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Abstract. We consider the long term effect of stochastic inputs on the state of an open loop
system which exhibits the so-called return point memory. An example of such a system is
the Preisach model; more generally, systems with the Preisach type input-state relationship,
such as in spin-interaction models, are considered. We focus on the characterisation of the
expected memory configuration after the system has been effected by the input for sufficiently
long period of time. In the case where the input is given by a discrete time random walk process,
or the Wiener process, simple closed form expressions for the probability density of the vector
of the main input extrema recorded by the memory state, and scaling laws for the dimension
of this vector, are derived. If the input is given by a general continuous Markov process,
we show that the distribution of previous memory elements can be obtained from a Markov
chain scheme which is derived from the solution of an associated one-dimensional escape type
problem. Formulas for transition probabilities defining this Markov chain scheme are presented.
Moreover, explicit formulas for the conditional probability densities of previous main extrema
are obtained for the Ornstein-Uhlenbeck input process. The analytical results are confirmed by
numerical experiments.

1. Introduction
1.1. Preisach memory models driven by random input
The response of systems characterised by internal state variables or memory to stochastic
inputs, noise and random fluctuations is an area that has received much recent attention in
both theoretical and applied studies. Nontrivial effects such as stochastic resonance [1–3] and
coherence resonance [4] can be observed in the simplest noise driven bistable or oscillatory
systems. In particular, two-state systems such as a non-ideal relay (also known as a non-
ideal switch, Schmitt trigger, rectangular loop operator and binary memory element in different
applications) or a particle in a double well potential exhibit stochastic resonance in response
to stochastic perturbations. This effect underpins the methods of dithering widely used in
engineering design, which exploits the constructive role of noise for improving the quality of the
output in image processing and signal processing [5].

Various models of systems with memory can be constructed using the formalism of the
phenomenological Preisach model as a weighted superposition of many two-state non-ideal
relays that are individually and independently driven by the same input [6]. For example,
the response of the Preisach model to stochastic inputs has been studied in [7, 8] in order to
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model the viscosity or after-effect in ferromagnetic materials, which is detrimental for magnetic
recording technologies. A similar approach to modelling creep in semiconductor materials by
means of stochastically driven Preisach memory systems has been adopted in [9]. While in
these examples the source of the stochastic component of the input is the internal noise caused
by thermal fluctuations, in other areas of engineering and physics the input is stochastic due
to its random nature or because it includes an external noise component superimposed on
a deterministic input signal. Ubiquitous applications of the Preisach model in magnetizm,
superconductivity, piezoelectricity, elastoplasticity, shape memory alloys, economics and finance,
modelling capillary hysteresis in flows through porous media such as soils etc. (see, for
example, the surveys in [10, 11]) motivated further analysis of the Preisach operator input-
output relationship for stochastic inputs of various types including uncorrelated inputs and
general diffusion processes [12–17]. This research was focused mainly on finding characteristics
of the output time series such as the spectral density and the autocorrelation function. The
method was based on the decomposition of the Preisach model into the sum (integral) of two-
state non-ideal relays, i.e., independent elementary hysteretic transducers, each producing a
binary stochastic output in response to the common input. The decomposition reduced the
problem to analysis of the cross-correlation function of the output of a pair of relays, which was
then averaged over the set of relays composing the Preisach model. Key computations in this
analysis were based on the relation between randomly induced switching of relays and the well
studied escape (exit) problems for stochastic processes and, furthermore, partly involved some
ingenious techniques such as, for example, the theory of diffusion processes on graphs [18, 19].
This approach resulted, in particular, in analytic and numerical estimates for the spectral density
of the output time series, asymptotic formulas for the long-time tales in its autocorrelation, and
analysis of 1/f noise in the frequency domain.

1.2. Problem statement
Modelling of real world systems is often complicated by the existence of internal degrees of
freedom which depend on the history of the system and give rise to hysteretic behaviour. In
addition it is often the case that the system of interest has been subject to a random input in
the past, but neither this input nor the resulting system evolution are known at a given point
in time. Examples of systems with internal memory and random input include magnetization
dynamics of magnetic rock in geology, folding dynamics of proteins in biology and modelling of
trends, fads and opinions in sociology. Under these circumstances the question arises, whether it
is possible to characterise the internal state or memory structure of the system at a given instant
T assuming that this state results from the effect of a random input on the system between some
moment in the past and the moment T . It is the purpose of this paper to investigate this
question.

In the following, we will focus on systems with rate-independent input-output relationship
and return point memory, which are characteristic for many real-world systems. These two
properties are important idealisations which effectively reduce the relevant memory structure
of the system to a specific sequence of shock values (known as main extrema) of the input
experienced in the past and can generically be modelled by the Preisach operators and their
generalisations. Rate-independence of an input-output relationship means that this relationship
is invariant with respect to the action of the group of affine transformations of the time scale,
implying that shock values of the input have permanent effect on the output in the future
and thus are memorised by the system. The magnetization of ferromagnetic material by a
fluctuation of external magnetic field which creates a permanent magnet is one example of
such memory. In the mathematical theory of hysteretic systems, hysteresis nonlinearities are
defined (omitting a few technicalities) as deterministic rate-independent operators with non-
local memory [20,21]. This general definition entails a set of non-trivial properties of hysteresis
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operators which are sufficient for developing formal concepts with various applications [22–26].
The rate-independence property distinguishes hysteretic memory from other memory types such
as in delay differential equations or convolution operators. It is this property that allows one
to describe constitutive hysteretic relationships in terms of 2-D input-output diagrams such as
the familiar picture showing the nested structure of magnetization curves and hysteresis loops,
which present the relationship between the magnetization and the applied magnetic field in
ferromagnetic materials.

The return point memory (also known as the wiping out memory) property of a rate-
independent system ensures that hysteresis loops corresponding to periodic inputs are closed
on the input-output diagram (hence there is no effects like ratcheting), which is a reasonable
approximation for many real world hysteretic systems. We will use an alternative definition
due to [25] whereby the memory state ω(T ) at a given instant T is a vector (with changing
dimension), or an infinite sequence, of certain extremum values of the input achieved prior to
this instant; the evolution of the state in response to the evolution of the input is defined by a
set of simple updating rules dictating which extremum values are included in the vector ω(t).
In particular, for piecewise monotone inputs (or discrete time inputs), each new extremum is
included in ω(t) as the last component at the instant it is achieved; while, whenever the input
reaches the value equal to the last component of the vector ω(t), the last two components
are removed from ω(t). The memory state ω(T ) is a concise record of all those events which
happened prior to the moment T and can influence dynamics of the system after this moment
in the sense that the state ω(T ) and the input after the moment T completely define the state
ω(t) and the output of the system for t > T .

For stochastic inputs which drive the system between moments t0 and T the memory state
ω(T ) is a multidimensional (or infinite-dimensional) random variable. The goal of this paper is
to find, or to characterise, the distribution of the memory state ω(T ) and its parameters at a
given moment T for several classes of inputs such as a random walk, Wiener process, Ornstein-
Uhlenbeck process and a general stationary diffusion process. An important assumption we make
is that the time interval between the moments t0 and T is large meaning that the initial state ω(t0)
has negligible effect on the distribution of ω(T ). More technically, we consider the probability
that an input trajectory is confined to a prescribed interval for all times between t0 and T and
assume that the time interval is long enough to make this probability negligibly small.

Thus, our focus is on a multidimensional memory configuration, i.e., a detailed description
of the system’s state at a single time moment. This compares to the problem described in
the previous subsection focusing on the description of the output of the Preisach model, i.e.,
a scalar-valued output time series. The output value at a given instant can be viewed as an
average value of the components of the vector state at this instant. Hence, the two problems are
complementary. The most detailed description of system’s dynamics would provide information
about the multi-dimensional stochastic process with the values in the space of memory states,
i.e., description of the stochastic evolution of the state in response to the evolution of a stochastic
input. However, the problem in this generality appears to be difficult to approach.

In applications, the state of the Preisach model described in terms of the binary states of all
its relay components often models the physical state of the system. The memory vector ω, at a
given moment, contains a compact description of the binary function representing the physical
state. More precisely, ω can be mapped straightforwardly to this binary function by a procedure
proposed in [22] whereby the components of ω encode the staircase boundary separating the
domain which represents the relays that are ‘on’ and the domain which represents the relays
that are ‘off’ on the Preisach plane.

Summarising and extending the discussion of this subsection, let us assume that we control
or observe the input of the Preisach model only after a certain instant T . As the output and
the state at any instant t > T are defined both by the dynamics of the input between the
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instants T and t and by the memory state ω(T ), which has recorded the shock values (the
main extrema) of the input obtained at times prior to T , information about the state ω(T ) is
important for prediction and control of the dynamics of the system after the moment T . In
particular, the return point memory property of the Preisach model ensures that the shock
values stored as components of the vector ω(T ) will be felt by the systems at the moments t > T
when the input reaches again those recorded values. At these moments, the composition of the
memory vector ω(t) changes and, as a result, those moments are characterised by a switch to
another input-output branch on the input-output diagram of the model, such as the switch to
another magnetization curve on the diagrams depicting the dependence of the magnetization
of ferromagnetic materials on the external magnetic field. The jump to another input-output
branch is accompanied by a jump of the time-derivative of the output, which is smooth at
other times for smooth input time series. Therefore information about the state ω(T ) translates
directly to the list of input values for which these jumps (possibly, representing a strong impact
on the system) will happen after the moment T , allowing one to predict them.

If the input was not controlled or measured prior to the instant T , then the state ω(T ) is
not known or controllable, neither it is typically measurable. However, we make the assumption
that the memory state ω(T ) is the result of a random input with known parameters, which
has effected the system prior to the instant T , and characterise the distribution and typical
parameters of the memory state ω(T ) under this assumption. Because the Preisach nonlinearity
has the return point memory property, an equivalent question to ask is what is the distribution
of the main extrema of the random process which creates the memory state ω(T ). We approach
this question assuming that the random input was effecting the system for a long period of time
prior to the moment T .

1.3. Method and results
The two main ingredients of analysis developed in the work, which we refer to in Subsection 1.1,
are (a) some form of the time reversion applied to the input; and, (b) reduction of the problem
to a one-dimensional escape (exit) problem, or a series of such problems, for a diffusion process.
The same two ingredients underpin the approach we adopt here. However, the escape problem
component is adapted appropriately as we work with the memory states in the compact form ω
of a vector of the past shock values of the input rather than the binary functions representing
the ‘physical state’ of the Preisach model. In particular, we do not resort to the decomposition
of the model into the superposition of binary relays.

In order to describe the distribution of the random vector (sequence) ω = ω(T ), we introduce
a Markov chain scheme where the running index n of the component of ω plays the role of the
fictitious time. Using the above two ingredients of the analysis, we derive explicit expressions for
the transition probabilities of this Markov chain in terms of the SDE defining the input. For the
random walk and continuous time Wiener process inputs, along this line of argument, we obtain
explicitly the distribution function for the state ω(T ). We then show how to use this result to
derive distributions of several random variables naturally associated with ω(T ). In particular,
we show that the number qd of the components of ω(T ) which have values in a given interval
I is an exponentially (Poisson) distributed random quantity, and discuss scaling of qd = qd(I)
with the ends of the interval I, thus obtaining a chrcterisation of the dimension of a typical
memory state ω(T ). The random quantity qd can be viewed as a measure of the amount of
information stored in ω(T ) (complexity of ω(T )), or a measure of the effect of the past history
of the input on dynamics after the instant T . It is also directly related to the description of
the system’s state in terms of the input-output diagram. In this description, one distinguishes
the input-output curves of different order, such as the primary magnetization curve, secondary
magnetization curves and k-th order magnetization curves of any higher order k in the magnetic
hysteresis applications. A particular value of qd places the system to the input-output curve of
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order k = qd (exactly, or with controllable accuracy) at the moment T .
Considering general diffusion input processes and using the expressions for the transition

probability densities of the subsidiary Markov chain, we derive formulas for the conditional
probability density of the n-th component ωn of the memory vector ω = ω(T ) conditioned on
the values of the two previous components ωn−1 and ωn−2. These formulas can be used to obtain
the joint probability distribution of those components ωn whose values are confined to a given
interval I. The formulas are specified for the Ornstein - Uhlenbeck processes and compared to
their counterparts for the Wiener process with and without drift.

We confirm analytical results by numerical experiments.
Our results are equally applicable to all rate-independent systems with return-point memory

as such systems are characterised by the same input-state relationship mapping the input to
the memory state ω(t) (see, [25]). The state-output relationship is model specific. For example,
the state-output relationship of the Preisach model ensures that for any periodic input all the
hysteresis loops on the input-output diagram are congruent; according to Mayergoyz’s theorem
this property identifies the Preisach model among all the return-point memory systems, ensuring
the decomposition into the sum of relay operators [23]. Another important class of systems with
return point memory are spin interaction models stemming from the classical Ising model of
the array of coupled spins. The Ising model based approach is quite general and is widely used
in many disciplines to study such effects as avalanches, Barkhausen noise, clustering, emergent
hysteresis behaviour, and order-disorder phase transitions which are universal to many systems;
examples include ferromagnetic materials and earthquake fault systems [27], sand piles [28],
capillary effects and percolation in partially saturated porous media [29], phase transitions in
solids [30], random networks [31,32], cellular automata [33], and multi-agent models in economics
and finance [34]. The roots of this universality, and the universal scaling laws characterising such
systems, have been recently revealed in [35,36] (see also the review [37] and references therein).
Sethna et al. showed that any system of spins with positive interactions (such as, for example,
those in ferromagnetic materials) has the return point memory property [38]. The return point
memory state ω recording the shock values of the input can be mapped to the ‘physical state’
of the model describing the binary state of each spin.

It is worthwhile to note that the so-called rainflow counting method which is widely used in
damage and fatigue estimates for engineering applications is based on tracking the evolution of
a return point memory state ω(t) driven by a stochastic input [39]. However, it applies to input
processes with smooth trajectories, while the focus of this paper is on nonsmooth processes.

This paper, as well as the literature cited in Subsection 1.1, refers to open loop systems.
Closed loop stochastic models of simple hydrological systems involving the Preisach operator
have been studied in [40] by a combination of analytic and numerical methods. The input of
the Preisach operator in these models is yet smooth. Closed loop models involving systems
of many switches with jumping thresholds driven by nonsmooth stochastic inputs have been
recently proposed and investigated numerically in [41–45] in the context of modelling economics
and finance.

The rest of the paper is organised as follows. In the next section, we present the definition
of the return point memory states ω and define their evolution in response to the evolution of
the input. In Section 3, we discuss systems driven by the random walk input. The purpose of
this section is to illustrate the main steps of our approach on the simplest example. Section 4
presents the results for systems driven by continuous time diffusion processes.

2. Memory structure
Consider a continuous scalar-valued input x(t) of the Preisach nonlinearity on the interval [t0, T ].
At every time moment t, the memory of the system consists of two arrays of numbers mt

k and
M t

k (k = 1, 2, . . .). Here M t
1, m

t
1 are the running global maximum value and global minimum
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value of x over the interval [t0, t] defined via

M t
1 = max

t0≤τ≤t
x(τ), mt

1 = min
t0≤τ≤t

x(τ). (1)

The other entries of the memory at the moment t are defined recursively. In the case where the
global maximum is obtained before the global minimum, i.e.

τ t(M t
1) ≤ τ t(mt

1), (2)

where
τ t(c) := max{τ ∈ [t0, t] : x(τ) = c}, (3)

we define
mt

k = min
τ t(Mt

k)≤τ≤t
x(τ), M t

k+1 = max
τ t(mt

k)≤τ≤t
x(τ), k = 1, 2, . . . (4)

In other words, M t
2 is the maximum value of x on the time interval [τ t(mt

1), t] from the moment
τ t(mt

1) when the input achieves the value mt
1 for the last time to the moment t; mt

2 is the
minimum value of x on the time interval [τ t(M t

2), t] from the moment τ t(M t
1) when the value

M t
2 is achieved for the last time to the moment t, and so on. We will refer to M t

k and mt
k as the

main extrema of x on the interval [t0, t] or as the memory elements of the system, and will call
the set of these elements the memory array ω = ω(t).

Similarly, if the global minimum is obtained before the global maximum, i.e.

τ t(mt
1) < τ t(M t

1) (5)

we define
M t

k = max
τ t(mt

k)≤τ≤t
x(τ), mt

k+1 = min
τ t(Mt

k)≤τ≤t
x(τ), k = 1, 2, . . . (6)

Directly from the definition (and under assumption (2)) we observe the following inequality
chains

τ t(M t
1) ≤ τ t(mt

1) ≤ τ t(M t
2) ≤ τ t(mt

2) ≤ · · · ≤ t (7)

M t
1 ≥M t

2 ≥ · · · ≥ x(t) (8)

mt
1 ≤ mt

2 ≤ · · · ≤ x(t) (9)

M t
1 −mt

1 ≥M t
2 −mt

2 ≥ · · · ≥ 0. (10)

If equality between any two elements in equations (7)–(9) holds, then these two elements as well
as all the elements to the right of them are equal to the final value of the process (or the final
element of the chain).

We will also consider discrete time input sequences x = x(t) with integer t = 0, 1, 2, . . . To
define the main extrema for them, one considers the piecewise linear extension of x(t) (which
is linear between any neighbouring integer times) to a segment of the real line, and applies
formulas (2)–(6) to this extension.

For any given moment t, the number of different memory elements can either be finite, for
example if x is a discrete time input, or infinite, which is typical for realisations x of a continuous
Markov process. The number of different memory elements in the memory array, if finite, is
generally variable in time. With increasing time the memory array is updated according to
definition (2)–(6) by adding and deleting the appropriate memory elements. Assume for example
that we want to obtain the memory array at time t+∆ starting from a known set of main extrema
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M t
k and mt

k at time t. Let k0 be the largest index such that x(t′) with t′ ∈ [t, t + ∆] does not
leave the interval of the associated main extrema, i.e.

k0 = max
k

{
k : x ([t, t+∆]) ⊂

[
mt

k,M
t
k

]}
. (11)

Then the memory elements for indices less or equal k0 are unchanged

M t+∆
k =M t

k, mt+∆
k = mt

k for k = 1, . . . , k0 (12)

and only the memory elements with indices larger than k0 need to be updated according to (4),
(6). These definitions naturally extend the rules for deleting and adding memory elements in
response to piecewise monotone inputs to any continuous inputs, see, for example, a detailed
discussion in [22]. In particular these definitions also apply if the input is not piecewise monotone,
which is typically the case for stochastic inputs.

In this paper we are concerned with stochastic inputs and our aim is to characterise
the distribution of the memory array, which becomes a multi-dimensional random quantity
(sequence) in this case. In the following section we will first consider a simple classical random
walk input process before we turn to more general Markov processes in Section 4.

3. Memory distribution for random walk
3.1. Time reversion and reduction to escape problem
Consider a classical random walkWt on the integer grid as an input x(t) of the Preisach memory
operator, hence the time t is discrete. The point Wt is assumed to move one step left or right
with equal probability 1/2, i.e.,

P [Wt+1 =Wt + 1] = P [Wt+1 =Wt − 1] = 1/2.

For the purposes of this section, we use the value x(t) as a reference point and characterise
the memory at the moment t by the array of values mt

k − x(t),M t
k − x(t). For a finite time

interval there exist only a finite number of different memory elements

mt
1 < mt

2 < · · · < mt
Lt
< x(t) < M t

Nt
< · · · < M t

2 < M t
1 (13)

with |Lt − Nt| ≤ 1, while mt
k = M t

n = x(t) for all k > Lt, n > Nt. Moreover, we reorder the
entries of the finite memory array (13) to obtain the memory string

Mt = {mt
−Lt

, . . . ,mt
−1,m

t
1, . . . ,m

t
Nt
} (14)

with
mt

−Lt
< · · · < mt

−2 < mt
−1 < 0 < mt

1 < mt
2 < · · · < mt

Nt

where
mt

−k = mt
Lt−k+1 − x(t), mt

n =M t
Nt−n+1 − x(t)

for k = 1, . . . , Lt, n = 1, . . . , Nt, |Lt − Nt| ≤ 1. Thus, Mt is a reordered memory array of the
input y(τ) = x(τ)− x(t) on the interval t0 ≤ τ ≤ t; mt

k are local maximum values of y for k > 0
and local minimum values for k < 0. If τ tk is the last moment when y reaches the value mt

k before
the moment t, i.e., τ tk = max{τ ∈ [t0, t] : y(τ) = mt

k}, then either t > τ t1 > τ t−1 > τ t2 > τ t−2 > · · ·
or t > τ t−1 > τ t1 > τ t−2 > τ t2 > · · · , hence the ordering of the moments τ tk is defined by the sign
of the difference τ t1 − τ t−1. As the ordering is a part of the memory, we will distinguish between
the memory strings with the same set of values (14) for σt = 1 and σt = −1 where

σt = sign(τ t1 − τ t−1).
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Note that with this notation the number Nt of positive entries of the memory string and the
number Lt of negative entries are related by either Nt = Lt or Nt = Lt + σt.

We will be interested in the distribution of the memory string entries mT
k which lie in a certain

interval −K ≤ mT
k ≤ K. If we continue the input after the moment T , then the other memory

string entries do not change until x(t) − x(T ) reaches one of the values ±K at some moment1

τ > T . Thus, for a vector of integers jk, σ satisfying

−K < j−L < · · · < j−2 < j−1 < 0 < j1 < j2 < · · · < jN < K; |σ| = 1

with either L = N or L = N + σ, we are interested in the probability Pj−L,...,jN ,σ of the event

mT
−L = j−L, . . . ,m

T
−1 = j−1,m

T
1 = j1, . . . ,m

T
N = jN ; sign(τT1 − τT−1) = σ (15)

which implies L ≤ LT , N ≤ NT .
To obtain the desired distribution, we reverse the time and consider a sequence of escape

problems for the reversed process.
Consider the reversed process Ŵt = WT−t −WT for 0 ≤ t ≤ T − t0. This is also a random

walk with the probability 1/2 to go one step left or right starting from zero. Consider the hitting
times

τ̂k = min{t ≥ 0 : Ŵt = k} (16)

of Ŵt for integer k ̸= 0 with |k| ≤ K. We assume that T ≫ t0, and hence identify Ŵt with
a random walk on the infinite interval t ≥ 0. More precisely, we neglect the probability that
|Wt −WT | never reaches the value K over the time interval t0 ≤ t ≤ T . In this approximation,
all the hitting times (16) are well-defined and finite, as they are almost surely for the random
walk on the infinite time interval t ≥ 0.

We now observe that under this assumption the event (15) is equivalent to the event

τ̂j1 < τ̂−1 ≤ τ̂j−1 < τ̂j1+1 ≤ τ̂j2 < τ̂j−1−1 ≤ τ̂j−2 < τ̂j2+1 ≤ · · · ≤ τ̂jN < τ̂j−L−1 < τ̂jN+1 (17)

for N = L+ 1, and to the event

τ̂j1 < τ̂−1 ≤ τ̂j−1 < τ̂j1+1 ≤ τ̂j2 < τ̂j−1−1 ≤ τ̂j−2 < τ̂j2+1 ≤ · · · ≤ τ̂j−L < τ̂jN+1 < τ̂j−L−1 (18)

for N = L if σ = 1. Similarly, if σ = −1, then (15) is equivalent to

τ̂j−1 < τ̂1 ≤ τ̂j1 < τ̂j−1−1 ≤ τ̂j−2 < τ̂j1+1 ≤ τ̂j2 < τ̂j−2−1 ≤ · · · ≤ τ̂jN < τ̂j−L−1 < τ̂jN+1 (19)

for N = L, and to

τ̂j−1 < τ̂1 ≤ τ̂j1 < τ̂j−1−1 ≤ τ̂j−2 < τ̂j1+1 ≤ τ̂j2 < τ̂j−2−1 ≤ · · · ≤ τ̂j−L < τ̂jN+1 < τ̂j−L−1 (20)

for N = L− 1. For example, (17) ensures that a realisation of the process Ŵt hits the positive
level j1 before it hits the level −1; then it hits the level j−1 ≤ −1 before it hits the level j1 + 1,
and so on. Hence the values of such a realisation belong to the interval [0, j1] = [Ŵ0, Ŵτ̂j1

] for

0 ≤ t ≤ τ̂j1 ; then to the interval [j1, j−1] = [Ŵτ̂j1
, Ŵτ̂j−1

] for τ̂j1 ≤ t ≤ τ̂j−1 , etc.

As the random walk Ŵt is a time-homogeneous Markov chain, the probability Pj−L,...,jN ,1 of
the event (17) equals the following product of the probabilities

Pj−L,...,jN ,1 = P [τ̂0j1 < τ̂0−1]P [τ̂
j1
j−1

< τ̂ j1j1+1]P [τ̂
j−1

j2
< τ̂

j−1

j−1−1] · · ·P [τ̂
jN
j−L−1 < τ̂ jNjN+1],

1 In many applications of the Preisach model, the entries mT
k with |mT

k | > K do not affect the dynamics as long
as they are constant, i.e., until the moment τ in this case. Moreover, large in absolute value entries mt

k typically
have either no or little effect on the future.
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where τ̂ ij = min{t ≥ 0 : Ŵ i
t = j} is the hitting time at the level j of a random walk Ŵ i

t starting

at the level Ŵ i
0 = i. Moreover, for the random walk,

P [τ̂ ij < τ̂ ik] =
k − i

k − j
, P [τ̂ ij > τ̂ ik] =

i− j

k − j
for j < i < k

(see, for example, [46]), hence the probability of the event (15) for σ = 1 is defined by

1

Pj−L,...,jN ,1
=(1 + j1)(1+j1−j−1)(1+j2−j−1)(1+j2−j−2) · · · (1+jN−j−L)(2+jN−j−L). (21)

Similarly, for σ = −1,

1

Pj−L,...,jN ,−1
= (1− j−1)(1 + j1 − j−1)(1 + j1 − j−2) · · · (1 + jN − j−L)(2 + jN − j−L). (22)

For example, the probability that mT
1 = j, σ = 1 equals Pj,1 = (j + 1)−1(j + 2)−1 for

j = 1, . . . ,K − 1, and the event mT
1 = −j, σ = −1 has the same probability P−j,−1 =

(j + 1)−1(j + 2)−1. These probabilities sum up to

2

K−1∑
j=1

1

(j + 1)(j + 2)
= 1− 2

K + 1
.

The complimentary event is that either τ̂K < τ̂−1 or τ̂−K < τ̂1 with P [τ̂K < τ̂−1] = P [τ̂−K <
τ̂1] = 1/(K + 1).

A simple numerical check of equation (21) is shown in figure 1, where for σ = 1 the
probabilities Pj,k,1 as a function of j are plotted for a range of values of k. We observe the
expected excellent agreement between the analytical formula (21) and the numerical results.

3.2. Examples
Relations (21), (22) can be used to derive distributions and mean values of parameters of the
memory string MT . As an illustration, we consider a few examples.

Example 1. Suppose an initial memory state MT = M has been created by the random
walk input x(t) = Wt, t0 < t < T with t0 ≪ T , and we control the input after the moment
T . Suppose we increase the input. We ask at which input value the system switches to a
new memory branch, that is when the memory string element m1 = mT

1 will be deleted. This
happens when the increment ∆ = x(t)− x(T ) > 0 of the input reaches the value m1. Thus, we
are interested in the probabilities

P [τ̂1 < τ̂−1,m1 = m], P [τ̂1 > τ̂−1,m1 = m]

for positive integers m. These probabilities are different as the distribution of m1 depends on
whether τ̂1 is less or greater than τ̂−1.

According to the previous subsection, the first of these probabilities is P [τ̂1 < τ̂−1,m1 = m] =
Pm,1 = (m+ 1)−1(m+ 2)−1. Therefore, the corresponding joint probability that τ̂1 < τ̂−1 and
that the switch happens for ∆ ≥ m is

P [τ̂1 < τ̂−1,m1 ≥ m] =
∞∑

k=m

1

(k + 1)(k + 2)
=

1

m+ 1
.
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Figure 1. Comparison of analytical results from equation (21) (orange circles) with the averaged
outcomes of 105 independent simulations of the random walk (solid lines). We plot the joint
probability Pj,k,1 versus the last main minimum j for various values of the last main maximum
k.

For m = 1, this probability equals P [τ̂1 < τ̂−1] = 1/2.
In the case τ̂1 > τ̂−1, P [τ̂1 > τ̂−1,m−1 = −k,m1 = m] = P−k,m,−1 =

(k + 1)−1(k +m+ 1)−1(k +m+ 2)−1. Summing over k, we obtain

P [τ̂1 > τ̂−1,m1 = m] =
∞∑
k=1

1

(k + 1)(k +m+ 1)(k +m+ 2)
,

and for the corresponding cumulative distribution

P [τ̂1 > τ̂−1,m1 ≥ m] =

∞∑
j=m

∞∑
k=1

1

(k + 1)(k + j + 1)(k + j + 2)
=

1

m

m+1∑
i=2

1

i
.

For m = 1, this cumulative probability equals P [τ̂1 > τ̂−1] = 1/2.

Example 2. The memory string Mt changes when the input increment ∆ = x(t) − x(T )
reaches the value m1 = mT

1 in Example 1 and the system switches to a new memory branch. For
instance, if τ̂1 < τ̂−1, then the entry mt

−1 of Mt changes from the value x(T )− x(t) to the value

mT
−1 + x(T ) − x(t) when ∆ reaches the value m1. Suppose the jump amplitude m−1 = mT

−1 of
this entry is used as a measure of the effect of the jump to a new memory branch on the system.
Hence, the probability

P [τ̂1 < τ̂−1,m1 = m,m−1 = −k]
is of interest, as in our interpretation this is the probability that a jump of strength k happens
when ∆ reaches the value m. According to the previous subsection, this probability equals
P−k,m,1 = (m+ 1)−1(m+ k + 1)−1(m+ k + 2)−1. Therefore, the probability that τ̂1 < τ̂−1 and
the strength of the jump is greater or equal than k when ∆ reaches the value m is

P [τ̂1 < τ̂−1,m1 = m,m−1 ≤ −k] =
∞∑
j=k

1

(m+ 1)(m+ j + 1)(m+ j + 2)
=

1

(m+ 1)(m+ k + 1)
.
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For k = 1, this is the probability Pm,1 considered in Example 1.
Further random quantities associated with the random memory stringMT such as the number

of entries mk in a given interval are considered in the next section.

4. Continuous time stochastic inputs
In this section we consider the situation where the input of the Preisach operator is given by
a one-dimensional continuous Markov process x(t), t0 ≤ t ≤ T , defined by the Ito stochastic
differential equation (SDE)

dx = A (x) dt+
√
B(x) (x) dW (t). (23)

Here A (x) and B (x) ≥ 0 are continuous (not explicitly time dependent) bounded functions
of x and W (t) is the standard Wiener process [47]. In addition we assume that there exists
a stationary probability distribution whose density ps(x) fulfills the stationary Fokker-Planck
equation,

A (x) ps (x)−
1

2
∂x

(
B (x) ps (x)

)
= 0; (24)

here and henceforth the notation ∂x is used for the ordinary and partial derivatives. We stipulate
that the distribution of the initial point x(t0) follows ps(x). As a direct consequence, x(t) follows
the stationary distribution at each given instant, i.e.,

p(x, t) = ps(x) for t ∈ [t0, T ] (25)

Following Section 2 we assume that the stochastic process x(t) is used as input of the Preisach
nonlinearity. To avoid notational clumsiness, let us from now on assume (unless otherwise stated)
that condition (2) holds, i.e., the global maximum is assumed to have occurred before the global
minimum. Often we will be interested in the memory array at the final time T only, and we
introduce the quantities Mk,mk, τ

M
k , τmk to simplify the notation using

Mk =MT
k , τMk = τT (MT

k ), mk = mT
k , τmk = τT (mT

k ), k = 1, 2, . . . (26)

In figure 2, a realisation of the Ornstein-Uhlenbeck process is plotted, allowing to illustrate the
definitions given above. Since the Markov process defined by (23) is everywhere continuous, but
in general not differentiable at points with B(x) > 0, it follows that infinitely many different
main extrema are possible (generally, the memory array is almost surely infinite). It is our aim
to characterise this memory structure.

Here and in the following we will use bold letters for random variables, when the potential
for confusion with their corresponding values exists.

In particular we are interested in quantifying the probability distribution of a main extremum
(memory element) which was attained before a pair of main extrema with known values. For
example, we might ask about the probability distribution of a main minimum mk0−1 under the
condition that the immediately following main maximum and minimum have the values Mk0

and mk0 , respectively. This type of question is motivated by the situation, often encountered in
practice, that a process is observed for a limited period of time and thus extrema are known up
to a certain instant in the past. The problem is then to deduce from those known extrema the
probability distribution of previous extreme events for which no recorded data exists. Another
related question is about the expected sequence of main extrema in the past. For example if
the value of the stochastic process x(T ) at time T is known, but not its history, one might
be interested to know whether the last main maximum bigger than a certain threshold value
M0 > x(T ) has occurred before or after the last main minimum which was below a different
threshold value m0 < x(T ).

In order to derive these probability distributions we will first introduce a Fokker-Planck like
equation for transition probabilities in reverse time, and then reduce the problem of finding the
distribution of previous extrema to a well defined escape problem for the reversed process.
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Figure 2. Illustration of the positions of consecutive maxima and minima for a realisation of
the Ornstein-Uhlenbeck process with K = 1 and D = 1. Here Mk−1 occurring at time τMk−1 is
the global maximum in the shown time interval, and the following main extrema mk−1, Mk, mk

and mk+1 are then defined recursively according to (4) and (26). τMc and τmc are defined via
τMc = max{t ∈ [τMk−1, τ

m
k−1] : x(t) =Mk}, τmc = max{t ∈ [τmk−1, τ

M
k ] : x(t) = mk}

4.1. Formulation as escape problem
Let us define a reverse transition probability density for t′ < t via

pr
(
y, t′|x, t

)
=
p (x, t; y, t′)

ps (x)
=
p (x, t|y, t′) p (y, t′)

ps (x)
=
p (x, t|y, t′) ps (y)

ps (x)
, (27)

where equation (25) has been used.
It can be shown that this function fulfills the Fokker-Planck equation in backward time

−∂y
(
A(y)pr(y, t

′|x, t)
)
+

1

2
∂2y

(
B (y) pr

(
y, t′|x, t

))
= − ∂

∂t′
pr

(
y, t′|x, t

)
. (28)

Note that equation (28) is different from the backward FPE for example in the sense of [47].
Instead, it can be regarded as a forward FPE for the reverse transition probability pr.

Using equation (28) for pr we can now formulate the problem of finding the distribution of a
previous main extremum by using the well developed escape formalism.

Let us consider the case as illustrated in figure 2, and let us assume that some recording of
this particular process has started shortly before the instant τmc and thus has established the
Mk and mk as the first known main extrema (realisations of Mk and mk). The question is then,
what can be assumed about the probability distribution of mk−1. Let us write the probability
that mk−1 is below a value m̄ under the condition that the next known main extrema are given
by Mk and mk formally as P (mk−1 < m̄|Mk,mk). This probability can be related to an escape
problem in reverse time. Consider the history of the process shown in figure 2 up to τmc . It is
clear that we have τMc < τmk−1 < τmc , where τMc = τ τ

m
c (Mk) is the largest time less than τmc at

which Mk is obtained. Therefore mk−1 < m̄ implies that τ τ
m
c (m̄) > τMc . In other words the last

time at which the process has entered the interval [m̄,Mk] before reaching mk at time τmc it has
entered this interval from the lower end. On the other hand if mk−1 > m̄, then the process did
last enter the interval [m̄,Mk] at time τMc from the upper end.
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In the reverse time formulation as in (28), the problem of last entering an interval is equivalent
to the more familiar first exit problem from a given interval in forward time [47]. Therefore the
probability that mk−1 is less than a certain value m̄ can be expressed as the probability

P (mk−1 < m̄|Mk =Mk,mk = mk) = π(mk; m̄,Mk) (29)

where π(mk; m̄,Mk) is the probability that the reverse time process given by (28) exits the
interval [m̄,Mk] through the lower end at m̄ when starting at position mk.

This type of escape problem is well studied in the literature and we here follow the notation
of [47] where it is shown that π(mk; m̄,Mk) fulfills the differential equation

A (x) ∂xπm̄ (x) +
1

2
B (x) ∂2xπm̄ (x) = 0 (30)

with the boundary conditions πm̄ (m̄) = 1, πm̄ (Mk) = 0. The explicit solution is given by

π (mk; m̄,Mk) = P (mk−1 < m̄|Mk =Mk,mk = mk) =
I (Mk)− I (mk)

I (Mk)− I (m̄)
(31)

with

I (y) =

∫ y

0

dx

B(x)ps(x)
= N

∫ y

0
exp

(
−
∫ x

0

2A (x′)

B (x′)
dx′

)
dx. (32)

Here the normalization constant N is determined by the normalization condition
∫
ps(x)dx = 1.

Note that I(y) is continuous and monotonic with I(0) = 0, but is in general not defined for all
values y ∈ R, since I(y) may diverge to plus or minus infinity at some finite values y = yMI > 0
or y = ymI < 0, respectively. If this happens, the domain O of I(y) is an open interval limited by
yMI from above or ymI from below. Points outside O cannot be reached by the Markov process
x(t) starting at zero, which means that if, for example, we consider two points a < 0 and b > 0
such that a ≤ ymI while I(b) is finite, than a process starting at zero will have zero probability
of leaving the interval (a, b) at the lower end a. It follows that the function I(y) is invertible
and its inverse I−1(z) is well defined for any z ∈ R.

The probability in equation (31) can also be interpreted as the probability that a (forward
time) Wiener process which starts at I(mk) will first leave the interval (I(m̄), I(Mk)) at the
lower end boundary at m̄, i.e.

π(mk; m̄,Mk) = πW (I(mk); I(m̄), I(Mk)) (33)

with πW (x; a, b) = (b − x)/(b − a). Therefore the function I(x) relates the characterisation of
the main extrema of an arbitrary process with an escape problem of the Wiener process. This
connection will be made more explicit in Subsection 4.4 where the memory structure of the
Wiener process is studied in greater detail.

To simplify the notation let us also introduce for x ∈ O

ψ(x) = ∂xI(x) =
1

B(x)ps(x)
= N exp

(
−
∫ x

0

2A (x′)

B (x′)
dx′

)
. (34)

Formula (31) for the cumulative conditional probability P (mk−1 < m̄|Mk =Mk,mk = mk) for
mk−1 being less than m̄ implies that the conditional probability density p(mk−1|Mk,mk) for the
main minimum mk−1 under the condition that the following main extrema are given byMk and
mk equals

p(mk−1|Mk,mk) =
∂

∂m̄

∣∣∣∣
m̄=mk−1

P (mk−1 < m̄|Mk =Mk,mk = mk) =
I (Mk)− I (mk)

[I (Mk)− I (mk−1)]
2ψ (mk−1) .

(35)
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We note that there is no explicit k dependence in equation (35), other than via the realisations
of the main extrema Mk,mk and mk−1, which means that formula (35) can be used to calculate
the probability density for a main minimum under the condition that the following two main
extrema are known independent of k.

Similarly, the conditional density distributions of the previous maximum Mk−1 is given
(assuming condition (2)) explicitly by

p(Mk−1|mk−1,Mk) =
I (Mk)− I (mk−1)

[I (Mk−1)− I (mk−1)]
2ψ (Mk−1) . (36)

The generalisation to the case τMk > τmk is straightforward.
A combination of equations (35) and (36) can be given in the form of

p(Mk−1,mk−1|Mk,mk) = p(Mk−1|mk−1,Mk)p(mk−1|Mk,mk)

=
I (Mk)− I (mk)

I (Mk)− I (mk−1)

ψ (mk−1)ψ (Mk−1)

[I (Mk−1)− I (mk−1)]
2 (37)

In this form we can regard p(Mk−1,mk−1|Mk,mk) as the transition probability density from one
pair of main extrema (mk,Mk) to a preceding pair (mk−1,Mk−1). This transition probability can
be thought to originate from a time discrete two-dimensional master equation on the (m,M)
space which proceeds in negative k direction, i.e., −k is the fictitious time. Equation (37)
therefore represents the Markov transition chain for this process. This idea is illustrated in
figure 3.

The generalization of (37) is straightforward and allows us to write closed form expression
for the joint probability of all previous main extrema

p(Mk−l,mk−l, . . . ,Mk−1,mk−1|Mk,mk)

= p(Mk−l,mk−l|Mk−l+1,mk−l+1) · · · p(Mk−1,mk−1|Mk,mk) (38)

=
I (Mk)− I (mk)

I (Mk−l)− I (mk−l)

l∏
i=1

ψ (mk−i)ψ (Mk−i)

(I (Mk−i+1)− I (mk−i)) (I (Mk−i)− I (mk−i))
.

which gives formally a complete characterisation of the memory structure before a pair of known
main extrema Mk and mk.

Another related characterisation of past main extrema concerns the sequence in which they
have historically occurred. Consider the situation where the input x(T ) = x0 of the Preisach
nonlinearity is only known at the final time T without any information on the past history. We
can then ask the question, whether the last main maximum which is bigger than a certain value
M0 > x(T ) has occurred before of after the last main minimum with value less than m0 < x(T ).
In other words we want to determine the probability P

(
τT (M0) < τT (m0)|x(T ) = x0

)
. An

escape problem argument as before then leads to the answer that this probability equals the
probability of leaving (in reverse time formulation) the interval [m0,M0] at the lower end when
starting at x0. Explicitly we find (see equation (31))

P
(
τT (M0) < τT (m0)|x(T ) = x0

)
=
I
(
M0

)
− I (x0)

I (M0)− I (m0)
. (39)

This equation allows us to predict in which sequence the main extrema are likely to have occurred
in the past. The similarity of the expression in (39) with equation (31) allows us to formally
write

P
(
τT (M0) < τT (m0)|x(T ) = x0

)
= P (mk−1 < m0|Mk =M0,mk = x0). (40)

This concludes our theoretical investigation on the characterisation of the previous main
extrema for a continuous Markov process of the form (23). Next, we discuss a few examples.
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(mk, Mk)

(mk−1, Mk)

(mk−1, Mk−1)

(mk−2, Mk−1)

(mk−2, Mk−2) M

m

Figure 3. Illustration of the Markov chain between pairs of extrema (mk,Mk) →
(mk−1,Mk−1) → (mk−2,Mk−2) → · · · The transition probability density between different pairs
of extrema in the (m,M) plane is given by (37). This plane can be interpreted as the Preisach
plane, see [22], in which case the staircase line connecting the elements of the chain is the border
line between the domain representing the relays which are ‘on’ and the domain representing the
relays which are ‘off’.

4.2. Example I: The Ornstein-Uhlenbeck process
Let us consider the case where the input of the Preisach nonlinearity is given by the Ornstein-
Uhlenbeck process defined by (23) with A (x) = −κx, B (x) = D. Then (34) implies

ψ (x) =
1

Dps(x)
=

√
π

κD
exp

(
κx2

D

)
(41)

which, according to (31), yields for the probability that mk−1 is below m̄ for known subsequent
main extrema Mk and mk:

P (mk−1 < m̄|Mk =Mk,mk = mk) =

∫Mk

mk
exp

(
κ
Dy

2
)
dy∫Mk

m̄ exp
(
κ
Dy

2
)
dy

. (42)

The probability density p(mk−1|Mk,mk) is then again obtained as in equation (35). The
probability concerning the sequence of main extrema can then be obtained via equation (38).

As an interesting limit case we now expand the integrand in (42) around mk via

exp
( κ
D
y2
)
≈ exp

( κ
D
m2

k

)[
1 + (y −mk)

2κ

D
mk

]
+ · · · (43)

which leads to the simple approximation

P (mk−1 < m̄|Mk =Mk,mk = mk) ≈ Mk −mk

Mk − m̄

[
1 +

κmk

D
(mk − m̄)

]
. (44)

This approximation is valid if
√

κ
D (Mk − m̄) ≪ 1 and

√
κ
Dmk stays bounded as

√
κ
D (Mk − m̄)

decreases.
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4.3. Example II: Wiener process with constant drift
If the input for the Preisach nonlinearity is given by a Wiener process with drift, i.e., A (x) = a,
B (x) = 1, then the problem arises that the stationary probability distribution ps(x) does not
exist. The existence of ps(x) was however a perquisite in the derivation of the Fokker-Planck
equation in backward time (28). Nevertheless it turns out that the Wiener process with drift
represents an important small scale limit for arbitrary continuous Markov processes. The reason
is that for x sufficiently close to mk we can approximate

ψ(x) = ψ(mk) exp

(
−
∫ x

mk

2A (x′)

B (x′)
dx′

)
≈ ψ(mk) exp

(
−2A (mk)

B (mk)
(x−mk)

)
. (45)

This expression is equivalent to the formula for ψ(x) formally obtained from (34) for the Wiener
process with drift a = A (mk) /B (mk). Note that the Wiener process itself does not possess
a stationary distribution, which was required to derive equation (34). Nevertheless we observe
that the Wiener process with drift appears naturally in the small scale limit and is therefore a
useful abstraction for the dynamics at small scale.

The quantities of interest are not ψ(x) explicitly, but rather the probabilities constructed via
ψ(x). For the Wiener process we formally find from (31)

P (mk−1 < m̄|Mk =Mk,mk = mk) =

∫Mk

mk
exp (−2ax) dx∫Mk

m̄ exp (−2ax) dx
=

exp (−2aMk)− exp (−2amk)

exp (−2aMk)− exp (−2am̄)

≈ Mk −mk

Mk − m̄
[1− a (mk − m̄)] . (46)

This last expression is valid up to the first order in a(Mk − m̄). We observe that this
approximation agrees as expected with the corresponding approximation (44) for the Ornstein-
Uhlenbeck process for a = −κmk/D.

In a region around a point x0 where the ratio 2A(x)/B(x) of a given process is about constant,
we can characterise the infinitely many main extrema sufficiently close to x0 by formulas derived
from a Wiener process with drift a = 2A(x0)/B(x0). At an even smaller scale the drift term
can also be neglected and we obtain a characterisation of the main extrema on the basis of the
classical Wiener process without drift, i.e., a = 0, which we discuss in the next subsection.

4.4. Example III: Wiener Process without drift
In the limit of a = 0 the function I defined in (32) becomes formally simply the identity function
and we obtain ψ(x) = 1. Therefore all previous formulas involving I simplify considerably. For
example, formulas (35), (36) for the Wiener process without drift take the form

p(mk−1|Mk,mk) =
Mk −mk

(Mk −mk−1)2
, p(Mk−1|Mk,mk) =

Mk −mk−1

(Mk−1 −mk−1)2
(47)

and the transition probability (37) in the previously discussed Markov chain is given by

p(Mk−1,mk−1|Mk,mk) =
Mk −mk

(Mk −mk−1)(Mk−1 −mk−1)2
. (48)

This provides the universal characterisation of the main extrema at small scale. Interestingly
from equation (48) we can deduce the closed form expression for the joint probability (38) of all
previous main extrema

p(Mk−l,mk−l, . . . ,Mk−1,mk−1|Mk,mk)

=
Mk −mk

(Mk −mk−1)(Mk−1 −mk−1)(Mk−1 −mk−2) · · · (Mk−l −mk−l)2
. (49)
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Choosing for example Mk = 1 and mk = 0 the structure of this formula is directly comparable
with the corresponding formula (22) for the discrete random walk process for σ = −1.

Again, as in the previous section, we remark that there is no stationary probability
distribution for the Wiener process and in contrast to our requirement for the derivation of (28)
the initial condition of the process cannot be neglected even in the long term limit. Nevertheless,
the formulas formally obtained for the Wiener process accurately characterise the memory state
of an arbitrary process on a scale at which I is approximately linear.

We can also view the situation from the following perspective. Since the function I is
invertible, the main extrema Mk and mk for a general Markov process x = x(t) are completely
characterised if the distribution of the mapped extrema defined as

M I
k = I(Mk), mI

k = I(mk) (50)

is characterised. Formulas (50) define the main extrema of the process I(x). From (31) it follows
that

P (mI
k−1 < m̄I |MI

k =M I
k ,m

I
k = mI

k) =
M I

k −mI
k

M I
k − m̄I

and therefore the conditional probability density for the process I(x) is given by

pI(mI
k−1|M I

k ,m
I
k) =

M I
k −mI

k(
M I

k −mI
k−1

)2
which agrees with the corresponding formula (47) for the Wiener process. On the other hand,
using

pI(mI
k−1|M I

k ,m
I
k)∂yI(y = mk−1) = p(mk−1|Mk,mk)

we directly recover (35). Thus the problem of characterising the distribution of the main extrema
of an arbitrary continuous Markov process can be mapped to the problem of characterising the
memory structure of the Wiener process without drift by using the invertible function I.

Due to the discussed importance of the Wiener process without drift for the characterisation
of main extrema in arbitrary continuous Markov processes let us now consider the differences
between main extrema of the Wiener process in more detail. As an alternative equivalent
description of the memory array, let us define the strictly monotonically decreasing sequence
{dk}k≥1 for the differences between the main extrema via

dk =

{
M(k+1)/2 −m(k+1)/2 for k odd

Mk/2+1 −mk/2 for k even

(cf. (10)) where (2) is assumed. According to formulas (47), in this notation, the conditional
probability density for preceding elements in the sequence {dk} is given via

p (dk−1|dk) =
dk

(dk−1)
2 for dk−1 > dk; p (dk−1|dk) = 0 for dk−1 ≤ dk. (51)

We are now interested in the number qd of elements of the sequence {dk} whose value lie in
the interval between some maximal value K and some minimal value ϵ. For every K > ϵ > 0,
we define the integer valued random variable qd = qd(K, ϵ) by

qm = min {k : dk < ϵ} , qM = max {k : dk < K} , qd = qm − qM .
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Using the escape problem argument as above we obtain the probability density distribution of
the least element dk = dqm−1 satisfying dqm−1 ≥ ϵ as

p (dqm−1) =
ϵ

(dqm−1)
2 for dqm−1 > ϵ ; p (dqm−1) = 0 for dqm−1 ≤ ϵ. (52)

A numerical confirmation of formula (52) is shown in figure 4.
We can now interpret dk as an inverse Markov process with backward transition probabilities

given by (51). Combining formulas (51) for k and k−1, we obtain p (dk−2|dk) = 0 for dk−2 ≤ dk
and

p (dk−2|dk) =

∫
p (dk−2|dk−1) p (dk−1|dk) ddk−1

=

∫ dk−2

dk

dk−1

(dk−2)
2

dk

(dk−1)
2 ddk−1 =

dk

(dk−2)
2 ln

dk−2

dk
for dk−2 > dk.

Similarly, by induction in i, for each i < k

p (di|dk) =
∫
p (di|di+1) p (di+1|dk) ddi+1 =

dk

2 (di)
2

(
ln
di
dk

)2

for di > dk

with p (di|dk) = 0 for di ≤ dk.
Relations (52) imply

P (qd = 0) = P (dqm−1 > K) = ϵ/K,

that is with the probability ϵ/K the memory array does not contain any elements dk with values
in the range between ϵ and K. Similarly in the case of qd = 1 there is precisely one dk, namely
dqm−1, between ϵ and K. With the use of (51), the probability of this event can be expressed as

P (qd = 1) =

∫ ∞

K
ddqm−2

∫ K

ϵ
p (dqm−2|dqm−1) p (dqm−1|dqm = ϵ) ddqm−1

=

∫ ∞

K
ddqm−2

∫ K

ϵ

dqm−1

(dqm−2)
2

ϵ

(dqm−1)
2 ddqm−1 =

ϵ

K
ln
K

ϵ
.

Continuing by induction in k, we obtain the following probability distribution of qd

P (qd = k) =
ϵ

k!K

(
ln
K

ϵ

)k

(53)

which is plotted for ϵ/K = 0.1 in figure 5. That is, for the Wiener process, the number qd of
the memory elements dk between two thresholds ϵ and K has the Poisson distribution with the
mean value (intensity)

⟨qd ⟩ = ln(K/ϵ).
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Figure 4. Confirmation of (52) via numerical integration of a Wiener process with time step
∆t = 0.0001 from 0 to tmax = 10000. We plot a histogram of the last dm which is bigger than
ϵ = 1 using a total of 105 runs. The circles show the analytical expectation according to (52).

Figure 5. Probability distribution of the number of min-max differences dk occurring in the
interval [ϵ = 0.1,K = 100]. For the numerical data we integrated a Wiener process with time
step ∆t = 0.0001 from 0 to tmax = 10000 and recorded the dm. The circles are the expected
values according to (53) with ϵ/K = 0.1.
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[3] Sagues F, Sancho J and Garćıa-Ojalvo J 2007 Rev. Mod. Phys. 79 829–882
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