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Abstract. We present a theoretical study of strong-low-frequency-field ionization of atoms
in the intermediate regime where the Keldysh parameter is close to one. For that purpose we
have developed a novel method based on an explicit algorithm for the propagation of the time-
dependent Schrödinger equation which is known to be very stiff. This method overcomes the
stiffness by taking into account the eigenfrequencies of the interacting system. With the help
of this approach we are able in particular to investigate the ionization of the hydrogen atom by
ultra-short (25 fs) 790 nm laser pulses at intensities 0.5–6 × 1014 W/cm2.

1. Introduction

Atomic photoionization under intense laser radiation has been intensively investigated. It is
widely perceived that the ionization process occurs through multiphoton absorption or tunnelling
[1–4]: in the low-intensity/short-wavelength limit, Above-Threshold Ionization (ATI) is the
absorption of photons beyond the minimum required for ionization. In the high-intensity/long-
wavelength limit, Keldysh theory suggests that the valence electron escapes by tunnelling
through the barrier created by the time-dependent bending of the Coulomb potential by the
field followed by an oscillating motion of the free electron induced by the field of frequency ω

and intensity I. These two limits are linked through the dimensionless parameter γ =
√

Ip/2Up,

where Ip is the ionization potential and Up = I2/4ω2 is the pondemorotive energy.
At intensities of the order of 1014 − 1015 W/cm2 and infrared frequencies, there is no clear

separation between the regime where multiphoton processes dominate the ionization of atoms
exposed to such fields and the strong field limit dominated by tunnel ionization. In fact, there
is a subtle interplay between the two mechanisms as indicated by the fact that the Keldysh
parameter γ is close to one. From the theoretical point of view, de Bohan et al. [5] have shown,
in the case of the interaction of atomic hydrogen with such fields, that the low-energy part of
the ATI spectrum does not result from tunnel ionization but rather involves some multiphoton
transitions. This explains why the tunnelling formula for the total ionization rate gives results
that disagree with those obtained by solving the Time-Dependent Schrödinger Equation (TDSE).
From the experimental side, this was confirmed by Rudenko et al. [6] who found that the
ionization of rare atoms in this regime shows evidence of resonance structures in the electron
ATI spectrum which are thought to be characteristic of the multiphoton regime. By contrast,
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another experiment [7] in the same regime shows that the ionization rate follows adiabatically
the oscillations of the field. Understanding the interplay of such mechanisms poses a challenge
for both experiment and theory. From the theoretical point of view, one of the main difficulties
to deal with this regime is the solution of the TDSE, which requires an accurate treatment of
the very high-order angular momentum coupling in this regime of low frequency, rather long
pulse duration and high field intensity. Due to this and the infinite range of the coulombic
interactions, this requires either very large grids or big bases. In both cases, one has to solve
large systems of coupled first order differential equations that are well known to be stiff [8]. By
this, it is meant that the time step decreases rapidly with the increasing size of the system. The
origin of the stiffness is clear: by increasing the size of the grid or the basis, the diagonalization
of the atomic Hamiltonian generates large positive energy eigenvalues. It is precisely the highest
eigenvalue that controles the time step while leading to highly oscillating solutions. In order
to overcome this problem, one can use implicit time propagation methods. This requires to
solve very large systems of algebraic equations at each time step. A typical example of such
an implicit scheme is the Crank-Nicholson algorithm which is used in grid methods based on
finite differences [9]. This propagation method is tractable when the system is banded but as
soon as the complexity of the atomic system increases, the bandwidth of the system increases
rapidly together with the computation time. An alternative way of overcoming the stiffness of
the problem is to propagate in the atomic basis where the atomic Hamiltonian is diagonal. Time
propagating in the atomic basis has three advantages: first, it is possible to eliminate from the
propagation, very high energy eigenstates that play a minor role in the dynamics. Second, it
allows one to work in the interaction picture where the free evolution of the atomic system is
somehow subtracted. And finally, explicit methods which involve only matrix-vector products
are numerically stable in this case. However, this method requires the diagonalization of large
matrices which is a computationally very demanding problem.

In this contribution, we present a theoretical study of strong-field ionization of atoms in the
intermediate regime where the Keldysh parameter is close to 1. We consider the interaction of
atomic hydrogen with a 790 nm laser pulse which duration is of the order of 25 femtoseconds
and the intensity ranges from 5 × 1013 to 6 × 1014 W/cm2. The propagation of the spectral
representation of the TDSE is accomplished through a very efficient novel explicit method which
is briefly described in Sec. 2. Our results are presented in Sec. 3.

2. Time propagation algorithm

In this section, a brief review of the method proposed in [10, 11] is given. Let us start with the
m-dimensional stiff first order differential equation

y′ = f(x,y), y = (y1, y2, . . . , ym), (1)

where f(x, y) is in general a complex m-dimensional function.
The stiffness of the equation leads to a solution y(x) which is an oscillating function. In a

given interval (xn, xn+1), xn+1 = xn + h, with h a small number, y(x) is approximated by the
function

F (x) = (I − eΩ1 x)a − (I − e−Ω2 x)b + c, (2)

with I the identity matrix, Ωi = diag(ω
(i)
1 , . . . , ω

(i)
m ), i = 1, 2, and a, b, c constant vectors. The

complex numbers ω
(i)
1 , . . . , ω

(i)
m , i = 1, 2 are called stiffness parameters. Assuming that F (x)

coincides with y(x) at xn and xn+1, that F ′(x) coincides with f(x,y) at xn, and that F ′′(x)
coincides with f ′(x,y) at xn, the solution yn+1 = y(xn+1) at xn+1 can be expressed recursively

in terms of yn = y(xn), fn = f(xn,yn) and f (1)
n = df/dx|x=xn

according to

yn+1 = yn +Rfn + Sf (1)
n . (3)
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R and S are diagonal matrices which can be written in terms of the stiffness parameters:

R = Ω2Φ − Ω1Ψ, S = Φ + Ψ, (4)

where Φ and Ψ are diagonal matrices whose nonzero entries are

Φi =
eω

(1)
i

h − 1

ω
(1)
i (ω

(1)
i + ω

(2)
i )

and Ψi =
e−ω

(2)
i

h − 1

ω
(2)
i (ω

(1)
i + ω

(2)
i )

. (5)

The recursive relation (3) depends on the so far unknown stiffness matrices Ω1 and Ω2.
However, these matrices can be written in terms of the function f(xn,yn) and its derivatives up
to 3rd order at xn. This is obtained after substituting the Taylor expansion of yn+1 = y(xn +h),
and the Maclaurin series of exp(Ω1h) and exp(−Ω2h) in (3) and equating the coefficients of hk,
k = 0, . . . , 4. The components of the stiffness matrices obtained after solving these equations
read [10]

ω
(1)
i =

1

2

[

−Di +
√

D2
i + 4Ei

]

and ω
(2)
i = ω

(1)
i +Di, (6)

where Di and Ei, i = 1, . . . ,m are given in terms of the respective components f
(k)
in of the

derivatives f (k)
n , k = 0, 1, 2, 3, of f(x,y) at x = xn by

Di =
f

(0)
in f

(3)
in − f

(1)
in f

(2)
in

f
(1)
in f

(1)
in − f

(0)
in f

(2)
in

, and Ei =
f

(1)
in f

(3)
in − f

(2)
in f

(2)
in

f
(1)
in f

(1)
in − f

(0)
in f

(2)
in

, i = 1, . . . ,m. (7)

If the denominator of the previous expressions is zero, special care has to be taken into account
[12].

The implementation of the recursion (3) is now rather simple. It requires the calculation of

the function fn and its derivative f (1)
n at each value of xn. For the stiffness matrices Ω1 and

Ω2, and thus also for the matrices R and S, the derivatives f (2)
n and f (3)

n are also needed. Ω1

and Ω2 have to be calculated in principle at each integration step, since they characterize the
local frequencies of the solution y(x) [12]. In addition, the truncation error [10, 12]

Tn+1 =
h5

5!

1

ω1 + ω2

[

(ω1 + ω2)f
(4)
n + (ω4

2 − ω4
1)f

(1)
n − (ω4

1ω2 + ω1ω
4
2)f

(0)
n

]

+ O(h6) (8)

can be used to control the size of the integration step, e.g., by imposing a boundary criterion
for |Tn|. For this also the derivative f (4)

n must be provided.

3. Resonance structures in the tunnelling regime of ATI of hydrogen atoms

In this section we consider hydrogen atoms exposed to intense low frequency femtosecond laser
pulses. We consider linearly polarized light, and apply the dipole approximation. In the velocity
gauge the interaction operator reads

V (t) = A(t) · p, (9)

where the vector potential takes the form A(t) = A0(t) sin(ωt)ez, for −τ/2 ≤ t ≤ τ/2, and zero
outside this time interval. A0(t) = A0 cos2(πt/τ) is the envelope containing nc optical cycles, ω
is the pulse angular frequency, τ = 2πnc/ω is the pulse duration and ez is the unit vector along
the z-axis in the laboratory frame. The Hamiltonian of the driven atom is thus

H(t) = H0 + V (t), (10)
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with

H0 =
p2

2
−
Z

r
. (11)

We use a spectral representation of the Hamiltonian in terms of spherical harmonics and
Coulomb Sturmian functions defined by

S
(α)
nℓ (r) =

√

(n− ℓ− 1)!

2(n+ ℓ)!

(

2r

α

)ℓ+1

L2ℓ+1
n−ℓ−1

(

2r

α

)

e−r/α, (12)

where L
(β)
n (x) are the Laguerre polynomials and α is a real number called the dilation parameter.

Substitution of the expansion

ψ(r, t) =
∑

nℓ

cnℓ(t)
S

(α)
nℓ (r)

r
Yℓm(θ, ϕ) (13)

of the wave packet ψ(r, t) in the TDSE leads to the following matrix representation:

iS
dy

dt
= Ay + g(t)V (14)

where S is the overlap matrix, A is the matrix representation of the unperturbed Hamiltonian of
the system, g(t) = A0 cos2(πt/τ) sin(ωt) is the scalar time-dependent part of the field interaction
(9) and V is the matrix representation of the dipole operator pz. y is the vector of the coefficients
cnℓ(t).

In order to solve numerically the TDSE, the basis (12) has to be truncated: nmax is the number
of Sturmian functions per angular configuration for each of the values of ℓ = 0, . . . , ℓmax.

We consider the ionization process from the ground state of atomic hydrogen exposed to a
laser pulse of 790 nm (ω = 0.057 a.u.), which is chosen to match the Ti:sapphire lasing frequency,
and peak intensities: from 5 × 1013 to 6 × 1014 W/cm2. The Keldysh parameter γ for these
choices ranges from γ = 1.510 to γ = 0.435. We consider a pulse of nc = 10 optical cycles
which corresponds to a pulse duration of about 25 fs (1102.3 a.u.). The laser parameters are
chosen in this way in order to match those of Rudenko’s experiment [6]. The minimum number
of photons needed for ionization ranges from 10 to 31, which implies a high-order angular
momentum coupling. Therefore, an accurate solution of the TDSE requires a rather big basis
containing a large number of Sturmian functions (up to nmax = 800) and large number of angular
configurations (up to ℓmax = 70).

Fig. 1 displays the energy spectrum for I = 5 × 1013 (a), 1014 (b), 4 × 1014 (c), and
6 × 1014 W/cm2 (d) obtained after propagation of the TDSE with the help of the method
described above. The accuracy and efficiency of this method has been confronted with a
diagonally implicit Runge-Kutta propagator [12]. Our approach is typically one order of
magnitude faster than the implicit Runge-Kutta method. The results for I = 5 × 1013 and
1014 W/cm2 were obtained with ℓmax = 50, and nmax = 300 and 400, respectively. For higher
field intensities some features of the energy spectrum at low energy can be already seen by
coupling at least 40 angular momenta with nmax = 400, however the resolution of structures at
higher energies require larger bases (Fig. 1(c), (d)).

For a field intensity I = 5 × 1013 W/cm2 the ionization process is a multiphoton process as
expected. The peaks in the spectrum are precisely located at positions given by

En = nω − Up − Ip, (15)
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Figure 1. Electron energy distributions for single ionization of the hydrogen atom by 25 fs
pulses at I = 5 × 1013 (a), 1014 (b), 4 × 1014 (c), and 6 × 1014 W/cm2 (d). The dotted vertical
lines denote the expected position of the peaks according to Eq. (15).

which are highlighted in Fig. 1 by the vertical dotted lines. As the intensity increases new
structures appear at the low-energy part of the spectrum. At I = 1014 W/cm2 the peaks
associated to n = 1, 2 and 3 are splitted (Fig. 1(b)). At higher intensities the spectrum consists
of peaks which are rather irregularly distributed, specially in the case of I = 6 × 1014 W/cm2.

Understanding the origin of these structures is not the purpose of the present contribution.
It requires further investigation and will be presented elsewhere. Indeed, we are also exploring
this problem under two other approaches: a Floquet formalism combined with complex rotation
which allows us to access the resonances induced by the field [13] and a model calculation based
on series of separable potentials in momentum space, each of them supporting a bound state of
the hydrogen atom [14].

4. Conclusions

We presented a study of the ionization process of hydrogen atoms by intense fields in a regime
where the Keldysh parameter is close to 1. For this purpose we developed a method for the
propagation of the TDSE which includes an efficient implementation of an explicit algorithm
for the solution of stiff differential equations. Some structures in the ATI energy spectrum were
found which can be only partially associated to multiphoton ionization peaks. The nature of
the remaining structures still remains unclear and deserves further investigation.

Our calculations show a stupendous efficiency compared to diagonally implicit propagation
algorithms. This opens new perspectives for the treatment of more complicate ionization
processes like two-photon ionization of helium [15–23], where the non-linearity of this process
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poses tremendous experimental difficulties that so far prevent the measurement of accurate total
and differential cross sections [20, 21].
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