not
involve dataset augmentationmethods.

5. Conclusion

In this study, we described a deep-learning enforced
ErrP discriminating BCI using novel data augmenta-
tion methods analogous to those employed in comp-
uter-aided vision algorithms using consumer-grade
hardware resources including a portable headset EEG.
We achieved online discrimination accuracies of
between 76% and 81% across 14 subjects which were
comparable to those obtained using 32/64-channel
professional EEG devices by coupling DCGAN- or
IMF-based dataset augmentation to online classifica-
tion via an LSTM neural network. Our study is, to our
knowledge, thefirst to combine awireless EEGheadset
with deep-learning algorithms for data expansion and
classification to generate a portable and practical EEG-
based BCI that has the potential to expand the
applicability of BCIs beyond the niche of a scientific
laboratory.
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