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Abstract. In the standard model of Jahn-Teller (JT) theory, the spin-free electronic
Hamiltonian is expanded up to second order in normal-mode displacements, while the spin-
orbit (SO) coupling operator is approximated in zeroth order. In this article, the systematic
extension of JT theory beyond the standard model is outlined. For the classic E× e and T2× t2

JT problems in C3v and Td symmetry, respectively, it is shown how the conventional Taylor
expansion of the spin-free Hamiltonian can be replaced by an expansion in invariant polynomials
up to arbitrarily high orders. The theory of SO coupling in JT systems is extended beyond
the standard model by an expansion of the Breit-Pauli SO-coupling operator up to first order
in normal-mode displacements. The spectroscopic relevance of the higher-order electrostatic
and the linear relativistic JT coupling terms is illustrated for the vibronic structures of the
photoelectron spectra of tetrahedral P4 and Sb4.

1. Introduction

The theory of vibronic coupling, which includes Jahn-Teller (JT) theory [1] and Renner theory [2]
as special cases, is based on the following concepts :

(i) Representation of the electronic Hamiltonian in a basis of diabatic [3] electronic states.

(ii) Expansion of the electronic Hamiltonian in a Taylor series at the reference geometry of high
symmetry.

(iii) Use of symmetry selection rules to determine the non-vanishing matrix elements.

In the “standard model” of JT theory, which is described in numerous reviews, monographs
and edited volumes on the JT effect [4–11], the electrostatic (spin-free) Hamiltonian is expanded
up to second order in normal-mode displacements. The spin-orbit (SO) coupling operator, which
becomes relevant for systems containing heavier elements (e.g. transition metals, lanthanides
or actinides) is approximated at zeroth order, that is, at the high-symmetry reference geometry
[4–11].

Extensions of the electrostatic JT Hamiltonian beyond the standard model were occasionally
considered for specific systems. For example, the third-order and fourth-order terms in the E×e
Hamiltonian [12] for trigonal systems have been included in some investigations of static and
dynamic JT effects in clusters and solids [13–16]. The systematic expansion of the electrostatic
E × e JT Hamiltonian for trigonal systems up to sixth order has first been given by Viel
and Eisfeld [17]. Applications of such high-order E × e Hamiltonians have been reported, for
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example, for the methoxy and NO3 radicals [18, 19], the ammonia cation [20] and transition-
metal trifluorides [21]. It was discovered by ab initio calculations that “intramolecular collisions”
of the ligand atoms at large amplitudes of the JT-active bending mode result in a pronounced
positive anharmonicity of the ab initio bending potentials, which requires a JT expansion up to
at least sixth-order in the bending mode [21, 22].

A general symmetry-adapted polynomial expansion of electrostatic T × t and T × e JT
Hamiltonians in tetrahedral systems has been developed by Opalka and Domcke [23, 24]. This
approach combines JT theory with the theory of invariant polynomials [25]. Symmetry-adapted
polynomials up to high orders were explicitly given and a combinatorial scheme was developed
to express terms of arbitrary order as products of a small number of invariant polynomials. The
method was applied to the methane cation in its triply degenerate (2T2) ground state. Terms
up to 12th order in the t2 bending mode, up to 8th order in t2 stretching mode and up to
10th order in the bending mode of e symmetry were included. The parameters were determined
by a nonlinear least-squares fitting of a large set of ab initio data obtained at the full-valence
CASSCF/MRCI/cc-pVTZ level [23, 24].

In the vast literature on the JT effect in solids, the SO coupling operator has been
approximated by an effective atom-like SO operator, which, as such, is independent of the nuclear
coordinates [4–7]. In treatments of joint JT and SO couplings in molecules, the SO splitting
likewise was taken as independent of the nuclear coordinates and approximated by its value at the
high-symmetry reference geometry [8–10]. A theoretical description of the SO coupling beyond
the standard model has been developed only recently in the work by Poluyanov and Domcke for
the trigonal, tetragonal, tetrahedral and cubic point groups [26–30]. In this approach, the SO
interaction is considered as a perturbation of the electrostatic electronic Hamiltonian Hel,

Hel = Hes +HSO (1)

where HSO is the Breit-Pauli SO operator [31]. The latter can be derived from the Dirac-
Coulomb-Breit operator either by the elimination of the small components or by a perturbation
expansion in c−1 [32]. A nonrelativistic spin-orbital electronic basis is employed and the Breit-
Pauli operator is treated exactly as in the nonrelativistic vibronic coupling theory, that is,

(i) Representation of the Breit-Pauli operator in a basis of (nonrelativistic) diabatic [3]
electronic states.

(ii) Expansion of the Breit-Pauli operator in powers of normal-mode displacements at the
reference geometry.

(iii) Use of symmetry selection rules to determine the nonvanishing matrix elements.

Assuming that the SO coupling is a relatively weak perturbation of the electrostatic Hamiltonian,
the Taylor expansion of the SO operator was terminated at first order. This way, the relativistic
JT forces (arising from the SO operator) are included in the JT Hamiltonian. The existence of
relativistic JT forces was revealed for the tetragonal, tetrahedral and cubic point groups [27–30].
In trigonal systems, on the other hand, the linear relativistic JT coupling constants are zero by
symmetry [26].

In this article, we give a synopsis of recent theoretical developments which extend the JT
theory systematically beyond the standard model. The motivation for these developments arises
primarily from modern quantum chemistry. In order to harness the phenomenal progress in ab

initio electronic-structure theory, including relativistic quantum chemistry, it is a necessity to
develop JT theory substantially beyond the standard model. The latter was conceived during
the 1940s and 1950s, at a time when the JT and SO coupling parameters had to be determined
via the fitting of at best a few low-resolution spectral data, which required that the number
of adjustable parameters had to be kept to a minimum. Nowadays, an essentially unlimited
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amount of data can be generated by accurate ab initio electronic-structure calculations, which
eliminates the restriction of JT and SO coupling Hamiltonians to low-order expansion terms
with just few coupling parameters.

2. Expansion of the spin-free Jahn-Teller Hamiltonian beyond second order

2.1. Polynomial invariant theory and Jahn-Teller Hamiltonian

The potential-energy (PE) surfaces of polyatomic molecules containing N identical nuclei are
subject to permutational invariance of like nuclei. The permutations of the identical nuclei in
a molecule form a group, the so-called Complete Nuclear Permutation (CNP) group which is
nothing but the symmetry group of N identical nuclei (SN ) [33, 34]. Being a proper subgroup
of the full symmetry group of the molecular system, the elements of the CNP group commute
with the Hamiltonian. The molecular point group, on the other hand, is defined (locally) if a
well-defined equilibrium geometry exists in a certain region of the PE surface. In recent years,
the exploitation of permutation symmetry has been of increasing interest in the construction of
analytic representations of global PE surfaces. Polynomials, invariant in the CNP group, have
been employed to form a set of invariant functions which provide an approximation space for
analytic PE surfaces [35].

The established description of the JT effect relies on the symmetry of the irreducible
representations of the molecular point group defined at the configuration of highest symmetry. It
will be shown below that in many cases of interest the irreducible representations of the molecular
point group (matrix groups) are isomorphic to those of the permutation symmetry group.
Therefore, the methods of invariant theory [25] can be employed for the efficient derivation
of JT Hamiltonians.

The invariance of a polynomial under a linear algebraic group G can be defined as follows

σ ◦ p(v) = p(σ−1v) = p(v) (2)

where σ is a matrix representation of all the elements in G, p is an element of the ring of invariant
polynomials under the group G (K[V ]G) and v is an element of the underlying vector space V .
The evaluation of the group action on the polynomials requires the matrix representations of the
elements of the group. The generating set of invariant polynomials under the action of a finite
linear group G can be obtained by the successive application of the Reynolds operator (which
is a G-invariant projection) to all terms of a general polynomial expansion

R(p) =
1

|G|
∑

σ∈G
σ ◦ p. (3)

Hilbert has given the proof (Hilbert’s finiteness theorem) [36] that the ring of invariant
polynomials K[V ]G under the group G is finitely generated by the generating set of homogeneous
invariant polynomials (p1, . . . , pr) which is a subset of K[V ]G, i.e.

K[V ]G = K[p1, · · · , pr]. (4)

The generating set of invariant polynomials has an a priori upper bound of their degree which
is given by the order of the group |G| (Noether degree bound) [37].

The linearly independent elements of K[p1, · · · , pr] form a vector space and the adiabatic
PE surface can be approximated by restricting the expansion up to a certain order. In the
case of a single PE surface, defined by 〈ϕ|Hel|ϕ〉, where |ϕ〉 is an adiabatic electronic state,
the Hamiltonian Hel is a totally symmetric function of nuclear coordinates and the electronic
wave function |ϕ〉 is invariant under symmetry operations. Multi-sheeted intersecting adiabatic
PE surfaces, on the other hand, cannot be approximated by polynomial expansions due to the
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presence of cusps at conical intersections. Therefore, a representation of the multi-sheeted PE
surface in a diabatic basis must be found to express the elements of the diabatic PE matrix as
smooth functions of the nuclear coordinates.

The adiabatic electronic wave functions of a manifold of m intersecting electronic PE surfaces
can be represented as superpositions in an m-dimensional diabatic basis, which forms an
electronic sub-Hilbert space. Assuming that all other electronic states are sufficiently far apart
in energy, the wave function is written as

|Ψ〉 =
n∑

i=1

ci|ϕd
i 〉 (5)

where the |ϕd
i 〉 are diabatic [3, 38–40] electronic basis states. The expectation value of the

electronic Hamiltonian can be expressed as a function of nuclear coordinates and electronic
coefficients

〈Hel〉 = 〈Ψ|Hel|Ψ〉
=

∑

i,j

ci〈ϕd
i |Hel|ϕd

j 〉cj

=
∑

i,j

ci(Hel)ijcj .

(6)

The energy expectation value (6) is quadratic in the electronic coefficients and Hel is expanded
in terms of polynomials in symmetry-adapted nuclear coordinates. Therefore, we have to find
the second-order invariants in the vector space V el and the invariant polynomials in the vector
space V nu of the symmetry-adapted nuclear coordinates.

The most transparent case arises when the nuclear and the electronic basis functions
transform according to the same irreducible representation, such as in the E× e and T2 × t2 JT
effects. In this case, the nuclear coordinates and electronic states form identical vector spaces
and their matrix group representations are also identical in both coordinate spaces (Γel = Γnu).
Weyl’s polarization method can then be used to obtain the generating polynomials from the
generators of the invariant ring of a single copy of these [41, 42]. The JT vibronic matrix can
then very efficiently be constructed as the Hessian (with respect to the electronic degrees of
freedom) of the invariant polynomials [23, 24].

2.2. The E×e Jahn-Teller Hamiltonian

Molecules of C3v symmetry possess degenerate electronic states of E symmetry and degenerate
vibrational modes of e symmetry [12], which transform like x, y in the C3v point group. The
polynomial invariants of the E representation in C3v form a ring and are finitely generated by
two polynomials of degree 2 and 3 respectively, which form the so-called generating set of the
invariant ring. These are [42]

f1 = x2 + y2

f2 = x3 − 3xy2.
(7)

All the elements of the ring K[x, y]C3v can be constructed in terms of these generators

K[x, y]C3v = K[f1, f2]. (8)

The ring of the C3v-invariant polynomials in the direct sum of two vector spaces of
E symmetry (electrons) and e symmetry (nuclei), K[V E ⊕ V e]C3v can be computed from
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K[V e]C3v = K[f1, f2] by Weyl’s polarization method [41]. As Weyl’s polarization operator is
a linear differential operator, the JT matrix expansion of any order n can be found by taking
the Hessian of all possible products of the primary invariants of order (n+2). After eliminating
the redundant terms, it is straightforward to represent the E × e JT expansion of any order as
a sum of the trace and a traceless matrix [17]

H(n)
es [E × e] =

(
V(n) 0

0 V(n)

)
+

(
W(n) Z(n)

Z(n) −W(n)

)
. (9)

The well-known first-order and second-order JT Hamiltonians are the Hessians of f2 and f21
respectively.

The expansion of the E × e JT Hamiltonian up to sixth order is given by

V(1) = 0

V(2) = a
(2)
1 (x2 + y2)

V(3) = a
(3)
1 (x3 − 3xy2)

V(4) = a
(4)
1 (x4 + 2x2y2 + y4)

V(5) = a
(5)
1 (x5 − 2x3y2 − 3xy4)

V(6) = a
(6)
1 (x6 + 3x4y2 + 3x2y4 + y6) + a

(6)
2 (x6 − 6x4y2 + 9x2y4)

(10)

W(1) = λ
(1)
1 x

W(2) = λ
(2)
1 (x2 − y2)

W(3) = λ
(3)
1 (x3 + xy2)

W(4) = λ
(4)
1 (x4 − y4) + λ

(4)
2 (x4 − 6x2y2 + y4)

W(5) = λ
(5)
1 (x5 + 2x3y2 + xy4) + λ

(5)
2 (x5 − 4x3y2 + 3xy4)

W(6) = λ
(6)
1 (x6 + x4y2 − x2y4 − y6) + λ

(6)
2 (x6 − 5x4y2 − 5x2y4 + y6)

(11)

Z(1) = λ
(1)
1 y

Z(2) = λ
(2)
1 (−2xy)

Z(3) = λ
(3)
1 (x2y + y3)

Z(4) = λ
(4)
1 (−2x3y − 2xy3) + λ

(4)
2 (4x3y − 4xy3)

Z(5) = λ
(5)
1 (x4y + 2x2y3 + y5) + λ

(5)
2 (−2x4y + 6x2y3)

Z(6) = λ
(6)
1 (−2x5y − 4x3y3 − 2xy5) + λ

(6)
2 (4x5y − 4xy5)

(12)

where V(n) is the nth order of the trace and W(n) and Z(n) are the nth order diagonal and
off-diagonal elements, respectively, of the traceless JT Hamiltonian. The polynomial expansions
presented here differ, at the first look, from those of Viel and Eisfeld [17]. However, they are
interconvertable by taking linear combinations. As an illustration, the number of free parameters
to be optimized for an 8th order expansion is given in tabular form in Table 1. Note that
the number of independent optimization parameters grows very slowly with the order of the
expansion, which reflects the high inherent symmetry of the E × e JT Hamiltonian.
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Table 1. Number of parameters in the trace and the diagonal and off-diagonal terms in the
E × e JT expansion in each order.

order 1 2 3 4 5 6 7 8

parameters W,Z 1 1 1 2 2 2 3 3
parameters V 0 1 1 1 1 2 1 2

total 1 2 2 3 3 4 4 5

As an example, the sixth order E × e JT Hamiltonian matrix is given explicitly in Eq. (13).
It can be seen that the sixth-order JT Hamiltonian contains only 4 independent optimization
parameters.

H(6) = [a
(6)
1 (x6 + 3x4y2 + 3x2y4 + y6) + a

(6)
2 (x6 − 6x4y2 + 9x2y4)] 1

+




λ
(6)
1 (x6 + x4y2 − x2y4 − y6) λ

(6)
1 (−2x5y − 4x3y3 − 2xy5)

+λ
(6)
2 (x6 − 5x4y2 − 5x2y4 + y6) +λ

(6)
2 (4x5y − 4xy5)

λ
(6)
1 (−2x5y − 4x3y3 − 2xy5) −λ(6)1 (x6 + x4y2 − x2y4 − y6)

+λ
(6)
2 (4x5y − 4xy5) −λ(6)2 (x6 − 5x4y2 − 5x2y4 + y6)




.

(13)

Using Weyl’s polarization method [41], it is straightforward to include an arbitrary number
of e modes to obtain the E × (e+ e+ · · · ) JT Hamiltonian up to arbitrary order.

2.3. The T2×t2 Jahn-Teller Hamiltonian

The three-sheeted T2 × t2 PE surface is represented by three diabatic electronic states of T2
symmetry, denoted conveniently as x, y, z. The nuclear coordinates of t2 symmetry are also
denoted by x, y, z to reveal the high inherent symmetry of the T2 × t2 JT Hamiltonian. The
ring of invariant polynomials of the t2 representation in Td is finitely generated by a set of three
polynomials of degree 2, 3 and 4 in the coordinates x, y, z [23, 42]

f1 = x2 + y2 + z2

f2 = xyz

f3 = x4 + y4 + z4.

(14)

Any member of the ring K[x, y, z]Td can be represented in terms of these generating polynomials,
that is

K[x, y, z]Td = K[f1, f2, f3]. (15)

The JT vibronic matrix is given by the doubly polarized invariant polynomials in the
combined vector spaces of the electronic coefficients and the nuclear coordinates, which transform
identically under the group Td ≃ S4. Any term of the Hamiltonian matrix expansion is just the
Hessian of an invariant polynomial of the ring K[x, y, z]Td up to multiplication with a constant
factor.

An elegant combinatorial scheme has been developed to represent the T2 × t2 JT PE matrix
in terms of the generating polynomials in Ref. [23]. The JT vibronic matrix has the highly
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symmetric structure

Hel =



W(x, y, z) Z(z, x, y) Z(y, x, z)
Z(z, x, y) W(y, x, z) Z(x, y, z)
Z(y, x, z) Z(x, y, z) W(z, x, y)


 . (16)

WhereW and Z are the diagonal and off-diagonal elements of the JT matrix, respectively. Their
expansion up to sixth order reads

W(1)(x, y, z) = 0

W(2)(x, y, z) = a
(2)
1 x2 + a

(2)
2 (y2 + z2)

W(3)(x, y, z) = a
(3)
1 xyz

W(4)(x, y, z) = a
(4)
1 x4 + a

(4)
2 (y4 + z4)

+ a
(4)
3 (x2y2 + x2z2 + y2z2)

W(5)(x, y, z) = a
(5)
1 x3yz + a

(5)
2 (xy3z + xyz3)

W(6)(x, y, z) = a
(6)
1 (y6 + z6) + a

(6)
2 x6 + a

(6)
3 (x4y2 + x4z2)

+ a
(6)
4 (x2y4 + x2z4) + a

(6)
5 (y4z2 + y2z4) + a

(6)
6 x2y2z2

Z(1)(x, y, z) = b
(1)
1 x

Z(2)(x, y, z) = b
(2)
1 yz

Z(3)(x, y, z) = b
(3)
1 x3 + b

(3)
2 (xy2 + xz2)

Z(4)(x, y, z) = b
(4)
1 x2yz + b

(4)
2 (y3z + yz3)

Z(5)(x, y, z) = b
(5)
1 x5 + b

(5)
2 (x3y2 + x3z2)

+ b
(5)
3 (xy4 + xz4) + b

(5)
4 (xy2z2)

Z(6)(x, y, z) = b
(6)
1 y3z3 + b

(6)
2 (y4z2 + y2z4)

+ b
(6)
3 x4yz + b

(6)
4 (x2y3z + x2yz3).

(17)

The expansion terms up to 12th order can be found in Ref. [23]. The beauty of this representation
is that the elements of the 3× 3 JT matrix consist of just two functions, whose position in the

matrix is determined by the first argument. There are only two kinds of parameters, a
(n)
i and

b
(n)
i which are to be determined by a least-squares fitting of ab initio data. The number of
parameters to be optimized for an 8th-order expansion of the T2 × t2 PE matrix is summarized
in Table 2.

Table 2. Number of parameters in the diagonal and off-diagonal terms in the T2× t2 JT matrix
in each order.

order 1 2 3 4 5 6 7 8

parameters W 0 2 1 3 2 6 4 9
parameters Z 1 1 2 2 4 4 6 6

total 1 3 3 5 6 10 10 15

The 8th order PE matrix, for example, contains 53 parameters.
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It is straightforward to include an arbitrary number of t2 modes in this approach. Weyl’s
polarization method provides a convenient scheme to obtain the generators for several t2
coordinates. There are 12 generators in total for the T2 × (t2 + t2) matrix expansion, for
example [23].

2.4. Application : The E×e Jahn-Teller effect in P+
4

P+
4 is a system exhibiting an extremely strong JT effect in its electronic ground state of 2E

symmetry involving the doubly degenerate (e) bending mode. The 2E × e JT effect in P+
4 with

a dimensionless linear JT coupling parameter of about 5.0 [43, 57] may be the strongest E × e
JT effect known in nature. The first ab initio investigation of the JT effect in the 2E state of P+

4
was carried out by Meiswinkel and Köppel [43] in the early 1990s. A more recent investigation
was performed by Opalka et al.

The ab initio PE data were calculated at the CASSCF/cc-pVDZ level of theory using the
MOLPRO quantum chemistry package [44]. The parameters of the polynomial expansion have
been obtained by fitting the eigenvalues of the PE matrix to the ab initio data. Ab initio energies
up to 2 eV above the energy at the reference geometry (the equilibrium geometry of P4) have
been calculated. A total of 1100 energy points have been included in the least-squares fitting.
The difference between a fit including terms up to second order and a fit including terms up to
sixth order is illustrated in Fig. 1. The figure confirms the necessity to extend the JT expansion
beyond the standard model in this system. For the second-order fit, the ab initio data in the
range −0.35 ≤ s2y ≤ 0.35 (in Å) have been included. For the 6th-order fit, the ab initio data
in the range −0.8 ≤ s2y ≤ 0.8 (in Å) have been taken into account. Fig. (1) clearly shows that
the second-order approximation is insufficient for an accurate representation of the ab initio PE
surface of the 2E ground state of P+

4 . Due to intra-molecular collisions which occur at large
displacements from the equilibrium geometry in the e modes, the E × e JT PE surface exhibits
a strong positive anharmonicity. An rms residual error of 0.02 eV has been estimated for the
6th-order surface for energies below 2.0 eV.
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−0.8 −0.6 −0.4 −0.2  0  0.2  0.4  0.6  0.8

E
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Figure 1. Cut of the 2nd order (dashed line) and the 6th order (full line) PE surface of the
electronic ground state of P+

4 along the symmetry coordinate s2y compared with the ab initio

data (circles).

The importance of JT coupling terms up to 6th order for an accurate representation of E× e
JT PE surfaces has also been demonstrated for NH+

3 [20], NO3 [19] and various transition metal
trifluorides of D3h symmetry [21, 22].
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The experimental photoelectron spectra of P4, As4 and Sb4 were reported by several groups
more than 20 years ago [53–56]. It was found that these cluster cations exhibit very strong JT
effects, involving the e mode in the 2E ground state and the t2 mode in the 2T2 excited state.
In addition, the effects of (zeroth-order) SO splitting were identified in the JT spectra of As+4
and Sb+4 [53–56].
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Figure 2. 2E× e JT spectrum of P+
4 obtained with the quadratic (a) and the 6th-order (b) JT

Hamiltonian

The photoelectron spectrum of the 2E state of P+
4 was calculated via the time-dependent

approach to molecular electronic spectra [59, 60] as the Fourier transform of the autocorrelation
function [58]. The propagation of the wave packet on the coupled diabatic PE surfaces was
performed with the Chebysheff method [61] (see Ref. [58] for details). The so-called “low-
resolution spectrum” is obtained by convolution with a Gaussian of 35 meV full width at half
maximum. To obtain a “high-resolution spectrum” the full width at half maximum has been
reduced by a factor of 1/30. The 2E photoelectron spectrum of P+

4 including up to quadratic JT
coupling is shown in Fig. 2a. The clear double-hump structure of the envelope is due to a very
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strong linear JT coupling. The high line density and irregular structure of the high-resolution
spectrum arise from quadratic JT coupling. Fig. 2b shows the photoelectron spectrum calculated
with the inclusion of JT coupling terms up to 6th order. While the low-resolution envelopes of
the two spectra are similar, the line density is reduced in the 6th-order spectrum as a result of
the significant positive anharmonocity of the potential.

3. Expansion of the spin-orbit coupling Hamiltonian beyond zeroth order

3.1. Relativistically generalized Jahn-Teller selection rules

The symmetry group of the Hamiltonian including electron spin and SO coupling is the so-called
spin double group of the respective point group [45]. The elements of the spin double group are
of the form

Zn = CnU
†
n (18)

where the Cn are the symmetry operators of the point group and the Un are unitary 2 × 2
matrices acting on the two-component spinors (or the spin functions α, β in the nonrelativistic
limit). To close the group, the operator −Zn has to be included for every Zn of Eq. (18), which
doubles the order of the group [45]. The character tables of the common spin double groups can
be found, for example, in Ref. [46].

Consider the group C3v as one of the simplest non-Abelian point groups. The spin-free JT
selection rule in the C3v point group is [1]

[E2] = A+ E (19)

where [Γ2] denotes the symmetrized square of the irreducible representation Γ [45]. According
to Eq. (19), vibrational modes of e symmetry are JT active in first order. The relativistically
generalized selection rules in the spin double group C ′

3v are (for a single unpaired electron)

2E = E × E1/2 = E1/2 + E3/2 (20a)

E1/2 × E3/2 = 2E (20b)

where E1/2 and E3/2 are two-dimensional two-valued irreducible representations of C ′
3v . The

spin function of a single electron transforms as E1/2 in C ′
3v. According to Eq. (20a), the four-

fold degenerate 2E state splits into two-fold degenerate E1/2 and E3/2 states by SO coupling.
According to Eq. (20b), vibrational modes of e symmetry can couple the E1/2 and E3/2 SO-split
electronic states. Since the e modes are already JT active in the electrostatic Hamiltonian,
no new JT couplings arise from the SO operator. This has been confirmed by the explicit
construction of the 2E × e JT Hamiltonian with inclusion of SO coupling [26]. In C3v systems,
the SO operator thus lifts the degeneracy of the nonrelativistic 2E state, while the JT forces are
of electrostatic origin [47].

Interestingly, a different situation is encountered in the tetragonal groups (D2d, C4v,D4h). In
the D2d group, the spin-free selection rule is

[E2] = A1 +B1 +B2. (21)

As is well known, the nondegenerate b1 and b2 normal modes are JT active (in first order)
in tetragonal systems [4–6, 10]. The relativistically generalized selection rules in the D′

2d spin
double group are

2E = E × E1/2 = E1/2 + E3/2 (22a)

E1/2 × E3/2 = B1 +B2 + E. (22b)
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According to Eq. (22a), the SO interaction lifts the four-fold degeneracy of the 2E state.
According to Eq. (22b), the E1/2 and E3/2 components of the SO-split 2E state are coupled
in first order by b1, b2 and e modes. Since the e modes are not JT active at the electrostatic
level (see Eq. (21)), the JT activity of the e modes must arise from the SO operator. The same
selection rules apply in C ′

4v and D′
4h. The relativistic JT forces are thus complementary to the

electrostatic JT forces in tetragonal systems.
In tetrahedral systems (point group Td), the spin-free selection rules are [4–7, 10]

[E2] = A1 + E (23a)

[T 2
1,2] = A1 + E + T2. (23b)

The vibrational modes transform as a1, e or t2 in Td. In electronic states of E symmetry, only
the modes of e symmetry are JT active in first order (Eq. (23a)). In electronic states of T1 or
T2 symmetry, the t2 modes as well as the e modes are JT active (Eq. (23b)). 2T1,

2T2 and 2E
electronic states transform as follows in T ′

d:

2T1 = T1 × E1/2 = G3/2 + E1/2 (24a)
2T2 = T2 × E1/2 = G3/2 + E5/2 (24b)
2E = E × E1/2 = G3/2 (24c)

where E1/2, E5/2 are two-dimensional double-valued irreducible representations, while G3/2 is
a four-dimensional double-valued irreducible representation of T ′

d [48]. According to Eqs. (24a,
24b), 2T1 (2T2) electronic states split into G3/2 and E1/2 (E5/2) irreducible components by

SO coupling. The four-fold degeneracy of a 2E electronic state, on the other hand, is not
lifted by SO coupling at the tetrahedral reference geometry (Eq. 24c). While the two-fold
degeneracy of the E1/2 and E5/2 levels cannot be lifted by any intramolecular interaction
(Kramers degeneracy [49]), the energy levels of G3/2 can split into two two-fold degenerate
levels.

The JT selection rules in the T ′
d spin double group are

E1/2 ×G3/2 = E + T1 + T2 (25a)

E5/2 ×G3/2 = E + T1 + T2 (25b)
{
G2

3/2

}
= A1 + E + T2. (25c)

Here {Γ2} denotes the antisymmetrized product of Γ [45, 50]. Eq. (25c) reveals that the
degeneracy of a G3/2 electronic state is unstable with respect to deformations via e and t2
modes. For a 2E state, which transforms as G3/2 in T ′

d (Eq. (24c)), the t2 mode is not JT
active at the electrostatic level, see Eq. (23a). It follows that the JT activity of the t2 modes in
2E states must arise form the SO operator. A more detailed analysis (see below) reveals that
in 2T1,2 states the t2 modes and the e modes are JT active (in first order) via electrostatic as
well as relativistic forces. In 2E states, on the other hand, the JT activity of the e modes is of
electrostatic origin, while the JT activity of the t2 modes is of relativistic origin [27, 28]. The
JT selection rules in cubic symmetry (Oh, O

′
h) are the same as in Eq. (23-25), apart from the

additional inversion symmetry.
The relativistically generalized selection rules for electronic states of higher spin multiplicity

in odd-electron systems can be obtained by a straightforward extension of the above analysis,
since the representation of quartet, sextet, etc. spin states can be decomposed into the two-valued
irreducible representations of the spin double group. In even-electron systems, the electronic
states transform according to single-valued irreducible representations of the spin double group.
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3.2. Relativistic 2E × e Jahn-Teller effect in D2d systems

Let us consider, as the simplest model of aD2d-symmetric object, a covalently bonded five-atomic
YX4 system, where Y is the central atom and the YX1X2 and YX3X4 atoms are in planes which
are oriented perpendicular to each other. Aluminium tetroxide (AlO4) is an example.

For the purpose of symmetry analysis, the electrostatic Hamiltonian is written as (in atomic
units)

Hes = −1

2
∇2 − Φ(r) (26a)

Φ(r) =
Q0

r
+

4∑

k=1

Q1

rk
(26b)

where Q0 and Q1 are effective atomic charges, r is the radius vector of the electron, r = |r| and
rk = |r−Rk|. The Rk, k = 1 . . . 4, are the radius vectors to the atoms X1 . . .X4. The Y atom
is at the origin of the coordinate system.

The Breit-Pauli operator for this system reads [31]

HSO = −igeβ2eS
[
Q0

r3
(r×∇) +Q1

4∑

k=1

1

r3k
(rk ×∇)

]
(27a)

where

S =
1

2
(iσx + jσy + kσz), (27b)

σx, σy, σz are the Pauli spin matrices, βe is the Bohr magneton, ge is the g-factor of the electron,
and i, j, k are the Cartesian unit vectors.

We consider an isolated electronic E orbital with diabatic wave functions ψx, ψy which
transform as x, y in the D2d point group. The four-dimensional Hilbert space of a single
electron in the E orbital is spanned by the spin-orbital basis functions

{ψxα,ψyα,ψyβ, ψxβ} . (28)

The nine vibrational coordinates of the YX4 molecule transform as

Γv = 2a1 + b1 + 2b2 + 2e (29)

in the D2d point group. According to the selection rules of Eqs. (21,22), the b1, b2 and e modes
are JT active in first order. In the following we consider, for brevity and clarity, only one
representative of the b1, b2 and e modes, respectively. We denote the nondegenerate normal
coordinates of b1, b2 symmetry as q1, q2, and the normal coordinates of e symmetry as qx, qy.

The spin-free HamiltonianHes is expanded, as usual, up to second order in normal coordinates
of b1, b2 and e symmetry (see Ref. [30] for details). The Breit-Pauli operator is expanded up to
first order in the normal modes. This expansion can be written as

HSO =H(0)
SO +H(1)

SO (30a)

H(0)
SO =[hy(e)σy + hx(e)σx] + hz(a2)σz (30b)

H(1)
SO =[hx1(e)q1σx + hy1(e)q1σy] + [hy2(e)q2σy − hx2(e)q2σx]

+ [hzy(e)qyσz − hzx(e)qxσz] + hz1(b2)q1σz + hz2(b1)q2σz

+ h+(b1)(qxσx + qyσy) + h−(a2)(qxσx − qyσy)

+ h+(a1)(qxσy + qyσx) + h−(b2)(qxσy − qyσx). (30c)
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The expansion coefficients in Eqs. (30b, 30c) are operators in electronic coordinate space. Their
transformation properties are indicated in parentheses. The square brackets indicate symmetry-
adapted linear combinations.

The 2E× (b1+ b2+ e) SO Hamiltonian matrix is obtained by calculating the matrix elements
of HSO with the electronic basis functions (28). The result is [30]

HSO[
2E × e] =




0 i∆ iγq+ 0
−i∆ 0 0 −iγq+
−iγq− 0 0 i∆

0 iγq− −i∆ 0


 (31a)

where
q± = qx ± iqy. (31b)

Here ∆ is the zeroth-order SO coupling which gives rise to the SO splitting of the 2E state at
the reference geometry. The real parameter γ represents the linear JT coupling arising from the
SO operator. In the real-valued spin-orbital basis (28) the diagonal elements of the Breit-Pauli
operator are necessarily zero, since the latter is purely imaginary (see Eq. (27a)). However, at
the reference geometry (qx = qy = 0) the Hamiltonian matrix can be diagonalized, yielding the
eigenvalues −∆, −∆, ∆, ∆. Due to the Kramers degeneracy of the eigenvalues, the unitary
transformation is not unique. A suitable choice is [30]

U =
1√
2




1 1 0 0
−i i 0 0
0 0 1 1
0 0 −i i


 . (32)

This transformation defines a SO-adapted diabatic electronic basis.
Including the electrostatic JT coupling terms up to first order, the linear 2E × (b1 + b2 + e)

JT coupling matrix in the SO-adapted basis reads

H̃(1)[2E × (b1 + b2 + e)] = EE14 +




∆ bq2 + iaq1 0 iγq+
bq2 − iaq1 −∆ iγq+ 0

0 −iγq− ∆ −bq2 + iaq1
−iγq− 0 −bq2 − iaq1 −∆


 . (33)

Here 14 denotes the 4 × 4 unit matrix and a, b are the linear JT coupling constants of the b1,
b2 modes. When the electrostatic JT couplings are neglected (a = b = 0), the Hamiltonian
matrix (37) becomes isomorphic with the linear 2E×e JT+SO coupling Hamiltonian of trigonal
systems [47].

The vibronic matrix (33) can easily be diagonalized, since the quartic secular polynomial
factorizes into two quadratic polynomials due to time-reversal symmetry. The eigenvalues are
given by

V1 = V2 = EE −
√

∆2 + a2q21 + b2q22 + γ2(q2x + q2y) (34a)

V3 = V4 = EE +
√

∆2 + a2q21 + b2q22 + γ2(q2x + q2y). (34b)

They represent five-dimensional elliptic hyperboloids (the energies as a function of four nuclear
coordinates). The Hamiltonian matrix and adiabatic potentials with inclusion of the quadratic
electrostatic expansion terms can be found in Ref. [30].
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Although the D2d group is one of the less common point groups, it certainly is of relevance for
the theoretical description of photochemical reactions. The D2d group, being a subgroup of the
tetrahedral and cubic groups, is a frequently occurring epikernel group in tetrahedral and cubic
systems, that is, it is associated with local minima of the multi-dimensional JT PE surfaces [51].
The determination of JT and SO couplings at stationary points of D2d symmetry is thus of
widespread relevance in the theoretical analysis of transition-metal complexes, organometallic
compounds and crystals.

3.3. Relativistic 2T2 × t2 and 2E × t2 Jahn-Teller effect in tetrahedral and octahedral systems

Let us consider a four-atomic tetrahedral system with a single unpaired electron. Examples are
the cluster cations P+

4 , As
+
4 , Sb

+
4 , Bi

+
4 . The point group of the electrostatic Hamiltonian is Td;

the point group of the SO operator is T ′
d. For the purpose of symmetry analysis, the electrostatic

Hamiltonian of the unpaired electron is approximated as

Hes = −1

2
∇2 − Φ(r) (35a)

Φ(r) = Q

4∑

k=1

1

rk
(35b)

where Q is the effective nuclear charge of the four equivalent atoms. The rk are defined
analogously to Eq. (26).

The Breit-Pauli operator for this system reads [31]

HSO = −igeβ2eQS

4∑

k=1

1

r3k
(rk ×∇) (36)

where S is defined in Eq. (27b).
Molecular orbitals transforming according to the T2 representation can be constructed as

linear combinations of atomic p orbitals ϕ
(k)
x , ϕ

(k)
y , ϕ

(k)
z on the four atoms

ψj =
1

2

4∑

k=1

ϕ
(k)
j , j = x, y, z. (37)

The six-dimensional Hilbert space of a single electron in the T2 orbital is spanned by the spin-
orbital basis functions

{ψxα,ψyα,ψzα,ψzβ, ψyβ, ψxβ} . (38)

The six vibrational coordinates of the X4 system transform as

Γv = a1 + t2 + e (39)

in the Td point group. According to the selection rule (23b), the t2 and e modes are JT active
in first order. We consider only the normal modes of t2 symmetry in what follows and denote
the normal coordinates of t2 symmetry as Qx, Qy, Qz.

The spin-free Hamiltonian Hes is expanded, as usual, up to second order in the normal
coordinates of t2 symmetry. The Breit-Pauli operator is expanded up to first order

HSO =H(0)
SO +H(1)

SO (40a)

H(0)
SO =hxσx + hyσy + hzσz (40b)

H(1)
SO =h(a2)Pa2 + h(ea)Pea + h(eb)Peb

+ h(t1x)Pt1x + h(t1y)Pt1y + h(t1z)Pt1z

+ h(t2x)Pt2x + h(t2y)Pt2y + h(t2z)Pt2z (40c)
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where the Pj are first-order symmetry adapted polynomials in Q, defined as

Pa2(Q,σ) =
1√
3
(Qxσx +Qyσy +Qzσz) (41a)

Pea(Q,σ) =
1√
6
(2Qxσx −Qyσy −Qzσz) (41b)

Peb(Q,σ) =
1√
2
(Qyσy −Qzσz) (41c)

Pt1x(Q,σ) =
1√
2
(Qzσy −Qyσz) (41d)

Pt2x(Q,σ) =
1√
2
(Qzσy −Qyσz). (41e)

The Pt1y , Pt1z and Pt2y , Pt2z follow by cyclic permutation.

The 2T2 × t2 SO Hamiltonian matrix is obtained by calculating the matrix elements of HSO

with the electronic basis functions (38). The result is [28]

H(0)
SO[T2] = ∆




0 i 0 −1 0 0
−i 0 0 i 0 0
0 0 0 0 −i 1

−1 −i 0 0 0 0
0 0 i 0 0 i
0 0 1 0 −i 0




(42)

H(1)
SO[T2 × t2] = α




0 0 −iQx −iQz Q+ 0
0 0 iQy Qz 0 −Q+

iQx −iQy 0 0 −Qz iQz

iQz Qz 0 0 iQy −iQx

Q− 0 −Qz −iQy 0 0
0 −Q− −iQz iQx 0 0




(43)

where
Q± = Qx ± iQy. (44)

Here ∆ is the zeroth-order SO splitting of the 2T2 state and α is the linear relativistic 2T2 × t2
JT coupling constant.

The Hermitian matrix H(0)
SO of Eq. (42) can be diagonalized by a unitary transformation

U . Since the transformed matrix H̃(0)
SO has degenerate eigenvalues, the unitary matrix U is not

unique. A suitable choice is given in Appendix B of Ref. [28] and defines a SO-adapted electronic
basis. The zeroth-order SO vibronic matrix takes the form

H(0)
SO[T2] = diag(−∆,−∆,−∆,−∆, 2∆, 2∆). (45)

In agreement with the group-theoretical result (24b), the zeroth-order SO coupling splits the
six-fold degenerate 2T2 manifold into a quadruply degenerate manifold (G3/2) and a doubly
degenerate manifold (E5/2) [48].

Including the electrostatic JT coupling terms up to first order, the linear 2T2× t2 JT coupling
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Hamiltonian in the SO adapted basis reads [28]

H̃(1)[2T2 × t2] = ET2
16 +




−∆ −iã1Q+ 0 iã1Qz 0 iã2Q−
iã1Q− −∆ −iã1Qz 0 − i√

3
ã2Q−

2i√
3
ã2Qz

0 iã1Qz −∆ iã1Q− −iã2Q+ 0
−iã1Qz 0 −iã1Q+ −∆ − 2i√

3
ã2Qz − i√

3
ã2Q+

0 i√
3
ã2Q+ iã2Q−

2i√
3
ã2Qz 2∆ 0

−iã2Q+ − 2i√
3
ã2Qz 0 i√

3
ã2Q− 0 2∆




(46a)
where

ã1 =
1√
3
(a+ 2α) (46b)

ã2 =
1√
2
(a− α) (46c)

and a is the linear electrostatic T2 × t2 JT coupling constant. It is seen that the effective
linear JT coupling parameters in the SO-adapted basis have an electrostatic (a) and relativistic
(α) contribution. The parameter ã1 is the effective linear JT coupling constant of the G3/2

manifold. The parameter ã2 describes the pseudo-JT (PJT) coupling of the G3/2 and E5/2

manifolds. Depending on the signs of a and α, there is constructive or destructive interference
of the electrostatic and relativistic JT couplings.

For sufficiently large values of the SO splitting 3∆, the G3/2 manifold (with eigenvalues
ET2

− ∆) can be considered to be approximately decoupled from the E5/2 manifold (with

eigenvalue ET2
+ 2∆) [52]. In this approximation, the 2T2 × t2 JT Hamiltonian is reduced

to a 4× 4 matrix

H̃(1)[G3/2 × t2] = (ET2
−∆)14 + iã1




0 −Q+ 0 Qz

Q− 0 −Qz 0
0 Qz 0 Q−

−Qz 0 −Q+ 0


 . (47)

The eigenvalues of this vibronic matrix are

V1 = V2 = ET2
−∆− |ã1|R (48a)

V3 = V4 = ET2
−∆+ |ã1|R (48b)

where
R = (Q2

x +Q2
y +Q2

z)
1

2 . (48c)

The adiabatic potentials (48) are doubly degenerate (Kramers degeneracy) and represent a
double cone in four-dimensional space (the energies as a function of three nuclear coordinates).

The analysis for a 2E state, which transforms as G3/2 in T ′
d, is analogous and has been

discussed in Ref. [27]. For brevity, we consider here only the t2 vibrational mode. The
Hamiltonian matrix in the linear approximation reads [27]

H(1)[2E × t2] = EE14 + iγ




0 Qz Q− 0
−Qz 0 0 −Q−
−Q+ 0 0 Qz

0 Q+ −Qz 0


 (49)
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As discussed in Section 3.1, the zeroth-order SO splitting vanishes for a 2E state in tetrahedral
symmetry. Moreover, the linear electrostatic 2E × t2 JT coupling constant is zero by symmetry
(see Eq. (23a)). The linear JT coupling constant γ in Eq. (49) is thus of purely relativistic
origin. The eigenvalues of the vibronic matrix (49) are given by Eq. (48), with |ã1| replaced by
|γ|.

The 2T2 × e and 2E × e JT Hamiltonians of tetrahedral systems are not discussed in detail
in this synopsis for brevity. The results can be found in Refs. [27, 28]. The 2E × e case in
tetrahedral symmetry is remarkable. As is well known, the zeroth-order SO splitting is zero for
a 2E state in tetrahedral symmetry [4–6, 10]. A detailed analysis reveals that the SO coupling
within a 2E state vanishes in any order of the normal mode of e symmetry. The 2E×e JT effect
in tetrahedral systems is thus strictly unaffected by SO coupling.

As is well known, the electrostatic 2T2 × (t2 + e) and 2E × (t2 + e) JT Hamiltonians up to
second order are the same in tetrahedral and cubic systems, apart from the obvious additional
restrictions due to inversion symmetry [4–11]. The relativistic JT forces, on the other hand,
are not identical in tetrahedral and cubic systems. A detailed analysis reveals that the 2T2 × e
JT coupling has electrostatic as well as relativistic contributions in tetrahedral systems [28].
In octahedral and cubic systems, on the other hand, the linear relativistic 2T2g × eg coupling
parameter is zero by symmetry [29]. This fact reveals that the symmetry selection rules for the
SO operator differ from those for the electrostatic Hamiltonian in a subtle manner.

3.4. Application: The 2T2 × t2 Jahn-Teller effect in Sb+4
Recent ab initio calculations of the matrix elements of the Breit-Pauli operator with
nonrelativistic CASSCF wave functions and diagonalization of the SO-CI matrix have established
the zeroth-order SO splittings of the T2 state and have confirmed, moreover, the existence of
substantial linear relativistic JT couplings for the heavier group-V tetramers [57].

Herein, we restrict our attention to JT and SO coupling in Sb+4 , referring to Ref. [58] for a
comparative discussion of the photoelectron spectra of P4, As4, Sb4 and Bi4. The electrostatic
as well as relativistic JT couplings of the e mode in the 2T2 state are rather weak and have little
impact on the JT spectra [58]. For clarity, we therefore discuss the pure T2 × t2 effect in Sb+4 .

Figure 3. Electrostatic (a) and relativistic (b) PE surfaces of the electronic 2E ground state
and the 2T2 first excited state for Sb+4 (circles: ab initio data; solid lines: fit)
.

Cuts of the PE surfaces of the 2E and 2T2 states of Sb+4 along the t2 symmetry coordinate
sz, obtained without (a) and with SO coupling (b), are shown in Fig. 3. Fig. 3a reveals the very
strong electrostatic T2 × t2 JT splitting in the 2T2 state upon distortion in the t2 mode. Fig. 3b
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shows the PE functions obtained with inclusion of SO coupling. It illustrates the zeroth-order
SO splitting of the 2T2 state into G3/2 and E5/2 states. Moreover, it can be seen that the JT
splitting of the G3/2 state in (b) is significantly weaker than the JT splitting of the nonrelativistic
2T2 state in (a). This feature reflects the destructive interference between a and α in Eq. (46b)
(a/ωt2

= 3.2, α/ωt2
= −0.58). Moreover, it is seen that the PE functions of the 2E state in Fig.

3b exhibit a splitting as a function of sz, which is the signature of the relativistic 2E × t2 JT
coupling (γ/ωe = 0.02).

The photoelectron spectrum of the 2T2 state of Sb+4 , calculated in the nonrelativistic
approximation, is displayed in Fig. 4. The sharp lines in Fig. 4 correspond to a resolution of
0.5 meV (which is determined by the total propagation time of the calculation). The envelope
in Fig. 4 represents a “low-resolution spectrum”, which was obtained from the high-resolution
spectrum by convolution with a Gaussian of 15 meV full width at half maximum [58]. The
photoelectron band of the 2T2 state of Sb+4 is characteristic for a very strong 2T2 × t2 JT effect
(a/ωt2

= 3.2). The energy levels as well as the intensities are highly irregular, reflecting the
pronounced anharmonicity of the adiabatic PE surfaces and strong nonadiabatic couplings. The
low-resolution envelope, on the other hand, exhibits a quasi-regular progression, see Fig. 4.

The 2T2 photoelectron spectrum obtained with inclusion of zeroth-order SO splitting (∆ =
−71.45 meV) is shown in Fig. 5a. The photoelectron band splits into two sub-bands with a
separation of approximately 3∆ (0.21 eV). In addition, we observe a significant reduction of the
extension of the quasi-progression in the t2 mode, which reflects the quenching of the T2× t2 JT
coupling by the zeroth-order SO splitting.
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Figure 4. 2T2 × t2 JT spectrum of Sb+4
.
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Figure 5. 2T2 × t2 JT spectrum of Sb+4 including zeroth-order (a) and zeroth plus first-order
(b) SO coupling
.

When the linear relativistic SO coupling constant α is additionally included, the 2T2
photoelectron band displayed in Fig. 5b is obtained. It can be seen that the quasi-progression
in the upper (G3/2) state is shorter than in Fig. 5a, while the quasi-progression in the lower
(E5/2) state is more extended than in Fig. 5a. These features reflect the destructive and
constructive interference in ã1 and ã2, respectively (see Eq. (46b, c)). The inclusion of the linear
relativistic JT couplings thus is necessary for an accurate prediction of the vibronic structure of
the photoelectron spectrum of Sb4. As expected, these effects are even larger in the photoelectron
spectrum of Bi4 [58].

The available experimental photoelectron spectra of P4, As4 and Sb4 are strongly broadened
due to the high temperature of the clusters [53–56]. As a result, the existing photoelectron
spectrum of Sb4 is structureless [55, 56]. A high-resolution photoelectron spectrum of cold
tetrahedral Sb4 clusters would be of great interest for the future development of JT theory.

4. Summary and outlook

In this synopsis, we sketched the concepts of a systematic extension of JT theory beyond the
standard model. The latter has been the paradigm for the analysis of static and dynamic JT
effects in Physics and Chemistry since many decades. The motivation for a substantial extension
of JT theory arises from modern computational electronic-structure theory, which can provide
an essentially unlimited amount of PE data for JT systems, including an accurate description
of SO coupling effects. The traditional expansions of the electrostatic PEs up to second order
and the SO coupling energies up to zeroth order are insufficient for an accurate modeling of the
ab initio data.

For the electrostatic (spin-less) Hamiltonian, we have summarized herein the high-order
expansions of the two most generic and common JT Hamiltonians: the E×e Hamiltonian in C3v

symmetry and the T2× t2 Hamiltonian in Td symmetry. Since C3v is a subgroup of C6h, Td, and
Oh, the E × e master JT Hamiltonian is also valid for these groups. Likewise, Td is a subgroup
of Oh. Therefore, the T2 × t2 master JT Hamiltonian applies also in cubic symmetry. The
conventional Taylor expansion of the electronic Hamiltonian has been replaced by an expansion
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in invariant polynomials, employing the powerful tools of invariant theory [25, 41]. Invariant
theory allows the construction of JT expansions up to arbitrary order. Since the E × e and
T2 × t2 JT Hamiltonians are symmetric in the electronic and nuclear vector spaces, Weyl’s
polarization method can be employed and results in an elegant construction method of high-
order JT Hamiltonians.

It has recently been shown by ab initio electronic-structure calculations for representative JT
systems (e.g. NH+

3 [20], NO3 [19], CH+
4 [23, 24] and transition-metal trifluorides [21, 22]) that

for strong JT effects involving bending modes the expansion of the electrostatic potential up
to second order is generally insufficient. Intramolecular collisions of the ligand atoms lead to
pronounced positive anharmonicities. As a result, expansions of the PEs of the bending modes
at least up to sixth order are a necessity.

The second restriction of the standard model of JT theory is the approximation of the
SO coupling operator in zeroth-order of the normal-mode Taylor expansion. Recently, the
theory of SO coupling in JT systems was extended beyond the standard model by the Taylor
expansion of the Breit-Pauli SO operator up to first order in normal-mode displacements for
the common spin double groups (trigonal, tetragonal, tetrahedral and cubic systems) [26–30]. If
considered necessary, the expansion of the Breit-Pauli operator could be extended to include
second-order terms. Since a nonrelativistic spin-orbital electronic basis was employed, the
SO coupling appears as a perturbation of the nonrelativistic electronic Hamiltonian. The
contributions of the electrostatic (Coulombic) interactions and the electrodynamic (current-
induced) contributions are thus explicitly exhibited for each JT coupling constant. The different
scaling of the electrostatic and relativistic interactions with the nuclear charge Z of heavy
elements is thus transparent. Moreover, the SO-induced JT couplings are a priori obtained in a
diabatic form. The diabatic basis of the nonrelativistic Hamiltonian is sufficient; no additional
diabatization procedure is necessary. From a practical point of view, it is helpful that the
matrix elements of the full (two-electron) Breit-Pauli operator with nonrelativistic CASSCF
wave functions are efficiently implemented in several of the widely available electronic-structure
codes (e.g. GAMESS, MOLPRO, MOLCAS).

For molecules, molecular complexes and crystals containing very heavy elements, the so-
called two-step approach to relativistic electronic-structure (treating electron correlation first
at the electrostatic level, followed by inclusion of SO-coupling effects by the diagonalization of
the Breit-Pauli operator) may become slowly convergent and therefore inefficient [62]. In this
case, it may be preferable to formulate the JT theory by employing a two-component electronic
spinor basis (provided, e.g., by the ZORA, Douglas-Kroll-Hess or exact two-component (X2C)
methods [32, 63]). A quasi-diabatic electronic basis has then to be defined at the relativistic
level. The methods of invariant theory outlined in Section 2 may then be employed in the
framework of the spin double groups.
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