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Abstract. Neural network devices that inherently possess parallel computing
capabilities are generally difficult to construct because of the large number
of neuron–neuron connections. However, there exists a theoretical approach
(Hoppensteadt and Izhikevich 1999 Phys. Rev. Lett. 82 2983) that forgoes the
individual connections and uses only a global coupling: systems of weakly
coupled oscillators with a time-dependent global coupling are capable of
performing pattern recognition in an associative manner similar to Hopfield
networks. The information is stored in the phase shifts of the individual
oscillators. However, to date, even the feasibility of controlling phase shifts
with this kind of coupling has not yet been established experimentally. We
present an experimental realization of this neural network device. It consists
of eight sinusoidal electrical van der Pol oscillators that are globally coupled
through a variable resistor with the electric potential as the coupling variable.
We estimate an effective value of the phase coupling strength in our experiment.
For that, we derive a general approach that allows one to compare different
experimental realizations with each other as well as with phase equation models.
We demonstrate that individual phase shifts of oscillators can be experimentally
controlled by a weak global coupling. Furthermore, supplied with a distorted
input image, the oscillating network can indeed recognize the correct image out
of a set of predefined patterns. It can therefore be used as the processing unit of
an associative memory device.
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1. Introduction

Information processing in biological systems is accomplished in a fundamentally different way
than in conventional computers. Instead of having one (or a few) central processing units that
perform a given task by executing commands step by step in series, biological neural networks
consist of a large number of highly interconnected information processing units (the neurons)
that all act in parallel. Furthermore, the rules are not predefined; rather, the network is capable of
learning. Being able to mimic such a biological neural network in a man-made neurocomputer
might allow for conceptually novel computer architectures with unforeseen areas of application.
Key challenges are the large number of connections needed to couple all neurons mutually
and the flexible adjustment of the connection strengths during the learning phase of the
network.

In this respect, a charming mathematical model for an oscillatory associative memory was
suggested by Hoppensteadt and Izhikevich [1]. It couples the oscillatory neurons dynamically
through a time-dependent input rather than through direct connections between them. A
physical network whose dynamics is governed by these rules would not encounter the above-
mentioned difficulties. The model comprises a number N of sinusoidal oscillators with different
frequencies ωi whose phases ϑi evolve according to ϑi(t) = ωi t + ϕi(t), where ϕi are the phase
shifts. All oscillators are subject to a weak time-dependent global coupling

ϑ̇ i = ωi + εa(t)
N∑

j=1

sin(ϑ j − ϑi). (1)

For a suitable choice of the coupling function a(t) and a small coupling strength, the phase shift
dynamics reduces to

ϕ̇i = ε

N∑
j=1

wi j sin(ϕ j − ϕi), (2)
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where wi j are the elements of a coupling matrix defined below. System (2) is capable of pattern
recognition similar to a Hopfield network [2–7]. The system is stationary if all phase shift
differences ϕ j − ϕi are either 0 or π . The coupling coefficients wi j determine the stability of
the stationary solutions, with wi j > 0 stabilizing the solution ϕ j − ϕi = 0 and with wi j < 0
stabilizing the solution ϕ j − ϕi = π . The system is initialized to a binary pattern ξ with
ξi ∈ {−1, +1} by choosing wi j = ξiξ j . As a result all phase shifts corresponding to a ‘−1’ in
the pattern will converge to the same value ϕ−, just like all phase shifts that correspond to a
‘+1’ will converge to ϕ+. The relative phase shift between the two groups will be ϕ+ − ϕ− = π .
In the recognition process, an imperfect pattern ξ is compared to a set of memorized patterns
ξ k , k = 1, . . . , M . First the system is initialized to ξ . Then the coupling is altered according to
the Hebbian learning rule wi j =

∑N
j=1

∑M
k=1 ξ k

i ξ k
j . With the changed coupling, ξ is no longer

a preferred state of the network [5] and the phase shifts tend to evolve to a pattern near the
ξ k that is closest to ξ . Note that the synaptic weights wi j are set only once for a given set of
memorized patterns instead of gradual training. This means that the set of memorized patterns
can be changed flexibly. In turn, other than in the Hopfield model, the set of memorized patterns
is not kept in the system itself, so the system is a processor rather than a storage.

While there are some general ideas for experimental realizations of this network [8, 9],
none have been elaborated so far. One difficulty in doing so is that in general a coupling
of physical variables does not lead to the sinusoidal coupling in ϑ implied in (1). Also, it is
experimentally challenging to design a coupling mechanism that allows for arbitrary variations
of the coupling function in time, including synchronizing and desynchronizing coupling. Below,
we first propose a practicable coupling strategy for electrical oscillators with which the evolution
equation of the phase shifts take the form (2) in good approximation. We then show experimental
data for both pattern initialization and pattern recognition. In the last section, we describe the
experimental procedures in more detail.

2. Results

2.1. Coupled van der Pol oscillators

All experiments were performed with the circuit of N = 8 globally coupled van der Pol
oscillators [10] depicted in figure 1(a). The frequencies lay in the range 28–73 kHz. Each
oscillator had a resistance R in series allowing for independent oscillations. All oscillators
were connected to the ground through a common external impedance. This impedance was
a parallel connection of a constant negative impedance Zp = −R/N and a variable impedance
Zc(t) = Rc · a(t). Here, a(t) is the time-dependent coupling function we gave as an input to
the system. Implementation details of Zp and Zc are given in the methods section (figure 9).
Applying Kirchhoff’s laws to the circuit yields the time evolution of the voltage drop across an
individual oscillator i :

U̇ i = −
Ui

Ci R
−

ITD(Ui − U0) + Ii

Ci
+ εia(t)

8∑
j=1

U j . (3)

Here, ITD(U ) is the nonlinear characteristic of the tunnel diode and Ci the capacitance of the
oscillator. The last term globally couples a single oscillator to all other oscillators. The value for
Zp was chosen such that the coupling term is proportional to a(t), which results in a coupling
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(a) (b)

Figure 1. Experimental realization of the network. (a) Circuit layout with eight
van der Pol oscillators globally coupled through a variable impedance. For details
of the electronic elements see figure 9. (b) Waveform U (ϑ = ωt) of a van der
Pol oscillator with L = 47µH and C = 100 nF (solid line) and its phase response
curve (dashed line). The dots represent single measurements. The dashed line is a
cosine function that was fitted to these measurements with phase shift, frequency,
offset and amplitude as free parameters.

governed by the rate constant εi :

εi =
Rc

Ci R2
.

The order of magnitude is the same for all εi in our experiment, where R = 500 � and
Rc = 30 �. A typical value for Ci is 100 nF that results in εi = 1200 s−1. The specifications
of all circuit elements are given in section 4.

2.2. Derivation of the phase equation and the coupling strength

Since εi is much smaller than the frequency of an individual oscillator (for the considered
capacitance ωi ≈ 4.5 × 105s−1) the coupling is weak and the dynamics of a single oscillator
can be reduced to a phase equation [11], which in our case reads:

ϑ̇ i = ωi + ϕ̇i = ωi + Z i(ϑi)εia(t)
8∑

j=1

U j(ϑ j).

Z i(ϑi) is the infinitesimal phase response function, i.e. the oscillator’s change in phase per unit
perturbation of Ui if the perturbation is small. Expressing all ϑi through ωi and ϕi gives the time
evolution of ϕi :

ϕ̇i = Z i(ωi t + ϕi)εia(t)
8∑

j=1

U j(ω j t + ϕ j).

We determined the response functions Z i experimentally using a method similar to that used by
Kiss et al [12]. The waveforms of the oscillation and the phase response are almost sinusoidal
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in a wide frequency range, including the frequencies we used, with a phase shift of π/2 between
them (see figure 1(b)). Approximating Ui and Z i by a sine and a cosine function, respectively,
yields

ϕ̇i = εia(t)
8∑

j=1

U max
j Zmax

i sin(ω j t + ϕ j) cos(ωi t + ϕi).

Owing to the small value of εi/ωi , ϕi is a slow variable and any fast oscillating term on the
right-hand side will have no average contribution to ϕ̇i . In particular, if a(t) = const, 〈ϕ̇i〉 = 0
for averaging times longer than a few oscillation periods. An average effect only arises if a(t)
has resonant Fourier components with frequencies ω j − ωi . Provided that each resonance occurs
only for one pair of oscillators (ωk − ωl 6= ω j − ωi for (k, l) 6= ( j, i), i.e. the frequencies form a
so-called Golomb ruler [13]), the coupling function

a(t) =

∑
i 6= j

wi j cos(ω j t − ωi t) (4)

leads to

ϕ̇i =
εi

2

8∑
j=1

U max
j Zmax

i wi j sin(ϕ j − ϕi) (5)

(see appendix A). Apart from the presence of some constant positive factors that change the
time scale in a way that varies slightly between oscillators, (5) is equal to the ideal model (2).
By taking approximate values for U max

i and Zmax
j from figure 1(b), we can estimate the strength

ε of the phase coupling:

O(ε) =O
(

Rc

2Ci R2
U max

j Zmax
i

)
≈ 750 s−1.

The analysis presented in this section provides a general way to map all kinds of systems of
weakly coupled oscillators to (2). In particular, it relates the effective coupling strength ε to
physical parameters.

2.3. Experimental pattern initialization and recognition

In the experiments, we recorded the voltage signal Ui for each oscillator over a time period
of 1 s. During this time, we changed the coupling impedance Zc(t) by applying a voltage
Uc(t) to a voltage-controlled resistor (VCR) that, in series with a constant negative impedance,
provides Zc. The relation between Uc and Zc was fairly linear (see figure 10(b)). Therefore,
we set Uc − 〈Uc〉t ∝

∑
i 6= j wi j cos(ω j t − ωi t) = a(t) to obtain the coupling function (4). In the

experiments we always kept Uc ∈ [0 V, 3 V], which results in Zc ∈ [−30 �, 30 �]. L i and Ci

were chosen such that frequency differences are pairwise different (numerical values are given
in section 4).

The choice of the coupling coefficients wi j depended on the patterns we chose for
initialization and recognition, as already described. From the measured voltages Ui(t), we
obtained the phase shifts by comparing the time of the actual zero crossings with the time of the
zero crossings expected for an oscillation of frequency ωi : ϕi(tcross) = ωi(tcross, expected − tcross).

Figure 2 shows the initialization of the network with initially randomly distributed phase
shifts to a pattern (the first 0.2 s). After each 0.2 s, the coupling coefficients were changed
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Figure 2. Time evolution of the phase shifts during network initialization (the
first 0.2 s) and pattern switching. Every 0.2 s, the coupling coefficients were
changed to represent a different pattern (see text). The patterns on top are
snapshots of the phase shifts at t = 0.2, 0.4, 0.6, 0.8 and 1 s in gray scale
according to the color bar on the left. Squares have a colored border indicating
the respective time series. The phase shifts are only determined up to a common
rotation angle, which we chose such that at t = 0.2 s the two branches are at 0
and π, respectively.

to represent a new pattern that differed from the old one in one pixel. Obviously, we can
individually select oscillators and tune their phase shifts with a weak global coupling. Moreover,
the phase shifts do indeed represent the patterns selected by the coupling. Switching between
patterns took at most 0.1 s, after which time the difference between phase shifts was again close
to integral multiples of π .

For recognition, we set wi j = ξiξ j for 0.5 s, to initialize the system to the pattern ξ . Then
we changed the coupling matrix to wi j =

∑3
k=1 ξ k

i ξ k
j , as discussed above, giving the system

three patterns to ‘choose from’ for recognition. With our network of only eight oscillators
we used pairwise orthogonal (ξ l

× ξm
= 0) patterns because otherwise the memorized patterns

would have been too similar for successful recognition [16]. This does not mean that pattern
recognition is in general restricted to orthogonal patterns for a larger number of oscillators [1].
Figure 3 shows a measurement with pattern recognition from three memorized patterns. The
initial pattern had a defect in 1 bit. At 0.5 s, when recognition sets in, the phase shift of the
respective oscillator switched from 0 to π . The switching took about 0.05 s. Now, the pattern
represented by the system was the memorized pattern closest to ξ (in the case of figure 3,
the pattern ξ 2), which means that the network recognized ξ as a defective version of ξ 2. The
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Figure 3. Pattern recognition experiment. (a) Imperfect (ξ ) and memorized (ξ 1,
ξ 2 and ξ 3) patterns. (b) Time evolution of the phase shifts; t 6 0.5 s: initialization
of ξ ; t > 0.5 s: recognition. At t = 0.5 s, the coupling was switched to the
Hebbian learning rule (see text). The snapshots shown as the inset depict the
phase shifts at t = 0.5 s and t = 0.55 s in gray scale according to the color bar on
the left.

common drifts in the phase shifts for t > 0.5 s do not derogate recognition. However, at long
times the phase shift differences moved away from 0 and π , which means that the recognized
pattern was lost after some time. This is not a substantial problem for pattern readout, which
takes at most one period of the slowest oscillation until a zero crossing for each oscillator has
been determined.

Figure 4 shows a series of recognition experiments. The three memorized patterns are
shown in figure 4(a). Figure 4(b) depicts in the respective upper rows the initial patterns and in
the lower rows the recognized patterns. The value of the phase shift is color coded according
to the gray scale on the bottom left of figure 4. As initial pattern ξ we took the first of the
three memorized patterns shown in figure 4(a) and flipped the sign of a different bit for each
measurement. In seven cases, pattern recognition was successful on the short time scale where
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Figure 4. Series of eight pattern recognition experiments. (a) Memorized
patterns ξ 1, ξ 2 and ξ 3. (b) Imperfect initial patterns (snapshot at t = 0.5 s, upper
pattern) and recognized patterns (snapshot at t = 0.55 s, lower pattern) for all
eight measurements (seven successful and one unsuccessful). The color coding
for the phase shifts is given in the color bar below panel (a).

we define recognition as successful if the deviation of the phase shift from the expected value
is smaller than π/2. In one case, however, the desired bit did not change during recognition. In
the following section, we investigate reasons for this failure with simulations.

2.4. Influence of frequency deviations on pattern recognition

In experiments, the frequencies of the oscillators can only be determined up to a certain
accuracy. Moreover, the frequencies might drift slightly, as was the case in our simple network.
Thus, some deviations 1ω of the oscillators are intrinsically present in a measurement.
Therefore, we quantified the effect of the frequency mismatch in the coupling on pattern
recognition with the following simulations. First, we simulated a circuit of eight van der Pol
oscillators with a slightly inaccurate coupling function

a(t) =

∑
i 6= j

wi j cos(ω j,coupt − ωi,coupt),

where we chose the frequencies ωi,coup randomly from the interval [ωi(1 − 1ω/ω), ωi(1 +
1ω/ω)]. We used three randomly selected memorized patterns that were pairwise orthogonal
for each single run. The initialized pattern had one randomly selected defective bit. The system
of coupled differential equations we integrated numerically is given by (3) complemented by
the equations for the currents İ i = Ui/L i for i = 1, . . . , N .
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Figure 5. Series of pattern recognition simulations with eight van der Pol
oscillators for different detunings of the coupling frequencies (see the text for
details). For each value of 1ω/ω we performed ten simulation runs. The change
from initialization to recognition coupling occurred after t = 0.5 s. The plot
shows the quantity |ϕ(t = 0.65 s) − ϕ(t = 0.45 s)| for each oscillator. Oscillators
that are supposed to shift their phase by π during the recognition are marked
with red symbols and the others with black symbols. The frequencies ωi of
the oscillators were chosen such that they constitute a Golomb ruler of order 8
between ω1 = 200 kHz and ω8 = 400 kHz (see appendix B). For the capacitances
and inductances we chose Ci/F = L i/H = (1/ωi)/s. The coupling resistances
were Rc = 30 � and R = 500 �.

In figure 5, the changes in all of the oscillators’ phase shifts ϕ during the recognition
process are displayed. For the oscillators representing the defective bits, the changes are
shown in red for the rest of the oscillators in black. For each value of 1ω/ω, the average
change in ϕ taken over ten simulations is plotted with a filled circle for the two groups
of oscillators. Simulation results indicate that for 1ω/ω < 10−5, pattern recognition works,
as all the oscillators that are supposed to exhibit a jump in phase shift change their phase
shift by a margin considerably larger than π/2, while the changes in phase shift of the other
oscillators stay considerably smaller than π/2. At 1ω/ω ≈ 10−5 recognition fails in a few cases
but still works most of the time. This was also the behavior we observed in the experiment
(figure 4). However, at frequency deviations 1ω/ω > 10−4, both groups of oscillators are not
distinguishable by their phase shift jumps during the recognition process any more. Therefore,
the system cannot be used for pattern recognition in this case.

As can be seen in figures 6 and 7, the effect of inaccurate frequencies seems to be
strongest for a small number of oscillators. Figure 6 shows a series of simulations with a
system of 16 oscillators in the same frequency range and with the same coupling strength
as the simulations of figure 5. Again, we used three memorized patterns with one defective
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Figure 6. Series of pattern recognition simulations with 16 van der Pol oscillators
for different detunings of the coupling frequencies (see the text for details).
For each value of 1ω/ω we performed ten simulation runs. The change from
initialization to recognition coupling occurred after t = 0.5 s. The plot shows the
quantity |ϕ(t = 0.55 s) − ϕ(t = 0.45 s)| for each oscillator. Oscillators that are
supposed to shift their phase by π during the recognition are marked with red
symbols and the others with black symbols. The frequencies ωi of the oscillators
were chosen such that they constitute a Golomb ruler of order 16 between
ω1 = 200 kHz and ω16 = 400 kHz (see appendix B). For the capacitances and
inductances we chose Ci/F = L i/H = (1/ωi)/s. The coupling resistances were
Rc = 30 � and R = 500 �.

bit in the initial pattern for each run. For this configuration, pattern recognition works fine
up to 1ω/ω = 10−4, which is more than an order of magnitude better than that in the case
of eight oscillators. Of course, the initial pattern deviates less from the restored pattern than
in the eight-oscillator case, since Ndefective bits/Ncorrect bits = 1/16 instead of 1/8. To investigate
recognition with a comparable deviation of the initial pattern from the correct pattern, we also
performed a series of simulations with two defective bits in the initial pattern, while leaving the
coupling strength and oscillator frequencies unchanged (see figure 7). Also in this case, pattern
recognition works up to 1ω/ω = 10−4, but compared to figure 6, the respective average changes
are further away from 0 and π , respectively.

These simulations indicate that pattern recognition is more robust to frequency inaccuracies
with a larger number of oscillators under our specific experimental conditions. However, the
condition

1ω < min
i 6= j

|ωi − ω j |

must be fulfilled for any number N of oscillators. Otherwise, the single oscillators cannot be
identified reliably by their frequency. As of now, the exact relation between N and the value
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Figure 7. Series of pattern recognition simulations with 16 van der Pol oscillators
for different detunings of the coupling frequencies. All parameters are the same
as in figure 6, only the initialized pattern had two defective bits.

of mini 6= j |ωi − ω j | is unknown, since all known algorithms for the computation of optimal
Golomb rulers take exponential time [14], but there exists a numerical study [15] proving that
for N 6 65 000 it is possible to find near-optimal Golomb rulers with

min
i 6= j

|ωi − ω j |>
ωN − ω1

N 2
,

where ω1 is the minimal frequency and ωN is the maximal frequency. Therefore, we obtain the
following constraint for the accuracy:

1ω <
ωN − ω1

N 2
.

It is reasonable to choose frequencies such that ω1, ωN and ωN − ω1 have the same order of
magnitude. If not, either a great deal of the available frequency space is wasted (if ωN − ω1 �

ω1) or the higher-frequency oscillators must have a much higher relative accuracy compared to
the lower-frequency oscillators (if ω1 � ωN ). Therefore, we arrive at the following approximate
condition for the accuracy of a single oscillator, where we denote the order of magnitude of the
frequencies with ω:

1ω

ω
<

1

N 2
. (6)

While this condition is a substantial constraint for realizations of larger networks, it does
not explain why recognition fails at 1ω/ω = 10−4 in a system with eight oscillators (where
1/N 2

≈ 0.016), much less why recognition improves when we switch to 16 oscillators. The
improved pattern recognition ability for larger networks can also be seen in figure 8, where a
simulation of the recognition experiment with 60 oscillators suggested in [1] is shown for our
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Figure 8. Simulation of a pattern recognition experiment with 60 van der Pol
oscillators. (a) Imperfect pattern with eight defects (ξ ) and memorized patterns
(ξ 1, ξ 2 and ξ 3). (b) Time evolution of the phase shifts; t 6 0.6 s: initialization of
ξ ; t > 0.6 s: recognition. At t = 0.6 s the coupling was switched to the Hebbian
learning rule. The eight red curves that change branches during recognition
belong to the oscillators that do not fit pattern ξ 2 in pattern ξ . The frequencies
ωi were chosen such that they constitute a Golomb ruler of order 60 between
ω1 = 1.5 MHz and ω60 = 3 MHz (see appendix B). For the capacitances and
inductances, we chose Ci/F = L i/H = (1/ωi)/s. The coupling resistances were
Rc = 0.3� and R = 500 �.

van der Pol oscillator network. Thus, the simulations suggest that the experimental difficulties
we experienced are due to a small size effect rather than due to the principal scalability issues
of the network.

3. Conclusions

The experiments document that with a weak global coupling the phase shifts of oscillators
can be manipulated individually and information can be stored in the relative phase shifts.
In addition, we employed a network of eight such oscillators for pattern recognition tasks.
We thus gave an experimental proof of principle that a network of weakly coupled electrical
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oscillators with a time-dependent global coupling via the electric potential is capable of pattern
recognition.

However, the phase shift dynamics of the realized circuit exhibited deviations from
ideal behavior. Firstly, we observed a loss of coherence of the phase shift differences in
the recognition mode. In most cases, the coherence was lost only on a time scale that was
much longer than the recognition time. Therefore, pattern recognition worked on a short time
scale. In some cases, however, recognition failed altogether. One possible reason for this is
the accuracy of the oscillator frequencies. In simulations with a small number of oscillators
(eight, 16 and 60), we observed that reliable pattern recognition requires a higher accuracy
for a small number of oscillators than for a moderately large number of oscillators. Increasing
the number of oscillators gave reliable pattern recognition at larger frequency deviations. This
small size effect does not yet have a theoretical foundation. We also discuss the fact that the
intrinsically finite accuracy limits the number of oscillators in the network and thus restricts
the principal scalability (equation (6)), but in our experiment with eight oscillators this was not
the crucial factor. Secondly, after switching to recognition coupling, we observed a common
drift in all phase shifts. This so-called acceleration effect was discussed in the framework of
frustrated coupled oscillator systems [5, 17]. It occurs if the effective coupling between two
oscillators is not an exactly sinusoidal function of the phase shift difference. However, since we
are interested only in phase shift differences, the acceleration effect does not hinder successful
pattern recognition. Thus, the origins of the deviations from the ideal phase shift dynamics
observed in our network seem to be technical in nature and will not appear with optimized
oscillators and larger networks.

One should also be aware that the network is a reusable processing unit rather than a
classical neural network that learns and stores a limited set of patterns in the mainly fixed
connection strengths. The trade-off is that additional peripheral devices, namely a memory to
store the patterns and a function generator that provides the required coupling function for a set
of memorized patterns, are necessary. In our experiments, a desktop computer with a DA card
was used for this purpose. However, if need be, the peripheral functionality can be implemented
on the same circuit board as the network itself to form an integrated device.

In conclusion, our experiments open the route to a qualitatively new hardware architecture.
However, clever design changes that only partially use the elegant method for globally coupling
the oscillators, but gain scalability instead, are needed. We are currently exploring approaches
along this line.

4. Methods

4.1. Experimental setup

The measurement setup consisted of the circuit depicted in figure 9, a PC equipped with a
Spectrum M2i.4032 AD card and a Spectrum M2i.6021 DA card, and a LeCroy WaveRunner
44MXi oscilloscope connected to the PC via ethernet. The oscilloscope and the AD card
were each connected to four oscillator signals Ui . We used the card with a time resolution
of 1 MS s−1 and the oscilloscope with a time resolution of 10 MS s−1. To obtain the times
of the zero crossings of the signal, we linearly interpolated the intersection between two
consecutive measured values with the first being smaller than zero and the second being greater
than or equal to zero. We had to filter the oscilloscope’s signal with the ERES algorithm
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Figure 9. Experimental circuit diagram. All voltages are given in V, all
resistances in �, all capacitances in F and all inductances in H. The parts of
the circuit making up the impedances Zc and Zp are highlighted.

included in the oscilloscope’s software in order to avoid spurious zero crossings due to
noise.

The van der Pol oscillators in the circuit are basically LC circuits with the addition of
a tunnel diode. The negative nonlinear resistance in the characteristic of the tunnel diode
(see figure 10(a)) destabilizes the stationary state of the LC circuit. The results are sustained
oscillations in the range from 28 kHz (C = 660 nF) up to 73 kHz (C = 100 nF). The constant
negative impedance Zp = −62.5 � was implemented using a standard design [18] (see also
figure 9). Zc is a series connection of another constant negative impedance with the value −50 �

and a VCR2N JFET transistor acting as a VCR. The output Uc(t) of the DA card, for which we
set the update rate to 1 MS s−1, was connected to the VCR. Figure 10(b) shows the source drain
resistance RJFET of the VCR against the control voltage Uc applied to the gate. Since the VCR
provides resistances in the interval [20 �, 80 �], the series impedance of −50 � allows for
variation between equally large positive and negative values of Zc.

Note that, prior to each experiment, we had to determine the frequencies ωi . Therefore, we
set Uc = 0 (and thus a(t) = const). Then, we counted the number of zero crossings with positive
slope Ni for each oscillator during 1 s and assumed that ωi = 2π · Ni Hz. This preliminary step
was necessary because the frequencies are subject to slight changes over time due to thermal
effects and fluctuations in the offset voltage U0 of the tunnel diodes. Also, frequencies changed
in the order of 1ωi 6 ε between the coupled and the uncoupled system. In figures 2, 3 and 5,
we corrected for these changes, which, however, do not interfere with the initialization and
recognition capabilities of the network.
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(a) (b)

Figure 10. Experimental characteristic of the tunnel diode and the variable
resistance. (a) Characteristic of the tunnel diode. (b) Comparison of the control
voltage and resistance of the VCR. Top: fast (150 kHz) oscillating control voltage
Uc applied to the VCR used in the experiment. Bottom: measured source drain
resistance RJFET of the VCR for the control voltage given above. We put the
VCR in series with a 12 � resistance and measured the voltage drops across both
resistances. From those measurements we computed the green curve for RJFET.
The red curve was obtained using the WaveRunner 44MXi oscilloscope’s ERES
filtering algorithm on the green curve.

4.2. Measuring the phase response function

To obtain the phase response curves (see figure 1(b) for an example), we connected the van der
Pol subcircuits to a variable voltage source Uex via their R = 500 � series resistance. The time
evolution equation for the oscillator signal U then reads

U̇ = −
U

C R
−

ITD(U − U0) + I

C
+

Uex

C R
.

A short high-amplitude pulse in Uex (ideally a delta function) will result in a jump in U . In the
experiment, we used a pulse with the shape

Uex(t) = 1.5 V · e−[t/(3×10−7 s)]2
,

resulting in a voltage jump 1U with O(1U ) ≈ 0.01 V. The excitation in U causes a shift in the
phase 1ϑ . As phase variable we simply use ϑ(t) = 2π t/T , where T is the oscillation period.
To compute 1ϑ , we measure the time Tex between two zero crossings of the U signal directly
before and after a pulse in Uex. By comparing this time to the period of the oscillator without
perturbations, we obtain 1ϑ :

1ϑ = 2π

(
1 −

Tex

T

)
from which the phase response curve Zϑ(ϑ) = 1ϑ(ϑ)/1U was computed. The dispersion of
the measured points is due to electronic noise. Noise effects could be reduced by using a larger
1U at the cost of moving further away from the undisturbed oscillation and therefore distorting
the phase response curve.
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Appendix A. Averaging the phase equations

We begin with the following equation derived in subsection 2.2:

ϕ̇i = εia(t)
8∑

j=1

U max
j Zmax

i sin(ω j t + ϕ j) cos(ωi t + ϕi).

If the factors εiU max
j Zmax

i are sufficiently small [4], this equation can be written as

ϕ̇i =

8∑
j=1

(εiU
max
j Zmax

i gi j(ϕi , ϕ j) +O((εiU
max
j Zmax

i )2)), (A.1)

where

gi j(ϕi , ϕ j) = lim
T →∞

1

T

∫ T

0
a(t) sin(ω j t + ϕ j) cos(ωi t + ϕi) dt.

Converting the product into a sum of trigonometric functions yields

gi j(ϕi , ϕ j) = lim
T →∞

1

2T

∫ T

0
a(t) sin(ω j t − ωi t + ϕ j − ϕi) + sin(ω j t + ωi t + ϕ j + ϕi) dt.

Inserting the coupling function

a(t) =

∑
i 6= j

wi j cos(ω j t − ωi t)

results in

gi j(ϕi , ϕ j) = lim
T →∞

1

2T

∫ T

0

∑
k 6=l

wkl cos(ωkt − ωl t)(sin(ω j t − ωi t + ϕ j − ϕi) + · · ·

+ sin(ω j t + ωi t + ϕ j + ϕi)) dt,

which can be expanded to

gi j(ϕi , ϕ j) = lim
T →∞

1

4T

∫ T

0

∑
k 6=l

wkl(sin((ωk − ωl)t + (ω j − ωi)t + ϕ j − ϕi) − · · ·

− sin((ωk − ωl)t − (ω j − ωi)t − ϕ j + ϕi) + · · · + sin((ωk − ωl)t

+ (ω j + ωi)t + ϕ j + ϕi) − · · · − sin((ωk − ωl)t − (ω j + ωi)t − ϕ j − ϕi)) dt.

Since a sine function averaged over one period is zero, the limit vanishes for each of the four
terms in the sum, unless the effective frequency of that term is zero. In the experiment, we have
chosen frequencies in a way that

ωk − ωl 6= ω j + ωi for all i, j, k, l.
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This means that there are no contributions to gi j(ϕi , ϕ j) from the last two terms of the sum. We
also made sure that

ωk − ωl = ω j − ωi ⇔ k = j, i = l,

which implies that there are only contributions from the first two terms of the sum if k = j and
i = l:

gi j(ϕi , ϕ j) = lim
T →∞

1

4T

∫ T

0
wi j(sin(ϕ j − ϕi) − sin(−ϕ j + ϕi)) dt.

Evaluating this expression further yields

gi j(ϕi , ϕ j) =
1
2wi j sin(ϕ j − ϕi).

Inserting the last term for gi j(ϕi , ϕ j) in (A.1), one obtains

ϕ̇i =

8∑
j=1

(εiU
max
j Zmax

i
1
2wi j sin(ϕ j − ϕi) +O((εiU max

j Zmax
i )2)).

Since the second term only takes effect on a much slower time scale than the first one, it may
be neglected when considering the effective dynamics:

ϕ̇i =
εi

2

8∑
j=1

U max
j Zmax

i wi j sin(ϕ j − ϕi). (A.2)

With (A.2), we have arrived at (5) of this paper.

Appendix B. Golomb rulers used for determining the frequencies

For our simulations, we used ideal frequency distributions which maximize the
minimal difference between the two frequencies ωi and ω j while still main-
taining the condition ωi − ω j 6= ωk − ωl for (k, l) 6= (i, j). Such a distribution is
called a Golomb ruler. We used the table of integer-valued Golomb rulers at
http://web.archive.org/web/20031204061236/http://www.cuug.ab.ca/∼millerl/g3-records.html.

Specifically, for our simulations we used Golomb rulers with these marks:

For eight oscillators: g8 = (0, 1, 4, 9, 15, 22, 32, 34).

For 16 oscillators: g16 = (0, 1, 4, 11, 26, 32, 56, 68, 76, 115, 117, 134, 150, 163, 168, 177).

For 60 oscillators: g60 = (0, 13, 68, 213, 292, 314, 334, 335, 361, 365, 508, 515, 647, 773,
791, 844, 878, 888, 977, 1013, 1080, 1168, 1176, 1262, 1285, 1287, 1427, 1517, 1558,
1612, 1641, 1687, 1704, 1769, 1778, 1862, 1876, 2003, 2109, 2115, 2167, 2179, 2229,
2245, 2363, 2396, 2424, 2435, 2473, 2573, 2633, 2735, 2792, 2811, 2816, 2848, 2851,
2896, 3004, 3019).

From these marks, we obtained the actual frequencies as

ωi = ω1 +
ωN − ω1

gN
gi

within the frequency range [ω1, ωN ].
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