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De novo pathway enrichment is a systems biology approach in which OMICS data are
projected onto a molecular interaction network to identify subnetworks representing
condition-specific functional modules and molecular pathways. Compared to classical
pathway enrichment analysis methods, de novo pathway enrichment is not limited to
predefined lists of pathways from (curated) databases and thus particularly suited for
discovering novel disease mechanisms. While several tools have been proposed for
pathway enrichment, the integration of de novo pathway enrichment in end-to-end
OMICS analysis workflows in the R programming language is currently limited to a
single tool. To close this gap, we have implemented an R package KeyPathwayMineR
(KPM-R). The package extends the features and usability of existing versions of
KeyPathwayMiner by leveraging the power, flexibility and versatility of R and by
providing various novel functionalities for performing data preparation, visualization, and
comparison. In addition, thanks to its interoperability with a plethora of existing R packages
in e.g., Bioconductor, CRAN, and GitHub, KPM-R allows carrying out the initial preparation
of the datasets and to meaningfully interpret the extracted subnetworks. To demonstrate
the package’s potential, KPM-R was applied to bulk RNA-Seq data of nasopharyngeal
swabs from SARS-CoV-2 infected individuals, and on single cell RNA-Seq data of aging
mice tissue from the Tabula Muris Senis atlas.

Keywords: pathway enrichment, network analysis, data integration, systems biology, R package

1 INTRODUCTION

Given the ever-increasing amount of publicly available OMICS data and the expanding size and
variety of biological networks, the analysis of these data has become an essential building block of
bioinformatics. The combined investigation of networks and OMICS data can provide meaningful
insights into the biological background of the studied condition, such as in the discovery of
biomarkers, new biological functions, and disease mechanisms (Reimand et al., 2019, p. 482).

The purpose of de novo pathway enrichment is to find pathways within a biological interaction
network related to phenotypes of interest investigated in case-control OMICS studies. These
pathways are extracted as subnetworks containing a high number of biological entities
differentially regulated in OMICS data. The advantage of this method is that it detects in
addition to known, also novel pathways which are not detected in traditional methods (Alcaraz
et al., 2014; Alcaraz et al., 2016).

De novo pathway enrichment, as a downstream analysis task, typically depends on processed
OMICS and biological interaction networks. OMICS datasets include for instance, gene expression
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values, DNA methylation signals or single nucleotide variants
which can come from primary data or can be obtained through
online databases and repositories, while biological interaction
networks can be derived from protein-protein-interaction
databases or gene regulatory networks. The R statistical
framework with its rich package ecosystem (R Core Team,
2020) and its Bioconductor repository allows for an easy
retrieval for this kind of data. Moreover, thousands of R
packages exist in CRAN, Bioconductor, and GitHub, which
provide functionalities in the acquisition, preparation,
normalization, and visualization of the datasets. While several
tools have been proposed for pathway enrichment (Batra et al.,
2017), the integration of de novo pathway enrichment in end-to-
end OMICS analysis workflows in R is to our knowledge currently
limited to BioNet (Beisser et al., 2010). De novo pathway
enrichment methods generally vary in their performance,
depending on the dataset and problem setting selected (Batra
et al., 2017). A complementary pathway enrichment tool,
KeyPathwayMiner (KPM) (List et al., 2016), is currently only
available as a Cytoscape app, a standalone Java application or via
a web server, making its integration into R-based workflows
challenging for typical R users who often lack experience with
lower level programming languages and the use of the command
line interface. Moreover, the preparation of the suitable input files
for KPM from primary data, e.g., a network in SIF format and an
indicator matrix of features vs samples, is not trivial for
most users.

To close this gap, we have implemented an R package
KeyPathwayMineR (KPM-R) with extended features and
improved usability. To make the integration of KPM-R
straightforward, we implemented a multitude of convenience
functions. For example, the package’s methods facilitate the
retrieval of biological interaction networks from BioGRID
(Oughtred et al., 2018) for various organisms. In our vignette
we show howOMICS data from repositories like GEO (Davis and
Meltzer, 2007a) or TCGA (Colaprico et al., 2016) can easily be
downloaded and processed internally into a suitable input format
for KPM-R. We further added support for the analysis of single
cell RNA sequencing data where users can provide a single-cell
RNA-seq object and can pick the comparison to be made. KPM-R
allows switching between a local and remote execution depending
on the user’s needs. If the user lacks sufficient computing power,
the analysis can be run through the provided RESTful service on
the KPM web server. The user can also conveniently define a
parameter range to simplify the otherwise tedious
hyperparameter optimization. KPM-R visualizes the results
across hyperparameters to allow determining the most
appropriate choice. For the visualization of the extracted de
novo pathways, we implemented an interactive web app using
the R shiny framework. This allows users to browse, visualize and
export the sub-networks as an image or machine-readable text
files. In contrast to the existing web application (https://
keypathwayminer.compbio.sdu.dk/keypathwayminer/), the
shiny app can also be used to visualize results that were
created offline and serves as a template for users that want to
embed KPM-R in more complex shiny apps for data analysis. The
vignette also offers guidance of further downstream analysis of

the selected pathways which includes gene ontology and gene set
enrichment analysis.

To demonstrate the benefits of KPM-R for assembling R data
analysis workflows, we used a large dataset of nasopharyngeal
swabs from SARS-CoV-2 infected individuals and negative
control cases (GSE152075) (Lieberman et al., 2020).
Furthermore, we investigated celltype-specific subnetworks in
primary mouse tissue from single cell RNA-seq data from the
Tabula Muris Senis Atlas (Almanzar et al., 2020). In both
application cases, we show how the package assists in
processing raw data, finding de novo pathways relevant to the
studied diseases and conducting downstream analyses that offer a
more in-depth understanding of the disease mechanisms.

2 MATERIALS AND METHODS

2.1 Strategies for Network Extraction
The objective of KPM is to extract maximally connected
subnetworks that are enriched in differentially active nodes
which can represent e.g., differentially expressed genes. The
user can define which nodes are considered active in each case
or sample by supplying an indicator matrix. The rows of the
matrix describe the nodes (typically genes or proteins) and the
columns the samples (see Subsection 2.3.1 for more information
on indicator matrices) (Alcaraz et al., 2016, p. 1, p. 4). The task of
finding the maximal subnetwork can be defined as a graph-
theoretical problem:

Let graph G � (V, E) represent an undirected biological
network that consists of a set V representing biological entities
and a set E containing the interactions between them. Further, we
have one or, in case of multi-omics data, multiple indicator
matrices A1, . . ., Ap , e.g., an indicator matrix from a
proteomics experiment and another one from a
transcriptomics study. The indicator matrices consist of n
features (e.g., genes) and m samples (e.g., patients). These
matrices will be combined to a single indicator matrix An,m.
To combine the indicator matrices, the biological entities should
be identical for all matrices and the number of samples should be
equal. Additionally, we have a mapping Z: V→ {0,1}m from each
node v ∈V to its corresponding row in the matrixA. The objective
is to extract a subnetwork G′ � (V′, E′) ⊂ G such that G′ is
connected and the set of nodes V′ satisfy the constraints of the
INES or the GloNE strategy (Alcaraz et al., 2020, p. 183-184).

2.1.1 Individual Node Exceptions Strategy
The INEs strategy uses two parameters K and L to constrain how
maximally connected subnetworks enriched with differentially
active nodes are extracted. The L parameter describes the
maximal number of allowed case exceptions for a particular
node in the extracted network (i.e., in an active node, the
number of patients/samples in which the corresponding entity
(e.g., gene or protein) is not differentially regulated must be less or
equal to L). K is the number of allowed inactive nodes in the
extracted subnetwork (i.e., they exceed the number of allowed
case exceptions). Intuitively, L regulates which genes are
considered relevant whereas K allows KPM to combine
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smaller solutions into larger ones using up to K genes as
connectors. Due to their central role in the subnetwork such
nodes may be important for a pathway even if they are not
differentially expressed or regulated themselves (Baumbach et al.,
2012, p. 1).

Formally, this can be described in the following way: Given a
biological network G � (V, E) , an indicator matrix An,m, K node
exceptions, L case exceptions and s being a sample from the
indicator matrix extract maximally connected subnetworks G′ �
(V′, E′) for which following formula evaluates to true for all nodes
v ∈ V′ but K exceptions:

m − ∑m
s�1

Av,s⎛⎝ ⎞⎠≤ L.

(Alcaraz et al., 2020, p. 183).

2.1.2 Global Node Exceptions Strategy
The GloNE strategy only considers the L parameter. L describes
the number of allowed case exceptions over all nodes of the
extracted subnetworkG′. This means in an extracted subnetwork,
the number of patients/samples that are not differentially
regulated over all nodes must be less or equal to L. In contrast
to INES, we do no longer consider each gene individually but have
a global budget of exceptions that can be spent for maximizing a
solution. Nodes which are active in most cases will thus be
cheaper to add to an existing solution than nodes which are
mostly not active.

The strategy can be formally defined as follows (Alcaraz et al.,
2020, p. 184): Given a biological network G � (V, E), an indicator
matrix An,m, L case exceptions and s being a sample from the
indicator matrix extract maximally connected subnetworks G′ �
(V′, E′) for which the following formula evaluates to true:

|V′| pm − ∑
v∈V′

∑m
s�1

Av,s⎛⎝ ⎞⎠≤ L.

2.2 Algorithms for Network Extraction
INES and GloNE are both computationally hard problems. Three
types of algorithms have been implemented to make the
computation of the solutions as efficient as possible.

2.2.1 Fixed Parameter Tractable
To solve the INES problem for small K values a fixed-parameter
tractability approach for extracting exact solutions can be used.
The approach applies an exact branch and bound algorithm to
extract optimal subnetworks. If for a given x, the algorithm has a
partial solution which already has K − x exception nodes, the
algorithm computes the upper bound in the following steps: First
it determines all possible new exception nodes that are reachable
from the current subgraph in x steps and then considers the n
nodes with the highest weights and adds those together. Once the
upper bound is determined, the algorithm uses the two bounds in
an exhaustive search to find the optimal solution (Alcaraz et al.,
2012, p. 4-5, p. 8-10).

2.2.2 Greedy
The Greedy approach offers an efficient way to tackle large
problem instances like dense networks. The algorithms starts
by adding a seed node v to an empty partial solution S � {} and
then iteratively adds the adjacent node u to the partial solution
that maximizes the following scoring function:

f(S, u) � ∑r∈(V(S))∪{u}∑p
i�1∑m

s�1A
r,s
i ;

The process is repeated until no more nodes are left which could
be added to gain a valid solution (Alcaraz et al., 2020, p. 184-185).

2.2.3 Ant Colony Optimization
The third option is a heuristic approach based on Ant Colony
Optimization called Max-Min Ant System (MMAS) (Dorigo,
2004). Given enough time this algorithm can provide an
improved solution compared to the Greedy approach. The ACO
algorithm starts from a seed node v from where you can imagine
multiple ants searching for valid solutions. The ants add the next
valid node based on a probability proportional to η(u)αpτ(u)β. η(u)
is a heuristic value of node u which is proportional to the number
of active cases and τ(u) is the current pheromone level of node u,
which is proportional to the amount of ants which have previously
used this vertex to create a valid solution, while the parameters α
and β control the importance of η(u) and τ(u). When there is no
valid node left for any ant to add, the pheromone levels are
updated. First the pheromone values of all edges are decreased
by an evaporation factor. Then the best solution is extracted and
the pheromone levels for the nodes within this network are
increased. The whole procedure is repeated until it converges to
one solution (Alcaraz et al., 2020, p. 185).

2.3 Implementation
KPM-R, is based on two previously developed libraries: 1) the
KPM-Standalone library, and 2) the KPM-Web library (List et al.,
2016). The two KPM libraries allow the user to switch between a
local and remote execution within the R package. The local
version executes the KPM standalone jar, which is included
when installing the KPM-R from GitHub; the remote version
utilizes the KPM webserver to execute the method.

The communication between the standalone and R application
was established using the rJava package, a low-level R to Java
interface (Urbanek, 2020). In the remote execution, the RESTful
API from the KPM-Web module was utilized. To access the Web-
API, KPM-R uses the RCurl package to create HTTP requests
(Temple Lang, 2020) and the rjson package to convert R objects
into JSON ones (Couture-Beil, 2018).

2.3.1 Input Data
KPM-R requires two types of input data. The first type is a
biological network from which the pathways should be extracted.
Some examples of networks that can be used are HPRD (Keshava
Prasad et al., 2009), STRING (Szklarczyk et al., 2019), or
BioGRID (Oughtred et al., 2018). These networks can either
be downloaded with the help of R packages or manually from the
corresponding website. A plethora of biological networks can be
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found and downloaded from the Network Data Exchange (Pillich
et al., 2017) using the NDExR package (Auer et al., 2021). For an
example on how to use NDExR and prepare the downloaded
networks for KPM-R, see our vignette. KPM-R accepts a biological
network in three ways: as the file path to where the network is
located (in SIF format), as an igraph object, or as a network from
the KPMweb server, which is exclusively for remote execution and
allows for selecting one of the web server’s multiple networks.
Every network on the server is assigned a unique id, which can be
observed using get_networks(). Once the desired ID is determined,
the user can specify the graph ID with the options function, for
instance, like this kpm_options(graph_id � 2).

The second type of input is one or multiple indicator matrices
derived from OMICS datasets. The rows of a matrix represent the
biological entities (e.g., genes), and the columns the cases/
samples. In the case of a differential expression experiment a
column would indicate if the genes of a certain sample (e.g., a
patient) are differentially expressed compared to the control
samples (e.g., the healthy individuals). An entry of “1” would
indicate differential expression for a gene between a sample and
the reference. All other entries have to be “0”s. There are several
possibilities for a user to produce such an indicator matrix. For
instance, in a differential expression analysis comparing two
groups (e.g., control vs. diseased), we can either compute a
group-wise statistic (e.g., t-test) that results in an indicator
matrix with one column where each entry describes whether a
gene is differentially expressed or not. However, to leverage the
potential of KPM we are more interested in sample-wise statistics
where one value is computed for each gene and sample pair. To
compute such an indicator matrix, we propose to compute the
parameters (mean μc and standard deviation σc) of a normal
distribution based on the control samples. For each case sample s
and gene with expression xs, we can then compute a z-score using
the formula xs−μc

σc
. Intuitively, this will yield a z-score that indicates

how many standard distributions an expression value is away
from the mean of the control group. The resulting matrix of
z-scores can then be binarized using a user-defined threshold on
the absolute values of the matrix. For details we refer to 2.4.

After applying the selected statistic, the user can decidewhich genes
are differentially expressed based on the p-value and log fold change
(or z-score) and whether to consider up-regulated or down-regulated
genes, or both. In our vignette we give two examples on how to
construct an indicator matrix. The first column of the matrix has to
contain the IDs of the biological entities. The ID type of the biological
entities should be equivalent to the ID type of the entities in the
network. The matrices should be processed so that they do not have a
header in the first row. The matrix can be passed to KPM-R as a data
frame and, in the case of multiple matrices, as a list of data frames.

2.3.2 Execution Parameters
Once the input data have been prepared, the user can set the
execution parameters using the kpm_options() function. The
general way to change an option is kpm_options([key] �
[value]), where the key stands for the parameter to be changed
and the value for the parameter value to be set. All parameters are
case sensitive. The user can also provide multiple key-value pairs
separated by a comma in one command. In total, 31 parameters

can be used to adjust the execution settings to the user’s
preferences. For most of the parameters, a default value is
defined, which allows the execution of KPM-R with the
configuration of just two parameters, K and L. The most
important parameters of KPM-R can be found in Table 1. A
complete list of all options and their default values can be
retrieved when running the command ?kpm_options().

2.4 Data Processing
Several convenient functions were implemented to make the
user’s data processing workflow as easy as possible. One of
them is the compute_z_score() function, which computes the
genes’ z-scores in all case samples while using as background the
control samples. The function receives a count matrix as input
and returns a z-score matrix. The z-score of a gene i in a sample j
is computed in the following way:

Zscore gene i, sample j( )
� counts of gene i in sample j −mean of gene i in control samples

standard deviation of gene i in control samples

(1)

Another convenient function is the to_indicator_matrix()
function. This function converts a p-value matrix, describing
the significance of the biological entities, into an indicator matrix.
The function receives two parameters as input, which are the
p-value matrix and the threshold for setting active entities.

The import_graph() function allows the user to convert their
graph file into an iGraph object, which is the input format
required by the package. The user can choose from a variety
of graph file formats, such as sif, gml, graphml, xlsx and
documents with user-defined delimiters.

Furthermore, the user can utilize the export_graph() function
to export pathways computed by the package. Given a pathway,
the user can export the network in one of the following formats:
sif, gml, graphml, xlsx, csv, igraph object or using a customer
delimiter. The user can also extract only the nodes of the pathway
by using the export_nodes() function.

2.5 Input of Single Cell RNA-Seq Data
The function sc_to_indicatormatrix() allows to generate an
indicator matrix based on differential expression from single
cell input data. The differential expression detection is
performed by a two-part generalized linear model
implemented in the MAST package which allows to address
the additional complexity of scRNA-seq data and also
adjustment for covariates (McDavid et al., 2021). The user has
to provide single cell RNA-seq data which is normalized but not
transformed, yet. The data is accepted in form of a Seurat (Satija
et al., 2015), SingleCellExperiment (Amezquita et al., 2020) or
SinglCellAssay (McDavid et al., 2021) object. In case of a Seurat
Object the data should be in the Assay named “RNA”. For
SingleCellExperiment objects the first assay is considered. The
input data is log2 transformed and a hurdle model is fitted using
MAST’s zlm function. This generalized linear framework can be
used to jointly estimate variation from biological and technical
sources, as well as the effects of interest. The function controls by
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default for proportion of genes expressed in a single cell. User can
adjust for more complex designs by passing a formula object to
the function. A likelihood ratio test is then performed for each
conditioned against a user chosen reference. False discovery rate
adjustment is finally performed by the Benjamini & Hochberg
correction method (Benjamini and Hochberg, 1995) and data is
filtered by p-value and fold change which can be chosen by the
user. As the method takes into account that multiple samples can
be derived from the same individual, type 1 error rate is reduced
and compared to a pseudo bulk approach, a type 2 error inflation
is avoided.

2.6 Use-Case Data
2.6.1 SARS-CoV-2 Data
GEO set GSE152075 consisting of nasopharyngeal swabs from
430 individuals with SARS-CoV-2 and 54 negative controls, was
downloaded using the GEOquery package in R. The downloaded
samples were normalized using the TMM (Trimmed Mean of
M-values) normalization method from the edgeR package
(McCarthy et al., 2012). Subsequently, a differential expression
analysis was carried out in which the z-scores of the genes in the
case samples were calculated using the z-score function
(Subsection 2.4). Three different cutoffs were used to
determine the best-suited z-score for the dataset. For every
applied cutoff, the average number of differentially expressed
genes over all samples was computed. From these observations,
an indicator matrix was created for which the z-score cutoff of 2
was taken. Together with the human BioGRID PPI network an
INES run with the Greedy algorithm was performed using L
parameter values between 20 and 220 with a step size of 20 and K
parameter values between 2 and 20 with a step size of 2. An
enrichment analysis was performed with the profile_pathway

function using the pathway with the configuration L � 220 and
K � 20. Significant results with the highest intersection size were
further manually inspected.

2.6.2 Tabula Muris Senis Data
Processed scRNA-seq data was retrieved from Figshare https://
doi.org/10.608 4/m9.figshare.12 827 615.v3 by downloading the
rds_by_tissue.14.zip file. The droplet.
normalized.Limb_Muscle.rds file was then selected
and was filtered for “mesenchmymal stem cells” and
“mesenchmymal satellite stem cells”. Mice aged 1 and
3 months were considered as young control cases while mice
aged 18, 21, 24, and 30 months were treated as old. Differential
expression between young and old mice was performed based on
a linear mixed effect model from the MAST package while
controlling for sex and number of genes per cell. Each mouse
of the old age group was treated as a case and compared against all
young mice, resulting in 12 in comparisons. Genes below a
Benjamini-Hochberg FDR corrected p-value of 0.05 were
treated as differently expressed and considered as active in the
indicator matrix. The Mus musculus BioGRID was chosen as a
biological network and filtered for genes which were expressed in
the mouse tissue. Given the input data, a grid run with L values
between 1 and 6 and K values from 0 to 10 with the INES strategy
and the greedy algorithm was performed.

3 RESULTS

3.1 Workflow
The lack of a user-friendly solution for de novo enrichment in the
R ecosystem motivated us to develop KPM-R. The typical

TABLE 1 | KPM run options and their description.

Parameter Description

execution Defines the execution type of KPM-R, which can be run either “Local” via RestfulAPI or “Remote” via standalone jar.
Default value: “Local”.

strategy Can be either “INES” or “GLONE”. If the GloNE strategy is selected, the user does not need to set the K parameter.
Default value: “GLONE”.

algorithm The algorithm that should be used to extract the pathways. It can be set to “Greedy”, “ACO” or “Optimal”.
Default value: “Greedy”.

use_range_k Boolean parameter that describes whether parameter K should be ranged or not (see below).
Default value: FALSE.

k_min, k_max, k_step Numeric parameters that control the number of node exceptions allowed in a solution. If the use_range_k parameter is set to
false, only k_min must be defined. Otherwise, a range must be defined with k_min and k_max defining the lower and upper
boundary respectively and k_step describing the incrementation from one iteration to the next. For example, setting k_min �
4, k_max � 8 and k_step � 2 would mean that KPM will be executed with K � 4, K � 6 and K � 8.
Default values: k_min � 1, k_max � 3, k_step � 1.

use_range_l Boolean that describes whether parameter L should be ranged or not.
Default value: FALSE.

l_min, l_max, l_step Numeric parameters that control the number of case exceptions within a node. Similar to theK parameter, ranged values can
be defined if use_range_l is set to true.
Default values: l_min � 0, l_max � 0, l_step � 1.

link_type When using multiple datasets, the user must specify a logical formula to combine these. The link_type parameter’s accepted
values are “OR”, “AND”, or a custom formula.
Default value: “OR”.

graph_id ID of the network on the web server, which should be used in a remote run
negative_nodes Character vector contains biological entities that should be considered as inactive
positive_nodes Character vector contains biological entities that should be considered as active
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workflow when using KPM-R can be divided into three steps, also
depicted in Figure 1:

1. Data preparation
One or multiple OMICS datasets and a biological network are
loaded into R. The biological network has to be either saved as a
file in one of the supported graph formats (see 2.4) or has to come
as an igraph object. Using KPM-R’s internal function
retrieve_biogrid() various biological networks from BioGRID
can easily be loaded in the proper format. The user can select
the gene identifier and the organism which match the OMICS
data. OMICS datasets must be transformed into indicator
matrices if they are not already in this form. Each matrix
entry is either a ‘1’ indicating an active case in a node or ‘0’
otherwise. For example in a gene expression dataset a ‘1’ would
represents a differentially expressed gene or in bisulfite
sequencing data a differentially methylated promotor of a
gene. Optionally the user can also incorporate previous
knowledge and provide positive and negative lists defining
genes which are always considered active or that are ignored.
For the generation of indicator matrices KPM-R comes with two
convenient functions. The to_indicator_matrix() function
converts a p-value matrix, describing the significance of the
biological entities, into an indicator matrix. The
sc_to_indicator_matrix() functions allows to take input of
single cell RNA-seq data in various common object formats.

2. Execution of KPM-R
Once the datasets are prepared, the run’s execution parameters
must be set. Most importantly, the user has to decide to either use
the Individual Node Exceptions (INES) strategy, or the Global
Node Exceptions (GloNE) strategy for the discovery of meaningful
pathways (Alcaraz et al., 2020). Both strategies are computationally
hard problems and subnetwork extraction can either be based on a
greedy approach, a heuristic based onAnt Colony Optimization or,

for INES, even by calculation of the exact solution for small K
values using a fixed-parameter tractable algorithm. The parameters
for a run can be set with the kpm_options() function, where the
user has the possibility to define ranged parameter values instead of
unique ones. The optimal values forK and L depend on the dataset,
therefore the function allows several iterations with different
configurations of K and L values to be performed in one run.
Generally, largerK values result in larger networks.When choosing
the parameter the user has to be aware of the underlying hypothesis
of his experiment. For instance, the up to K exception nodes that
correspond to genes that are not differentially expressed may still
be disease-relevant due to mutations. Alternatively, they may pose
promising drug targets as they are of central importance to disease-
associated genes. Choosing large K values, however, increasingly
leads to the incorporation of hub nodes which connect to distant
parts of the network and thus different pathways whichmay not be
functionally related. For the choice of the L parameter, the user
should look at the ratio of the number of samples and a possible L
value. For example, an L value of 10 in a study with 20 cases would
mean that for a given node, at most 50% of the cases may not be
differentially expressed. Users need to select a suitable value here
which fits their expectation but they can also perform a grid search
to conveniently explore different L values. The parameters of a run
can be globally set and, subsequently, the kpm() function can be
used to execute the program given a biological network and a list of
indicator matrices as input. Once the execution of the program is
completed, the results are saved in a unifiedmanner, and an export
function allows the user to easily extract the pathways as igraph
objects or in several graph formats.

3. Pathway visualization
The result object obtained from the run can then be used to
visualize, browse and save pathways with an interactive web app
which was developed using Shiny (Chang et al., 2021) and
visNetwork (Almende et al., 2019). The function

FIGURE 1 | Typical workflow of KPM-R.
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FIGURE 2 | Shiny app for visualizing, browsing, and saving pathways from a result object. The displayed subnetworks were extracted from SARS-CoV-2 gene
expression data. (A,F) The user can switch between pathway and union network view. (B)Panel to select which parameter configuration and subnetwork to visualize. (C)
Export buttons that allow the extraction of the current pathway as edges or nodes. (D) The user can select a gene from the network for closer inspection. (E) For every
network, statistics are displayed, which provide information on the number of nodes, edges, and the average number of active cases per node. (G) In the union
network view, the selection panel allows selecting pathways to examine from which subnetwork the nodes originate. When using INES to run KPM, the exception nodes
are marked as red squares, as shown in the pathway view.
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visualize_results() allows the user to browse through the
pathways and also to save them as an image or text file. A
node in a pathway can be in two states, either in an exception
state where the number of inactive cases for this node is above the
L value or in a significant state in which the number of inactive
cases is at most L. Nodes in an exception state are symbolized by
an orange square and nodes in a significant state are represented
by a blue circle. This does not apply to the GLONE strategy,
which does not contain exception nodes and therefore only
contains circles. If the nodes in the subnetworks are genes, the
user can click on them to be forwarded to the corresponding gene
entry on the NCBI website (Benson et al., 1990). In Figure 2, the
interface and the single components of the Shiny app are
presented and described. Using the function
pathway_comparison_plots(), two plots are generated: one
comparing the top pathways and one comparing the union
networks (all pathways of a configuration merged) of every
parameter-configuration (see Figure 3 for an example).
Specifically, the plots compare all parameter configurations by
plotting the average active cases per node (e.g., the sum of
differentially expressed cases for a certain gene) against the
number of nodes in a pathway. These plots serve as an aid to
users to select the best pathways for in detail exploration and
further downstream analysis. When the user has found an

interesting pathway, the shiny app allows to easily download
this network in SIF format, simply by clicking the button “Export
edges (SIF)”. Finally, the user can also directly perform
downstream analysis with the profile_network() function and
easily visualize its result with gprofiler2’s plot functions (Kolberg
et al., 2020).

3.2 Use Cases
Two application cases were selected to evaluate the usability and
features of KPM-R. The use-cases aimed to demonstrate the
benefits of conducting an analysis with KPM-R, the integration of
KPM-R with Bioconductor, and the power of KPM-R in finding
meaningful results. The majority of the analysis steps, from the
data acquisition to the further downstream analysis of the results,
were conducted within the R framework.

3.2.1 SARS-CoV-2 Infection
The COVID-19 pandemic has confronted our society with major
challenges. For this reason, research into understanding and
combating the infectious agent, SARS-CoV-2, is important.
The amount of publicly available data generated in context to
SARS-CoV-2 is continuously increasing and can be used for
further in depth analysis. Here, we used a large bulk RNA
sequencing dataset of nasopharyngeal swabs from 430 SARS-

FIGURE 3 | Pathway comparison plots can be utilized to find the optimal pathway in the extracted solution. The shown pathways were extracted from the analyzed
GEO SARS-CoV-2 dataset and used to limit the further exploration to configurations with at least 100 on average differentially expressed genes per case.
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CoV-2 infected individuals and 54 negative control cases. The
raw counts were directly downloaded into R using the GEOquery
package (Davis and Meltzer, 2007b) and subsequently
normalized using edgeR (McCarthy et al., 2012). Mean and
standard deviation was calculated for every gene using the
control group’s gene counts as reference. Genes with a
z-scores below −2 and above 2 were considered as
differentially expressed. With the generated indicator matrix
and the BioGRID as a biological network, KPM-R was
executed in a grid run for L values between 20 and 220 with
step size 20 and K values between 2 and 20 with step size 2, using
the INES strategy and the Greedy algorithm. Intuitively, this
means that the genes in the extracted solutions will be in at most

51% (220/430) of the studies inactive and that an extracted
solution will have at most 20 exception genes.

For finding the most promising pathways a comparison plot
was generated (Figure 3). Networks with on average more than
100 differential expressed cases were examined. Exploring these
results we find a network with many known and recently
described key players of Covid-19 (Figure 4). Looking at the
leaf nodes, we see many genes which are an important part of
human immune response like interferon induced genes IFIT1/2
and IFI16 or chemokine ligands like CCL5/9/10/11. Inspecting
the central nodes we find the antiviral kinase EIF2AK2, also an
important actor in the innate immune response (Ishaq and
Natarajan, 2020). Its direct neighbor TP53 is known to

FIGURE 4 | SARS-CoV-2 network from the configuration L � 220 and K � 20. Many genes of the network are known to be important players in the human immune
response. Exception nodes are visualized as orange squares and significant nodes as blue circles.
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facilitate EIF2AK2’s expression and also acts as host antiviral
factor by itself. Recently, SARS-CoV-2’s papain-like protease of
the nonstructural protein 3 was shown to downregulate TP53 at
the protein level by manipulations of it’s ubiqutiniation and
thereby facilitating viral replication (Ma-Lauer et al., 2016).
Although TP53 is an exception node and hence does not show
differential abundance on the transcript level, SARS-CoV-2’s
induced TP53 degradation might contribute to EIF2AK2’s
downregulation and consequently further weaken the anti viral
defense. EIF2AK2 is also linked to STAT3, another important
regulator of the immune response. In many Covid-19 patients
STAT3 is hyperactivated which is associated with cytokine release
syndrome and acute lung injury (Matsuyama et al., 2020).
Moreover, STAT3 is described to inhibit PKR’s activity and
hence its overexpression potentially leads to another
weakening of the viral defense mechanisms (Niso-Santano
et al., 2013). STAT3 is an exception node and is only
differentially expressed in 6% of the patients, therefore this
interaction might only be relevant for a subtype of patients.
Unfortunately, we lack the metadata to see if the differential
STAT3 expression could be linked to features like the severity of
the infection. STAT3’s function could also be affected on the

protein level by adjacent nodes. It’s a strength of KPM that the
results can include genes which might not be differentially
expressed on the transcript level but still be part of a
biological cascade. The network also shows an interaction
between STAT3 and its adjacent node CCR5 which has
STAT3 binding sites in its promoter (Yoo et al., 2014). CCR5
has already been part of a initial clinical trials which showed that
its inhibition can decrease inflammatory cytokines in Covid-19
patients (Patterson et al., 2021). To make sure that we were not
exploring a previously described pathway, we performed
functional enrichment analysis with our integrated pathway
enrichment function. Here we checked for enrichment within
KEGG, Reactome and WikiPathways and filtered for the
significant hits with the highest intersection size (number of
genes of our extracted network found within a certain
pathway) (Figure 5). We found that various genes of our
network are also part of known pathways in viral infections
including SARS-CoV-2. However, at most 30% of the genes
detected by KPM were part of one of these networks. The
highest overlap was found with the terms “Immune System”
and “Cytokine Signaling in Immune system” where respectively
55 and 70% of the genes in our network could be found. Still our

FIGURE 5 | Enrichment Analysis of extracted SARS-CoV-2 network. The network was tested for enrichment within the KEGG, Reactome and Wikipathways
data bases.
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network contains around 30% genes which were not described in
these pathways, indicating that we could indeed have found a
pathway which was not described previously. We leave further
exploration and interpretation of the data to the experts in the
field. We hope that examination of the networks generated by
KPM-R might even offer potential clues for the experts on how to
infer with one of these processes.

3.2.2 Aging Tissue From Tabula Muris Senis
Muscle tissue in mammals has various functions including
mobility, body temperature regulation, energy storage and
support of soft tissue. However, muscle mass and function
decline in mammals with age, a condition named sarcopenia.
Understandably, the loss of muscle mass and function is
associated with numerous morbidities and mortalities and
sarcopenia has a great impact on healthcare costs (Larsson
et al., 2019). Rodents and humans suffer from a decline in
muscle tissue with aging in a comparable way which makes
them a good model organism for the study of muscle atrophy
(Baek et al., 2020).

The TabulaMuris Senis, or ‘Mouse Ageing Cell Atlas’ is a great
resource for transcriptomic data of the aging mouse tissue
(Almanzar et al., 2020). The atlas consists of single-cell RNA
sequencing data of more than 350,000 cells frommale and female
mice tissues belonging to six age groups, ranging from 1 month to
30 months. Mice at the age of 1 month can be compared to
humans at a early childhood, while 30 months old mice are the
equivalent of a human centenarian (Almanzar et al., 2020). We
aimed to use KPM-R to identify differentially regulated pathways
in the aging tissue. Therefore, we used single cell data from the
limb muscle and focused on the mesenchymal stem (MSC) and
satellite cells. In the muscle tissue, MSCs can give rise to satellite

cells. While these cells which are named after their satellite
position on the myofibre, differentiate into myoblasts and are
responsible for muscle repair and growth. Mice age 1 and
3 months were treated as young control cases and were
compared to the remaining time points. We used our internal
functions based onMAST package’s linear mixed effect model for
finding differentially expressed genes between the young and old
mice. Together with the Mus musculus interaction network from
BioGRID an INES run with L values between 0 and 6 andK values
between 0 and 10 was performed.

Inspecting the MSC results we could extract a small network
where each of the genes is differentially expressed in all aging
mice (Figure 6A). It consists of extracellular matrix proteins
including members of the collagen family like Col1a1/2, fibrillin-
1 and proteins potentially involved in the processing of these
proteins like the metalloprotese Adamts2. Collagen is the most
abundant protein in mammals and depending on the tissue it
consists of a variable mixture of different collagen proteins. In
muscle tissue it serves as the major component of the
endomysium which ensheats each muscle fiber. During aging
the skeletal muscle’s connective tissue compartment is known to
show significant changes (Goldspink et al., 1994; Evans et al.,
1995). The computed network can be seen as a proof of KPM-R’s
ability to find biological meaningful interactions among the single
cell dataset. Taking a further look at the networks of the satellite
cells we see various networks which include a highly connected
networks of ribosomal proteins (Figure 6B). It was recently
shown that dozens of proteins involved in the ribosome
biogenesis are down regulated with age which is consistent
with age related decline in protein synthesis (Anisimova et al.,
2020). Enrichment analysis showed that this network is part of
already annotated pathways. However, we found these networks

FIGURE 6 | Extracted networks from single cell data of murina limb muscle. (A) Network with the configuration L � 0 and K � 0 based on mesenchymal stem cells
from the limb muscle. The genes consist mainly of extracellular matrix proteins and are differentially expressed in all old mice. (B) Network of mesenchymal satellite stem
cells with K � 0 and L � 4. With the exception Tpt1 and Gnbl2l1, all nodes are ribosomal proteins.
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of ribosomal proteins also being connected to various other
proteins (Figure 7) which might make them worth exploring
for the specialists in the field.

4 CONCLUSION

KeyPathwayMineR is an established tool in the field of de novo
pathway enrichment and was so far available as a Java stand alone
tool, a web-server version and a Cytoscape plugin. Here we have
created a package of KPM in the R programming environment
which has a rich community of biological scientist who appreciate
easily understandable workflows. Due to KPM-R’s interoperability
with a plethora of existing R packages, which can be found on
Bioconductor, CRAN, or GitHub, KPM-R allows access to a large
number of datasets, networks, data processing and down-stream

analysis methods which can now be conveniently integrated into
fully reproducible analysis workflows.

We demonstrate the packages abilities by applying KPM-R on
a large bulk RNA-seq dataset of nasopharyngeal swabs from
SARS-CoV-2 infected individuals. The data of this study was
downloaded and prepared in R with well known packages like
GEOquery and edgeR. After performing a grid run with KPM-R,
the pathway-comparison-plots function allowed us to easily find
the most promising networks. The inspected SARS-CoV-2
network contained many already described key player in
Covid-19 disease like STAT5, EIF2AK2 or various
chemokines. We also found TP53 as a common interaction
partner in the network and a transcription factor of its
neighbor node EIF2AK2. Although TP53 did not show
differential abundance at the transcript level it’s known to be
downregulated by SARS-CoV-2 at the protein level. Hence we

FIGURE 7 |Network from single cell data of satellite stem cells from themurine limbmuscle with the configurationK � 6 and L � 4. Exception nodes are visualized as
orange squares and significant nodes as blue circles.
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show that exception nodes can still be meaningful interaction
partners and KPM-R coupled with domain knowledge allows to
find potentially interesting pathways.

During the last years, single cell RNA sequencing became
increasingly popular and is slowly replacing bulk RNA sequencing
as the major method to study transcript abundances. In KPM-R we
also implemented functions which make it easy to work with single
cell RNA sequencing data. Using single cell data of the Tabula Muris
Senis Atlas, we show that KPM-R can find potentially interesting
pathways in the aging murine muscle tissue. The mesenchymal stem
cells showed differentially expressed networks containing
extracellular matrix proteins and in satellite cells we saw densely
connected nodes of ribosomal proteins. Both remodelling of the
skeletal muscle’s connective tissue and ribosome biogenesis are
processes already previously linked to aging. We leave these
networks to be further explored by the experts in the field.

In conclusion, KPM-R extends the features and usability of
existing versions of KPM by leveraging the power, flexibility and
versatility of R, thereby providing R users with various
functionalities for performing data preparation, de novo
pathway enrichment and visualization.
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