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Abstract. In this paper we show how to employ the inverse Born-Oppenheimer approximation
to establish a basis set to study zero kinetic energy (ZEKE) spectroscopy and the
autoionization dynamics of the ZEKE Rydberg states. The calculations of vibrational and
rotational autoionizations of a homonuclear diatomic molecule will be demonstrated as an
example. The scaling laws for the autoionization rate constants are determined through
nonlinear modeling of the calculated data.

1. Introduction
Zero-kinetic-energy (ZEKE) spectroscopy is a high resolution, rotationally resolved photoelectron
spectroscopy (PES) to study the structures and dynamics of neutral and ionic molecules [1-4]. ZEKE
spectroscopy has been increasingly used to determine the rovibronic energy levels of polyatomic
molecular ions and to derive information on the dynamical and thermodynamical properties of
molecular systems [4-9] and even the vibrational energy level structures of cations of biological
molecules [10]. As in the case of conventional molecular spectroscopy, ab initio quantum chemistry
calculation has become a powerful tool for the analysis of ZEKE spectra. This is especially true for the
ionic species resulting from photoionization of bonding orbitals of the valence shell of stable and rigid
molecules like hydrocarbons, which often exhibit a complex tunneling behavior necessitating careful
studies of extended regions of the potential surfaces.

In a ZEKE experiment, a laser pulse will excite at least one electron to a high Rydberg state, which
is just below the ionization threshold. After the excitation, these electrons would be detected by using
a delayed ionizing field. Therefore, different from the conventional photoelectron spectroscopy (PES),
which directly detects electrons in the continuum states, the electrons from the high Rydberg states in
the ZEKE spectroscopy are observed [11-12]. For this reason, it is crucial to find a suitable
representation of the high Rydberg state for studying the involved radiative or radiationless process. In
this paper, we will present a theoretical model based on the inverse Born-Oppenheimer approximation
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(IBOA) [13-16]. This model not only can provide a proper basis set for the system in high Rydberg
states, but also for the dynamics of high Rydberg states, such as autoionization and collision [13, 17].
In section 2, we will present a mathematical derivation of IBOA and in section 3 we will show the
numerical calculation of autoionization rate constants and the related scaling law.

2. Theory

2.1 Inverse Born-Oppenheimer approximation
Chao et al. [13-14] have developed a molecular theory of high Rydberg states using the inverse Born-
Oppenheimer approximation (IBOA), which is a reversed version of the Born-Oppenheimer
approximation (BOA). The basic idea is that we neglect the kinetic energy operator of the Rydberg
electron in the Schrödinger equation, and obtain two separate differential equations. One is the ionic
Schrödinger equation, whose Hamiltonian consists of the kinetic energy operators of core electrons
and nuclei and the Coulomb potentials among all charged particles in a molecule. The other is the
electronic Schrödinger equation of the Rydberg electron. With this separation, we can obtain the
zeroth-order basis function for any atom or molecule in the high Rydberg state.

We now derive the basic equations. First, the Hamiltonian can be expressed as

ˆ ˆ ˆ
ion eH H T 

where îonH is the ionic Hamiltonian and êT denotes the kinetic energy operator of the Rydberg
electron. From Bohr’s model of hydrogen atom, the electron in a high Rydberg state moves slowly and
its position is far away from the core. Therefore, as a zeroth-order description, we can neglect the
kinetic energy term, and solve the ionic Schrödinger equation

    ˆ , ; , ;ion a c a a cH R r r U r R r r  
   

where a and Ua represent the wavefunction and ion energy of the parent ion at state a, respectively.

Here R


and cr
 denote the nuclear coordinate and the coordinates of the core electrons, respectively,

while r denotes the coordinate of the Rydberg electron. Notice that both a and aU depends on
the Rydberg electron coordinate rparametrically. Using the completeness theorem, we can expand
the total wavefunction  in terms of a .

  , ;a a c
a

r R r r  
 

Substituting equation (2.3) into the full Schrödinger equation, we have

   ê a a a a a a a
a a a

T U E      
where
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      

   



Multiplying *
b on both sides of equation (2.4), integrating over the ionic coordinates, and neglecting

the terms involving '̂
IBOH , we obtain

(2.1)

(2.3)

(2.4)

(2.5)

(2.2)
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ˆ( )e b bm bm bmT U E   

and

bm bm b  

Here m denotes the quantum numbers to specify the Rydberg electronic state. We shall denote the
ionic wavefunction in the core electronic state c and rovibrational state w as cw ; i.e., b=cw, and

represent the corresponding Rydberg electronic wavefunction by cwm . From equations (2.2) and
(2.6), we can see that the eigenvalue Ub of ionic Schrödinger equation serves as the potential energy of
the electronic Schrödinger equation. It can also be interpreted that the Rydberg electron is moving on
the potential energy surface provided by the ion core in the rovibronic state cw .

2.2 Perturbation and multipole expansion
In this section, we shall use the time independent perturbation theory to derive the zeroth-order
wavefunction and higher order corrections. Consider a molecule containing n-1 electrons in the core
and one electron in the high Rydberg state (denoted as the electron n ). The ionic Hamiltonian can be
expressed as

2 1
2

1

ˆ ˆ
2

n

ion i N
ie

H T V
m





   

where N̂T is the kinetic energy operator of the nuclei. Next, we can separate the interactions
containing the electron n from V

221

1 , ,

n

ion
i n i n

ion

Z ee
V V

r r

V V



 





  

 

 

where i represents the i-th electron in the ion core, and α refers to α-th nucleus. Vcan be
approximated by the multipole expansion.
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 






where 'dV denotes the dipole interaction and 'qV the quadrupole interaction, and so on. Neglecting
the higher order interactions, we obtain the zeroth-order wavefunctions of the ion core and the
Rydberg electron. That is, equations (2.2) and (2.6) can be expressed as

   0 0 0 0ˆ , ,ion cw c cw cw cH R r U R r  
  

(2.6)

(2.7)

(2.8)

(2.9)

(2.11)

(2.10)
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 
2

0 0 0ˆ( )e m n m m n
n

e
T r r

r
   

 

Here we can see that the solution of equation (2.11) is the wavefunction of a bare ion, which can be
calculated with the conventional quantum chemistry methods, while the solution of equation (2.12) is
the wavefunction of a hydrogen atom. Therefore, as the conventional hydrogenic wavefunction [18],
the quantum numbers nlm can be used to describe the bound electron, while klm can be used to
describe the free electron; i.e., m=nlm or m=klm. Letting  , ,nr r r    in spherical coordinates,
we have

  0 ,nlm nl lmR r Y  

  0 ,klm kl lmR r Y  

To solve equation (2.11), we can use Born-Oppenheimer approximation and the ionic wavefunction
cw can be separated as the core electronic wavefunction c and the nuclear wavefunction cw . That

is,
0 0ˆ ˆ ˆ
ion e NH H T 

0 0 0 0
ê c c cH u 

 0 0 0 0
N̂ c cw cw cwT u U  

and
0 0 0
cw c cw 

where 0̂
eH denotes the Hamiltonian of the core electrons after subtracting the nuclear kinetic energy

operator N̂T from 0̂
ionH . In the case of diatomic molecules, the zeroth-order nuclear wavefunction

0
cw can be expressed in spherical coordinates  , ,R R 


as

  0 ,
N Ncv N M cv N M

R Y       

where
cv

 denotes the vibrational wavefunction and
NN M

Y   denotes the rotational wavefunction with

respect to the electronic state c of the ion core. Here Nw v N M   denote the vibration and rotation
quantum numbers.

For a homonuclear diatomic molecule, the first-order energy correction of the dipole interaction is
zero, so we shall perform the first-order correction of the quadrupole term. It follows that

(1) 0 0
c c q cu V 

Performing the integration with respect to the core electronic coordinates cr
, we can obtain the

conventional expression by using quadrupole moment Q as functions of the nuclear coordinate R


.

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.20)

(2.19)

(2.18)
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 
  

 


where the first spherical harmonics depends on the coordinate of the Rydberg electron, and the second
one depends on that of the ion core.

2.3 The breakdown of IBOA and autoionization
The basic concept of autoionization can be understood by using the diagram in figure 1, which is
based on the IBOA model. From equations (2.11) and (2.12), we can see that, in the high Rydberg
state, the electron behaves like a hydrogenic electron, and the core like a bare ion. The interaction
between them is very week, so we can form two independent systems, as shown in the zeroth-order
Hamiltonian.

As shown in the figure, the molecule was first excited to a vibrationally or rotationally excited state
with one electron in the high Rydberg state. Due to the interaction within the molecule, the excited
core would release its energy and transfer the energy to the Rydberg electron yielding ionization. With
this understanding, we can calculate the corresponding transition rate.

Lin [19] has pointed out that within the BOA the nuclear kinetic energy operator can be used to
model the radiationless processes, such as internal conversion or intersystem crossing. Likewise, here
we can use the kinetic energy operator of the Rydberg electron to study the radiationless process in
high Rydberg states, such as autoionization [20]. To derive the expression of the transition rate, we
need to include the neglected term in equation (2.5); in other words, the radiationless transition is
interpreted as the breakdown of the IBOA. Therefore, to calculate the autoionization rate, we can use
the Fermi’s golden rule

2'
( ) '

2 ˆ ( )cwm cw k cw k IBO cwm kW H E
    

Figure 1. The diagram of vibrational autoionization based on the
model of IBOA. During the autoionization 'cwm cw k , the ion
core would relax from a vibrationally excited state cw to a lower
state cw’, while the electron in the high Rydberg state m would
autoionize to the continuum state k.

(2.21)

(2.22)
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where ( )kE is the density of states for the ionized electron of energy Ek and

 
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= 2
2

cw k IBO cwm
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        


To evaluate e cw and 2
e cw , we shall consider the first order correction of the ionic

wavefunction. Using (2.19) and (2.21), we have
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Here Nw v N M     , ' 'k kl m , Nw v N M   and m nlm , respectively. The electronic part

of the quadrupole interaction qV is a solution of the Laplace equation, and thus the matrix element in
equation (2.25) will vanish. The integration over the Rydberg electronic coordinate can be performed
using the recursion relations of the hydrogenic wavefunction. For spherical harmonics, we obtain

2 2
' ' ' ' ', ' ' 2

1 1
sin sin

m lm m lm
l m l m l l l m m lm

Y Y Y Y
Y Y D Y Y Y

     
   

 
   

where , 2, 2,3 , 2 , and 2( 1)l l l l l lD D l D l     .
Therefore, we obtain the final expression of the transition matrix element as

  

 

'

2
5 4

', ' '0 0

ˆ'

3

, , , ; , , ,

IBOAJ J

nl
c l l kl nl klcvcv

e cv N cv N

J J

kl v N J M H nl v N J M

e dR
Q R D R r R R r

m drU U

g l N J M l N J M

  

    

   

 


 

 

  
     

 



where nl and kl’represent the quantum numbers of discrete states and that of continuum states of the
ZEKE electron, respectively. The angular matrix element g is shown as in [21, 22]

(2.24)

(2.25)

(2.26)

(2.27)

(2.23)
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 
 

In equation (2.27), there are three matrix elements to be calculated. The first matrix element
contains the quadrupole moment of the ion core, which is a function of internuclear distance R. It is
responsible for the vibrational transition. As the propensity rule of vibrational autoionization, the
magnitude of the corresponding transition rate would decrease rapidly as v increases [23, 24]. The
second one is the radial integral of the Rydberg electron, and it describes the transition from an
electronic bound state to the continuum. In this section, we employed the recursion relation of
associated Laguerre polynomial and performed the numerical integration to obtain the value of this
matrix element. The last one involves the angular momentum for both electronic and nuclear rotation
motions. Due to the symmetry of spherical harmonics, the allowed transitions should obey 0, 2l 
and 0, 2N    . In addition, the projection quantum numbers m and NM  are summed for the
coupling between the electronic orbital angular momentum l and the core rotational angular
momentum N+. Then, we have the total angular momentum J and its projection quantum number MJ.
Due to the Kronecker delta, J and MJ are constant upon the transition. The selection rules and
propensity rule of this formulation are in agreement with the previous studies of autoionization based
on the multipole interaction [22] and the MQDT [25, 26].

3. Result and discussion
Here we shall calculate the autoionization rate of H2, with respect to the transition among different

rotational and vibrational states with transition    ; ; ; ;J Jnl v N J M kl v N J M     .

As shown in figure 1, there is an energy restriction for autoionization, which is due to the Dirac
delta function in the Fermi’s golden rule. Nevertheless, in order to analyze the relation between the
magnitude of transition rate and the corresponding quantum numbers, we first neglect this restriction.
In the following, we will consider the transitions for different n, l and energy of the unbound state; the

related transition for vibrational and rotational states is    1, 0 0, 2v N v N         .

(2.28)
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The numerical results calculated using equation (2.27) for H2 are given in figure 2. If we specify
the quantum numbers n and k, there are three possibilities of the final l’which obey the selection rule.
First, in the case of l’=l, we can see that the rate decreases rapidly with increasing l. For example, the
corresponding rates of n=100 can range from 103 to 107 s-1. This behavior can be understood by the
property of the hydrogenic wavefunction [18]. That is, the states at low l would have larger core
penetration as well as stronger interaction, and thus the rate would decrease as l increases. Likewise,
the related rate would decrease as n increases due to the weak interaction between the Rydberg
electron and ion core. As for the k dependence, we found that the transition rates for low-l states are
relatively invariant to the influence of k. However, those of high-l states have stronger energy
dependence as the energy increases.

Compared with the transitions of l’=l, those of l’=l+2 and l’=l-2 are relatively slow. However, for
the energy of 1000 cm-1, the transitions of l’=l+2 would compete with those of l’=l at larger l (l>8).
Besides, from figure 2, we can see that there is no obvious tendency for these two cases. For l’=l-2,
the rate would decrease with increasing l quite slowly. On the other hand, for l’=l+2, we can find a dip
for a specific l in each plot. For both cases, the magnitudes of the autoionization rates are more
sensitive to the energy than l’=l.

From figure 2, it is clear that the transition of l’=l shows a regular power law dependence of l.
Using a nonlinear modeling, we obtain the scaling law for the autoionization rate as

Figure 2. Comparison of the calculated autoionization rate for l’=l, l’=l+2, and
l’=l-2 in terms of the quadrupole interaction. The left panel is for the
continuum-state energy of 100 cm-1; the right panel is for the energy of 1000
cm-1.
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14 3 5.3 13.648 10rate n l s   

The n3 law is consistent with that obtained from the asymptotic wavefunction of high Rydberg state.
The comparison between the calculated data and the fitting curves is shown in figure 3.

In figure 3, we can see the numerical results agree well with the estimation of the scaling law for
the low energy case. In equation (3.1), the scaling law is independent of the energy of the continuum
state, but it still works well for the low-l transitions when the energy is relatively high. For instance, it
can effectively predict the rate up to l=5 for the energy of 1000 cm-1. On the other hand, for the
transitions 2l l , we cannot derive a scaling law of the transition rate due to the irregular
dependence on l. Nevertheless, for most cases, l’=l is the most probable transition, so we can neglect
the contribution of 2l l transitions. In this sense, this scaling law is quite useful to gain an
approximate magnitude of the autoionization rate.
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